
Chapter 1

Introduction

1.1 Optics at the Nanoscale

The interaction of light with matter is one of the most significant processes on the

planet, forming the basis of some of the most famous scientific discoveries to date.

However, since its inception more than four hundred years ago, any advances in the

field of optics have been limited by diffraction. This restricts the size of all optical

components to dimensions greater than half the wavelength of light it supports [1].

It has only been in the past decade that researchers have finally developed a tech-

nology that beats the diffraction limit, instigating a revolution in optics. Plasmonics

is an emerging area of research that opens the path for controlling light-matter in-

teractions on the subwavelength scale, enabling truly nanophotonic technologies that

are unattainable with conventional diffraction-limited optical components. Novel sur-

face plasmon devices exploit electromagnetic waves confined to the interface between

a metal and a dielectric and permit the researcher to “shrink” light to dimensions

previously inaccessible with optics.

Although scientists take credit for revolutionizing this field fairly recently, in truth

nanophotonics, and specifically plasmonics, has been in practical applications since

the 4th century. Figure 1.1a shows a photograph of the Lycurgus cup from 4th

century Rome, which consists of metallic nanoparticles suspended within a glass ma-

trix. Because of plasmonic excitation of electrons in the metallic particles, the cup

absorbs and scatters the short wavelengths of the visible spectrum, blue and green

light. Therefore, when viewed in reflection, the plasmonic scattering gives the cup a

greenish hue. If instead a white light source is placed within the goblet, the metal
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Figure 1.1. (a) The Lycurgus cup from 4th century Rome consists

of small metal nanoparticles suspended within the glass matrix. Be-

cause of plasmonic excitation of electrons in the metallic particles,

the plasmonic scattering in reflection gives the cup a greenish hue

(inset). If a white light source is placed within the goblet, the

glass appears red because it transmits only the longer wavelengths of

the visible spectrum and absorbs the shorter ones (image from [2]).

(b) The famous Rose window in Sainte Chapelle (12th century Paris)

has its brilliant colors because of a similar phenomenon (image by

B. Didier).

nanoparticles in the glass transmit the longer wavelengths of the visible spctrum and

absorb the shorter ones, and the cup appears red. The brilliant colors in the famous

stained-glass Rose window of Sainte Chapelle in 12th century Paris (Figure 1.1b) are

created using this same technique, as the scattering and transmissive properties of

metal nanoparticles are strongly shape and size dependent.

1.2 What are Surface Plasmons?

Surface plasmons are longitudinal charge-density fluctuations at the interface between

a metal and a dielectric [3]. They resemble photons, but are nonradiative in nature

and generally exhibit much shorter wavelengths than photons in free space. Surface

plasmons essentially exist in two forms, as localized surface plasmons (SPs) and as
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Figure 1.2. (a) Example of a particle plasmon. An incident elec-

tromagnetic field causes a disturbance of the electron cloud in the

particle (negative charges), leaving behind a positively charged por-

tion of the particle. The electron cloud then oscillates at the dipole

plasmon resonance frequency. (b) Surface plasmons are also sup-

ported at the planar interface between a dielectric (ε2) and a metal

(ε1(ω)). Here, an incident field excites a charge-compression wave

that propagates along the metal/dielectric interface.

propagating surface plasmon polaritons (SPPs). An example of localized SPs are

those supported by metal nanoparticles, illustrated schematically in Figure 1.2a. In

this case, an incident electromagnetic field causes the electron cloud in the nanopar-

ticle to oscillate coherently, resulting in positive and negative charge polarization. A

restoring force arises from the Coulomb attraction between the displaced electrons

and the positively charged nuclei, and the electron cloud oscillates at the dipolar

plasmon resonance frequency [4]. These nanoparticles find applications in surface

enhanced Raman spectroscopy [5, 6, 7], photothermal tumor ablation [8], and en-

hanced absorption in solar cells (see [9] and references therein), among others. In

planar geometries, surface plasmons propagate as a longitudinal charge-compression

wave at the interface of a metal and dielectric. As illustrated in Figure 1.2b, the field

penetrates more significantly into the dielectric half-space than the metal, although

both of these distances can be subwavelength.
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1.3 Single-Interface Surface Plasmons

In this section, we will derive the single-interface surface plasmon dispersion relation

[10]. We start with Maxwell’s equations, which describe macroscopic electromag-

netism:

∇ ·D = ρext (1.1a)

∇ ·B = 0 (1.1b)

∇× E = −∂B

∂t
(1.1c)

∇×H = Jext +
∂D

∂t
. (1.1d)

These equations relate the fields D (dielectric displacement), E (electric field), B

(magnetic induction), and H (magnetic field) to ρext (external charge density) and

Jext (external current density). Limiting ourselves to isotropic, linear, nonmagnetic

media, we also have

D = ε0εE (1.2a)

B = µ0µH, (1.2b)

where ε0 and µ0 are the electric permittivity and magnetic permeability, respectively,

ε is the dielectric constant (relative permittivity), and µ = 1 defines the relative

permeability of nonmagnetic media.

Combining (1.1c) and (1.1d), we can derive the wave equation,

∇×∇× E = −µ0
∂2D

∂t2
, (1.3)

the basis of electromagnetic wave theory. If we assume harmonic time dependence

E(r, t) = E(r)e−ıωt, (1.3) simplifies to its more familiar form as the Helmholtz equa-

tion,

∇2E + k2
0εE = 0, (1.4)
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where k0 = ω/c is the wave vector of the propagating wave in vacuum, ω is frequency,

and c is the speed of light in vacuum.

To find a solution to the Helmholtz equation, we assume a one-dimensional ge-

ometry with propagation in the +x direction along the interface z = 0, as seen in

Figure 1.2b. Thus, the functional form of our solution is

E(x, y, z, t) = E(z)eıβxe−ıωt, (1.5)

where β = kx is the propagation constant. Plugging this into (1.4) gives the desired

form of the wave equation,

∂2E(z)

∂z2
+
(
k2

0ε− β2
)
E = 0, (1.6)

with a similar expression for the magnetic field H. To solve for the spatial field profile

and dispersion relation of propagating waves, we seek specific expressions for E and

H. These waves propagate at the interface between a conducting half-space (z < 0)

with complex dielectric function ε1(ω), and a non-absorbing half-space (z > 0) of

dielectric material with real dielectric constant ε2 (Figure 1.2b). For metals, this

implies Re[ε1] < 0, which is satisfied at frequencies below the plasma frequency

ωp. We also expect this propagating wave at the metal-dielectric interface to decay

evanescently into both media.

Plugging (1.5) into Maxwell’s equations, we find two sets of solutions with differing

polarizations. The first are transverse magnetic (TM) solutions where the only non-

zero field components are Ex, Ez, and Hy. In this case, we find for z > 0 (in the

dielectric),

Hy(z) = A2eıβxe−k2z (1.7a)

Ex(z) = ıA2
1

ωε0ε2

k2eıβxe−k2z (1.7b)

Ez(z) = −A1
β

ωε0ε2

eıβxe−k2z (1.7c)
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and for z < 0 (in the metal),

Hy(z) = A1eıβxek1z (1.8a)

Ex(z) = −ıA1
1

ωε0ε1

k1eıβxek1z (1.8b)

Ez(z) = −A1
β

ωε0ε1

eıβxek1z, (1.8c)

where ki ≡ kz,i, is the z component of the wave vector in media i = 1 (metal) and

i = 2 (dielectric). Applying boundary conditions requiring continuity of Hy and εiEz

at the interface, we find that A1 = A2 and k2/k1 = −ε2/ε1. Also solving the wave

equation for Hy gives

k2
1 = β2 − k2

0ε1 (1.9a)

k2
2 = β2 − k2

0ε2. (1.9b)

Finally, this gives us the dispersion relation:

β = k0

√
ε1ε2

ε1 + ε2

. (1.10)

If we also seek transverse electric (TE) modes, where Hx, Hz, and Ey are the only

non-zero field components, we find that no surface modes confined to the interface

can exist with this polarization. Thus, SPPs only exist for TM polarization.

Reexamining the dispersion relation of (1.10), we see that there is a resonant

condition when ε1(ω) = −ε2, satisfied at the surface plasmon resonance,

ωsp =
ωp√

1 + ε2

, (1.11)

where ωsp is the surface plasmon resonance frequency and ωp is the bulk plasma

frequency of the metal. The surface plasmon dispersion relation for Ag/air is plotted

in Figure 1.3 as energy (~ω) versus kx. The light line (LL) in air is plotted in

gray (E = ~ω = ~ckx). For energies below the surface plasmon resonance, the
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Figure 1.3. Dispersion relation for a single-interface (Ag/air) SPP,

as in (1.10). The light line (LL) is plotted in gray, and the SPP

dispersion in black. The light gray shaded region to the right of the

LL indicates bound surface modes (E < ~ωsp), while the region to

the left of the LL holds radiative modes (E > ~ωp). The inset im-

ages show that near the surface plasmon resonance (~ωsp), fields are

highly localized at the metal/dielectric interface in the z direction

(strong field confinement). At lower energies when the SPP disper-

sion lies closer to the LL, fields penetrate more significantly into the

dielectric environment (weak field confinement).
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SPP dispersion lies to the right of the LL. Thus, at a given free-space energy, the

SPP accesses larger k-vectors, or shorter wavelengths λ = 2π/kx, than its free-space

counterpart. This effect becomes more pronounced nearer to the surface plasmon

resonance. Because of this so-called momentum mismatch, photons in free space

cannot directly excite SPPs. Several strategies have been developed to overcome

this, such as those mentioned in Section 1.4. Also shown in Figure 1.3 are schematics

of the field penetration into the dielectric (air) for different regions of the dispersion

diagram. At low energies when the SPP dispersion lies very close to the light line,

there is weak field confinement in the z direction. Approaching resonance, the fields

are more tightly confined to the Ag/air interface with higher field intensity as well.

Above the bulk plasma frequency (E > ~ωp), when the metal becomes transpar-

ent, modes are no longer bound to the interface and are instead radiative modes,

and between the bulk plasma resonance and the surface plasmon resonance are the

quasi-bound modes [11]. We can also calculate the propagation length of the SPPs

along the metal/dielectric interface. The fields depend on x as eıβx, so we define the

propagation distance LSPP as

LSPP =
2

Re[ıβ]
=

2

Im[β]
. (1.12)

If we consider a planar multilayer system consisting of not just a single metal-

lodielectric interface, but two, we create the metal-insulator-metal (MIM) waveguide

shown schematically in Figure 1.4. The MIM geometry more significantly confines the

electromagnetic fields in the dielectric region than a single metallodielectric surface

[12]. As illustrated in Figure 1.4, an Ag/SiO2/Ag waveguide with SiO2 thicknesses

of 30 nm “shrinks” light that in free space has a wavelength λair = 620 nm down

to a SP wavelength of λsp = 200 nm. Thinner insulator thicknesses allow accessing

even larger k−vectors or shorter wavelengths, λsp < λair/10. This was experimentally

demonstrated in an Au/SiO2/Au geometry by Miyazaki and Kurokawa [13].
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Figure 1.4. Top: a photon in free space at a wavelength of λair =

620 nm, or an energy of 2 eV. Bottom: Inside a planar Ag-SiO2-Ag

metal-insulator-metal (MIM) waveguide, light of this same energy

is sustained as surface plasmons with a much shorter wavelength

λsp. For a 30 nm thick insulator, λsp = 200 nm; 10 nm thick,

λsp = 120 nm; 3 nm thick, λsp = 40 nm—less than 1/10 of the

free-space wavelength.

1.4 Exciting Surface Plasmons

As illustrated by the dispersion diagram in Figure 1.3, there is a mismatch in the

momentum between the surface plasmon and free-space photons at a given energy.

Because of this, clever strategies must be devised to efficiently excite SPs with light. A

number of geometries have been developed to achieve this, several of which are shown

in Figure 1.5. First, a grating can be defined in the metal film with a periodic spacing

Λ that matches the appropriate in-plane momentum of the SP, kx = k sin θ, as shown

in Figure 1.5b [10]. In this case, phase-matching is satisfied when β = k sin θ+2πm/Λ,

where m is an integer. The reverse process can also take place: surface plasmons

propagating along a metal/dielectric interface with a grating can radiate into free

space.

More generally, any subwavelength scatterer on the metal film, such as random

surface roughness with dimension ai, can be used to somewhat less efficiently couple

free-space photons at a number of different k−vectors (Figure 1.5c). In this case, the

phase-matching condition is β = k sin θ+∆k, where ∆k = 2πm/ai. Again, roughness
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Figure 1.5. Methods of exciting surface plasmons at an Ag/air in-

terface. (a) SP dispersion diagram (SP), showing the light line in air

(LLair, ω = ck), the light line in SiO2 (LLSiO2 , ω = ck/nSiO2 , and the

momentum mismatch ∆k. A number of techniques have been devel-

oped to couple free-space photons into SPs at the Ag/air interface,

such as (b) grating couplers, (c) subwavelength scatterers, (d) prism

couplers, (e) near-field probes, and (f) electron-beam excitation. See

text for details.
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or designed localized scatterers can also be used to outcouple bound surface plasmons

into free space.

Additionally, we can take advantage of total internal reflection inside a prism of

refractive index n that differs from air, such as SiO2. As indicated in Figure 1.5a,

the light inside the prism has a wavevector that overlaps with a portion of the Ag/air

SP dispersion relation. As shown in in Figure 1.5d, total internal reflection occurs at

the prism/air interface, exciting surface plasmons by tunneling below to the Ag/air

interface. This is known as the Otto configuration [14], and a similar geometry as the

Kretschmann configuration [15].

A near-field probe with an aperture that is much much smaller than the wavelength

of light can also be used to excite surface plasmons at much smaller length scales [16],

as seen in Figure 1.5e. The subwavelength aperture a << λ allows a number of wave

vectors near the desired β, allowing phase-matched excitation of surface plasmons.

Alternatively, we desire methods of exciting surface plasmons that do not require

incident photons. In Figure 1.5f, we consider a high-energy electron beam imping-

ing on a metal surface that disturbs the equilibrium electron plasma in the metal,

directly and locally exciting surface plasmons as the electrons at the surface of the

metal oscillate (see [17] and references therein). This is the basis of cathodolumines-

cence spectroscopy as it applies to plasmonics, a technique utilized in Chapter 2 and

Chapter 3 of this thesis.

1.5 Scope of This Thesis

This thesis is devoted to the investigation, both experimental and theoretical, of light

emission in a number of plasmonic nanostructures. The first two chapters of this thesis

present cathodoluminescence imaging spectroscopy as a new technique for character-

izing surface plasmons on metal films and localized in nanocavity resonators, with

experimental observations supported by analytical calculations and electromagnetic

simulation.

In Chapter 2, we develop CL imaging spectroscopy as a tool for investigating
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metallic films and nanostructures. This technique enables extremely localized sur-

face plasmon excitation, a feature we exploit in both planar metal geometries and

plasmonic nanocavities. We use CL to excite SPPs that propagate along an Ag or

Au film, ultimately outcoupling via nanofabricated gratings, and from the emitted

CL intensity determine the near-resonance SPP propagation distances. We also find

good agreement between measured values and those expected from analytical calcu-

lations. Moreover, we demonstrate that CL can be used to excite localized SPs in a

nanocavity geometry consisting of a semiconductor nanowire encapsulated in an Ag

film. The incident electron beam excites both band-edge luminescence in the ZnO,

as well as SP resonances of the Ag film.

We apply this same technique to excite and image modes in more complex res-

onator geometries in Chapter 3. The specific structure chosen is an annular nanores-

onator, consisting of concentric grooves in a metal film that surround a flat plateau.

Scanning the electron beam across the surface of the resonator yields cathodolumines-

cence emission that, when correlated with the excitation position, enables mapping

the spatial variation of specific plasmonic modes. This analysis is performed in both

Ag and Au resonators, and the experimental observations are supported by simula-

tions of the electric field profiles of the modes, as well as calculations of the predicted

CL emission.

The latter portion of this thesis is devoted to a specific plasmonic nanocavity

geometry, the core-shell nanowire resonator. In Chapter 4, we embark on a theoreti-

cal investigation of the modes supported by the Si-Ag core-shell nanowire resonator.

We find that this geometry sustains modes in structures with dimensions as small as

λ/50. We also discuss the Purcell effect as it applies to plasmonic nanocavities, and

demonstrate that the core-shell nanowire resonator can enhance the rate of sponta-

neous emission. Chapter 5 explains two routes to fabricating these structures, as well

as methods we use to characterize their optical properties.

Chapter 6 considers active core-shell nanowire resonators that contain bright III-

V semiconductor core materials. We design these structures such that the resonator

mode dramatically enhances the rate of spontaneous emission at the emitting wave-
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length of the active material, and calculate total decay rate enhancements above

8000× the emission rate in free space. Furthermore, theory predicts that this geome-

try reorients the direction of far-field radiation, a feature crucial for designing on-chip,

directional light-emitting diodes. Finally, Chapter 7 provides a thesis summary and

outlook.
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