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Chapter 2

Experiments

One of the first experiments involving a particle colliding with a stationary wall in a viscous liquid

environment was performed by McLaughlin (1968) who found that the rebound trajectory was shown

to depend on the particle impact Reynolds number. His experiments, however, were performed over

a small range of Reynolds numbers. Barnocky & Davis (1988) dropped solid particles of a few

millimeters in air onto a solid plate that was covered by a thin liquid layer (about 0.1 ∼ 0.5 mm

thick) and observed if the particles rebounded or not. To ensure a rebound, the sphere needs to

possess sufficient inertia to overcome the hindering fluid effect for a non-zero velocity upon contact.

As the viscosity and the thickness of the liquid layer was increased, a greater critical drop height was

need for the occurrence of a particle rebound. They did not measure the coefficient of restitution

above the transition but obtained a critical Stokes number for rebound, Stc, from approximately

0.25 to 4 for smooth surfaces. Lundberg & Shen (1992) studied the dependence of the coefficient of

restitution upon the fluid viscosity for the collision of a roller attached to a pendulum with a fixed

ball covered by a thin layer of viscous oil. They found that for oil with moderate values of viscosity to

0.01 Pa·s, the restitution coefficient is similar to that in a dry collision. However, at higher values of

viscosity, the restitution coefficient can become much less. This dependence on viscosity is stronger

for softer material where the surface deformation is larger, resulting in an increased contact surface

area and thus higher effect of the viscous dissipation. Zenit & Hunt (1999) and Joseph et al. (2001)

investigated the collisions totally immersed in a viscous fluid with a pendulum-like apparatus that

permits a horizontal impact motion towards a vertical wall. A critical Stokes number, Stc = 10, for
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Figure 2.1: Coefficient of restitution, e, as a function of Stokes number. ‘o’ for steel particles
impacting a Zerodur wall in Joseph et al. (2001); ‘�’ for steel ball bearings impacting an anvil in
McLaughlin (1968); ‘�’ and ‘�’ for steel spheres impacting a glass wall in Gondret et al. (1999) and
Gondret et al. (2002).

the bounce transition was observed. The surface roughness of the materials was found to impact the

value of coefficient of restitution for St < 80. Gondret et al. (2002) performed similar experiments to

McLaughlin’s using a solid sphere falling under gravity in a fluid onto a solid wall. The dependence of

the coefficient of restitution upon the particle Stokes number showed similar trend with McLaughlin

(1968) and Joseph et al. (2001)’s results, as shown in figure (2.1) which is taken from figure (3.7) of

Joseph (2003).

For collisions with high Stokes number, the viscous force is small compared with the particle

inertia, resulting in a near unity coefficient of restitution. The small value (around 0.7), as shown by

the filled triangle at Stokes around 4000, is a result from Gondret et al. (1999) who claimed 3 years

later that ‘the point appears to be underestimated due to the previous data analysis which has been

proved to be too crude for high St’ (see Gondret et al., 2002) With decreasing Stokes number, the

coefficient of restitution drops from unity. When the Stokes number is smaller than a critical value,

a restitution coefficient is zero, indicating no rebound happens, at least within the experimental
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resolution of the image acquisition system.

The aforementioned experiments mainly focused on coefficient of restitution based on the be-

havior of a particle right before and after it collides with a wall. In Joseph et al. (2001) pendulum

experiments, the trajectory and velocity profile were obtained. However, the surrounding flow field

coupled with the pendulum motion of the sphere was three dimensional and computationally ex-

pensive to be simulated. Gondret et al. (2002) presented the rebound trajectory and velocity of a

particle falling under gravity and colliding with a wall, which resulted in axisymmetric surrounding

flow field; however, the initial trajectory of the particle after it is released was not included. In the

experiments performed by TenCate et al. (2002), the whole process of a sphere settling toward a

wall was recorded. The sphere was released from zero velocity while simultaneously triggering the

camera to start filming until the sphere rested on the wall. The experimental results allowed the

validation of a solution for the surrounding flow field which is directly coupled with the motion of

the sphere during a settling process as described in Chapter 3. However, TenCate et al. (2002) did

not include results for Stokes numbers greater than the critical value.

Thus, new experiments were performed to record a complete collision process in a viscous liquid

including the trajectory of a particle as it accelerates from zero velocity after release, collides with

a wall, rebounds and falls again until it comes to rest. The new experimental results provide a

calibration for a proposed contact model described in Chapter 4 which captures the collision and

rebound processes. Moreover, the experimental trajectories of the collisions with different Stokes

numbers are compared with the simulated results. A detailed description of the motion of a particle

especially when it is about to collide with a wall is obtained by using a CCD camera with a higher

frame rate.
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2.1 Experiment setup

2.1.1 Experiment apparatus

The experiment setup is shown schematically in figure (2.2). The experiments are performed in a

glass rectangular tank with length×width×height as 600× 350× 450 mm that contains a mixture of

glycerol and water. A steel sphere with diameter D = 9.5 mm is dropped from an electromagnetic

release mechanism that is fixed on the top of the tank. A trigger pad is used to cut off the current in

the electromagnetic mechanism releasing the steel sphere from zero velocity under quiescent ambient

fluid condition. The circular release surface with diameter 52 mm is immersed in the liquid a certain

depth (> 50 mm) under the free surface of the liquid, and the effect of the liquid free surface on

the experiment is ignored. A cylinder-shaped Zerodur block with diameter 150 mm and height

100 mm is placed coaxially below the release mechanism from a certain distance as a target wall.

Zerodur is a hard glass-like material and it can be polished to a high accuracy to minimize the

effect of wall roughness on the experiments. A level is used to make sure the top surface of the

Zerodur is horizontal. The release surface is kept parallel to the top surface of the Zerodur block.

The sphere is dropped from the center of the release surface and falls along the axis of the Zerodur

block. The dimension of the glass tank is large compared with the sphere diameter so that the flow

field around the moving sphere can be considered as axisymmetric as long as the particle Reynolds

number Re = DV
ν is less than 250. Moreover, the large dimensions of the tank allow the use of the

far field boundary condition in the following simulation.

A high speed videography system (a high speed camera, a control/display monitor and a record

trigger) is used to capture the particle dynamic behavior. Figure (2.3) shows an example image

on the monitor with a control menu on the right. The camera frame rate is set to be 4000 frames

per second so that the time interval between two successive frames is 0.25 ms. Under this frame

rate, the resolution is 160 pixels wide by 140 pixels high. More details of the motion of a particle,

especially when it is about to collide with the wall, can be obtained by using this higher frame rate.

The shutter speed is 1× which allows the camera to capture as much light as possible. The filming
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Figure 2.2: Schematic experiment setup

starts prior to the release of the sphere to avoid missing the initial part of the collision process since

the release pad and the record trigger are controlled manually and separately. During playback, the

frame rate is set at 30 frames per second because this is the rate at which MATLAB can digitize a

video. The video recorded by the videography system is transferred into a computer as an output

‘.avi’ file by using software ‘VirtualDub’ which captures the video playing on the control/display

monitor.

h

Figure 2.3: The image shown on the control/display monitor. h is the gap between the sphere and
the wall.
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2.1.2 Material properties

Steel spheres with diameter 9.5 mm are used in the experiments. The target wall is made of

Zerodur. The properties of the solid material are listed in Table (2.1) including solid density, ρp,

Young’s modulus, E, Poisson’s ratio, ν.

Material ρp(kg/m3) E(GPa) ν

steel 7780 200 0.33

Zerodur 2530 91 0.24

Table 2.1: Properties of the sphere and the wall used in the collision experiments

Aqueous glycerol solutions were used as the surrounding fluid for the experiments. Glycerol

is completely miscible with water, which allows for a large range of viscosities to be explored by

changing the mixture proportions. Also, the viscosity of the mixture varies significantly with temper-

ature. Therefore, the liquid temperature is measured before each collision by a digital thermocouple

thermometer. The apparent specific gravity of the liquid is measured by a hydrometer. Based on

the measured temperature and apparent specific gravity, the concentration of the mixture can be

found from the datasheets presented in Joseph (2003) that are readily available at Dow Chemical

Synthetic Glycerin Products. Finally, the density and the viscosity of the liquid can be found from

the datasheets based on the temperature and the concentration.

2.2 Experimental data process

The output video ‘.avi’ file is first converted into DivX format by using software ‘YasaVideoCon-

verter’. The size of the video after conversion is much smaller (about 40 times) than the original

one, but the quality is good. Then this DivX video can be read by MATLAB at a frame rate 30 fps

and converted into images in ‘.jpg’ form. Figure (2.4) presents the images extracted from a recorded

video for event 2623. The time interval between the successive images shown in the figure is 34.25

ms. In figure (2.4), (a) shows the initial state in which the velocity of the particle just starts to fall

and the flow field is static; (b) shows the particle moving under gravity towards the wall at a distance

from the release surface; (c) is the moment when the particle collides with the wall and the distance
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Figure 2.4: Images extracted from the recorded video
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between the particle and the wall is zero; (d) shows the particle rebounding and approaching the

maximum height; (e) shows the particle falling again toward the wall; (f) is the particle reaching the

maximum height during the second rebound; (g) and (h) show the particle settling toward the wall

and resting there.

To find the trajectory of a sphere, the images are analyzed with a template matching method

that is widely used in digital image processing for finding incidence of a pattern or object within

an image. For a single image, a region typically recognized as the sphere is manually cropped and

saved as a template T (xt, yt) where (xt, yt) represent the coordinates of each pixel in the template;

then, the center of this template is moved over each point (x, y) in the image, and the normalized

cross-correlation is calculated as

1
n− 1

∑
x,y

(F (x, y) − F̄ )(T (x, y) − T̄ )
σTσT

where n is the number of pixels in the template T and a subimage F . The position with the highest

result is the best match and is considered as the position of the center of the sphere in the image.

Applying this technique to a series of images (the same template can be used for images extracted

from one video), the trajectory of the sphere can be found by relating the position of the sphere

to the corresponding time for each image. For an example, the trajectory of the sphere in event

2623 is plotted in figure (2.5). The images shown in figure (2.4) are marked on the trajectory

correspondingly. The position of the sphere plotted on the figure is the result of the position of the

sphere center found from the above template matching technique minus the radius of the sphere.

The unit is converted from ‘pixel’ to ‘mm’ by letting the template pixel correspond with the diameter

of the sphere.

The velocity of the sphere calculated as the time derivative of the trajectory �h/�t between the

two successive images is plotted in figure (2.6). Large variations are obtained since the time interval

0.25 ms is small (compared with 2 ms in the experiments of Gondret et al. (2002) and 5∼10 ms in

Joseph et al. (2001)), which amplifies the uncertainty of the experiment. Several steps have been
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Figure 2.5: The trajectory of the sphere in event 2623. The diamond points show the corresponding
position for the images in figure (2.4).

taken to diminish the vibration. First, for each collision process, the measurements were done three

times which means that under the same condition, the sphere was dropped three times and three

videos were recorded. The final trajectory is the average of the three trajectories obtained from the

three videos. Then, for this averaged trajectory, when using the time derivative �h/�t with �t = 2

ms, the calculated velocity is much smoother, shown as the points in figure (2.7). An alternative is

to fit the averaged trajectory with a high order (6th order) polynomial, h = P (t), which keeps the

characteristic shape of a trajectory but removes outlying points. Then, the velocity can be obtained

by differentiating the polynomial and calculating the differential V = dh
dt at different time step. The

result of the alternative is shown by the lines in figure (2.7). Compared with the results given in

Gondret et al. (2002)’s paper, the velocity profile in figure (2.7) shows not only the velocity of a

sphere when it is about to collide with a wall and rebound, but also the acceleration process from

zero initial velocity.



14

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time (s)

V
el

oc
it
y

(m
/s

)

Figure 2.6: The velocity of the sphere in event 2623 calculated by using central difference of the
trajectory with time interval 0.25 ms.
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Figure 2.7: The velocity of the sphere in event 2623 calculated by using central difference of the
trajectory with time interval 2 ms represented by points; the velocity profile calculated by fitting
the experimental trajectory with polynomials represented by lines.
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2.3 Experimental results

Collisions with different impact Stokes numbers were performed by placing the wall at different dis-

tances from the release surface. The apparent specific gravity of the liquid and the room temperature

are measured for each experiment. A typical value of the apparent specific gravity is 1.205 when

the room temperature is 20oC. Thus, the concentration of the mixture is found to be 78% glycerol

by weight, and the corresponding density and the viscosity of the liquid for that experiment are

1203 kg/m3 and 50.2 × 103 Pa·s. After applying the above data process techniques, the trajectory

and velocity of a sphere are obtained for each collision. The impact Reynolds number Re = DV
ν

is calculated based on the impact velocity of the sphere which is the averaged value of the velocity

obtained from the differential of the fitting polynomial over the 2 ms before collision. Because of

the small values of h(t = 0)/D, where h is the gap between the particle and the wall as defined in

figure (2.3), the particle does not achieve its terminal velocity before it contacts the wall. Thus,

the particle Reynolds number is related to the fall distance. The Stokes number of each collision,

St = 1
9

ρp

ρl
Re, is the particle Reynolds number times a constant (approximately 0.7) since the density

ratio of the sphere and the liquid is a constant.

A listing of the experimental cases and associated parameters are given in Table (2.2). In all

the cases, the particle bounced at least twice. The impact Stokes number for each first collision

was larger than 10. The maximum height achieved in the rebound motion is lower than the initial

height, which is the result of viscous losses and inelasticity.

Case h(t = 0) h(t = 0)/D ReI StI ReII StII ReIII StIII ReIV StIV

1 5.5mm 0.58 53 38 26 19 9 7 - -

2 10.5mm 1.10 75 54 39 28 20 15 - -

3 15.2mm 1.60 90 65 50 36 25 18 - -

4 19.6mm 2.06 104 75 58 42 35 25 12 8

5 25.3mm 2.66 113 81 65 46 37 26 12 9

6 28.4mm 2.98 123 88 69 50 42 30 13 9

7 35.7mm 3.75 127 92 70 51 43 31 15 10

Table 2.2: Experiments with particle Reynolds numbers and Stokes numbers at the first impact (I),
the second impact (II), the third impact (III) and the forth impact (IV ).
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2.3.1 Trajectories for the sphere

The trajectories for a sphere dropped from different distances are compared in figure (2.8). Ideally,

the initial falling process from the release surface for each case should coincide. The deviation

results from the uncertainty of the experiments; the maximum error is less than 3%. In examing

the rebound, the maximum height achieved in the first rebound increases as the initial drop height

increases; the time duration from the first collision to the second collision also increases with drop

height.
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Figure 2.8: Particle trajectories for the given different cases described in Table (2.2).

The measured trajectories are used to calibrate and validate a contact model proposed in the

Chapter 4.

2.3.2 Velocity decrease prior to the collision

A velocity decrease is observed when the velocity of the particle is plotted as a function of the gap

between the particle and the wall as shown in figure (2.9). The velocity is calculated as the time
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derivative of the fitting curve. In figure 2.9(a), the sphere starts from zero velocity at a certain

distance away from the wall. It accelerates under gravity and approaches the wall. When it is

about to collide with the wall, the velocity decreases. Figure 2.9(b) shows the enlarged detail

part: the velocity starts to decrease when the gap decreases below 0.12D. This unique behavior

of the impacting sphere does not occur in a dry collision process when the surrounding medium

effect is negligible. Joseph et al. (2001) observed this velocity decrease prior to the collision in

their pendulum-wall collision experiments since there was negligible gravitational acceleration in the

horizontal collision between a pendulum and a vertical wall. Gondret et al. (2002) who performed

the similar experiments of a settling sphere did not obtain the velocity decrease because they used

a lower frame rate for the recording camera, 500 fps. When picking data with 500 fps (2 ms interval

between two successive points), the detailed behavior of the impacting sphere is missed, especially

when it is close to the wall. The velocity decrease cannot be observed, as shown in figure (2.10).

Thus a higher frame rate is required to capture this unique behavior of the impacting sphere in a

liquid environment.

This velocity decrease is more obvious for a settling process with a smaller Reynolds number.

Using the current experiment setup and changing the liquid to pure glycerol, for which the viscosity

of the liquid increases to 1.15 Pa·s−1 (more than 20 times higher), the same sphere released from zero

velocity settles toward the Zerodur wall and rests there without rebound. The Reynolds number

of the sphere based on the terminal velocity is Re = DṼ∞
ν = 0.67. The corresponding trajectory is

plotted in figure (2.11). The existence of the solid wall interrupts the falling of the sphere, and the

effect of the surrounding liquid with this additional solid boundary makes the sphere come to rest

in front of the wall.

When plotting the velocity as a function of the gap between the sphere and the wall, the critical

distance when the velocity starts to decrease is about one diameter, as shown in figure (2.12).

The solid line shown in the figure (2.12) is a calculation of the velocity of a sphere falling in the

same surrounding liquid environment without the existence of the solid wall. The falling velocity is
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Figure 2.9: Velocity of the impacting sphere in case 7 with the frame rate 4000 fps. (b) shows the
enlarged detail part of (a) when the sphere is about to collide with the wall.
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Figure 2.10: Velocity of the impacting sphere in case 7 with the frame rate 500 fps.
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Figure 2.11: Trajectory of a sphere settling on the wall.
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Figure 2.12: Velocity of a sphere settling on the wall with Re = 0.67 as a function of the gap between
the sphere and the wall.

calculated analytically by solving the equation of motion for a sphere with a low Reynolds number:

mp
dṼ

dt̃
= mpg −mlg − FD

where FD = 6πμaV is the Stokes drag for the sphere and a is the radius of the sphere. The motion

equation can be simplified as an ordinary differential equation for the velocity Ṽ :

dṼ

dt̃
= g(1 − ρl

ρp
) − 6πμa

4
3πa

3ρp

Ṽ .

The velocity of the particle measured from the experiment follows the analytical trend when the

gap is large (h/D > 1). The deviation is resulted from the omission of the added mass and history

force in the equation of the particle motion. When the velocity is increasing, the added mass and

history force have noticeable influence on the motion of the particle. These two forces disappear

after the terminal velocity is achieved. It is obvious in the figure (2.12) that the velocity decreases

after the distance between the sphere and the wall is less than one diameter.
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2.3.3 Coefficient of restitution

The coefficient of restitution of each collision, e, is calculated as the ratio of the averaged rebound

velocity to the averaged impact velocity over 2 ms time interval. Figure (2.13) shows the semi-log

relation between e and the particle impact Stokes number, St, and the result is compared with the

observations for steel sphere and Zerodur wall reported by Joseph et al. (2001) and Gondret et al.

(2002). The results from the current experiments present more data for Stokes number ranging from

1 to 100 which is deficient in the previous literature.
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Figure 2.13: Coefficient of restitution for the first and second collisions.

As shown in figure (2.13), the coefficient of restitution is a function of the particle impact Stokes

number and agrees with the previous conclusion found by other researchers. For Stokes number less

than 10 (all the 4th impacts and one third impact), the coefficient of restitution is zero and there is

no visible rebound. As Stokes number increases, the value of e increases with large slope for Stokes

number ranging from 10 to 100.

For the Stokes numbers ranging from 20 to 50, the results reported by Joseph et al. (2001)
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are lower than the current experimental results and the results in Gondret et al. (2002). This can

be explained by the technique used to evaluate the coefficient of restitution. The coefficient of

restitution is calculated as a ratio of the rebound velocity to the impact velocity. The rebound

and impact velocities in the current experiments and in Gondret et al. (2002) are calculated as the

time derivative of the measured trajectory �h/�t with time interval �t = 2 ms. The rebound

and impact velocities in Joseph et al. (2001) were taken as the slopes of the fitted lines over 5 to

10 points (depending on the framing rate that varies from 500 fps to 2000 fps) on the position-time

diagram as shown in figure (3.3) so that the obtained velocities are averaged values over 5∼10 ms

time interval. The actual collision duration is typically 0.01 ms (measured by Gondret et al. (2002)

with a piezoelectric sensor). Thus, the coefficient of restitution obtained from all of the experiments

is an effective macroscopic value. An average over a longer time interval attenuates the fact that

the velocity decreases under the effect of the interstitial liquid so that it produces a larger impact

velocity and a lower coefficient of restitution. The difference is more obvious when the liquid is

more viscous with Stokes numbers lower than 50. Thus, to capture the actual slowdown for a rapid

collision, the time interval cannot be too long. However, the time interval cannot be too short either.

The experimental technique, such as the recording rate, limits the minimum time interval. A more

important reason is a time interval shorter than 2 ms does not reflect the real approaching velocity

but pronounces only the decelerating particle motion.


