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Abstract

This thesis is comprised primarily of work from three independent papers, [1], [2],

and [3], written in collaboration with Sean Carroll, Tim Dulaney, and Heywood Tam.

The original motivation for the projects undertaken came from revisiting the standard

assumption of spatial isotropy during inflation. Each project relates to the sponta-

neous breaking of Lorentz symmetry—in early Universe cosmology or in the context

of effective field theory, in general. Chapter 1 is an introductory chapter that pro-

vides context for the thesis. Chapter 2 is an investigation of the stability of theories in

which Lorentz invariance is spontaneously broken by fixed-norm vector “æther” fields.

It is shown that models with generic kinetic terms are plagued either by ghosts or

by tachyons, and are therefore physically unacceptable. Chapter 3 is an investigation

of the phenomenological properties of the one low-energy effective theory of sponta-

neous Lorentz symmetry breaking found in the previous chapter to have a globally

bounded Hamiltonian and a perturbatively stable vacuum—the theory in which the

Lagrangian takes the form of a sigma model. In chapter 4 cosmological perturbations

in a dynamical theory of inflation in which an Abelian gauge field couples directly to

the inflaton are examined. The dominant effects of a small, persistent anisotropy on

the primordial gravitational wave and curvature perturbation power spectra are found

using the “in-in” formalism of perturbation theory. It is found that the primordial

power spectra of cosmological perturbations gain significant direction dependence and

that the fractional direction dependence of the tensor power spectrum is suppressed

in comparison to that of the scalar power spectrum.
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Chapter 1

Introduction

This thesis is comprised primarily of work from three independent papers, written

in collaboration with Sean Carroll, Tim Dulaney, and Heywood Tam. The original

motivation for the projects undertaken came from revisiting the standard assumption

of spatial isotropy during inflation. Each project relates to the spontaneous breaking

of Lorentz symmetry—in early Universe cosmology or in the context of effective field

theory, in general. Here I motivate and introduce the three projects, presented in

chapters 2, 3, and 4. At the end of this chapter I provide some more technical

background that helps to contextualize the subsequent chapters.

1.1 The Big Picture

I like the way that physics tries to answer big questions. For example particle physi-

cists answer “What are we made of?” by searching for the elementary constituents

of matter and for mathematical structure within which these constituents and their

interactions can be understood. Cosmologists approach “Where are we?” and “How

did we come to be?” by using modern physics theory, astrophysical observations,

logic, and intuition to construct a plausible and consistent picture of the Universe

and its evolution.1 The work in this thesis grew from thinking about what might

have occurred very early on in our Universe’s history.

1Recently, even the situation of our Universe within a hypothetical larger set of universes has
been a topic of research.
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Figure 1.1: Image taken with permission from [4]. History of the Universe, including
key events in the history of our Universe and some of the observable objects/features
that have or could in principle provide(d) us with information about its evolution.
Acronyms : BBN (Big Bang Nucleosynthesis), LSS (Large-Scale Structure), BAO
(Baryon Acoustic Oscillations), QSO (Quasi-Stellar Objects; Quasars), Lyα (Lyman-
alpha), CMB (Cosmic Microwave Background), Ia (Type Ia supernovae), 21 cm (hy-
drogen 21 cm-transition).
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We already have a remarkably consistent and detailed picture and history of our

Universe. A cartoon of this history is provided in Fig 1.1. In particular, it has been

established that the Universe has been expanding (at various rates, indicated by the

slope of the solid red line in Fig 1.1) for the entire traceable history of our Universe—

about 14 billion years. In particular, we are quite confident that the Universe began2

in a very hot, dense state. The name for this beginning is “the Big Bang”. We don’t

really know how the Big Bang occurred, or what happened in the primordial era just

after the Big Bang.

Returning to the cartoon history of our Universe, the vertical axis in Fig. 1.1 is the

scale factor, which characterizes the expansion of the Universe. The horizontal axis

is time—or equivalently decreasing temperature3 or decreasing redshift of light in the

Universe; the Universe cools and the wavelength of light gets stretched (i.e., light is

redshifted4) as it expands. The labeled arrows indicate signals from the past that we

might observe at earth today. For example, observations of light from distant type

Ia supernovae have provided an important measure of the local expansion rate of the

Universe.

For the purposes of motivating the work in this thesis, the important thing to

notice in Fig. 1.1 is that one of the longest arrows comes from the Cosmic Microwave

Background (CMB). CMB radiation is light that last scattered off of a plasma of

photons, electrons, and protons when the Universe was at a temperature of about

1 eV; at this temperature almost all free electrons and protons combined into neu-

tral hydrogen. This point in history is known as recombination (electrons and protons

recombined into neutral hydrogen), and the place from which the CMB photons reach-

2“Began” might be a controversial word to use here. It could be that the Universe collapsed into
a very hot, dense, state and then began expanding again, or the hot dense state may have been born
from a parent universe.

3Temperature (T ) is related to energy (E) by

T = E/kB , kB = 8.62× 10−5 eV
K
, (1.1)

where kB is Boltzmann’s constant, K is Kelvin and eV is electron-Volts.
4In the visual spectrum, red light has longer wavelength than green light, which has longer

wavelength than blue light. Thus the name “redshifting” for light with longer wavelength and
“blueshifting” for light with shorter wavelength.
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ing us today came is known as the surface of last scattering.5,6 Before recombination

the Universe was effectively opaque—filled with a plasma of electrons, protons, and

photons, all scattering off of each other frequently. When the collision rates slowed

down enough7 so that electrons and protons could combine into neutral hydrogen (“re-

combination”), the Universe became effectively transparent; light could free-stream

without colliding much with other particles. So the farthest back we can effectively

see is the distance that light has traveled from the time of recombination.

Arrows that reach farther back than the CMB arrow in Fig. 1.1 are from pri-

mordial gravitational waves or neutrinos; gravitons and neutrinos decoupled from the

primordial plasma earlier than photons and so have been free-streaming for longer.

We think that gravitational wave and neutrino backgrounds analogous to the CMB

exist and we hope to eventually observe them (or “observe” their nonexistence), but

we haven’t yet because our instruments are not sensitive enough. Thus the CMB

is currently our best window to the very early Universe.8 The Wilkinson Microwave

Anisotropy Probe (WMAP) is pictured at the end of the CMB arrow in Fig. 1.1. That

is because WMAP has served as our eyes looking on the CMB window. As will be

discussed in subsequent sections, WMAP has taken very high resolution pictures of

the CMB that have moved us into an age of precision (early) cosmology. The Planck

satellite is currently taking even higher resolution pictures of the CMB and should

advance early Universe cosmology even further.

The spectrum of CMB photons is thermal, and very nearly uniform across the

5Though the CMB radiation last scattered throughout 3-dimensional space at roughly the same
time, from our vantage point on earth we see a bubble of radiation—a 2-dimensional surface. The
photons at that surface formed another surface back when they last scattered long ago.

6Think about the sky on a cloudy day. The light reaching our eyes from the sky last scattered
off of water molecules forming the clouds in the atmosphere. We can’t see past the clouds because
even though much of the light we’re seeing made its way from the sun through a jagged path within
the clouds and out the other side, the light’s characteristics changed substantially during all of
the collisions it had within the cloud, and what we see is light with those characteristics—not the
characteristics of direct sunlight. The CMB light is analogous to light that last scattered off of the
clouds.

7Due to expansion the plasma became less dense, hence less collisions per time.
8Figuring out what happened in the very early Universe is not only interesting as an answer to

the “Where did we come from?” question, but physics at very high energy scales played an important
role at this time, so we could also learn more about high energy physics by looking this far back in
cosmic history.



5

entire sky. That CMB radiation is thermal is a profound fact; it seems to imply

that the region from which CMB photons came at recombination must have been in

thermal equilibrium; in particular the photons must have been in causal contact.9

The thermal spectrum and near uniformity of the CMB, along with its nearly scale-

invariant spectrum10 of deviations from uniformity have led many to believe that the

Universe must have undergone a period of rapid expansion during the first moments

after the Big Bang. Without such a period of rapid expansion or some other nonstan-

dard sequence of events, the uniformity of the CMB appears to be an extraordinary

accident. If we trace back the evolution of the Universe assuming that just the kind of

matter we observe today to dominate the energy density of the Universe determined

the dynamics of our Universe’s expansion, then the expansion of the Universe would

have always been decelerating and CMB photons separated by about a degree on

the sky or more couldn’t have been in causal contact before or after the time of last

scattering. So photons across the entire sky could not have reached thermal equilib-

rium, which means the uniform, thermal spectrum across the entire sky would be an

extremely unlikely coincidence. This is known as the Horizon Problem. A period of

accelerating expansion of the Universe could have allowed the CMB photons on our

sky to reach thermal equilibrium before the time of last scattering and, in this sense,

solves the Horizon Problem [5]. Such a period of accelerating expansion in the early

Universe is known as inflation.

I, like many (including the authors of Fig. 1.1), find inflation to be compelling.

As I’ll touch on later in this introduction, not only does inflation solve the Horizon

Problem, but it also provides an explanation of the small, nearly scale-invariant energy

density anisotropies that seeded structure formation in the Universe and can account

for the pattern of small temperature variation across the CMB sky. But until we

develop technology good enough to measure, for example, primordial gravitational

waves or neutrinos, the best evidence we have that inflation did or did not occur is

our measurement of the CMB. It’s indirect evidence.

9Photons come into equilibrium by interacting with each other. If they were never in causal
contact, then they couldn’t have interacted and thus couldn’t have reached equilibrium.

10I’ll discuss what’s meant by “scale-invariant spectrum” in §1.9.2.
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Cosmologists must often make do with indirect evidence due to the very nature

of cosmology. Unlike physicists who are trying to uncover the laws of nature in our

neighborhood, cosmologists cannot design and repeat experiments that in effect recre-

ate events that we expect to occur. For example, particle physicists have the luxury of

building big machines that smash particles together and then measuring what comes

out in order to test whether Higgs bosons exist. Cosmologists do not have the lux-

ury of recreating the Big Bang and then measuring what happens subsequently. On

the other hand, in some sense both particle physicists and cosmologists run into the

same basic problem; it’s technologically impossible (whether in principle or just given

practical constraints) to test certain theories directly. We must then get creative and

clever; we must come up with theories that subsume experimentally verified theories

and find ways to test such new theories indirectly, given our technological capabilities.

Speculation is inevitably part of the creative process by which advancements in such

cases are made.

Indeed, a problem that remains even if we’re right that inflation did occur is how it

occurred. By what mechanism did the Universe inflate?11 It’s productive to speculate

about the multitude of theoretical mechanisms of inflation and then try to figure out

ways to find astrophysical signatures (e.g., signatures on the CMB) that support or

rule out such mechanisms. It was out of this kind of creative process—speculating

about the primordial Universe and how we might see its features through the window

of the CMB—that this thesis emerged.

1.2 How This Thesis Emerged

The motivation for the work in this thesis came from the possibility that rotational

symmetry (i.e., isotropy) was broken during inflation. There are several reasons why

this possibility had not been seriously considered until recently:

• We observe isotropy to be a very nearly exact local symmetry today. (Local

11Remember: I mentioned above that ordinary matter (the kind of matter that we know is fueling
the expansion of the Universe today) cannot give rise to inflation.
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isotropy leads to conservation of angular momentum, for example, and allows

for the classification of particles by their spin.)

• The CMB, at least at a glance, appears to be very nearly statistically isotropic.

(More on this in §1.4.)

• Under straightforward assumptions about the nature of the fields involved dur-

ing an inflationary epoch, statistical isotropy of the CMB and of the Universe

on large scales is a consequence of inflation. (More on this in §1.6.)

But we should keep an open mind. Slightly anisotropic inflation is an interesting

possibility. A generic signature of slight anisotropy during inflation on the CMB was

postulated and studied in [6]. The work in this thesis emerged after thinking about

particular models of inflation that could yield an anisotropic inflationary scenario

leading to the generic signature put forth in [6].

1.3 Synopsis

Chapters 2 and 3 address stability issues in a popular class of models that give rise

to the breaking of Lorentz Symmetry: æther models. Here, “æther” refers to a

dynamical fixed-norm vector field. Spatial rotations being a subgroup of the Lorentz

group, in particular æther models can give rise to the breaking of rotational invariance.

The project out of which chapter 2 emerged transformed into one very different from

the project we originally set out to do. From a study of the evolution of æther fields

in an expanding Universe, we were eventually led to study more generally the effective

field theory of spontaneously broken Lorentz symmetry in flat space. In the course

of the original project, we found obstructions to the smooth evolution of initial data,

and later realized that this was a symptom of much more general problems in these

theories. Chapter 3 is a study of the one æther theory that we found to be well

behaved. Chapter 2 is also interesting from a perspective independent of cosmology;

it brings together three of the most powerful concepts in modern theoretical physics:

gauge symmetries, spontaneous symmetry breaking, and effective field theory. In a
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Figure 1.2: WMAP 7-year full-sky Mollweide projection map of the cosmic microwave
background. WMAP measures temperature differences across the sky. The colors
represent temperatures according to a linear scale, ranging from −200 µK to +200
µK. The root mean square variation is on the order of tens of µK. From independent
measurements, we know that the average temperature of the CMB is 2.725 K. That
means the temperature across the entire sky varies, roughly speaking, by only about
one part in 100,000. Credit: WMAP Science Team.

few words, usually we talk about internal symmetries being spontaneously broken;

but what happens in theories in which space-time symmetry is spontaneously broken?

Chapter 4 is a study of a model that can give rise to anisotropy during inflation

through a mechanism very different than that of æther theories. The model, first set

forth in the context of anisotropic inflation in [7], is built on standard single field

inflation, but includes a nonstandard coupling of the inflaton field to a U(1) gauge

field. We study the stability of the model and also (more importantly) the spectra of

cosmological perturbations in the theory.

In the remainder of this chapter I shall review more carefully some more technical

background needed to contextualize chapters 2, 3, and 4—especially chapter 4.

1.4 CMB Temperature Correlations

As mentioned in §1.1, the Cosmic Microwave Background (CMB) is light that has

been more-or-less free-streaming toward us since the time at which the Universe had

cooled (through expansion) to a temperature at which hydrogen ions and electrons
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Figure 1.3: Spectrum of CMB multipole coefficients from 7-year WMAP data. (The
Cls plotted here are multiplied by T̄ 2 as compared to the definition in (1.6), i.e., these
are the temperature difference multipole moments, not the fractional temperature
difference multipole moments.) Credit: WMAP Science Team.

recombined to form neutral hydrogen—about 370,000 years (about 10−5 times the age

of the Universe) after the Big Bang. The CMB radiation has a very nearly uniform

temperature across the sky, but there are small variations. See Fig. 1.2. A systematic

way to look for patterns of those variations is to compute correlations between various

points on the map of temperature differences that we’ve measured across the entire

sky.12

It’s convenient to decompose the fractional temperature difference as a function

of position on the sky, ê (where ê · ê = 1), into spherical harmonics:

T (ê)− T̄
T̄

=
∆T (ê)

T̄
=
∞∑
l=0

l∑
m=−l

almY
m
l (ê), (1.2)

where T̄ is the average temperature of the CMB, and the spherical harmonic functions

12I primarily consulted [8] and [9] while writing the following two sections.
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are normalized such that

∫
dê Y m′

l′
∗
(ê)Y m

l (ê) =
4π

2l + 1
δll′δmm′ . (1.3)

In principle, the temperature difference depends not only on a direction in the

sky, but also on the vantage point from which the measurement is made (in our case,

the Earth). In other words, the alms are implicitly functions of vantage point, ~x. On

the other hand, based on the Copernican principle we’d expect a given correlation

function averaged across directions on the sky to be approximately equal to the same

function averaged over different vantage points, but for a fixed direction. An averaging

over vantage points is known as a cosmic mean. And the difference between a local

measurement and the cosmic mean is known as cosmic variance. We can make generic

predictions from inflation only for cosmic means. Thus, since our measurements are

necessarily local, we’re always limited by cosmic variance.

We expect the distribution of temperature perturbations to be random, but with a

certain distribution. For example, if the distribution is Gaussian, then the pattern of

fluctuations on the sky should be completely characterized by the two-point function,

〈
∆T (ê1)

T̄

∆T (ê2)

T̄

〉
, (1.4)

where 〈. . .〉 denotes the cosmic mean. If the distribution is non-Gaussian, then higher

order correlation functions are needed to completely characterize the pattern of fluc-

tuations.

The covariance of the two-point temperature correlation is defined as follows,

Cll′,mm′ ≡ 〈al′m′∗alm〉

=

(
2l + 1

4π

)(
2l′ + 1

4π

)∫
dêdê′Y m

l
∗(ê)Y m′

l′ (ê′)

〈
∆T (ê)

T̄

∆T (ê′)

T̄

〉
. (1.5)

In practice, we cannot measure the cosmic mean; the “covariance” we measure doesn’t
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have 〈. . .〉. However, for a statistically isotropic and homogeneous Universe,

Cll′,mm′ = δmm′δll′Cl (1.6)

where the Cl are known as multipole moments. If the temperature variation is gov-

erned by a Gaussian distribution, then an observed Cobs
l is the average over 2l + 1

independent alms, squared, and it can be shown that the cosmic variance for a given

Cobs
l is 〈(

Cobs
l − Cl
Cl

)2
〉

=
2

2l + 1
. (1.7)

The dipole moment, C1, for example, has a variance of 67%. This fact, and complica-

tions having to do with Earth’s motion around the sun make any predictions we might

have for the cosmic mean dipole moment practically incomparable with experiment.

The observed multipole moments (normalized by l(l + 1)/2π) as measured by

WMAP are plotted in Fig. 1.3. From the detailed shape of the spectrum of multipole

moments, cosmologists have been able to extract some of the most precise values for

cosmological parameters to date—such as the Hubble rate, the age of the Universe,

the curvature of space, the percent energy density in the Universe from dark matter,

baryons, and dark energy, etc. One can read how such parameters are extracted in

texts such as [9] or [8]. In the next section we’ll get a feel for how the spectrum of

energy density fluctuations before the surface of last scattering is ultimately related

to the CMB spectrum.

1.5 From Primordial Perturbations to CMB Tem-

perature Correlations

Inflation not only explains how our current horizon volume might have been in causal

contact in our past, but it can also provide an explanation for the pattern of tem-

perature fluctuations that we observe in the CMB. The key is that energy density

fluctuations generated during inflation give rise to temperature fluctuations on the
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CMB today because of effects such as, for instance, what’s known as the Sachs-Wolfe

effect: the relative redshifting of photons that emerge from regions with higher en-

ergy density compared to their neighbors. To trace the evolution of photons from the

primordial era—the end of inflation for our purposes—given just the energy density

perturbation spectrum at that time to the surface of last scattering, and then through

time and space until they’re reaching us today is a somewhat complicated task, but

suffice it to say that given a spectrum of energy density perturbations at the end of

inflation a pattern of temperature variations on the CMB sky can be predicted given

established nuclear physics, thermodynamics, scattering theory, and general relativ-

ity. The remarkable thing is that a particular form of the energy density spectrum

is predicted at the end of inflation, and this form of the energy density spectrum

indeed leads to a CMB temperature power spectrum that matches well with the one

we measure!

More specifically, the fractional deviation from the mean temperature of the CMB

in a particular direction, ê, on the sky is given by

T (ê)− T̄
T̄

=
∆T (ê)

T̄
=

∫
d~k
∑
l

(
2l + 1

4π

)
(−i)lδε(~k)Pl(k̂ · ê)Θl(k), (1.8)

where δε(~k) is the Fourier transform of the primordial energy density perturbation,

(ε(~x)−ε0)/ε0, Pl is a Legendre polynomial, k ≡
√
~k · ~k, and Θl is a function assumed

to be governed by statistically isotropic physics that characterizes the evolution of

photons from the primordial era until today. For example, the part of Θl due to

the Sachs-Wolfe effect is proportional to the spherical Bessel function, jl(krL), where

rL is the radial coordinate of the surface of last scattering. It turns out that for

small l the Sachs-Wolfe effect is the dominant effect. For larger l, the important

parts of Θl are more complicated and, for example, account for the dynamics of the

photon-nucleon-electron plasma before recombination.
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The covariance given this form of ∆T/T̄ can be seen to be

Cll′,mm′ =
(2l′ + 1)(2l + 1)

(4π)2

∫
d~kd~k′

∑
l1

∑
l2

(2l1 + 1)(2l2 + 1)

(4π)2
(−i)l1+l2Θl1(k)Θl2(k

′)

× 〈δε(~k)δε(~k
′)〉
∫
dêdê′Y m

l
∗(ê)Y m′

l′ (ê′)Pl1(k̂ · ê)Pl2(k̂′ · ê′)

=

∫
d~kd~k′(−i)l+l′Θl(k)Θl′(k

′)〈δε(~k)δε(~k
′)〉Y m

l
∗(k̂)Y m′

l′ (k̂′), (1.9)

where we’ve used the identities,

Pl(ê1 · ê2) =
4π

2l + 1

l∑
m=−l

Y m
l (ê1)Y m

l
∗(ê2), (1.10)

and (1.3) in the last line. Again, here 〈. . .〉 denotes the cosmic mean. In concert with

the ergodic theorem,13 inflation gives us a prediction for 〈δε(~k)δε(~k
′)〉. In inflation,

we calculate 〈δε(~x)δε(~y)〉 interpreting 〈. . .〉 as a quantum average—an average over

histories. Then the ergodic theorem says that averaging over histories should give the

same result as a cosmic average—an average over vantage points.

Now if 〈δε(~x)δε(~y)〉 is translationally invariant it must depend only on ~x − ~y. In

that case

〈δε(~k)δε(~k
′)〉 =

∫
d~x

∫
d~yf(~x− ~y)ei(~x·

~k+~y·~k′)

=

∫
d~x+e

i~x+·(~k+~k′)

∫
d~x−f(~x−)ei~x−·(

~k−~k′)

= (2π)3δ(3)(~k + ~k′)

∫
d~x−f(~x−)ei~x−·(

~k−~k′)

≡ (2π)3δ(3)(~k + ~k′)P (~k). (1.11)

Here we’ve defined the power spectrum, P (~k). Plugging (1.11) back into (1.9) we find

Cll′,mm′ =

∫
d~k(−i)l−l′Θl(k)Θl′(k)(2π)3P (~k)Y m

l
∗(k̂)Y m′

l′ (k̂), (1.12)

13See, e.g., Appendix D in [9].
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where we’ve used the fact that Y m
l (−ê) = (−1)lY m

l (ê). If the power spectrum is

rotationally invariant, then P (~k) = P (k) and we recover (1.6):

Cll′,mm′ =

∫
dk(−i)l−l′Θl(k)Θl′(k)(2π)3P (k)

∫
dk̂Y m

l
∗(k̂)Y m′

l′ (k̂)

= δll′δmm′

(
4π

2l + 1

∫
dk (Θl(k))2 (2π)3P (k)

)
. (1.13)

If the power spectrum is not rotationally invariant, then the covariance matrix

does not simplify to the above diagonal form. The form of the covariance given a

primordial power spectrum that slightly deviates from isotropic due to a preferred

direction, n̂, during the primordial era,

P (~k) = P0(k)
(

1 + g(k)(n̂ · k̂)2 + . . .
)

(1.14)

was worked out in [6]. The absence of odd powers of n̂ · k̂ follows from the identity

〈δε(~k)δε(~q)〉 = 〈δε(~q)δε(~k)〉.14 It is also assumed that the effect of the preferred direc-

tion must be small (else we’d be able to see a signature by eye on the CMB), thus

terms of higher order in the “small” vector n̂ should be negligible. In other words,

they worked out the effect of a small primordial power quadrupole on the CMB co-

variance. They found that in addition to diagonal elements (m = m′, l = l′) there are

in general nonzero off-diagonal elements when l = l′±2 and/or m′±2 and/or m′±1,

depending on the direction of n̂.

As mentioned earlier, the work presented in subsequent chapters of this thesis

ultimately grew from thinking about models that could give rise to such a slightly

statistically anisotropic spectrum. Indeed, a model of inflation that successfully re-

produces a spectrum of the slightly anisotropic form in [6] is presented in chapter

4. Our main work was to calculate g(k) in the model. Chapters 2 and 3 came from

thinking about another class of models that could, on the face, lead to a small amount

of anisotropy during inflation: æther models. I give a very brief introduction to æther

models in §1.7 below.

14From the identity and the definition of the power spectrum, P (~k), it follows that P (~k) = P (−~k).
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But before moving on to æther models, I’ll provide evidence that it is actually

rather difficult to construct a consistent model with enough15 anisotropic inflation.

1.6 The Cosmic No-Hair Theorem

Under some reasonable conditions, it can be shown that a large class of inflationary

scenarios tend to wash out anisotropy. More precisely, Bob Wald proved the following

theorem, known now as the cosmic no-hair theorem [10]:

If a space-time

• is initially expanding,

• can be foliated by homogeneous hypersurfaces,16

• evolves according to Einstein’s equations with a positive cosmological constant,

Gµ
ν = −Λδµν + 8πGT µν , Λ > 0, (1.15)

• contains matter with stress-energy, T µν , that satisfies the dominant and strong
energy conditions,

Tµνt
µtν ≥ 0, Tµνt

νT µλtλ ≤ 0, and Tµνt
µtν ≥ 1

2
T λλ t

σtσ, (1.16)

for all timelike tµ (i.e. for all tµ such that tµt
µ < 0),

then

the space-time evolves exponentially (on a timescale of
√

3/Λ) toward one with de

Sitter geometry. De Sitter space can be parametrized as follows,

ds2 = −dt2 + e2Htd~x · d~x where H is constant, (1.17)

15The point will be that most models with enough inflation to solve the Horizon problem predict
that any initial anisotropy will be completely wiped out early on during the inflationary era.

16All such space-times, which are homogeneous but perhaps anisotropic, fall into a Bianchi classi-
fication [11]. There’s a slight caveat here: All Bianchi models except Bianchi type IX fall under the
purview of the cosmic no-hair theorem.
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and in particular is isotropic, flat, and has no distinguishing feature (no hair) other

than the rate of expansion, H. In other words, any energy density besides that of the

cosmological constant becomes totally negligible on a timescale set by
√

3/Λ.

In the course of his proof, Wald shows in particular that the shear, σµν , which

characterizes the anisotropy of the space-time, satisfies the following equation,

σµνσ
µν ≤ 2Λ

sinh2(t/
√

3/Λ)
, (1.18)

where t is proper time.

Now in order to solve the horizon problem, there must have been at least sixty

e-folds of inflation.17 That is, the scale factor must have increased by a factor of e60

during an initial phase when the scale factor was accelerating. If the matter that

drives inflation acts like a cosmological constant during inflation, then the Hubble

parameter during inflation is approximately
√

Λ/3, and t/
√

3/Λ is about equal to

the number of e-foldings. Within just about 5 e-foldings of inflation, the denominator

on the right-hand side of (1.18) is 1000s, and after 60 e-foldings, it’s about 1051;

anisotropy becomes very small (in units of
√

Λ ∼ H) within just a few e-foldings of

inflation, and it’s minuscule after 60 e-folds.

This means that in order for anisotropy to persist even in small amounts during

inflation, at least one of the premises in the cosmic no-hair theorem must not apply.

1.7 Æther

An obvious way to avoid Wald’s theorem is to source a small anisotropy with matter

that does not satisfy the dominant or strong energy conditions. This is how Einstein-

æther theories (æther theories, for short), popularized by Jacobson and Mattingly

in [12], can avoid the no-hair theorem. Usually “æther theory” refers to a theory

17See, e.g., [9].
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with normal Einstein gravity, plus a dynamical fixed-norm timelike vector field that

breaks boost invariance of the vacuum and effectively leads to a universal preferred

rest frame. Einstein gravity plus a cosmological constant and a dynamical fixed-norm

spacelike vector field that breaks rotational invariance was considered as a toy model

of anisotropic inflation in [6]. It was in this context that I first became interested

in æther theories. But æther theories are independently interesting as effective field

theories of the spontaneous breaking of Lorentz invariance. They are effective models

that include preferred frame effects while leaving diffeomorphism invariance intact.

For more on reasons that theorists are interested in æther theories, see, e.g., [13].

The toy æther model in [6] was later shown to be classically unstable [14]. Chapter

2 revisits the stability of æther theories more generally.

1.8 Hairy Inflation

Another way to avoid the cosmic no-hair theorem is to couple matter that could source

anisotropy to the matter field that sources inflation (the inflaton field). That’s the

idea of the model we study in chapter 4, which was originally named “hairy inflation”

by the authors of [7]. The model is built on top of standard single field inflation,

but unlike in standard single field inflation, there’s a coupling between the inflaton

field and a U(1) gauge field that retards the dissipation of the energy density in the

U(1) gauge field enough to allow for a small persistent anisotropy during inflation.

In chapter 4 we give a pedagogical explanation of model. The main work of chapter

4 was in calculating the spectrum of cosmological perturbations in the anisotropic

background of the model. Since the model is built on top of standard single field

inflation and since the results we found for cosmological perturbations in the model

ought to be compared to the results from more “standard” models, below we finish

this introductory chapter with a brief review of standard single-field slow-roll inflation.



18

1.9 Standard Slow-Roll Inflation

1.9.1 Background Equations

Assuming that over large distances (over cosmological scales) the Universe is homo-

geneous and isotropic,18 the space-time metric in the Universe is well parametrized

by,

ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2(sin2 θdφ2 + dθ2)

)
. (1.19)

Here, K is equal to −1, 0, or +1, corresponding to whether the geometry of the

Universe is open, flat, or closed (respectively). Matter that supports this geometry

must also be homogeneous and isotropic. In that case its stress-energy tensor should

take the form

T µν =



−ρ(t)

p(t)

p(t)

p(t)


. (1.20)

Einstein’s field equations, Gµ
ν = Rµ

ν − 1
2
Rδµν = 8πGT µν yield the following two

independent differential equations:19

3
K

a2
+ 3H2 = 8πGρ (1.21)

and

− 6
ä

a
= −6(Ḣ +H2) = 8πG(ρ+ 3p), (1.22)

where ˙ denotes a derivative with respect to time and H ≡ ȧ
a

is the Hubble parameter.

18Indeed, from our vantage point the density of galaxies and other astrophysical objects on average
over a variety of very large scales appears to be about the same in every direction. This observation
along with the copernican principle (roughly speaking, that our neighborhood is a typical one)
provides evidence that the assumption of homogeneity and isotropy of the Universe is a good one.
The CMB provides even better evidence.

19The following two equations correspond to (−Gtt = −8πGT tt ) and
(
Gµµ − 2Gtt = 8πG(Tµµ − 2T tt )

)
,

respectively.
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Another equation that’s useful, and related to the above two equations through the

identity ∇µG
µ
ν = 0 is the continuity equation:

ρ̇ = −3H(ρ+ p). (1.23)

The horizon problem can be solved if the Universe underwent accelerated expan-

sion before recombination. From (1.22) we can see that accelerated expansion requires

matter that satisfies ρ+ 3p < 0. A homogeneous, canonical scalar field, φ, which has

ρ =
1

2
φ̇2 + V (φ), p =

1

2
φ̇2 − V (φ) (1.24)

can clearly satisfy the condition ρ+ 3p < 0 if φ̇2 < V (φ). The accelerated expansion

is rapid if Ḣ � H2. Such rapid expansion occurs if φ̇2 � V (φ). And expansion

is nearly exponential (a(t) ≈ eHt where H is constant) if all derivatives of H are

small. Slow-roll inflation is just the realization of this scenario—of nearly exponential

expansion. The field φ is called an “inflaton” in this case. The slow-roll conditions

relate derivatives of H to functions of the scalar field and its derivatives, thus giving

the conditions that the inflaton field and its potential must satisfy in order for (rapid)

inflation to occur. Let’s quickly derive these relations. We’ll set K = 0 for simplicity.

Define

ε ≡ − Ḣ

H2
and δ ≡ Ḧ

2HḢ
, (1.25)

and note the identity,

ε̇ = 2Hε(ε+ δ). (1.26)

Rearranging (1.21) and (1.22) we get

− Ḣ

H2
= ε = 4πG

ρ+ p

H2
= 4πG

(
φ̇

H

)2

. (1.27)
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Differentiating this equation we get

4πG
d

dt
φ̇2 = 2H3εδ. (1.28)

From the above two equations we can see why “slow-roll” is an appropriate name:

the velocity and acceleration of the inflaton field, φ, must be small compared to the

Hubble rate in order for inflation to occur.

We can also derive consistency relations for the form of the inflaton potential.

The continuity equation (1.23) implies,

V ′(φ)φ̇ = −3Hφ̇2 − 1

2

d

dt
φ̇2 = − H3

4πG
ε(3 + δ), (1.29)

and plugging (1.27) into (1.21) we get

V (φ) =
H2

8πG
(3− ε). (1.30)

Combining these two equations and (1.27) we see

(
V ′(φ)

V (φ)

)2

= 4ε2
H2

φ̇2

(
3 + δ

3− ε

)2

= 16πG ε

(
3 + δ

3− ε

)2

≈ 16πG ε. (1.31)

Differentiating this equation we get

2
V ′(φ)

V (φ)
φ̇

(
V ′′(φ)

V (φ)
−
(
V ′(φ)

V (φ)

)2
)
≈ 16πG ε̇, (1.32)

and using (1.29) and (1.30) to sub in for V ′(φ)
V (φ)

φ̇ this leads to

(
V ′′(φ)

V (φ)

)
≈ −8πG

ε̇

2Hε
+

(
V ′(φ)

V (φ)

)2

≈ 8πG(ε− δ). (1.33)

Insisting that the magnitudes of ε and δ are much much less than one, equations
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(1.31) and (1.33) lead to flatness conditions on the inflaton potential.

Inflation ends when the inflaton reaches the minimum of its potential. Once the

inflaton nears the minimum of its potential, it begins oscillating about its minimum

and decaying into other matter fields. This is called “reheating”.

1.9.2 Perturbations from Single-Field Slow-Roll Inflation

So how does slow-roll inflation give rise to primordial density perturbations? Let’s

consider the evolution of the quantum-mechanical degrees of freedom in a slow-roll

inflation model, with the dynamical inflaton field, φ, and the gravitational field,

gµν . The quantum-mechanical degrees of freedom are the small space-time dependent

fluctuations of these fields about the homogeneous background values in a slow-roll

inflation scenario as described above. So

φ = φ̄(t) + δφ(t, ~x) and gµν = ḡµν(t) + δgµν(t, ~x), (1.34)

where the background fields are barred. Given a homogeneous background, it’s stan-

dard to Fourier transpose the perturbations:

δf(t, ~x) ≡
∫

d~k

(2π)3
δf(t,~k)ei

~k·~x. (1.35)

The perturbation δf is promoted to a quantum-mechanical operator, so

δf(t,~k) = χ(k, t)â~k + χ∗(k, t)â†
−~k
,

where [â~k, â
†
~k′

] = (2π)3δ(3)(~k − ~k′), [â~k, â~k′ ] = 0 = [â†~k, â
†
~k′

] (1.36)

where here ˆ denotes a quantum operator, χ is an appropriately normalized mode

function, k = |~k| is the wavelength of the mode, and kphys = |~k|/a is the physical

wavelength of the mode.
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Energy density perturbations during inflation are thought to arise in the following

way. The Universe is inflating due to an inflaton rolling down its (flat) potential

and is in its quantum-mechanical ground state, so, e.g., 〈δφ〉 = 0. But there are

necessarily vacuum fluctuations with nonzero dispersion, 〈δφ δφ〉 6= 0. By the equiva-

lence principle, when curvature is unimportant (for modes with physical wavelength

much less than the Hubble radius), the normalization of quantum-mechanical modes

is canonical.20 As curvature becomes important for a given mode (i.e., as the physical

wavelength of a given mode becomes greater than the Hubble radius) the quantum-

mechanical correlations are frozen into classical density perturbations that form the

seeds of structure formation and lead to statistical temperature correlations on the

CMB sky.

Canonically normalizing the modes takes a bit of work. It’s done by expanding

the action

S =

∫ √
−gd4x

(
R

16πG
− 1

2
∇µφ∇µφ− V (φ)

)
(1.37)

to quadratic order in the perturbations δφ and δgµν , eliminating non-dynamical de-

grees of freedom, and combining the dynamical fields into combinations so that the

kinetic term in the action is canonically normalized. It’s the field variables with

canonically normalized kinetic terms that get canonically quantized.

It is convenient to use conformal time,

dη = a(t)dt. (1.38)

In Newtonian gauge, the metric fluctuation may be decomposed as follows,

ds2 = a(η)2
[
−(1 + 2Φ)dη2 + (δij(η)(1− 2Ψ) + ∂iEj + ∂jEi + 2Eij)dx

idxj
]
, (1.39)

20There are ambiguities having to do with renormalization that I’m glossing over here.
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where Ej is transverse (δij∂iEj = 0) and Eij is symmetric, transverse and traceless.

After solving several constraint equations derived from the quadratic action and

substituting those solutions back into the action, using the background equations of

motion, and integrating by parts several times, the quadratic action can be expressed

S(2) =

∫
dη

∫
d~k

(2π)3

(
1

2
r′(η,−~k) r′(η,~k)− 1

2

(
~k · ~k − z′′

z

)
r(η,−~k) r(η,~k)

+
1

2

∑
s=+,×

[
h̃′s(η,−~k) h̃′s(η,

~k)−
(
~k · ~k − a′′

a

)
h̃s(η,−~k) h̃s(η,~k)

])
, (1.40)

where ′ denotes derivatives with respect to conformal time,

z ≡ a
φ̇

H
, (1.41)

and where

r(η,~k) ≡ a

(
δφ(η,~k) +

φ̇

H
Ψ(η,~k)

)
, (1.42)

and

h̃+(η,~k) =
a√
8πG

(
(ei1e

j
1 − ei2e

j
2)√

2
Eij(η,~k)

)
, (1.43)

h̃×(η,~k) =
a√
8πG

(
(ei1e

j
2 + ei2e

j
1)√

2
Eij(η,~k)

)
, (1.44)

where ~e1 and ~e2 are two unit 3-vectors satisfying ~ea · ~eb = δab and ~ea · ~k = 0. The

fields 2
√

8πGh̃+,×/a(η) are the two gravitational wave amplitudes. When |~k| � aH,

the quantity −r(η,~k)H/aφ̇ is equal to the so-called curvature perturbation, ζ(~k, η).21

21There is a gauge where the spatial part of the metric perturbation takes the form δgij =
a2e2ζ [exp γ]ij , γii = 0, ∂iγij = 0. See e.g., [15] pg. 4.
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The equations of motion for r and h̃s are

r′′ = −
(
~k · ~k − z′′

z

)
r and h̃′′s = −

(
~k · ~k − a′′

a

)
h̃s. (1.45)

To quantize, we promote r and h̃s to operators as in (1.36). The mode functions χr

and χh̃s must solve the above equations of motion. First notice that

a′′

a
=

d

dt
a2H = a2H2(2− ε) (1.46)

and

z′′

z
=

1√
ε

d

dt
a2
√
εH(1 +

ε̇

2Hε
) =

1√
ε

d

dt
a2
√
εH(1 + ε+ δ)

= a2H2
(

(2 + δ)(1 + ε+ δ) + (ε̇/H + δ̇/H)
)
. (1.47)

During slow-roll inflation, |ε̇/H|, |δ̇/H| � |ε|, |δ| � 1 and so H ≈ constant. That

means a ≈ − 1
Hη

where η → −∞ in the past and so

a′′

a
≈ (2− ε)/η2,

z′′

z
≈ (2 + 2ε+ 3δ)/η2. (1.48)

Using these expressions for a′′/a and z′′/z and treating ε and δ as constants, the

solutions to (1.45) are Hermite polynomials. Setting ε and δ to zero, the solutions

become even simpler. The solution to

f ′′ = −(k2 − 2/η2)f (1.49)

is

f = c1(k)

(
1− i

kη

)
e−ikη + c2(k)

(
1 +

i

kη

)
eikη. (1.50)
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Notice that in the long wavelength limit, when kη � 1,22 the equations of motion

for r and h̃s are just harmonic oscillator equations. Invoking the equivalence principle,

we use this fact to normalize the mode functions. The mode function should satisfy,

χk∂ηχ
∗
k − χ∗k∂ηχk = i (long wavelength limit). (1.51)

In the approximation where ε = δ = 0, it’s clear that the correctly normalized mode

functions are

χrk = χh̃sk =
1√
2k

(
1− i

kη

)
e−ikη. (1.52)

We can now calculate the two-point function for r and for h̃. In general for a field

f with mode expansion f(η, ~x) =
∫

d~k
(2π)3

(
χk(η)ei

~k·~xâ~k + χ∗k(η)e−i
~k·~xâ†~k

)
, it’s not hard

to show that

〈f(η, ~x)f(η, ~y)〉 =

∫
d~k

(2π)3

∫
d~q

(2π)3
χk(η)χ∗q(η)ei(

~k·~x−~q·~y)[a~k, a
†
~q]

=

∫
d~k

(2π)3
χk(η)χ∗k(η)ei

~k·(~x−~y) (1.53)

≡
∫

d~k

(2π)3
Pf (k; η)ei

~k·(~x−~y), (1.54)

where Pf (k; η) is the power spectrum at time η. It’s also not hard to show for the

Fourier-transformed functions that

〈f(η,~k)f(η, ~q)〉 = χk(η)χ∗q(η)[a~k, a
†
−~q]

= χk(η)χ∗k(η)(2π)3δ(3)(~k + ~q) (1.55)

= Pf (k; η)(2π)3δ(3)(~k + ~q). (1.56)

As mentioned above, the δ(3)(~k + ~q) dependence can be independently derived from

22Note that z′′

z ≈
a′′

a ≈ (aH)2 during slow-roll.
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the fact that the position space two-point function is invariant under translations.

Let’s think for a moment about the short wavelength limit (when k � aH). The

equations then take the form

f ′′ =
γ′′

γ
f, (1.57)

the solution to which is

f = c1γ + c2γ

∫
dη

γ2
. (1.58)

For γ = z or a during slow-roll inflation,
∫

dη
γ2 ∼ a−3. Thus the exact solution for

χrk/z and for χh̃sk/a when k � aH is a constant plus a decaying part. In other words

r(η,~k)/z and h̃s(η,~k)/a are conserved outside the Hubble horizon. In particular, for

modes that cross the Hubble horizon well before the end of inflation (when ε and δ are

much much less than one), the solution (1.52) should be a very good approximation

just after Horizon crossing (− 1
η
≈ aH > k). Then we know that much after horizon

crossing the amplitudes of r/z and h̃/a should be conserved. That means

Pr/z(k; η > η×,k) ≈
1

z2

1

2k

(
1− i

kη

)(
1 +

i

kη

)
≈ 1

z2

1

2k

(
1

kη

)2

≈ constant, (1.59)

where η×,k is η at horizon crossing for wavelength k. Recalling that z = aφ̇/H we

can see that

Pr/z(k; η � η×,k) ≈
H2

2k3

(
H

φ̇

)2 ∣∣∣
Horzion crossing

=
H2

2k3

( ε

4πG

)−1 ∣∣∣
Horzion crossing

. (1.60)

Similarly,

Ph̃/a(k; η � η×,k) ≈
H2

2k3

∣∣∣
Horzion crossing

. (1.61)

We see that P (k) ∝ k−3 for both r and h̃. This means that the position space
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two-point correlation function,

P (~x− ~y) =

∫
d~k

(2π)3
P (k)ei

~k·(~x−~y), (1.62)

is invariant under scale transformations, ~k → λ−1~k, ~x→ λ~x. For this reason, a power

spectrum proportional to k−3 is called scale invariant. Actually, if we’d used the

more precise expressions (1.48) for a′′/a and z′′/z and used the corresponding more

precise Hermite polynomials as our mode functions, we would have found a very

slightly scale-noninvariant power spectrum (with the deviation from scale invariance

controlled by ε and δ). Measurements of the CMB (and the distribution of structures

in the Universe) do indeed indicate that the primordial power spectrum is nearly scale

invariant. And measurements are now getting sensitive enough to probe very slight

deviations from scale invariance. So, given that the slow-roll parameters are related

to the shape of the inflaton potential, in a sense we’re on the brink of being able to

probe the form of the inflaton potential.

I mentioned earlier that the two gravitational wave amplitudes are

hs = 2
√

8πGh̃s/a(η), where s = + or ×, (1.63)

and that the curvature perturbation ζ is equal to −r(η,~k)H/aφ̇ outside the horizon.

Thus for modes outside the horizon the ratio of power in gravitational waves and the

curvature power is

Ph+ + Ph×
Pζ

≈ 2(2
√

8πG)2
( ε

4πG

)
= 16ε, (1.64)

where ε is evaluated near horizon crossing. This is known as the tensor-to-scalar

ratio. It turns out that the gravitational wave power spectrum and the curvature

perturbation power spectrum are expected to be conserved outside the horizon in very
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generic circumstances, even after inflation ends and the evolution of the background

space-time changes substantially [16],[17]. I mentioned above that deviations of the

power spectrum from scale invariance are controlled by the slow-roll parameters.

Comparing these deviations to the size of the tensor-to-scalar ratio is an important

cross-check of slow-roll models. There are other such cross-checks that can be made,

such as comparing the sizes of non-Gaussianities to the tensor-to-scalar ratio and

to deviations from scale invariance. The theoretical predictions for ratios of such

observable quantities (which should be numbers, independent of slow-roll parameters)

are known as consistency conditions. We will derive a consistency condition for hairy

inflation models in chapter 4.
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Chapter 2

Instabilities in the Æther

We investigate the stability of theories in which Lorentz invariance is spontaneously

broken by fixed-norm vector “æther” fields. Models with generic kinetic terms are

plagued either by ghosts or by tachyons, and are therefore physically unacceptable.

There are precisely three kinetic terms that are not manifestly unstable: a sigma

model (∂µAν)
2, the Maxwell Lagrangian FµνF

µν , and a scalar Lagrangian (∂µA
µ)2.

The timelike sigma-model case is well defined and stable when the vector norm is fixed

by a constraint; however, when it is determined by minimizing a potential there is

necessarily a tachyonic ghost, and therefore an instability. In the Maxwell and scalar

cases, the Hamiltonian is unbounded below, but at the level of perturbation theory

there are fewer degrees of freedom and the models are stable. However, in these two

theories there are obstacles to smooth evolution for certain choices of initial data.

The contents of this chapter were written in collaboration with Sean Carroll, Tim

Dulaney, and Heywood Tam and have been published in [1].

2.1 Introduction

The idea of spontaneous violation of Lorentz invariance through tensor fields with

non-vanishing expectation values has garnered substantial attention in recent years

[18, 19, 20, 21, 12, 22, 23, 24, 25, 26, 27, 28]. Hypothetical interactions between
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Standard Model fields and Lorentz-violating (LV) tensor fields are tightly constrained

by a wide variety of experimental probes, in some cases leading to limits at or above

the Planck scale [21, 29, 23, 30, 31, 32, 13].

If these constraints are to be taken seriously, it is necessary to have a sensible

theory of the dynamics of the LV tensor fields themselves, at least at the level of low-

energy effective field theory. The most straightforward way to construct such a theory

is to follow the successful paradigm of scalar field theories with spontaneous symme-

try breaking, by introducing a tensor potential that is minimized at some non-zero

expectation value, in addition to a kinetic term for the fields. (Alternatively, it can be

a derivative of the field that obtains an expectation value, as in ghost condensation

models [33, 34, 35].) As an additional simplification, we may consider models in which

the nonzero expectation value is enforced by a Lagrange multiplier constraint, rather

than by dynamically minimizing a potential; this removes the “longitudinal” mode of

the tensor from consideration, and may be thought of as a limit of the potential as

the mass near the minimum is taken to infinity. In that case, there will be a vacuum

manifold of zero-energy tensor configurations, specified by the constraint.

All such models must confront the tricky question of stability. Ultimately, stabil-

ity problems stem from the basic fact that the metric has an indefinite signature in a

Lorentzian spacetime. Unlike in the case of scalar fields, for tensors it is necessary to

use the spacetime metric to define both the kinetic and potential terms for the fields.

A generic choice of potential would have field directions in which the energy is un-

bounded from below, leading to tachyons, while a generic choice of kinetic term would

have modes with negative kinetic energies, leading to ghosts. Both phenomena repre-

sent instabilities; if the theory has tachyons, small perturbations grow exponentially

in time at the linearized level, while if the theory has ghosts, nonlinear interactions

create an unlimited number of positive- and negative-energy excitations [36]. There

is no simple argument that these unwanted features are necessarily present in any
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model of LV tensor fields, but the question clearly warrants careful study.

In this chapter we revisit the question of the stability of theories of dynamical

Lorentz violation, and argue that most such theories are unstable. In particular,

we examine in detail the case of a vector field Aµ with a nonvanishing expectation

value, known as the “æther” model or a “bumblebee” model. For generic choices of

kinetic term, it is straightforward to show that the Hamiltonian of such a model is

unbounded from below, and there exist solutions with bounded initial data that grow

exponentially in time.

There are three specific choices of kinetic term for which the analysis is more

subtle. These are the sigma-model kinetic term,

LK = −1

2
∂µAν∂

µAν , (2.1)

which amounts to a set of four scalar fields defined on a target space with a Minkowski

metric; the Maxwell kinetic term,

LK = −1

4
FµνF

µν , (2.2)

where Fµν = ∂µAν − ∂νAµ is familiar from electromagnetism; and what we call the

“scalar” kinetic term,

LK =
1

2
(∂µA

µ)2 , (2.3)

featuring a single scalar degree of freedom. Our findings may be summarized as

follows:

• The sigma-model Lagrangian with the vector field constrained by a Lagrange

multiplier to take on a timelike expectation value is the only æther theory for

which the Hamiltonian is bounded from below in every frame, ensuring stability.

In the next chapter, we examine the cosmological behavior and observational
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constraints on this model [2]. If the vector field is spacelike, the Hamiltonian is

unbounded and the model is unstable. However, if the constraint in the sigma-

model theory is replaced by a smooth potential, allowing the length-changing

mode to become a propagating degree of freedom, that mode is necessarily

ghostlike (negative kinetic energy) and tachyonic (correct sign mass term), and

the Hamiltonian is unbounded below, even in the timelike case. It is therefore

unclear whether models of this form can arise in any full theory.

• In the Maxwell case, the Hamiltonian is unbounded below; however, a perturba-

tive analysis does not reveal any explicit instabilities in the form of tachyons or

ghosts. The timelike mode of the vector acts as a Lagrange multiplier, and there

are fewer propagating degrees of freedom at the linear level (a “spin-1” mode

propagates, but not a “spin-0” mode). Nevertheless, singularities can arise in

evolution from generic initial data: for a spacelike vector, for example, the field

evolves to a configuration in which the fixed-norm constraint cannot be satisfied

(or perhaps just to a point where the effective field theory breaks down). In

the timelike case, a certain subset of initial data is well behaved, but, provided

the vector field couples only to conserved currents, the theory reduces precisely

to conventional electromagnetism, with no observable violations of Lorentz in-

variance. It is unclear whether there exists a subset of initial data that leads to

observable violations of Lorentz invariance while avoiding problems in smooth

time evolution.

• The scalar case is superficially similar to the Maxwell case, in that the Hamil-

tonian is unbounded below, but a perturbative analysis does not reveal any

instabilities. Again, there are fewer degrees of freedom at the linear level; in

this case, the spin-1 mode does not propagate. There is a scalar degree of free-

dom, but it does not correspond to a propagating mode at the level of pertur-



33

bation theory (the dispersion relation is conventional, but the energy vanishes

to quadratic order in the perturbations). For the timelike æther field, obstacles

arise in the time evolution that are similar to those of a spacelike vector in the

Maxwell case; for a spacelike æther field with a scalar action, the behavior is

less clear.

• For any other choice of kinetic term, æther theories are always unstable.

Interestingly, these three choices of æther dynamics are precisely those for which there

is a unique propagation speed for all dynamical modes; this is the same condition re-

quired to ensure that the Generalized Second Law is respected by a Lorentz-violating

theory [37, 38].

One reason why our findings concerning stability seem more restrictive than those

of some previous analyses is that we insist on perturbative stability in all Lorentz

frames, which is necessary in theories where the form of the Hamiltonian is frame

dependent. In a Lorentz-invariant field theory, it suffices to pick a Lorentz frame and

examine the behavior of small fluctuations; if they grow exponentially, the model is

unstable, while if they oscillate, the model is stable. In Lorentz-violating theories, in

contrast, such an analysis might miss an instability in one frame that is manifest at

the linear level in some other frame [39, 31, 40]. This can be traced to the fact that a

perturbation that is “small” in one frame (the value of the perturbation is bounded

everywhere along some initial spacelike slice), but grows exponentially with time as

measured in that frame, will appear “large” (unbounded on every spacelike slice) in

some other frame.

As an explicit example, consider a model of a timelike vector with a background

configuration Āµ = (m, 0, 0, 0), and perturbations δaµ = εµe−iωtei
~k·~x, where εµ is some

constant polarization vector. In this frame, we will see that the dispersion relation
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takes the form

ω2 = v2~k2 . (2.4)

Clearly, the frequency ω will be real for every real wave vector ~k, and such modes

simply oscillate rather than growing in time. It is tempting to conclude that models

of this form are perturbatively stable for any value of v. However, we will see below

that when v > 1, there exist other frames (boosted with respect to the original) in

which ~k can be real but ω is necessarily complex, indicating an instability. These

correspond to wave vectors for which, evaluated in the original frame, both ω and

~k are complex. Modes with complex spatial wave vectors are not considered to be

“perturbations,” since the fields blow up at spatial infinity. However, in the presence

of Lorentz violation, a complex spatial wave vector in one frame may correspond

to a real spatial wave vector in a boosted frame. We will show that instabilities

can arise from initial data defined on a constant-time hypersurface (in a boosted

frame) constructed solely from modes with real spatial wave vectors. Such modes are

bounded at spatial infinity (in that frame), and could be superimposed to form wave

packets with compact support. Since the notion of stability is not frame dependent,

the existence of at least one such frame indicates that the theory is unstable, even if

there is no linear instability in the æther rest frame.

Several prior investigations have considered the question of stability in theories

with LV vector fields. Lim [25] calculated the Hamiltonian for small perturbations

around a constant timelike vector field in the rest frame, and derived restrictions on

the coefficients of the kinetic terms. Bluhm et al. [41] also examined the timelike case

with a Lagrange multiplier constraint, and showed that the Maxwell kinetic term led

to stable dynamics on a certain branch of the solution space if the vector was coupled

to a conserved current. It was also found, in [41], that most LV vector field theories

have Hamiltonians that are unbounded below. Boundedness of the Hamiltonian was

also considered in [42]. In the context of effective field theory, Gripaios [43] analyzed
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small fluctuations of LV vector fields about a flat background. Dulaney, Gresham and

Wise [27] showed that only the Maxwell choice was stable to small perturbations in

the spacelike case assuming the energy of the linearized modes was non-zero.1 Elliot,

Moore, and Stoica [30] showed that the sigma-model kinetic term is stable in the

presence of a constraint, but not with a potential.

In the next section, we define notation and fully specify the models we are con-

sidering. We then turn to an analysis of the Hamiltonians for such models, and show

that they are always unbounded below unless the kinetic term takes on the sigma-

model form and the vector field is timelike. This result does not by itself indicate

an instability, as there may not be any dynamical degree of freedom that actually

evolves along the unstable direction. Therefore, in the following section we look care-

fully at linear stability around constant configurations, and isolate modes that grow

exponentially with time. In the section after that we show that the models that are

not already unstable at the linear level end up having ghosts, with the exception of

the Maxwell and scalar cases. We then examine some features of those two theories

in particular.

2.2 Models

We will consider a dynamical vector field Aµ propagating in Minkowski spacetime

with signature (−+ ++). The action takes the form

SA =

∫
d4x (LK + LV ) , (2.5)

1This effectively eliminates the scalar case.
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where LK is the kinetic Lagrange density and LV is (minus) the potential. A general

kinetic term that is quadratic in derivatives of the field can be written2

LK = −β1(∂µAν)(∂
µAν)− β2(∂µA

µ)2 − β3(∂µAν)(∂
νAµ)− β4

AµAν

m2
(∂µAρ)(∂νA

ρ) .

(2.7)

In flat space-time, setting the fields to constant values at infinity, we can integrate by

parts to write an equivalent Lagrange density as

LK = −1

2
β1FµνF

µν − β∗(∂µAµ)2 − β4
AµAν

m2
(∂µAρ)(∂νA

ρ) , (2.8)

where Fµν = ∂µAν − ∂νAµ and we have defined

β∗ = β1 + β2 + β3 . (2.9)

In terms of these variables, the models specified above with no linear instabilities or

negative-energy ghosts are

• Sigma model: β1 = β∗,

• Maxwell: β∗ = 0, and

• Scalar: β1 = 0,

in all cases with β4 = 0.

The vector field will obtain a nonvanishing vacuum expectation value from the po-

tential. For most of the chapter we will take the potential to be a Lagrange multipler

2In terms of the coefficients, ci, defined in [24] and used in many other publications on æther
theories,

βi =
ci

16πGm2
(2.6)

where G is the gravitational constant.
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constraint that strictly fixes the norm of the vector:

LV = λ(AµAµ ±m2) , (2.10)

where λ is a Lagrange multiplier whose variation enforces the constraint

AµAµ = ∓m2 . (2.11)

If the upper sign is chosen, the vector will be timelike, and it will be spacelike for the

lower sign. Later we will examine how things change when the constraint is replaced

by a smooth potential of the form LV = −V (Aµ) ∝ ξ(AµA
µ ±m2)2. It will turn out

that the theory defined with a smooth potential is only stable in the limit as ξ →∞.

In any case, unless we specify otherwise, we assume that the norm of the vector is

determined by the constraint (2.11).

We are left with an action

SA =

∫
d4x

[
−1

2
β1FµνF

µν − β∗(∂µAµ)2 − β4
AµAν

m2
(∂µAρ)(∂νA

ρ) + λ(AµAµ ±m2)

]
.

(2.12)

The Euler-Lagrange equation obtained by varying with respect to Aµ is

β1∂µF
µν + β∗∂

ν∂µA
µ + β4G

ν = −λAν , (2.13)

where we have defined

Gν =
1

m2

[
Aλ(∂λA

σ)Fσ
ν + Aσ(∂λA

λ∂σA
ν + Aλ∂λ∂σA

ν)
]
. (2.14)

Since the fixed-norm condition (2.11) is a constraint, we can consistently plug it back

into the equations of motion. Multiplying (2.13) by Aν and using the constraint, we
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can solve for the Lagrange multiplier,

λ = ± 1

m2
(β1∂µF

µν + β∗∂
ν∂µA

µ + β4G
ν)Aν . (2.15)

Inserting this back into (2.13), we can write the equation of motion as a system of

three independent equations:

Qρ ≡
(
ηρν ±

AρAν
m2

)
(β1∂µF

µν + β∗∂
ν∂µA

µ + β4G
ν) = 0. (2.16)

The tensor ηρν ± m−2AρAν acts to take what would be the equation of motion in

the absence of the constraint, and project it into the hyperplane orthogonal to Aµ.

There are only three independent equations because AρQρ vanishes identically, given

the fixed norm constraint.

2.2.1 Validity of Effective Field Theory

As in this chapter we will restrict our attention to classical field theory, it is important

to check that any purported instabilities are found in a regime where a low-energy

effective field theory should be valid. The low-energy degrees of freedom in our models

are Goldstone bosons resulting from the breaking of Lorentz invariance. The effective

Lagrangian will consist of an infinite series of terms of progressively higher order in

derivatives of the fields, suppressed by appropriate powers of some ultraviolet mass

scale M . If we were dealing with the theory of a scalar field Φ, the low-energy effective

theory would be valid when the canonical kinetic term (∂Φ)2 was large compared to

a higher-derivative term such as

1

M2
(∂2Φ)2 . (2.17)
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For fluctuations with wavevector kµ = (ω,~k), we have ∂Φ ∼ kΦ, and the lowest-

order terms accurately describe the dynamics whenever |~k| < M . A fluctuation that

has a low momentum in one frame can, of course, have a high momentum in some

other frame, but the converse is also true; the set of perturbations that can be safely

considered “low-energy” looks the same in any frame.

With a Lorentz-violating vector field, the situation is altered. In addition to

higher-derivative terms of the form M−2(∂2A)2, the possibility of extra factors of the

vector expectation value leads us to consider terms such as

L4 =
1

M8
A6(∂2A)2 . (2.18)

The number of such higher dimension operators in the effective field theory is greatly

reduced because AµA
µ = −m2 and, therefore, Aµ∂νA

µ = 0. It can be shown that an

independent operator with n derivatives includes at most 2n vector fields, so that the

term highlighted here has the largest number of A’s with four derivatives. We expect

that the ultraviolet cutoff M is of order the vector norm, M ≈ m. Hence, when we

consider a background timelike vector field in its rest frame,

Āµ = (m, 0, 0, 0) , (2.19)

the L4 term reduces to m−2(∂2A)2, and the effective field theory is valid for modes

with k < m, just as in the scalar case.

But now consider a highly boosted frame, with

Āµ = (m cosh η,m sinh η, 0, 0) . (2.20)

At large η, individual components of A will scale as e|η|, and the higher-derivative



40

term schematically becomes

L4 ∼
1

m2
e6|η|(∂2A)2 . (2.21)

For modes with spatial wave vector k = |~k| (as measured in this boosted frame),

we are therefore comparing m−2e6|η|k4 with the canonical term k2. The lowest-order

terms therefore only dominate for wave vectors with

k < e−3|η|m. (2.22)

In the presence of Lorentz violation, therefore, the realm of validity of the effective

field theory may be considerably diminished in highly boosted frames. We will be

careful in what follows to restrict our conclusions to those that can be reached by

only considering perturbations that are accurately described by the two-derivative

terms. The instabilities we uncover are infrared phenomena, which cannot be cured

by changing the behavior of the theory in the ultraviolet. We have been careful to

include all of the lowest-order terms in the effective field theory expansion—the terms

in (2.8).

2.3 Boundedness of the Hamiltonian

We would like to establish whether there are any values of the parameters β1, β∗ and

β4 for which the æther model described above is physically reasonable. In practice, we

take this to mean that there exist background configurations that are stable under

small perturbations. It seems hard to justify taking an unstable background as a

starting point for phenomenological investigations of experimental constraints, as we

would expect the field to evolve on microscopic timescales away from its starting

point.
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“Stability” of a background solution X0 to a set of classical equations of motion

means that, for any small neighborhood U0 of X0 in the phase space, there is another

neighborhood U1 of X0 such that the time evolution of any point in U0 remains in

U1 for all times. More informally, small perturbations oscillate around the original

background, rather than growing with time. A standard way of demonstrating sta-

bility is to show that the Hamiltonian is a local minimum at the background under

consideration. Since the Hamiltonian is conserved under time evolution, the allowed

evolution of a small perturbation will be bounded to a small neighborhood of that

minimum, ensuring stability. Note that the converse does not necessarily hold; the

presence of other conserved quantities can be enough to ensure stability even if the

Hamiltonian is not bounded from below.

One might worry about invoking the Hamiltonian in a theory where Lorentz in-

variance has been spontaneously violated. Indeed, as we shall see, the form of the

Hamiltonian for small perturbations will depend on the Lorentz frame in which they

are expressed. To search for possible linear instabilities, it is necessary to consider

the behavior of small perturbations in every Lorentz frame.

The Hamiltonian density, derived from the action (2.12) via a Legendre transfor-

mation, is

H =
∂LA

∂(∂0Aµ)
∂0Aµ − LA (2.23)

=
β1

2
F 2
ij + β1(∂0Ai)

2 − β1(∂iA0)2 + β∗(∂iAi)
2 − β∗(∂0A0)2

+ β4
AjAk

m2
(∂jAρ)(∂kA

ρ)− β4
A0A0

m2
(∂0Aρ)(∂0A

ρ), (2.24)

where Latin indices i, j run over {1, 2, 3}. The total Hamiltonian corresponding to
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this density is

H =

∫
d3xH

=

∫
d3x
(
β1(∂µAi∂µAi − ∂µA0∂µA0) + (β1 − β∗)[(∂0A0)2 − (∂iAi)

2]

+ β4
AjAk
m2

(∂jAρ)(∂kA
ρ)− β4

A0A0

m2
(∂0Aρ)(∂0A

ρ)
)
. (2.25)

We have integrated by parts and assumed that ∂iAj vanishes at spatial infinity; re-

peated lowered indices are summed (without any factors of the metric). Note that

this Hamiltonian is identical to that of a theory with a smooth (positive semidefinite)

potential instead of a Lagrange multiplier term, evaluated at field configurations for

which the potential is minimized. Therefore, if the Hamiltonian is unbounded when

the fixed-norm constraint is enforced by a Lagrange multiplier, it will also be un-

bounded in the case of a smooth potential.

There are only three dynamical degrees of freedom, so we may reparameterize

Aµ such that the fixed-norm constraint is automatically enforced and the allowed 3-

dimensional subspace is manifest. We define a boost variable φ and angular variables

θ and ψ, so that we can write

A0 ≡ m coshφ (2.26)

Ai ≡ m sinhφfi(θ, ψ) (2.27)

in the timelike case with AµA
µ = −m2, and

A0 ≡ m sinhφ (2.28)

Ai ≡ m coshφfi(θ, ψ) (2.29)



43

in the spacelike case with AµA
µ = +m2. In these expressions,

f1 ≡ cos θ cosψ (2.30)

f2 ≡ cos θ sinψ (2.31)

f3 ≡ sin θ , (2.32)

so that fifi = 1. In terms of this parameterization, the Hamiltonian density for a

timelike æther field becomes

H(t)

m2
= β1 sinh2 φ∂µfi∂µfi + β1∂µφ∂µφ

+ (β1 − β∗)
[
(∂0φ)2 sinh2 φ− (coshφfi∂iφ+ sinhφ∂ifi)

2
]

+β4 sinh2 φ
[
(fi∂iφ)2 + sinh2 φ(fi∂ifl)(fj∂jfl)

]
−β4 cosh2 φ

[
(∂0φ)2 + sinh2 φ(∂0fi)

2
]
,

(2.33)

while for the spacelike case we have

H(s)

m2
= β1 cosh2 φ∂µfi∂µfi − β1∂µφ∂µφ

+ (β1 − β∗)
[
(∂0φ)2 cosh2 φ− (sinhφfi∂iφ+ coshφ∂ifi)

2
]

−β4 cosh2 φ
[
(fi∂iφ)2 − cosh2 φ(fi∂ifl)(fj∂jfl)

]
+β4 sinh2 φ

[
(∂0φ)2 − cosh2 φ(∂0fi)

2
]
.

(2.34)

Expressed in terms of the variables φ, θ, ψ, the Hamiltonian is a function of initial

data that automatically respects the fixed-norm constraint. We assume that the

derivatives ∂µAν(t0, ~x) vanish at spatial infinity.
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2.3.1 Timelike Vector Field

We can now determine which values of the parameters {β1, β∗, β4} lead to Hamilto-

nians that are bounded below, starting with the case of a timelike æther field. We

can examine the various possible cases in turn.

• Case One: β1 = β∗ and β4 = 0.

This is the sigma-model kinetic term (2.1). In this case the Hamiltonian density

simplifies to

H(t) = m2β1(sinh2 φ∂µfi∂µfi + ∂µφ∂µφ) . (2.35)

It is manifestly non-negative when β1 > 0, and non-positive when β1 < 0. The

sigma-model choice β1 = β∗ > 0 therefore results in a theory that is stable. (See

also §6.2 of [26].)

• Case Two: β1 < 0 and β4 = 0.

In this case, consider configurations with (∂0fi) 6= 0, (∂ifj) = 0, ∂µφ = 0,

sinh2 φ� 1. Then we have

H(t) ∼ m2β1 sinh2 φ(∂0fi)
2. (2.36)

For β1 < 0, the Hamiltonian can be arbitrarily negative for any value of β∗.

• Case Three: β1 ≥ 0, β∗ < β1, and β4 = 0.

We consider configurations with ∂µfi = 0, fi∂iφ 6= 0, ∂0φ = 0, cosh2 φ � 1,

which gives

H(t) ∼ m2(β∗ − β1) cosh2 φ(fi∂iφ)2. (2.37)

Again, this can be arbitrarily negative.

• Case Four: β1 ≥ 0, β∗ > β1, and β4 = 0.
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∂xφ

∂tφ
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∂tφ

φ = 0 φ = 0.8 φcrit
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∂xφ

∂tφ
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∂xφ

∂tφ

φ = φcrit φ = 1.2 φcrit

Figure 2.1: Hamiltonian density (vertical axis) when β1 = 1, β∗ = 1.1, and θ =
ψ = ∂yφ = ∂zφ = 0 as a function of ∂tφ (axis pointing into page) and ∂xφ (axis

pointing out of page) for various φ ranging from zero to φcrit = tanh−1
√
β1/β∗, the

value of φ for which the Hamiltonian is flat at ∂xφ = 0, and beyond. Notice that
the Hamiltonian density turns over and becomes negative in the ∂tφ direction when
φ > φcrit.

Now we consider configurations with ∂µfi = 0, fi∂iφ = 0, ∂0φ 6= 0, sinh2 φ� 1.

Then,

H(t) ∼ m2(β1 − β∗) sinh2 φ(∂0φ)2, (2.38)

which can be arbitrarily negative.

• Case Five: β4 6= 0.

Now we consider configurations with ∂µfi 6= 0, ∂µφ = 0 and sinh2 φ� 1. Then,

H(t) ∼ m2β4

[
sinh4 φ(fi∂ifl)(fk∂kfl)− sinh2 φ cosh2 φ(∂0fi)

2
]
, (2.39)

which can be arbitrarily negative for any non-zero β4 and for any values of β1

and β∗.

For any case other than the sigma-model choice β1 = β∗, it is therefore straightforward

to find configurations with arbitrarily negative values of the Hamiltonian.



46

Nevertheless, a perturbative analysis of the Hamiltonian would not necessarily

discover that it was unbounded. The reason for this is shown in Fig. 2.1, which shows

the Hamiltonian density for the theory with β1 = 1, β∗ = 1.1, in a restricted subspace

where ∂yφ = ∂zφ = 0 and θ = φ = 0, leaving only φ, ∂tφ, and ∂xφ as independent

variables. We have plotted H as a function of ∂tφ and ∂xφ for four different values of

φ. When φ is sufficiently small, so that the vector is close to being purely timelike,

the point ∂tφ = ∂xφ = 0 is a local minimum. Consequently, perturbations about

constant configurations with small φ would appear stable. But for large values of

φ, the unboundedness of the Hamiltonian becomes apparent. This phenomenon will

arise again when we consider the evolution of small perturbations in the next section.

At the end of this section, we will explain why such regions of large φ are still in the

regime of validity of the effective field theory expansion.

2.3.2 Spacelike Vector Field

We now perform an equivalent analysis for an æther field with a spacelike expecta-

tion value. In this case all of the possibilities lead to Hamiltonians (2.34) that are

unbounded below, and the case β1 = β∗ > 0 is not picked out.

• Case One: β1 < 0 and β4 = 0.

Taking (∂µφ) = 0, ∂jfi = 0, ∂0fi 6= 0, we find

H(s) ∼ m2β1 cosh2 φ(∂0fi)
2. (2.40)

• Case Two: β1 > 0, β∗ ≤ β1, and β4 = 0.

Now we consider ∂µfi = 0, ∂iφ 6= 0, ∂0φ = 0, giving

H(s) ∼ m2
[
−β1∂iφ∂iφ+ (β∗ − β1) sinh2 φ(fi∂iφ)2

]
. (2.41)
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• Case Three: β1 ≥ 0, β∗ > β1, and β4 = 0.

In this case we examine (∂0φ) 6= 0, ∂µfi = 0, ∂iφ = 0, which leads to

H(s) ∼ m2(β1 − β∗) cosh2 φ(∂0φ)2. (2.42)

• Case Four: β4 6= 0.

Now we consider configurations with ∂µfi 6= 0, ∂µφ = 0 and sinh2 φ� 1. Then,

H(s) ∼ m2β4

(
cosh4 φ(fi∂ifl)(fk∂kfl)− cosh2 φ sinh2 φ(∂0fi)

2
)
. (2.43)

In every case, it is clear that we can find initial data for a spacelike vector field that

makes the Hamiltonian as negative as we please, for all possible β1, β4 and β∗.

2.3.3 Smooth Potential

The usual interpretation of a Lagrange multiplier constraint is that it is the low-

energy limit of smooth potentials when the massive degrees of freedom associated

with excitations away from the minimum cannot be excited. We now investigate

whether these degrees of freedom can destabilize the theory. Consider the most

general, dimension four, positive semi-definite smooth potential that has a minimum

when the vector field takes a timelike vacuum expectation value,

V =
ξ

4
(AµA

µ +m2)2, (2.44)

where ξ is a positive dimensionless parameter. The precise form of the potential

should not affect the results as long as the potential is non-negative and has the

global minimum at AµA
µ = −m2.

We have seen that the Hamiltonian is unbounded from below unless the kinetic
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term takes the sigma-model form, (∂µAν)(∂
µAν). Thus we take the Lagrangian to be

L = −1

2
(∂µAν)(∂

µAν)− ξ

4
(AµA

µ +m2)2. (2.45)

Consider some fixed timelike vacuum Āµ satisfying ĀµĀ
µ = −m2. We may de-

compose the æther field into a scaling of the norm, represented by a scalar Φ, and

an orthogonal displacement, represented by vector Bµ satisfying ĀµB
µ = 0. We thus

have

Aµ = Āµ −
ĀµΦ

m
+Bµ , (2.46)

where

Bµ =

(
ηµν +

ĀµĀν
m2

)
Aν and Φ =

ĀµA
µ

m
+m. (2.47)

With this parameterization, the Lagrangian is

L =
1

2
(∂µΦ)(∂µΦ)− 1

2
(∂µBν)(∂

µBν)− ξ

4
(2mΦ +BµB

µ − Φ2)2. (2.48)

The field Φ automatically has a wrong-sign kinetic term, and, at the linear level,

propagates with a dispersion relation of the form

ω2
Φ = ~k2 − 2ξm2. (2.49)

We see that in the case of a smooth potential, there exists a ghostlike mode (wrong-

sign kinetic term) that is also tachyonic with spacelike wave vector and a group

velocity that generically exceeds the speed of light. It is easy to see that sufficiently

long-wavelength perturbations will exhibit exponential growth. The existence of a

ghost when the norm of the vector field is not strictly fixed was shown in [30].

In the limit as ξ goes to infinity, the equations of motion enforce a fixed-norm

constraint and the ghostlike and tachyonic degree of freedom freezes. The theory is
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equivalent to one of a Lagrange multiplier if the limit is taken appropriately.

2.3.4 Discussion

To summarize, we have found that the action in (2.12) leads to a Hamiltonian that is

globally bounded from below only in the case of a timelike sigma-model Lagrangian,

corresponding to β1 = β∗ > 0 and β4 = 0. Furthermore, we have verified (as was

shown in [30]) that if the Lagrange multiplier term is replaced by a smooth, positive

semi-definite potential, then a tachyonic ghost propagates and the theory is destabi-

lized.

If the Hamiltonian is bounded below, the theory is stable, but the converse is

not necessarily true. The sigma-model theory is the only one for which this criterion

suffices to guarantee stability. In the next section, we will examine the linear stability

of these models by considering the growth of perturbations. Although some models

are stable at the linear level, we will see in the following section that most of these

have negative-energy ghosts, and are therefore unstable once interactions are included.

The only exceptions, both ghost-free and linearly stable, are the Maxwell (2.2) and

scalar (2.3) models.

We showed in the previous section that, unless β∗ − β1 and β4 are exactly zero,

the Hamiltonian is unbounded from below. However, the effective field theory breaks

down before arbitrarily negative values of the Hamiltonian can be reached; when

β∗ 6= β1 and/or β4 6= 0, in regions of phase space in which H < 0 (schematically),

H ∼ −m2e4|φ|(∂Θ)2 where Θ ∈ {φ, θ, ψ}. (2.50)

The effective field theory breaks down when kinetic terms with four derivatives (the

terms of next highest order in the effective field theory expansion) are on the order
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of terms with two derivatives, or, in the angle parameterization, when

m2e4|φ|(∂Θ)2 ∼ e8|φ|(∂Θ)4. (2.51)

In other words, the effective field theory is only valid when

e2|φ||∂Θ| < m. (2.52)

In principle, terms in the effective action with four or more derivatives could add

positive contributions to the Hamiltonian to make it bounded from below. However,

our analysis shows that the Hamiltonian (in models other than the timelike sigma

model with fixed norm) is necessarily concave down around the set of configura-

tions with constant æther fields. If higher-derivative terms intervene to stabilize the

Hamiltonian, the true vacuum would not have H = 0. Theories could also be deemed

stable if there are additional symmetries that lead to conserved currents (other than

energy-momentum density) or to a reduced number of physical degrees of freedom.

Regardless of the presence of terms beyond leading order in the effective field

theory expansion, due to the presence of the ghostlike and tachyonic mode (found in

the previous section), there is an unavoidable problem with perturbations when the

field moves in a smooth, positive semi-definite potential. This exponential instability

will be present regardless of higher order terms in the effective field theory expan-

sion because it occurs for very long-wavelength modes (at least around constant-field

backgrounds).

2.4 Linear Instabilities

We have found that the Hamiltonian of a generic æther model is unbounded below.

In this section, we investigate whether there exist actual physical instabilities at the
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linear level—i.e., whether small perturbations grow exponentially with time. It will

be necessary to consider the behavior of small fluctuations in every Lorentz frame,3

not only in the æther rest frame [39, 31, 40]. We find a range of parameters βi for

which the theories are tachyon free; these correspond (unsurprisingly) to dispersion

relations for which the phase velocity satisfies 0 ≤ v2 ≤ 1. In §2.5 we consider the

existence of ghosts.

2.4.1 Timelike Vector Field

Suppose Lorentz invariance is spontaneously broken so that there is a preferred rest

frame, and imagine that perturbations of some field in that frame have the following

dispersion relation:

v−2ω2 = ~k · ~k. (2.53)

This can be written in frame-invariant notation as

(v−2 − 1)(tµkµ)2 = kµk
µ, (2.54)

where tµ is a timelike Lorentz vector that characterizes the 4-velocity of the preferred

rest frame. So, in the rest frame, tµ = {1, 0, 0, 0}. Indeed, in the appendix, we find

dispersion relations for the æther modes of exactly the form in (3.12) with tµ = Āµ/m

and (2.140)

v2 =
β1

β1 − β4

(2.55)

and (2.141)

v2 =
β∗

β1 − β4

. (2.56)

Now consider the dispersion relation for perturbations of the field in another

3The theory of perturbations about a constant background is equivalent to a theory with explicit
Lorentz violation because the first order Lagrange density includes the term, λĀµδAµ, where Āµ is
effectively some constant coefficient.
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(“primed”) frame. Let’s solve for k′0 = ω′, the frequency of perturbations in the new

frame. Expanded out, the dispersion relation reads

ω′2(1 + (v−2 − 1)(t′0)2) + 2ω′(v−2 − 1)t′0t′ik′i − ~k′ · ~k′ + (v−2 − 1)(t′ik′i)
2 = 0, (2.57)

where i ∈ {1, 2, 3}. The solution for ω′ is

ω′ =
−(v−2 − 1)t′0t′ik′i ±

√
D(t)

1 + (v−2 − 1)(t′0)2
, (2.58)

where

D(t) = ~k′ · ~k′ + (v−2 − 1)
(

(t′0)2~k′ · ~k′ − (t′ik′i)
2
)
. (2.59)

In general, t′0 = cosh η and t′i = sinh η n̂i, where n̂in̂
i = 1 and η = cosh−1 γ is a boost

parameter. We therefore have

D(t) = ~k′ · ~k′
{

1 + (v−2 − 1)
[
cosh2 η − sinh2 η (n̂ · k̂′)2

]}
, (2.60)

where k̂′ = ~k′/|~k′|. Thus D(t) is clearly greater than zero if v ≤ 1. However, if

v > 1 then D(t) can be negative for very large boosts if ~k′ is not parallel to the boost

direction.

The sign of the discriminant D(t) determines whether the frequency ω′ is real

or complex valued. We have shown that when the phase velocity v of some field

excitation is greater than the speed of light in a preferred rest frame, then there is a

(highly boosted) frame in which the excitation looks unstable—that is, the frequency

of the field excitation can be imaginary. More specifically, plane waves traveling

along the boost direction with boost parameter γ = cosh η have a growing amplitude

if γ2 > 1/(1− v−2) > 0.

In appendix 2.A, we find dispersion relations of the form in (3.12) for the various

massless excitations about a constant timelike background (tµ = Āµ/m). Requiring
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stability and thus 0 ≤ v2 ≤ 1 leads to the inequalities,

0 ≤ β1

β1 − β4

≤ 1 (2.61)

and

0 ≤ β∗
β1 − β4

≤ 1 . (2.62)

Models satisfying these relations are stable with respect to linear perturbations in

any Lorentz frame.

2.4.2 Spacelike Vector Field

We show in appendix 2.A that fluctuations about a spacelike, fixed-norm, vector field

background have dispersion relations of the form

(v2 − 1)(sµkµ)2 = −kµkµ, (2.63)

with sµ = Āµ/m and (2.140)

v2 =
β1 + β4

β1

(2.64)

and (2.141)

v2 =
β1 + β4

β∗
. (2.65)

In frames where sµ = {0, ŝ}, v is the phase velocity in the ŝ direction.

Consider solving for k′0 = ω′ in an arbitrary (“primed”) frame. The solution is as

in (2.58), but with v−2 → 2− v2 and t′µ → s′µ. Thus,

ω′ =
(v2 − 1)s′0s′ik′i ±

√
D(s)

1 + (1− v2)(s′0)2
, (2.66)
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where

D(s) = ~k′ · ~k′ − (v2 − 1)
[
(s′0)2~k′ · ~k′ − (s′ik′i)

2
]
. (2.67)

In general, s′0 = sinh η and s′i = cosh η n̂i where n̂in̂
i = 1 and η = cosh−1 γ is a boost

parameter. So,

D(s) = ~k′ · ~k′
{

1− (v2 − 1)
[
sinh2 η − cosh2 η (n̂ · k̂′)2

]}
. (2.68)

which can be rewritten,

D(s) = ~k′ · ~k′
{
v2 + (1− v2) cosh2 η

[
1− (n̂ · k̂′)2

]}
. (2.69)

It is clear that D(s) is non-negative for all values of η if and only if 0 ≤ v2 ≤ 1. The

theory will be unstable unless 0 ≤ v2 ≤ 1.

The dispersion relations of the form (2.63) for the massless excitations about the

spacelike background are given in appendix 2.A. The requirement that 0 ≤ v2 ≤ 1

implies

0 ≤ β1 + β4

β1

≤ 1 (2.70)

and

0 ≤ β1 + β4

β∗
≤ 1 . (2.71)

Models of spacelike æther fields will only be stable with respect to linear perturbations

if these relations are statisfied.

The requirements (2.62) or (2.71) do not apply in the Maxwell case (when β∗ = 0 =

β4), and those of (2.61) or (2.70) do not apply in the scalar case (when β1 = 0 = β4),

since the corresponding degrees of freedom in each case do not propagate.
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2.4.3 Stability is Not Frame Dependent

The excitations about a constant background are massless (i.e., the frequency is pro-

portional to the magnitude of the spatial wave vector), but they generally do not

propagate along the light cone. In fact, when v > 1, the wave vector is timelike even

though the cone along which excitations propagate is strictly outside the light cone.

We have shown that such excitations blow up in some frame. The exponential instabil-

ity occurs for observers in boosted frames. In these frames, portions of constant-time

hypersurfaces are actually inside the cone along which excitations propagate.

Why do we see the instability in only some frames when performing a linear stabil-

ity analysis? Consider boosting the wave 4-vectors of such excitations with complex-

valued frequencies and real-valued spatial wave vectors back to the rest frame. Then,

in the rest frame, both the frequency and the spatial wave vector will have non-zero

imaginary parts. Such solutions with complex-valued ~k require initial data that grow

at spatial infinity and are therefore not really “perturbations” of the background.

But even though the æther field defines a rest frame, there is no restriction against

considering small perturbations defined on a constant-time hypersurface in any frame.

Well-behaved initial data can be decomposed into modes with real spatial wave vec-

tors; if any such modes lead to runaway growth, the theory is unstable.

2.5 Negative Energy Modes

We found above that manifest perturbative stability in all frames requires 0 ≤ v2 ≤ 1.

In the appendix, we show that there are two kinds of propagating modes, except when

β∗ = β4 = 0 or when β1 = β4 = 0. Based on the dispersion relations for these modes,

the 0 ≤ v2 ≤ 1 stability requirements translated into the inequalities for β∗, β1, and

β4 in (2.61)-(2.62) for timelike æther and (2.70)-(2.71) for spacelike æther. We shall

henceforth assume that these inequalities hold and, therefore, that ω and ~k for each
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mode are real in every frame. We will now show that, even when these requirements

are satisfied and the theories are linearly stable, there will be negative-energy ghosts

that imply instabilities at the nonlinear level (except for the sigma model, Maxwell,

and scalar cases).

For timelike vector fields, with respect to the æther rest frame, the various modes

correspond to two spin-1 degrees of freedom and one spin-0 degree of freedom. Based

on their similarity in form to the timelike æther rest frame modes, we will label these

modes once and for all as “spin-1” or “spin-0,” even though these classifications are

only technically correct for timelike fields in the æther rest frame.

The solutions to the first order equations of motion for perturbations δAµ about an

arbitrary, constant, background Āµ satisfying ĀµĀµ±m2 = 0 are (see appendix 2.A)

δAµ =

∫
d4k qµ(k)eikµx

µ

, qµ(k) = q∗µ(−k), (2.72)

where either

qµ(k) = iανkρ
Āσ

m
εµνρσ and β1kµk

µ + β4
(Āµk

µ)2

m2
= 0 and ανĀν = 0 (spin-1)

(2.73)

where αν are real-valued constants, or

qµ = iα

(
ηµν ±

ĀµĀν
m2

)
kν

and

(
β∗ηµν + (β4 ± (β∗ − β1))

ĀµĀν
m2

)
kµkν = 0 (spin-0) (2.74)

where α is a real-valued constant.

Note that when β1 = β4 = 0, corresponding to the scalar form of (2.3), the spin-1

dispersion relation is satisfied trivially, because the spin-1 mode does not propagate

in this case. Similarly, when β∗ = β4 = 0, the kinetic term takes on the Maxwell form
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in (2.2) and the spin-0 dispersion relation becomes Āµk
µ = 0; the spin-0 mode does

not propagate in that case.

The Hamiltonian (2.25) for either of these modes is

H =

∫
d3k

{[
β1(ω2 + ~k · ~k) + β4(−(ā0ω)2 + (āiki)

2)
]
qµq∗µ

+ (β1 − β∗)(ω2q∗0q0 + kiq
∗
i kjqj)

}
, (2.75)

where k0 = ω = ω(~k) is given by the solution to a dispersion relation and where

āµ ≡ Āµ/m. One can show that, as long as β1 and β4 satisfy the conditions (2.61)

or (2.70) that guarantee real frequencies ω in all frames, we will have

q∗µq
µ ≥ 0 (2.76)

for all timelike and spacelike vector perturbations. We will now proceed to evaluate

the Hamiltonian for each mode in different theories.

2.5.1 Spin-1 Energies

In this section we consider nonvanishing β4, and show that the spin-1 mode can carry

negative energy even when the conditions for linear stability are satisfied.

Timelike vector field. Without loss of generality, set

Āµ = m(cosh η, sinh η n̂), (2.77)

where n̂ · n̂ = 1. The energy of the spin-1 mode in the timelike case is given by

H =

∫
d3k(~k · ~k)q∗µq

µ

[
2X ∓ β4 sinh(2η)(n̂ · k̂)

√
X

β1 − β4 cosh2 η

]
, (2.78)
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where

X = β1

{
β1 + β4

[
(n̂ · k̂)2 sinh2 η − cosh2 η

]}
. (2.79)

Looking specifically at modes for which n̂ · k̂ = +1, we find

H =

∫
d3k(~k · ~k)q∗µq

µ

[
2β1(β1 − β4)∓ β4 sinh(2η)

√
β1(β1 − β4)

β1 − β4 cosh2 η

]
. (2.80)

The energy of such a spin-1 perturbation can be negative when |β4 sinh(2η)| >

2
√
β1(β1 − β4). Thus it is possible to have negative energy perturbations whenever

β4 6= 0. Perturbations with wave numbers perpendicular to the boost direction have

positive semi-definite energies.

Spacelike vector field. Without loss of generality, for the spacelike case we set

Āµ = m(sinh η, cosh η n̂) , (2.81)

where n̂ · n̂ = 1. The energy of the spin-1 mode in this case is given by

H =

∫
d3k(~k · ~k)q∗µq

µ

[
2X ∓ β4 sinh(2η)(n̂ · k̂)

√
X

β1 − β4 sinh2 η

]
, (2.82)

where

X = β1

{
β1 + β4

[
(n̂ · k̂)2 cosh2 η − sinh2 η

]}
. (2.83)

Looking at modes for which n̂ · k̂ = +1, we find

H =

∫
d3k(~k · ~k)q∗µq

µ

[
2β1(β1 + β4)∓ β4 sinh(2η)

√
β1(β1 + β4)

β1 − β4 sinh2 η

]
. (2.84)

Thus, the energy of perturbations can be negative when |β4 sinh(2η)| > 2
√
β1(β1 + β4).

Thus it is possible to have negative energy perturbations whenever β4 6= 0. Pertur-

bations with wave numbers perpendicular to the boost direction have positive semi-
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definite energies. In either the timelike or spacelike case, models with β4 6= 0 feature

spin-1 modes that can be ghostlike.

We note that the effective field theory is valid when k < e−3|η|m, as detailed in

§2.2.1. But even if η is very large, the effective field theory is still valid for very long

wavelength perturbations, and therefore such long wavelength modes with negative

energies lead to genuine instabilities.

2.5.2 Spin-0 Energies

We now assume the inequalities required for linear stability, (2.62) or (2.71), and

also that β4 = 0. We showed above that, otherwise, there are growing modes in some

frame or there are propagating spin-1 modes that have negative energy in some frame.

When β∗ 6= 0, the energy of the spin-0 mode in (2.74) is given by

H = 2β1α
2

∫
d3k (āρk

ρ)2
(
ω2(~k)

[
±1− (1− β1/β∗)ā

2
0

]
+ ω(~k) ā0(1− β1/β∗)āiki

)
(2.85)

for ĀµĀ
µ ±m2 = 0 and āµ ≡ Āµ/m.

Timelike vector field. We will now show that the quadratic order Hamiltonian

can be negative when the background is timelike and the kinetic term does not take

one of the special forms (sigma model, Maxwell, or scalar). Without loss of generality

we set ā0 = cosh η and āi = sinh η n̂i, where n̂ · n̂ = 1. Then plugging the freqency

ω(~k), as defined by the spin-0 dispersion relation, into the Hamiltonian (2.85) gives

H = β1α
2

∫
d3k (āρk

ρ)2

[
2X ± (1− β1/β∗) sinh 2η(n̂ · k̂)

√
X

1 + (β1/β∗ − 1) cosh2 η

]
, (2.86)

where

X = 1 + (β1/β∗ − 1)[cosh2 η − (n̂ · k̂)2 sinh2 η]. (2.87)
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If n̂ · k̂ 6= 0, the energy can be negative. In particular, if n̂ · k̂ = 1 we have

H = β1α
2

∫
d3k (āρk

ρ)2

[
2β1/β∗ ± (1− β1/β∗) sinh 2η

√
β1/β∗

1 + (β1/β∗ − 1) cosh2 η

]
. (2.88)

Given that β1/β∗− 1 ≥ 0, H can be negative when | sinh 2η| > 2
√
β1/β∗/(β1/β∗− 1).

We have thus shown that, for timelike backgrounds, there are modes that in some

frame have negative energies and/or growing amplitudes as long as β1 6= β∗, β1 6= 0,

and β∗ 6= 0. Therefore, the only possibly stable theories of timelike æther fields are

the special cases mentioned earlier: the sigma-model (β1 = β∗), Maxwell (β∗ = 0),

and scalar (β1 = 0) kinetic terms.

Spacelike vector field. For the spacelike case, without loss of generality we set

ā0 = sinh η and āi = cosh η n̂i, where n̂ · n̂ = 1. Once again, plugging the frequency

ω(k) into the Hamiltonian (2.85) gives

H = β1α
2

∫
d3k (āρk

ρ)2

[
−2X ± (1− β1/β∗) sinh 2η(n̂ · k̂)

√
X

1 + (1− β1/β∗) sinh2 η

]
, (2.89)

where

X = 1 + (1− β1/β∗)
[
sinh2 η − (n̂ · k̂)2 cosh2 η

]
. (2.90)

Upon inspection, one can see that there are values of n̂·k̂ and η that make H negative,

except when β∗ = 0 (Maxwell) or β1 = 0 (scalar). Again, the Hamiltonian density

is less than zero for modes with wavelengths sufficiently long (k < e−3|η|m), so the

effective theory is valid.

2.6 Maxwell and Scalar Theories

We have shown that the only version of the æther theory (2.12) for which the Hamilto-

nian is bounded below is the timelike sigma-model theory LK = −(1/2)(∂µAν)(∂
µAν),
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corresponding to the choices β1 = β∗, β4 = 0, with the fixed-norm condition imposed

by a Lagrange multiplier constraint. (Here and below, we rescale the field to canoni-

cally normalize the kinetic terms.) However, when we looked for explicit instabilities

in the form of tachyons or ghosts in the last two sections, we found two other models

for which such pathologies are absent: the Maxwell Lagrangian

LK = −1

4
FµνF

µν , (2.91)

corresponding to β∗ = 0 = β4, and the scalar Lagrangian

LK =
1

2
(∂µA

µ)2 , (2.92)

corresponding to β1 = 0 = β4. In both of these cases, we found that the Hamiltonian

is unbounded below,4 but a configuration with a small positive energy does not appear

to run away into an unbounded region of phase space characterized by large negative

and positive balancing contributions to the total energy.

These two models are also distinguished in another way: there are fewer than

three propagating degrees of freedom at first order in perturbations in the Maxwell

and scalar Lagrangian cases, while there are three in all others. This is closely tied to

the absence of perturbative instabilities; the ultimate cause of those instabilities can

be traced to the difficulty in making all of the degrees of freedom simultaneously well

behaved. The drop in number of degrees of freedom stems from the fact that A0 lacks

time derivatives in the Maxwell Lagrangian and that the Ai lack time derivatives in

the scalar Lagrangian. In other words, some of the vector components are themselves

Lagrange multipliers in these special cases.

Only two perturbative degrees of freedom—the spin-1 modes—propagate in the

Maxwell case (cf. (2.73)-(2.74) when β∗ = 0 = β4). The “mode” in (2.74) is a gauge

4Boundedness of the Hamiltonian was considered in [44].
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degree of freedom; at first order in perturbations the Lagrangian has a gaugelike sym-

metry under δAµ → δAµ + ∂µφ(x) where Āµ∂µφ = 0. As expected of a gauge degree

of freedom, the spin-0 mode has zero energy and does not propagate. Meanwhile, the

spin-1 perturbations propagate as well-behaved plane waves and have positive energy.

We note that the Dirac method for counting degrees of freedom in constrained dy-

namical systems implies that there are three degrees of freedom [41].5 The additional

degree of freedom, not apparent at the linear level, could conceivably cause an insta-

bility; this mode does not propagate because it is gaugelike at the linear level, but

there is no gauge symmetry in the full theory.

In the scalar case, there are no propagating spin-1 degrees of freedom. The spin-0

degree of freedom has a nontrivial dispersion relation but no energy density (cf. (2.73)-

(2.74), (2.86), and (2.89) when β1 = 0 = β4) at leading order in the perturbations.

Essentially, the fixed-norm constraint is incompatible with what would be a single

propagating scalar mode in this model; the theory is still dynamical, but perturbation

theory fails to capture its dynamical content.

Each of these models displays some idiosyncratic features, which we now consider

in turn.

2.6.1 Maxwell Action

The equation of motion for the Maxwell Lagrangian with a fixed-norm constraint is

∂µF
µν = −2λAν . (2.93)

Setting AµA
µ = ∓m2, the Lagrange multiplier is given by

λ = ± 1

2m2
Aν∂µF

µν . (2.94)

5For a discussion of constrained dynamical systems see [45].
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For timelike æther fields, the sign of λ is preserved along timelike trajectories since,

when the kinetic term takes the special Maxwell form, there is a conserved current

(in addition to energy-momentum density) due to the Bianchi identity6:

0 = ∂ν(∂µF
µν) = −2∂ν(λA

ν). (2.95)

In particular, the condition that λ = 0 is conserved along timelike Aν [12, 41]. In

the presence of interactions, this will continue to be true only if the coupling to

external sources takes the form of an interaction with a conserved current, AµJ
µ with

∂µJ
µ = 0.

If we take the timelike Maxwell theory coupled to a conserved current and restrict

to initial data satisfying λ = 0 at every point in space, the theory reduces precisely

to Maxwell electrodynamics—not only in the equation of motion, but also in the

energy-momentum tensor. We can therefore be confident that this theory, restricted

to this subset of initial data, is perfectly well behaved, simply because it is identical

to conventional electromagnetism in a nonlinear gauge [46, 42, 47].

In the case of a spacelike vector expectation value, there is an explicit obstruction

to finding smooth time evolution for generic initial data. In this case, the constraint

equations are

− A2
0 + AiAi = m2 and ∂i∂

iA0 − ∂0∂iA
i = −2λA0. (2.96)

Suppose spatially homogeneous initial conditions for the Ai are given. Without loss

of generality, we can align axes such that

Aµ(t0) = (A0(t0), 0, 0, A3(t0)), (2.97)

6If λ > 0 initially, then it must pass through λ = 0 to reach λ < 0—but λ = 0 is conserved along
timelike trajectories, so λ can at best stop at λ = 0.
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where −A2
0 + A2

3 = m2. If AiAi 6= m2, the equations of motion are

∂µF
µ
ν = 0. (2.98)

The ν = 3 equation reads

∂µF
µ

3 = −∂
2A3

∂t2
= 0, (2.99)

whose solutions are given by

A3(t) = A3(t0) + C(t− t0), (2.100)

where C is determined by initial conditions. A0 is determined by the fixed-norm

constraint A0 = ±
√
A2

3 −m2. If C 6= 0, A0 will eventually evolve to zero. Beyond

this point, A3 keeps decreasing, and the fixed-norm condition requires that A0 be

imaginary, which is unacceptable since Aµ is a real-valued vector field. Note that

this never happens in the timelike case, as there always exists some real A0 that

satisfies the constraint for any value of A3. The problem is that A3 evolves into the

ball A2
i < m2, which is catastrophic for the spacelike, but not the timelike, case. An

analogous problem arises even when the Lagrange multiplier constraint is replaced by

a smooth potential.

It is possible that this obstruction to a well-defined evolution will be regulated by

terms of higher order in the effective field theory. Using the fixed-norm constraint

and solving for A0, the derivative is

∂µA0 =
Ai√

AjAj −m2
∂µAi. (2.101)

As AjAj approaches m2, with finite derivatives of the spatial components, the deriva-

tive of the A0 component becomes unbounded. If higher-order terms in the effective

action have time derivatives of the component A0, these terms could become relevant
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to the vector field’s dynamical evolution, indicating that we have left the realm of

validity of the low-energy effective field theory we are considering.

We are left with the question of how to interpret the timelike Maxwell theory with

intial data for which λ 6= 0. If we restrict our attention to initial data for which λ < 0

everywhere, then the evolution of the Ai would be determined and the Hamiltonian

would be positive. We have

H =
1

2

∫
d3x

(
1

2
F 2
ij + (∂0Ai)

2 − (∂iA0)2

)
(2.102)

=
1

2

∫
d3x

(
1

2
F 2
ij + F0iF0i − 2(∂iA0)Fi0

)
(2.103)

=
1

2

∫
d3x

(
1

2
F 2
ij + F0iF0i + 2A0∂iFi0

)
(2.104)

=
1

2

∫
d3x

(
1

2
F 2
ij + F0iF0i − 4λA2

0

)
, (2.105)

which is manifestly positive when λ < 0. However, it is not clear why we should be

restricted to this form of initial data, nor whether even this restriction is enough to

ensure stability beyond perturbation theory.

The status of this model in both the spacelike and timelike cases remains unclear.

However, there are indications of further problems. For the spacelike case, Peloso

et. al. find a linear instability for perturbations with wave numbers on the order of

the Hubble parameter in an exponentially expanding cosmology [48, 14]. For the

timelike case, Seifert found a gravitational instability in the presence of a spherically

symmetric source [49].

2.6.2 Scalar Action

The equation of motion for the scalar Lagrangian with a fixed-norm constraint is

∂ν∂µA
µ = 2λAν . (2.106)
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Using the fixed-norm constraint (AµA
µ = ∓m2), we can solve for the Lagrange mul-

tiplier field,

λ = ∓ 1

2m2
Aν∂

ν∂µA
µ. (2.107)

In contrast with the Maxwell theory, in the scalar theory it is the timelike case for

which we can demonstrate obstacles to smooth evolution, while the spacelike case

is less clear. (The Hamiltonian is bounded below, but there are no perturbative

instabilities or known obstacles to smooth evolution.)

When the vector field is timelike, we have four constraint equations in the scalar

case,

A2
0 − AiAi = m2 and ∂i(∂µA

µ) = 2λAi. (2.108)

Suppose we give homogeneous initial conditions such that A0(t0) > m. Align axes

such that,

Aµ(t0) = (A0(t0), 0, 0, A3(t0)) , (2.109)

where A3(t0)2 = A0(t0)2 −m2. Note that, since A3(t0) 6= 0, we have that λ = 0 from

the ν = 3 equation of motion. The ν = 0 equation of motion therefore gives,

d2A0

dt2
= 0. (2.110)

We see that the timelike component of the vector field has the time evolution,

A0(t) = A0(t0) + C(t− t0). (2.111)

For generic homogeneous initial conditions, C 6= 0. In this case, A0 will not

have a smooth time evolution since A0 will saturate the fixed-norm constraint, and

beyond this point A0 will continue to decrease in magnitude. To satisfy the fixed-norm

constraint, the spatial components of the vector field Ai would need to be imaginary,
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which is unacceptable since Aµ is a real-valued vector field. This problem never

occurs for the spacelike case since there always exist real values of Ai that satisfy the

constraint for any A0.

Again, it is possible that this obstruction to a well-defined evolution will be regu-

lated by terms of higher order in the effective field theory. The time derivative of A3

is

∂µA3 =
A0√

A0A0 −m2
∂µA0. (2.112)

As A0A0 approaches m2, with finite derivatives of A0, the derivative of the spatial

component A3 becomes unbounded. If higher-order terms in the effective action have

time derivatives of the components Ai, these terms could become relevant to the

vector field’s dynamical evolution, indicating that we have left the realm of validity

of the low-energy effective field theory we are considering.

Whether or not a theory with a scalar kinetic term and fixed expectation value is

viable remains uncertain.

2.7 Conclusions

In this chapter, we addressed the issue of stability in theories in which Lorentz invari-

ance is spontaneously broken by a dynamical fixed-norm vector field with an action

S =

∫
d4x

(
−1

2
β1FµνF

µν − β∗(∂µAµ)2 − β4
AµAν

m2
(∂µAρ)(∂νA

ρ) + λ(AµAµ ±m2)

)
,

(2.113)

where λ is a Lagrange multiplier that strictly enforces the fixed-norm constraint. In

the spirit of effective field theory, we limited our attention to only kinetic terms that

are quadratic in derivatives, and took care to ensure that our discussion applies to

regimes in which an effective field theory expansion is valid.

We examined the boundedness of the Hamiltonian of the theory and showed that,
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for generic choices of kinetic term, the Hamiltonian is unbounded from below. Thus

for a generic kinetic term, we have shown that a constant fixed-norm background is

not the true vacuum of the theory. The only exception is the timelike sigma-model

Lagrangian (β1 = β∗, β4 = 0 and AµAµ = −m2), in which case the Hamiltonian is

positive-definite, ensuring stability. However, if the vector field instead acquires its

vacuum expectation value by minimizing a smooth potential, we demonstrated (as

was done previously in [30]) that the theory is plagued by the existence of a tachy-

onic ghost, and the Hamiltonian is unbounded from below. The timelike fixed-norm

sigma-model theory nevertheless serves as a viable starting point for phenomenolog-

ical investigations of Lorentz invariance; we explore some of this phenomenology in

the next chapter.

We next examined the dispersion relations and energies of first-order perturbations

about constant background configurations. We showed that, in addition to the sigma-

model case, there are only two other choices of kinetic term for which perturbations

have non-negative energies and do not grow exponentially in any frame: the Maxwell

(β∗ = β4 = 0) and scalar (β1 = β4 = 0) Lagrangians. In either case, the theory has

fewer than three propagating degrees of freedom at the linear level, as some of the

vector components in the action lack time derivatives and act as additional Lagrange

multipliers. A subset of the phase space for the Maxwell theory with a timelike æther

field is well defined and stable, but is identical to ordinary electromagnetism. For

the Maxwell theory with a spacelike æther field, or the scalar theory with a timelike

field, we can find explicit obstructions to smooth time evolution. It remains unclear

whether the timelike Maxwell theory or the spacelike scalar theory can exhibit true

violation of Lorentz invariance while remaining well behaved.
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2.A Appendix: Solutions to the Linearized Equa-

tions of Motion

We start by finding the solution to the equations of motion, linearized about a time-

like, fixed-norm background, Aµ. Then, showing fewer details, we find the solutions

to the equations of motion linearized about a spacelike background. Finally, we put

the solutions in both cases into the compact form of (2.139)-(2.141). Our results

agree with the solutions for Goldstone modes found in [43].

The equations of motion for a timelike (+) or spacelike (−) vector field are (2.16),

Qµ ≡
(
ηµν ±

AµAν
m2

)
(β1∂ρ∂

ρAν + (β∗ − β1)∂ν∂ρA
ρ + β4G

ν) = 0, (2.114)

where Gν is defined in (2.14) and AµQµ = 0 identically.

Timelike background. Consider perturbations about an arbitrary, constant (in

space and time) timelike background Aµ = Āµ that satisfies the constraint: ĀµĀ
µ =

−m2. Define perturbations by Aµ = Āµ + δAµ. Then, to first order in these pertur-

bations, ĀµQµ = 0 identically, and ηµνĀµδAν = 0 by the constraint. We can define a

basis set of four Lorentz 4-vectors nα, with components

n0
µ = Āµ/m , niµ ; i ∈ {1, 2, 3} , (2.115)

such that

ηµνnαµn
β
ν = ηαβ. (2.116)

The independent perturbations are δaα ≡ ηµνnαµδAν for α = 1, 2, 3. (δa0 is zero

at first order in perturbations due to the constraint.) It is then clear that there are

three independent equations of motion at first order in pertubations (assuming the
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constraint) for the three independent perturbations,

δQi ≡ niν
(
β1∂ρ∂

ρδAν + (β∗ − β1)∂ν∂ρδA
ρ + β4n

0
µn

0
ρ∂

µ∂ρδAν
)

= 0, (2.117)

where i ∈ {1, 2, 3}. We look for plane wave solutions for the δA:

δAµ =

∫
d4k qµ(k)eikνx

ν

. (2.118)

Since ηµνn0
µδAν = 0, at first order,

qµ = cjn
j
µ where j ∈ {1, 2, 3}. (2.119)

The equations of motion become the algebraic equations:

0 =
(
β1kρk

ρniνn
jν + (β∗ − β1)niνk

νnjµk
µ + β4n

0
µn

0
ρk

µkρniνn
jν
)
cj (2.120)

=
(
β1kρk

ρδij + (β∗ − β1)niνk
νnjµk

µ + β4n
0
µn

0
ρk

µkρδij
)
cj (2.121)

≡M ijcj. (2.122)

The three independent solutions to these equations are given by setting an eigen-

value of the matrix M to zero and setting ci to the corresponding eigenvector. Setting

an eigenvalue of M equal to zero gives a dispersion relation,

β1kρk
ρ + β4(n0

µk
µ)2 = 0, (2.123)

with two linearly independent eigenvectors,

(e2)i = ε2ijn
j
µk

µ ; (e3)i = ε3ijn
j
µk

µ. (2.124)
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The second eigenvalue of M gives the dispersion relation,

β∗kρk
ρ + (β∗ − β1 + β4)(n0

µk
µ)2 = 0, (2.125)

with corresponding eigenvector,

ci = niµk
µ. (2.126)

Spacelike background. The first-order linearized equations of motion about a

spacelike background are

δQa ≡ naν
(
β1∂ρ∂

ρδAν + (β∗ − β1)∂ν∂ρδA
ρ + β4n

3
µn

3
ρ∂

µ∂ρδAν
)

= 0 (2.127)

where a ∈ {0, 1, 2} and where, similarly to the timelike case, we have defined the set

of four Lorentz 4-vectors, nαµ, to be

n3
µ = Āµ/m and naµ; a ∈ {0, 1, 2} (2.128)

such that

ηµνnαµn
β
ν = ηαβ. (2.129)

The independent perturbations are δaα ≡ ηµνnαµδAν for α = 0, 1, 2. (δa3 is zero at

first order in perturbations due to the constraint.)

Again we look for plane wave solutions of the form in (2.118). But now, since

ηµνn3
µδAν = 0, at first order,

qµ = can
a
µ where a ∈ {0, 1, 2}. (2.130)
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The equations of motion become the algebraic equations:

=
(
β1kρk

ρnaνn
bν + (β∗ − β1)naνk

νnbµk
µ + β4n

3
µn

3
ρk

µkρnaνn
bν
)
cb (2.131)

=
(
β1kρk

ρηab + (β∗ − β1)naνk
νnbµk

µ + β4n
3
µn

3
ρk

µkρηab
)
cb (2.132)

≡Mabcb a, b ∈ {0, 1, 2}. (2.133)

Two independent solutions correspond to the dispersion relation (a ∈ {0, 1, 2})

β1kρk
ρ + β4(n3

µk
µ)2 = 0 , (2.134)

with corresponding eigenmodes

(e1)a = εa1b3n
b
µk

µ ; (e2)a = εab23n
b
µk

µ. (2.135)

The third solution corresponds to the dispersion relation

β∗kρk
ρ − (β∗ − β1 − β4)(n3

µk
µ)2 = 0 , (2.136)

with corresponding eigenmode

ca = ηabn
b
µk

µ. (2.137)

General expression. We can express the solutions in the timelike and space-

like cases in a compact form by using the orthonormality of the nαµ, (2.116), along

with (2.115), (2.128), and the fact that7

εαβρσn
α
µn

β
ν = εµναβn

α
ρn

β
σ. (2.138)

7This follows from the invariance of the Levi-Civita tensor,

εαβγδn
α
µn

β
νn

γ
ρn

δ
σ = εµνρσ

plus orthonormality, (2.116).
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Then plugging (2.119) and (2.130) into (2.118) yields the solutions

δAµ =

∫
d4k qµ(k)eikνx

ν

, (2.139)

where either

qµ(k) = iανkρ
Āσ

m
εµνρσ and β1kρk

ρ + β4

(
Āµk

µ

m

)2

= 0 and ανĀν = 0, (2.140)

where αν are real-valued constants, or

qµ = iα

(
ηµν ±

ĀµĀν
m2

)
kν and β∗kρk

ρ±(β∗−β1±β4)

(
Āµk

µ

m

)2

= 0, (2.141)

where α is a real-valued constant. The reality of the α’s follows from the condition,

qµ(k) = q∗µ(−k), that holds if and only if δAµ in (2.118) is real. In (2.141), the

“+” sign corresponds to the timelike background and the “−” sign to a spacelike

background.
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Chapter 3

Sigma-Model Æther

Theories of low-energy Lorentz violation by a fixed-norm “æther” vector field with

two-derivative kinetic terms have a globally bounded Hamiltonian and are perturba-

tively stable only if the vector is timelike and the kinetic term in the action takes

the form of a sigma model. Here we investigate the phenomenological properties

of this theory. We first consider the propagation of modes in the presence of grav-

ity, and show that there is a unique choice of curvature coupling that leads to a

theory without superluminal modes. Experimental constraints on this theory come

from a number of sources, and we examine bounds in a two–dimensional parameter

space. We then consider the cosmological evolution of the æther, arguing that the

vector will naturally evolve to be orthogonal to constant-density hypersurfaces in a

Friedmann-Robertson-Walker cosmology. Finally, we examine cosmological evolution

in the presence of an extra compact dimension of space, concluding that a vector can

maintain a constant projection along the extra dimension in an expanding universe

only when the expansion is exponential.

The contents of this chapter were written in collaboration with Sean Carroll, Tim

Dulaney, and Heywood Tam and have been published in [2].
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3.1 Introduction

Models of fixed-norm vector fields, sometimes called “æther” theories, serve a useful

purpose as a phenomenological framework in which to investigate violations of Lorentz

invariance at low energies [20, 21, 12, 22, 23, 24, 25]. For a recent review, see [13]. In

the previous chapter (and in [1]) we argue that almost all such models are plagued

by instabilities. For related work on stability in æther theories, see [29, 39, 44, 30,

27, 41, 48, 28].

There is one version of the æther theory that is stable under small perturbations

and in which the Hamiltonian is globally bounded when only two-derivative terms

are included in the action. This model is defined by a kinetic Lagrange density of the

form

Lkinetic
σ = −1

2
(∇µAν)(∇µAν) , (3.1)

where Aµ is a dynamical timelike four-vector æther field. (The spacelike version has

an unbounded Hamiltonian, and is unstable.) We refer to the theory defined by this

action as “sigma-model æther,” due to its resemblance to a theory of scalar fields

propagating on a fixed manifold with an internal metric, familiar from studies of

spontaneous symmetry breaking. The æther theory is not identical to such a sigma

model—in particular in curved space where covariant derivatives act on the vector—

but the nomenclature is convenient.

Even though this theory is stable, it has an important drawback. It is conventional

in æther models to give the vector field an expectation value by means of a Lagrange

multiplier, which enforces the fixed-norm constraint

AµA
µ = −m2 . (3.2)

We take m2 to be positive and use a metric signature (−+ ++), so that this defines
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a timelike vector field. Despite the convenience of this formulation, it seems likely

that a more complete version of the theory would arise as a limit of a theory in

which the expectation value is fixed by minimizing a smooth potential of the form

V (Aµ) = ξ(AµA
µ +m2)2. As we showed in [1] , any such theory would be plagued by

ghosts and tachyons. As far as we can tell, therefore, the sigma-model æther theory

cannot be derived from models with a smooth potential.

Nevertheless, as it is the only example of a Lorentz-violating æther theory that

we are sure is globally well behaved, examining the dynamics and experimental con-

straints on this model is worthwhile. We undertake such an investigation in this

chapter.

First we examine the degrees of freedom in this theory, taking into account the

mixing with the gravitational field. There are three different massless modes, of spins

0, 1, and 2 in the æther rest frame.1 Demanding that none of the modes propagate

faster than light fixes a unique value for the coupling of the vector field to the Ricci

tensor. We use experimental constraints on the preferred frame parameters α1,2 in

the Parameterized Post-Newtonian (PPN) expansion to limit the magnitude of the

vacuum expectation value, m. The spin-2 mode can propagate subluminally for some

values of the vector field/Ricci tensor coupling; in such cases, very tight restrictions

on the vacuum expectation value, m, due to limits from vacuum Čerenkov radiation

of gravitons come into play.

Finally, we consider the cosmological evolution of the vector field in two different

backgrounds. We study the evolution of the timelike vector field in a flat Friedmann-

Robertson-Walker (FRW) universe and find that the vector field tends to align to be

orthogonal to constant density hypersurfaces. In a background consisting of a timelike

dimension, three expanding spatial dimensions, and one compact (nonexpanding)

1The lack of rotational symmetry in frames other than the æther rest frame make classification of
modes by spin in such frames impossible. But the æther rest frame has rotational symmetry, which
allows for the spin classification with respect to this frame.
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extra spatial dimension, we find that the vector field can evolve to have a non-zero

projection in the direction of the compact extra dimension if the large dimensions are

de Sitterlike. We take this as evidence that a timelike vector field with the Lagrangian

that satisfies the aforementioned theoretical and experimental constraints would not

lead to any significant departure from isotropy.

3.2 Excitations in the Presence of Gravity

We would like to understand the experimental constraints on, and cosmological evo-

lution of, the sigma-model æther theory. For both of these questions, it is important

to consider the effects of gravity. But whereas the flat-space model with a kinetic

Lagrangian of the form (3.1) is unique, in curved space there is the possibility of an

explicit coupling to curvature. The full action we consider is

S =

∫
d4x
√
−g
[

1

16πG
R− 1

2
(∇µAν)(∇µAν) +

α

2
RµνA

µAν +
λ

2
(AµA

µ +m2)

]
.

(3.3)

Here, λ is the Lagrange multiplier that enforces the fixed-norm constraint (3.2), α is

a dimensionless coupling, Rµν is the Ricci tensor and R is the curvature scalar. Note

that, given the fixed-norm constraint, there are no other scalar operators that could

be formed solely from Aµ and the Riemann tensor Rρ
σµν . By integrating by parts

and using RµνA
µAν = Aν [∇µ,∇ν ]A

µ, this curvature coupling could equivalently be

written purely in terms of covariant derivatives of Aµ; the form (3.3) has the advantage

of emphasizing that the new term has no effects in flat spacetime.

In [1] we showed that the sigma-model æther theory was stable in the presence of

small perturbations in flat spacetime; the possibility of mixing with gravitons implies

that we should check once more in curved spacetime. The equations of motion for
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the vector field are

−∇µ∇µAν = λAν + αRµνAµ, (3.4)

along with the fixed norm constraint from the equation of motion for λ. Assuming

the fixed norm constraint, the equations of motion can be written in the form

(
gσν +

1

m2
AσAν

)
(∇ρ∇ρAσ + αRρσA

ρ) = 0. (3.5)

The tensor (gσν + AρAν/m
2) acts to take what would be the equation of motion in

the absence of the constraint, and project it into the hyperplane orthogonal to Aµ.

The Einstein-æther system has a total of five degrees of freedom, all of which

propagate as massless fields: one spin-2 graviton, one spin-1 excitation and one spin-0

excitation. Each of these dispersion relations can be written (in the short-wavelength

limit) in frame-invariant notation as

kµk
µ =

(
1− v2

v2

)(
Āµk

µ

m

)2

, (3.6)

where v is the phase velocity in the æther rest frame. The squared phase velocities

of the gravity-æther modes are [24]

v2
2 =

1

1− 8πGm2(1 + α)
≈ 1 + 8πGm2(1 + α) (spin-2) (3.7)

v2
1 =

2− 8πGm2(1 + α)(1− α)

2 (1− 8πGm2(1 + α))
≈ 1 + 4πGm2(1 + α)2 (spin-1) (3.8)

v2
0 =

2− 8πGm2

(1− 8πGm2(1 + α)) (2 + 8πGm2(1− 2α))
≈ 1 + 16πGm2α (spin-0) (3.9)

where G is the gravitational constant appearing in Einstein’s action. The approximate

equalities hold assuming 8πGm2 � 1.2

2The relationship between the parameters in Eq. (3.3) (α, m2) and those in Ref. [24] (c1, c2, c3, c4)



79

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-3

-2

-1

0

1

2

3

Α

Hv2
-

1L�
H8Π

G
m

2
L

Figure 3.1: Æther rest frame mode phase velocities squared, v2, minus the speed of
light in units of 8πGm2 as a function of α. The solid (red) line corresponds to spin-0,
the small dashing (green) to spin-1, and the large dashing (blue) to spin-2. Only for
α = −1 do none of the modes propagate faster than light (v2 − 1 > 0).

These squared mode phase velocities minus the squared speed of light are plotted

in Fig. 3.1 as a function of α. It is clear that the only value of α for which none of

the modes propagate superluminally (v2 > 1) is

α = −1 . (3.11)

We therefore have a unique version of a Lorentz-violating æther theory for which the

Hamiltonian is bounded below (in flat space) and that is free of superluminal modes

when coupled to gravity: the sigma-model kinetic term with an expectation value

fixed by a Lagrange-multiplier constraint and a coupling to curvature of the form in

(3.3) with α = −1. In what follows, we will generally allow α to remain as a free

parameter when considering experimental limits, keeping in mind that models with

is:
c1 = 8πGm2, −c2 = c3 = α8πGm2, c4 = 0. (3.10)
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α 6= −1 are plagued by superluminal modes. We will find that the experimental limits

on m are actually weakest when α = −1.

Before moving on, however, we should note that the existence of superluminal

phase velocities does not constitute prima facie evidence that the theory is ill behaved.

There are two reasons for suspecting that superluminal propagation is bad. First,

in [1], we showed that such models were associated with perturbative instabilities:

there is always a frame in which small perturbations grow exponentially with time.

Second, acausal propagation around a closed loop in spacetime could potentially

occur if the background æther field were not constant through space [23, 30]. But in

the presence of gravity, these arguments are not decisive. There now exists a scale

beyond which we expect the theory to break down: namely, length scales on the order

of M−1
pl . Perhaps there is some length scale involved in boosting to a frame where the

instability is apparent (or, equivalently, in approaching a trajectory that is a closed

timelike curve) that is order M−1
pl .

Again, in a background flat spacetime with a background timelike æther field

Āµ = constant, the dispersion relations have the generic form

(v−2 − 1)(tµkµ)2 = kµk
µ, (3.12)

where tµ = Āµ/m characterizes the 4-velocity of the preferred rest frame. The velocity

v2 is given by Eqs. (3.7)-(3.9). In a boosted frame, where tµ = (− cosh η, sinh η n̂),

the frequency is given by

ω

|~k|
=
−(1− v−2) sinh η cosh η(k̂ · n̂)±

√
1− (1− v−2)(cosh2 η − sinh2 η(n̂ · k̂)2)

1− (1− v−2) cosh2 η
.

(3.13)
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Let us parameterize the boost in the standard way as

cosh2 η =
1

1− β2
, 0 ≤ β2 < 1. (3.14)

Then

ω

|~k|
=
−(1− v−2)β(k̂ · n̂)±

√
1− β2

√
v−2 − β2 + β2(1− v−2)(n̂ · k̂)2

v−2 − β2
. (3.15)

There is a pole in the frequency at β2 = v−2. The pole is physical if v > 1 and,

(in the limit as n̂ · k̂ → 0) as β passes through the pole (β2 → β2 > v−2), the

frequency acquires a nonzero imaginary part, which corresponds to growing mode

amplitudes. (The frequency becomes imaginary at some β2 < 1 as long as n̂ · k̂ 6= 1.)

The timescale on which the mode grows is set by 1/Im(ω). In frames with a boost

factor greater than the inverse rest-frame mode speed, β > v−1, the timescale on

which mode amplitudes grow is maximal for modes with wave vectors perpendicular

to the boost direction (n̂ · k̂ = 0) and is given by

TMAX(β) =
1

|Im(ω)|
= |~k|−1

√
β2 − v−2√
1− β2

when v2 > 1. (3.16)

We generically expect the linearized gravity analysis that led to the propagation

speeds in Eqs. (3.6)-(3.9) to be valid for wave vectors that are much greater in magni-

tude than the energy scale set by other energy density in the space-time—generally,

the Hubble scale, H. Thus the analysis makes sense for |~k|−1 � H−1 and (as long

as 1 − β2 is not infinitesimal) there will be instabilities on timescales less than the

inverse Hubble scale and (unless β2 − v−2 is infinitesimal) greater than M−1
Pl .

Thus, not only could superluminal propagation speeds lead to closed timelike

curves and violations of causality, but the existence of instabilities on an unremarkable

range of less-than-Hubble-radius timescales in boosted frames indicates that such
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superluminal propagation speeds lead to instabilities. If v > 1, it appears as if

instabilities can be accessed without crossing some scale threshold beyond which

we’d expect the model to break down.

3.3 Experimental Constraints

We now apply existing experimental limits to the sigma-model æther theory, keeping

for the moment α as well as m2 as free parameters. Direct coupling of the æther

field to Standard Model fields fits into the framework of the “Lorentz-violating exten-

sion” of the Standard Model considered in Ref. [21]. Such couplings are very tightly

constrained by various experiments (for a discussion of experimental constraints, see

Ref. [31]). The relevant limit from gravitational Čerenkov radiation in [30] translates

to3

−8πGm2(1 + α) < 1× 10−15. (3.17)

Limits on PPN parameters give the strongest constraints on α and m2 when

α ≈ −1 (since the constraint in Eq. (3.17) is automatically satisfied). The preferred

frame parameters must satisfy |α1| < 10−4 and |α2| < 10−7 [32]. We have the limits

[13]

|α1| ≈ |4α2(8πGNm
2)| < 10−4 and |α2| ≈ |(α + 1)(8πGNm

2)| < 10−7, (3.18)

where GN is the gravitational constant as measured in our solar system or table-top

experiments. This gravitational constant is related to the parameter in the action G

3Ref. [30] uses the same parameters as in [24, 13], thus the translation between our parameters
and the parameters used in [24, 13, 30] is as stated in (3.10).
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Figure 3.2: Parameter space allowed (shaded region) by constraints from Čerenkov
radiation and PPN. The strongest constraint in the α < −1 region is from Eq. (3.17),
and for most of the α > −1 region the strongest constraint is from the second in-
equality in Eq. (3.18). The plot on the right is a blowup of the small range of α for
which the first constraint in Eq. (3.18) is strongest—when α = −1 to within a couple
of parts in one hundred.

by [23]

GN =
G

1− 4πGm2
. (3.19)

If we require that all modes have phase speeds v that satisfy v2 ≤ 1, then we must

have α = −1 and

8πGNm
2 < 10−4 (α = −1). (3.20)

All relevant constraints (allowing modes to have larger than unity phase velocities)

are summarized in Fig. 3.2. Constraints from Big Bang Nucleosynthesis [23] are

significantly weaker than the PPN and Čerenkov constraint above.

3.4 Cosmological Evolution

We now turn to the evolution of the sigma-model æther field in a cosmological back-

ground. It is usually assumed in the literature that the æther preferred frame coin-

cides with the cosmological rest frame—i.e., that in Robertson-Walker coordinates,

a timelike æther field has zero spatial components, or a spacelike æther field has zero

time component. Under this assumption, there has been some analysis of cosmolog-
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ical evolution in the presence of æther fields [6, 27, 50, 51]. Cosmological alignment

in a de Sitter background was considered in [52]. Evolution of vector field perturba-

tions in a more general context, including the effect on primordial power spectra, was

considered in [25, 53].

Here, we relax the aforementioned assumption. We determine the dynamical

evolution of the æther alignment with respect to constant density hypersurfaces of

flat FRW backgrounds, assuming that the æther field has a negligible effect on the

form of the background geometry. We will show that a homogeneous timelike vector

field tends to align in the presence of a homogeneous cosmological fluid such that its

rest frame coincides with the rest frame of the cosmological fluid.

Take the background spacetime to be that of a flat FRW cosmology,

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2) . (3.21)

We take the equation state of the cosmological fluid to be pfluid = wρfluid. The

Friedmann equation then implies

a(t) = t2/3(1+w) (3.22)

for w 6= −1, and

a(t) = eHt , H = constant (3.23)

for w = −1. We assume that m2/M2
P is small, so that the backreaction of the vector

field on the FRW geometry will be small, and the evolution of the vector field will be

well approximated by its evolution in the FRW background.

Suppose the vector field is homogeneous. This is a reasonable assumption given

that the background spacetime is homogeneous and therefore should only affect the

time evolution of the vector field. We may use the rotational invariance of the FRW
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background to choose coordinates such that the x-axis is aligned with the spatial

part of the vector field. Then, without loss of generality, A0 = m cosh(φ(t)) and

Ax = ma(t) sinh(φ(t)). In this case the equations of motion reduce to,

φ′′(t) + 3H(t)φ′(t) +
[
H2(t) + αH ′(t)

]
sinh(2φ(t)) = 0, (3.24)

where H(t) = a′(t)/a(t). Expanding to first order in the angle φ, for w 6= −1 we have

φ′′ +

[
2

(1 + w)t

]
φ′ +

[
8− 12α(1 + w)

9(1 + w)2t2

]
φ = 0. (3.25)

It is a simple exercise to show that φ behaves as a damped oscillator for all−1 < w < 1

and α < 2
3(1+w)

. For the case of a constant Hubble parameter (w = −1),

φ(t) = Ae−Ht +Be−2Ht. (3.26)

One can see even for large φ(t) that |φ(t)| generically decreases when −1 < w < 1

and α < 2
3(1+w)

because, since sinh(φ) = − sinh(−φ), the essential features of the full

equation mirror those of the linearized equation.

We conclude that a timelike vector field will generically tend to align to be purely

timelike in the rest frame of the cosmological fluid, thereby restoring isotropy of the

cosmological background. We do not examine the case of a spacelike æther field, since

that is perturbatively unstable.

3.5 Extra Dimensions

Consider now the evolution of the vector field in a background spacetime with metric

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2) + dr2. (3.27)
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This metric is the local distance measure for a spacetime in which the infinite spatial

dimensions expand as a usual flat FRW metric, for general equation of state parameter

w as discussed in the previous section, and a compact extra dimension with coordinate

r does not expand. A scenario in which a spacelike æther is aligned completely along

the compact fifth extra dimension was considered in [54].

The equations of motion are once again

(gσν + AσAν/m2)(∇ρ∇ρAσ + αRρσA
ρ) = 0 (3.28)

and AµA
µ = −m2. Consider homogeneous configurations where, without loss of

generality,

A0 = m coshφ(t), Ax = a(t)m sinhφ(t) cos θ(t), Ay = Az = 0,

and Ar = m sinhφ(t) sin θ(t). (3.29)

The ν = 0 equation of motion (Eq. (3.28)) reads

[
1

2
(5− cos 2θ)(H2(1 + α) + αH ′)− 2αH2 cos2 θ − (θ′)2

]
sinh 2φ+ 6Hφ′ + 2φ′′ = 0.

(3.30)

When θ′2 � H2, we can treat θ as being essentially constant and then the above

equation determines the evolution of φ. Numerical simulations indicate that φ decays

to zero, whatever the value of θ, if −1 < α < 2
3(1+w)

. One can see the decay of φ

(given the bounds on α) explicitly by expanding about φ = 0 and θ = constant when

φ is small.

If H is constant (i.e. the non-compact dimensions are de Sitterlike ) and the vector

field is aligned entirely along the timelike dimension and the compact dimension (so
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θ = π/2), then the equation of motion for φ(t) is

φ′′(t) + 3Hφ′(t) +
3

2
(1 + α)H2 sinh(2φ(t)) = 0, (3.31)

the solution to which is

φ(t) = A+e
−α+Ht/2 + A−e

−α−Ht/2, (3.32)

where

α± = 3

(
1±

√
1− 4

3
(1 + α)

)
, (3.33)

when |φ(t)| � 1. If 1 + α > 0 then φ decays to zero. If α = −1, φ decays to a

(generically nonzero) constant, and φ can grow with time if α < −1. It is interesting

to see that, for the case where no perturbative modes propagate superluminally—the

case where α = −1—the fixed-norm vector field can evolve during a de Sitter expan-

sion phase so that it has a nonzero component in the compact fifth dimension while

otherwise aligning so that isotropy is restored in the rest frame of the cosmological

fluid. However, when the Universe enters a phase of expansion where a(t) = t2/3(1+w)

and w is strictly greater than −1 (and less than 1), then the component of the vector

field in the fifth dimension will decay away.

3.6 Conclusions

We investigated the dynamics of and limits on parameters in a theory with a fixed-

norm timelike vector field whose kinetic term takes the form of a sigma model. We

argued in the previous chapter that such sigma-model theories are the only æther

models with two-derivative kinetic terms and a fixed-norm vector field for which the

Hamiltonian is bounded below.
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In the presence of gravity, the action for sigma-model æther is

SA =

∫
d4x
√
−g
[

1

16πG
R− 1

2
(∇µAν)(∇µAν) +

α

2
RµνA

µAν +
λ

2
(AµA

µ +m2)

]
.

(3.34)

We showed that the five massless degrees of freedom in the linearized theory will

not propagate faster than light only if α = −1, and we argued that faster-than-

light degrees of freedom generically lead to instabilities on less-than-Hubble-length

timescales. In the special case α = −1, the vacuum expectation value m2 must be

less than about 10−4M2
p , where Mp is the Planck mass, in order to comply with

limits on the PPN preferred frame parameter α2. Relaxing the α = −1 assumption,

we summarized the strongest limits on the parameters {α,m} (from gravitational

Čerenkov radiation and the PPN preferred frame parameters) in Fig. 3.2.

We also showed that the æther field tends to dynamically align such that it is

orthogonal to constant density hypersurfaces for the theoretically and experimentally

relevant portion of the parameter space. The dynamics forces the rest frame of the

æther and that of the perfect fluid dominating the cosmological evolution to coincide.

Finally, we showed that the dynamics allows for the possibility of a non-zero spatial

component in a non-expanding fifth dimension during a de Sitter era. Even a spatial

component in a non-expanding fifth dimension will decay away during non-de Sitter

eras, e.g., in a matter- or radiation-dominated universe. We take this as evidence that

æther fields with well-behaved semi-classical dynamics will not lead to any significant

departure from isotropy.
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Chapter 4

Primordial Perturbations from
Anisotropic Inflation

We examine cosmological perturbations in a dynamical theory of inflation in which

an abelian gauge field couples directly to the inflaton, breaking conformal invariance.

When the coupling between the gauge field and the inflaton takes a specific form, in-

flation becomes anisotropic and anisotropy can persist throughout inflation, avoiding

Wald’s no-hair theorem. After discussing scenarios in which anisotropy can persist

during inflation, we calculate the dominant effects of a small persistent anisotropy

on the primordial gravitational wave and curvature perturbation power spectra us-

ing the “in-in” formalism of perturbation theory. We find that the primordial power

spectra of cosmological perturbations gain significant direction dependence and that

the fractional direction dependence of the tensor power spectrum is suppressed in

comparison to that of the scalar power spectrum.

The contents of this chapter were written in collaboration with Tim Dulaney and

have been published in [3].

4.1 Introduction

Inflation gives a compelling explanation of the flatness, homogeneity, and isotropy

of our Universe on large scales. It also generically predicts a nearly scale-invariant
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spectrum of density perturbations, which is consistent with our observations of the

cosmic microwave background (CMB) and of structure formation. Because of these

successes, the inflationary paradigm has dominated very early Universe cosmology in

recent years.

In this chapter we focus on the prediction of isotropy from inflation. The no-hair

theorem of inflation states, roughly speaking, that an initially expanding, homo-

geneous universe with positive cosmological constant, Λ, and matter satisfying the

dominant energy condition will become indistinguishable from a universe with de Sit-

ter geometry on a time scale of
√

3/Λ [10]. Because of the no-hair theorem, isotropy

is generally taken as a prediction of inflation.

But there could be ways around the no-hair theorem. For example, models with

spacelike vector fields that get vacuum expectation values can lead to a preferred

direction during inflation, evading the no-hair theorem because the vector field stress-

energy tensor does not satisfy the dominant (or even the weak) energy condition [6].

However, such “æther” models have been shown to be unstable [27, 14, 1].

Recently, another model has been shown to support a persistent anisotropy during

inflation [7]. In this model, there is a nonminimal coupling between a U(1) gauge field

and the inflaton, essentially leading to a time-dependent U(1) charge during inflation:

S =

∫
d4x
√
−g
[
R

2κ2
− 1

2
(∂µφ)(∂µφ)− V (φ)− f 2(φ)

4
FµνF

µν

]
. (4.1)

Here, the U(1) field strength, Fµν , may or may not be the electromagnetic field

strength. When the coupling, f(φ), between the inflaton, φ, and the U(1) field

takes a particular form and there exists a nonzero homogeneous U(1) seed field, an

anisotropy persists throughout inflation even though the space-time is undergoing

nearly exponential expansion. More specifically, the “electric” field contributes non-

negligible extra negative pressure in the direction in which it points, which causes
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space-time to expand more slowly in that direction.

The model avoids the no-hair theorem by having (1) expansion that is not purely

exponential and (2) a coupling between the inflaton and other matter. The mechanism

for evasion of the no-hair theorem shows up in our results in the following ways: (A)

all modifications to power spectra associated with the anisotropy go to zero when

slow-roll parameters vanish and (B) isotropic dynamics is quickly restored if the

inflaton-dependent coupling that breaks conformal invariance goes to a constant (as

is the case at the end of inflation, when the inflaton field relaxes to the minimum of

its potential).

All of the standard energy conditions are satisfied in this model, which means

it should not be plagued by stability issues as in æther models. The model does,

however, suffer from the standard fine-tuning problems of single field inflation. Nev-

ertheless, to our knowledge this model could be the first consistent model of inflation

that evades the no-hair theorem and includes anisotropy at a significant level. It

is therefore interesting to investigate whether the model is truly consistent and to

investigate its potential astrophysical signatures.

To that end, in this chapter we consider gauge-invariant cosmological perturba-

tions in this anisotropic inflation model. We consider and discuss a model generalized

from that of [7], and extend their formula for the relation between the anisotropic

expansion parameter and the slow-roll parameter to include arbitrary forms of the

inflaton potential. We also present the dominant effect of the anisotropy on the power

spectra of tensor, vector and scalar perturbation correlations at the end of inflation.

Our main conclusions are the following:

• The power spectra for gravitational wave and curvature perturbations can de-

velop dramatic direction dependence for very small values of the anisotropy

parameter1 if the parameter is nearly constant for a large period of inflation.

1The anisotropy parameter is basically the fractional difference between the rate of expansion in
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• The main cause of direction-dependence of the power spectra is a coupling

between the U(1) vector degrees of freedom to both tensor and scalar degrees of

freedom through the anisotropic background. These interactions significantly

affect the power spectra of modes after horizon crossing.

• The ratio of the fractional direction-dependent change in the gravitational wave

power spectrum over that of the curvature perturbation power spectrum is

nearly equal to the tensor-to-scalar ratio. In particular, the curvature per-

turbation power spectrum has much stronger direction dependence than the

gravitational wave power spectrum.

• For a given scale, the tensor and scalar power in modes with wave vector per-

pendicular to the preferred direction is greater than the power in modes with

wave vector parallel to the preferred direction.2

• There is no indication that the anisotropic inflation model is unstable. (E.g.,

there are no ghosts.) This should be unsurprising since the stress-energy tensor

for matter in the model satisfies the dominant energy condition.

Many have studied inflationary scenarios with actions similar to (4.1), interpreting

Fµν as the standard model electromagnetic field strength, in the context of explaining

the existence of large-scale magnetic fields in the Universe. Initially Parker [55] and

then Turner and Widrow [56] showed that magnetic fields produced in an inflation-

ary Universe are “uninterestingly small” (i.e., too small to possibly account for the

observed large-scale magnetic fields in the Universe) unless the conformal invariance

of the electromagnetic field is broken. The generation of seed magnetic fields starting

from the action in (4.1) and a particular f(φ) was considered in [57] and more recently

in [58]. Generic predictions for magnetic fields in a large class of models, of which

the preferred direction and that of a perpendicular direction.
2I.e., the parameter g∗ (see equation (4.39)), as defined in [6], that characterizes the direction-

dependence of the power spectrum due to a preferred direction is negative.



93

the model we consider here is an example, were presented by Bamba, et. al. [59]; the

particular realization of the model we consider in this chapter is what these authors

refer to as the “weak coupling case”. Magnetogenesis, including the backreaction due

to electromagnetic fields, in the inflationary scenario we consider here was considered

in [60]. For a review of the generation of magnetic fields during inflation in a more

general context see, for example, [61].

More recently, the effect of vector fields during inflation has been studied in the

context of their effects on the curvature perturbation power spectrum. A “vector

curvaton” scenario, in which a vector field with time-varying mass and Maxwell-

type kinetic coupling term contributes to the curvature power spectrum, was found

in [62] to allow significant anisotropic contributions to the curvature spectrum and

bispectrum if the vector field remains light until the end of inflation. A similar

massless vector curvaton scenario was considered in [63] and again the possibility

of significant anisotropic contributions was found.3 The anisotropic contribution of

vector field perturbations to primordial curvature perturbation correlations in various

inflationary scenarios was also considered in [25, 51, 64, 65, 66, 67]. Perturbations of

what correspond to our cross polarization gravitational wave degree of freedom were

studied in [68], but in a scenario in which a second scalar field, uncoupled to the U(1)

field and the scalar field that couples to the U(1) field, causes a transition back to

isotropic expansion before the end of inflation.

This chapter is organized as follows. In §4.2, we introduce the model. In §4.3,

we discuss our philosophy and methods for calculating and analyzing primordial per-

turbation spectra. Finally, in §4.4 and §4.5 we calculate the primordial perturbation

spectra and briefly discuss stability. We summarize our conclusions in §4.6.

3Both studies employed the δN formalism in calculating the curvature perturbation power spec-
tra.
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4.2 Model and Background Solution

We consider a space-time governed by the following action [7]:

S =

∫
d4x
√
−g
[
R

2κ2
− 1

2
(∂µφ)(∂µφ)− V (φ)− f 2(φ)

4
FµνF

µν

]
, (4.2)

where g = det(gµν), R is the Ricci scalar, φ is the inflaton, and Fµν = ∂µAν − ∂νAµ

is a U(1) gauge field strength. For convenience, we’ll refer to the U(1) field as the

“electromagnetic” (EM) field, even though it need not be the standard model EM

field. Here we’ve defined

κ2 ≡ 8πG = 1/M2
Planck. (4.3)

We assume that the background is homogeneous, and that there is a nonzero

homogeneous electric field.4 We orient coordinates such that Fij = Fηy = Fηz = 0

and Fηx6=0. One could just as easily have chosen to consider a homogeneous magnetic

field. This choice does not change the form of the background stress tensor, and we

expect the results of this chapter to apply in the magnetic field case as well. However,

allowing for both electric and magnetic fields of arbitrary relative alignment is beyond

the scope of this chapter.

The background space-time is Bianchi I and the metric can be written in the

following form by appropriate choice of coordinate axes:5

ds2 = a(η)2
(
−dη2 + γij(η)dxidxj

)
, (4.4)

4At least we assume that the “electric” field was aligned in our causal patch. We will not consider
the effects of regions with differing directions of alignment of the electric field.

5The form is chosen so that the spatial metric has unit determinant (and therefore scaling or
translating β(η) does not affect the spatial volume element).
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where6

γxx = e−4β(η), γyy = γzz = e2β(η) and γij = 0 for all i 6= j. (4.5)

Since g is independent of β, the scale factor, a, completely characterizes the space-

time volume. For convenience we define α to be the logarithm of the scale factor,

so

a = eα. (4.6)

In parametrizing the metric, we’ve used the conventions of [69]. The solution to the

background electromagnetic field equation of motion is then [7],

Fηx = pA
e−4β(η)

f 2(φ̄)
, (4.7)

where pA is an integration constant of mass dimension two and a prime indicates a

derivative with respect to conformal time η. In these coordinates, Einstein’s equations

take the form [7]

α′2 = β′2 +
κ2

3

[
φ′2

2
+ e2αV (φ̄) +

p2
Ae
−2α−4β

2f 2(φ̄)

]
, (4.8)

α′′ = −2α′2 + κ2e2αV (φ̄) +
p2
Aκ

2e−2α−4β

6f 2(φ̄)
, (4.9)

β′′ = −2α′β′ +
p2
Aκ

2e−2α−4β

3f 2(φ̄)
. (4.10)

Given Einstein’s equations above, the equation of motion for φ is redundant.7

It was shown that inflation can occur for suitable initial conditions such that

the Universe is initially expanding, and that the energy density of the vector field

will remain almost constant with respect to the inflaton energy density if f(φ) ∝
6An equivalent ansatz would have been: ds2 = −dt2 + a‖(t)2dx2 + a⊥(t)2(dy2 + dz2).
7Recall that Einstein’s equations and the matter field equations are related through the conser-

vation equation, ∇µTµν = 0, where Tµν is the matter stress-energy tensor.
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e−2α [7]. (Recall that if there’s no inflaton-electromagnetic coupling, the ratio of

electromagnetic energy density to inflaton energy density decays as a−4.) Let us

briefly show how this can occur.

If expansion is nearly exponential (in cosmic time), then the “slow-roll” parame-

ters,

ε ≡ −∂tH
H2

=
α′2 − α′′

α′2
(4.11)

δ ≡ ∂2
tH

2H∂tH
(4.12)

are very small compared to one and as usual, H ≡ ∂ta
a

.8 Higher derivatives of H

must, of course, also be small if expansion is nearly exponential.

The field equations (4.8), (4.9) and (4.10), can be cast in the following form:

ρ̂A ≡
κ2p2

Ae
−4β

2a2f 2(φ̄)α′2
=

3

2

(
3Σ− εΣ +

Σ′

α′

)
(4.14)

ρ̂φ ≡
a2κ2V (φ̄)

α′2
= 3− ε− 3

2
Σ +

ε

2
Σ− Σ′

2α′
= 3− ε− 1

3
ρ̂A (4.15)

κ2φ̄′2

α′2
= 2ε− 6Σ + 2εΣ− 6Σ2 − 2

Σ′

α′
= 2ε− 4

3
ρ̂A − 6Σ2 (4.16)

where Σ ≡ β′/α′. (4.17)

The quantities ρ̂φ and ρ̂A are dimensionless energy densities, normalized by the Hubble

scale squared times the Planck mass squared.

In standard single field inflation with an inflaton potential V , for example, one

finds from the field equations that κφ′

α′
∼
√
ε, so that if expansion is nearly exponential,

then the inflaton must be slowly rolling. Taking derivatives of the above equations in

the isotropic case, one can find expressions for derivatives of V in terms of slow-roll

8Note that
ε′

α′
= 2ε(ε+ δ). (4.13)
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parameters—thus yielding requirements of a potential that can give rise to inflation.

From (4.15) and (4.14) one finds

ρ̂′φ
ρ̂φα′

=
∂φV

κV

κφ̄′

α′
+ 2ε =

− ε′

α′
− 1

3

ρ̂′A
α′

3− ε− 1
3
ρ̂A

(4.18)

ρ̂′A
ρ̂Aα′

= −4− 2
∂φf

κf

κφ̄′

α′
+ 2ε− 4Σ =

2Σ′

α′
+ . . .

3Σ− εΣ + Σ′

α′

(4.19)

where . . . ∼ O(Σ ε′

α′
, εΣ′

α′
, Σ′′

α′2
).

We can glean a fair bit of information from equations (4.14) - (4.19) without much

effort. First, what if expansion were purely exponential so that δ = ε = 0? From

(4.16) we can immediately see that ρ̂A and Σ had better then also be zero based simply

on the fact that κ2φ̄′2

α′2
, ρ̂A, and Σ2 are positive. This could be seen as confirmation of

the no-hair theorem; anisotropy can exist only if expansion is not purely exponential.9

Similarly, if ε is small, then ρ̂A and Σ had also better be small. In particular, even in

small field models of inflation where typically ε� δ � 1, the anisotropy parameters

Σ and ρ̂A must be order ε or smaller. Second, from (4.18) we see that ρ̂φ is nearly

constant with respect to the Hubble parameter if ε and Σ are small. Also from (4.18)

we see that

∂φV

κV

κφ̄′

α′
= −2ε+O(ε′/α′) + . . . (4.21)

Third, from (4.19) , if ε and Σ are small, we see that ρ̂A decreases rapidly with respect

to the Hubble parameter unless

f ′

fα′
. −2 (4.22)

9A more direct confirmation of the no-hair theorem comes from supposing φ′ = 0 (and, for
simplicity, ε << 1) so that V (φ) functions as a cosmological constant. Then from (4.16) and (4.15)

d log ρ̂A
dt

≈ −4
d

dt
α ≈ −4κ

√
V (φ)

3
. (4.20)

So ρ̂A, and thus by (4.14) also ε and Σ, go to zero on the time scale promised by the no-hair theorem.
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or equivalently unless

∂φf

κf
. −2/

(
κφ̄′

α′

)
. (4.23)

Now since

(
∂φV

κV

)−1

∼ ±
√

1/2ε
√

1− 3Σ/ε+ . . . ∼ −
(
κφ̄′

α′

)−1

(4.24)

a ready choice for the coupling function, f , if one wants the energy density of the

electromagnetic field (and thus the anisotropy) not to decay rapidly with respect to

the inflaton energy density, is thus

f(φ) = exp

{
2cκ

∫ (
∂φV

κV

)−1

dφ

}
(4.25)

where c is an order one constant. This is the coupling function motivated and exam-

ined in [7]. Let’s suppose the coupling function is of this exact form, so

ρ̂′A
ρ̂Aα′

= −4− 4c

(
κφ̄′

α′

)2(
∂φV

κV

κφ̄′

α′

)−1

+ 2ε− 4Σ (4.26)

= −4− 4c(2ε− 6Σ + . . .)(−2ε+O(ε′/α′) + . . .)−1 + 2ε− 4Σ (4.27)

= (c− 1)4− 4(3c)
Σ

ε
+ . . . (4.28)

Suppose initially that Σ � ε. If c < 1 then ρ̂A decreases along with Σ as long as ε

is small. Anisotropy is wiped out (albeit much more slowly than in the case where

f(φ) = 1). If c > 1, then ρ̂A initially increases, as does Σ (see (4.14)). The derivative

of the electromagnetic field energy density will thus approach zero,
ρ̂′A
ρ̂Aα′
−→ 0, and so

ρ̂A and Σ will become nearly constant for a time. If Σ is initially greater than (c−1)
3c

ε,

then ρ̂A and Σ will initially decrease, φ will climb its potential, and then it will fall

back down (slowly) after Σ has approached a constant [7].

From (4.14) one can see that if Σ is approximately constant then Σ must be
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positive. So when the space-time undergoes anisotropic expansion in this model

(and Σ is nearly constant) the preferred direction expands more slowly than the

perpendicular directions.

When (4.25) holds, we can find an expression for Σ in terms of the slow-roll

parameter during the period in which it is nearly constant. Assuming

O(ε) ≈ O(δ), c− 1 > O(ε), Σ . O(ε),
Σ′

α′
. O(εΣ),

(
Σ′

α′

)′
/α′ . O(ε2Σ)

(4.29)

we can set the two different expressions for ∂φV/V derived from equations (4.18) and

(4.19) equal to each other. Using this method we find

Σ ≡ β′

α′
=
c− 1

3c
ε+

1 + c− 4c2

18c2
ε2 +

1− 2c− 4c2

18c2
εδ + . . . assuming c− 1 > O(ε).

(4.30)

The authors of [7] derived this expression to first order in ε for the particular potential

V = 1
2
m2φ2 and argued that Σ generically tracks the slow-roll parameter for general

potentials. We find that the expression (4.30) actually holds for any potential V in a

slow-roll regime (ε, δ � 1).

As c → 1, the story is a bit different. For example, if c = 1, looking back to

equations (4.26) - (4.28) one finds that ρ̂A, if it is initially greater in magnitude than

O(ε2), decreases until it’s on the order of ε2, and then stays nearly constant. From

numerical studies it appears that if ρ̂A is initially much greater in magnitude than

O(ε2), then it will rapidly settle to a value much smaller than O(ε2). If the magnitude

of ρ̂A is initially on the order of ε2 or less, then it will stay very nearly constant until

the end of inflation. An example with c = 1 is provided in Fig. 4.1.

The trick of this model is to choose f(φ), given V (φ), such that the electromagnetic

field energy density does not decay rapidly with respect to the inflaton energy density
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Figure 4.1: Log plot of Σ and ε as a function of e-foldings (∆α = α − α0) during
inflation. The plot was generated with the potential V = 1

2
m2φ2 and coupling function

f(φ) = exp
[
κ2φ2

2

]
. The initial conditions were φ0 = 17.5/κ, φ′0 = 0, α0 = −75, β0 = 0

and β′0 = 0. The constants m and pA were chosen so that initially ρA/ρφ ≈ 10−6.
Notice that Σ very quickly settles to a value that is somewhat smaller than the square
of the slow-roll parameter ε.

during inflation. We saw above that a choice guaranteed to work is

f(φ) ≈ exp

{
2κ

∫ (
∂φV

κV

)−1

dφ

}
. (4.31)

For example, if V (φ) ∝ φn, then f(φ) ≈ exp[κ2φ2/n]. What if we were to choose

instead, say, f(φ) ≈ exp[λκφ]? Then we would have

ρ̂′A
ρ̂Aα′

= −4− 2λ
κφ̄′

α′
+ 2ε− 4Σ. (4.32)

If λ is order one, then the anisotropy will rapidly decay. However, if λ were large

enough in magnitude then the anisotropy could persist for a good portion of inflation.

In our analysis, we will use only the background equations of motion, leaving f(φ)

and V (φ) generic. We will then be interested in scenarios in which anisotropy can

persist over several e-folds—scenarios in which f ′

fα′
= −2+O(ε) and where ρ̂A ≈ 9Σ/2

is approximately constant. We saw that consistency of the background equations and

a slow-roll scenario dictates that ρ̂A must be order ε or smaller. We also discussed

specific examples of functions, f(φ), that can lead to such scenarios (assuming, oth-
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erwise, a slow-roll scenario, ε, δ � 1). In order to calculate primordial power spectra,

we will use the “in-in” formalism of perturbation theory, assuming

• ε� 1, δ � 1

• ρ̂A ≈ 9Σ/2 . O(ε)

• ρ̂′A/(ρ̂Aα′) . O(ε).

4.3 Perturbations: Setup and Strategy

Our goal is to examine whether the background described in the previous section

(slightly generalized from the space-time of [7]) is perturbatively stable, and to ex-

amine its signature at the level of primordial perturbation spectra.

We have calculated the quadratic action for dynamical modes in terms of the

gauge-invariant variables defined in appendix 4.A. We calculated the action to quadratic

order in perturbations starting with the form of the second order Einstein-Hilbert ac-

tion given in appendix 4.B, and a similar expression for the quadratic-order matter

action. We worked in Newtonian gauge and used a differential geometry package in

Mathematica to massage the quadratic action into the (relatively) simple, manifestly

gauge-invariant form presented in §4.4 and §4.5.

Regarding perturbative stability of the background, we find that there are no

ghosts (fields with wrong-sign kinetic terms), and no other indication of instability at

the quadratic level. Here, we take “perturbative stability” to mean that dimensionless

combinations of fields assumed to be much less than one in the perturbative expansion

of the action remain small. We find that such small quantities do indeed stay small.
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In the remainder of this section we describe how we set up the calculation and

analysis of perturbation spectra; we describe the physical scenario, the expression for

expectation values in the “in-in” formalism, the definitions for the relevant degrees

of freedom, and, finally, the current bound on a preferred direction during inflation.

In §4.4 and §4.5 we calculate power spectra and briefly discuss stability.

4.3.1 Physical Scenario

Perturbations from inflation are usually assumed to be generated in the following way

[70]:

• Quantum mechanical perturbative modes are in their ground state throughout

inflation. So the vacuum expectation value of individual modes is zero, though

the variance is generally nonzero.

• The normalization of the ground states is such that when the modes are well

within the horizon, the canonically normalized10 fields, φ, obey a simple har-

monic oscillator equation and satisfy the canonical commutation relations.11

• As modes cross the horizon, their correlations are “frozen in” and translate into

classical perturbations that lead to, for example, density perturbations that seed

the formation of structure in the Universe and lead to temperature anisotropies

of the cosmic microwave background radiation.

We shall assume the same, with one complication. We assume the quantity, Σ ≡

β′/α′, which characterizes the deviation from isotropy, is nonzero so that expansion

of the background space-time is slightly anisotropic, and modes that corresponded

10In conformal time, the kinetic term for a canonically normalized field, φ, in the quadratic action
takes the form 1

2φ
′2.

11Specifically,
[∂ηφ(η, ~x), φ(η, ~y)] = −i~δ3(~x− ~y) (4.33)

where η is conformal time.
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to scalar, vector, and tensor degrees of freedom in the isotropic background are now

coupled. (Several scenarios in which this can occur were discussed in §4.2.) Because

of the coupling of modes, the amplitudes of tensor, vector, and scalar perturbations

are not separately conserved outside the horizon. As the inflaton decays at the end

of inflation, the dynamics becomes isotropic again, and tensor, scalar, and vector

modes decouple. At this point, superhorizon perturbations should be frozen in. We

are therefore interested in the correlations of perturbations at the end of inflation.

Especially if the U(1) field in our model were interpreted as the electromagnetic field,

the details of the reheating process at the end of inflation could also be important in

calculating the direction dependence of CMB power spectra. In this chapter, however,

we will only examine the effects of the gauge field on curvature and gravitational wave

power spectra until just before reheating.

4.3.2 Correlations Using “in-in” Formalism

Because in the context of cosmological perturbations as described above we know

only the quantum “in” states and we’re interested in expectation values evaluated at

a particular time, we use the “in-in” formalism of perturbation theory (see e.g., [15]).

We separate our Hamiltonian into a free portion H0 and an interacting portion HI .

The interaction-picture (free) fields’ evolution is determined by the free Hamiltonian.

The expectation value for a general operator X at (conformal) time η can be written

as

〈X(η)〉 =
〈
XI(η)

〉
+ i

∫ η

dη′
〈
[HI(η

′), XI(η)]
〉

+ (i)2

∫ η

dη′
∫ η′

dη′′
〈
[HI(η

′), [HI(η
′′), XI(η)]]

〉
+ . . . (4.34)

where the ellipsis denotes terms with more powers ofHI and whereXI is the interaction-

picture operator.
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It should be noted that corrections of quadratic (or higher) order in the interaction

Hamiltonian can lead to ambiguities when the details of the contour integration are

not carefully considered [71]. We will work only to linear order in HI , and therefore

we need not worry about such ambiguities.

4.3.3 Decomposition of Perturbations

Since the background space-time is homogeneous, we decompose our perturbations

into Fourier modes

δ(xi, η) =

∫
d3k

(2π)3
eikjx

j

δ(ki, η). (4.35)

We analyze perturbations about an anisotropic background. Since the background

is anisotropic and thus there is no SO(3) symmetry, perturbations cannot be decom-

posed into spin-0, spin-1, and spin-2 degrees of freedom and analyzed separately. We

instead decompose gauge-invariant perturbations according to their transformation

properties in the isotropic limit. (See appendix 4.A.)

There are five dynamical degrees of freedom in our model, corresponding to

• one scalar degree of freedom, r (spin-0 in isotropic limit),12

• two electromagnetic vector degrees of freedom, δA+ and δA− (spin-1 in isotropic

limit),

• and two metric tensor degrees of freedom, E+ and E× (spin-2 in isotropic limit).

In order to analyze the relevant dynamical perturbative degrees of freedom in our

scenario, we derived the quadratic action in terms of the gauge-invariant variables

of appendix 4.A. Then we eliminated the nondynamical degrees of freedom by using

constraint equations derived from the action. Finally, we canonically normalized

the degrees of freedom that correspond to the dynamical “free” fields in the limit

12See (4.138) in appendix 4.A.
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as β′/α′ −→ 0. Within the “in-in” formalism of perturbation theory, we take the

interaction-picture fields to be those governed by the dynamics in the β′/α′ = 0 limit.

The quadratic action separates into two uncoupled pieces according to a residual

symmetry under parity transformations. (See appendix 4.A.) The “odd” sector has

two degrees of freedom, E× and δA−. The “even” sector has three degrees of freedom,

E+, δA+, and r. The fields E+, E×, and r correspond to fields that are conserved

outside the horizon during isotropic inflation. Here r is a Mukhanov-Sasaki variable,

equal to minus the curvature perturbation, −ζ, as defined in, e.g., [72], in a gauge

with spatially flat slicing. We will therefore refer to r as the curvature perturbation.

4.3.4 Canonically Normalized Variables

The canonically normalized fields in each sector (“even” and “odd”, respectively) are

given by

Â+ = f(φ̄) δA+

ĥ+ = a(η)E+/κ

r̂ = z(η) r

and
Â− = f(φ̄) δA−

ĥ× = a(η)E×/κ

(4.36)

where

z(η) ≡ a(η)
φ̄′

α′
. (4.37)

The fields on the right-hand sides of equations (4.36) are defined in appendix 4.A.

As mentioned above, in the isotropic limit E+, E− and r are conserved outside the

horizon. The other important fact about the fields above is that the perturbative

expansion of the action is valid when

E+, E×,
|~k|
F̄ηx

δA+,
|~k|
F̄ηx

δA−, r � 1. (4.38)



106

4.3.5 Comparison with Data

A formalism for finding signatures of a generic primordial preferred direction in the

CMB has been developed [6, 68]. In [6] a small direction-dependent contribution to

the primordial curvature power spectrum is parametrized by g∗ where

P (~k) = P0(k)(1 + g∗ (n̂ · k̂)2) (4.39)

and where n̂ is some preferred direction in the sky. It is postulated that g∗ will be

approximately independent of the scale for modes of astrophysical interest and that

parity is still conserved. Parity conservation guarantees the absence of terms with

odd powers of (n̂ · k̂). Contributions proportional to higher powers of (n̂ · k̂)2 are

assumed to be negligible.

Using this formalism, a nonzero value for g∗ was found using 5-year WMAP data

at the nine sigma level [73]. The central value found for g∗ is 0.29 for a preferred

direction very close to the ecliptic pole. Since the WMAP scanning strategy is tied to

the ecliptic plane, this strongly suggests that the nonzero value of g∗ is due to some

systematic effect [74, 73]. Still, we may reasonably take from the analysis in [73] an

upper bound for g∗ of

|g∗| < 0.3. (4.40)

In [75] it is estimated that Planck will be sensitive to values of |g∗| as small as 0.02.

Obviously, the gravitational wave power spectrum has not yet been measured, so

there is no limit on the analogous parameter, g∗grav, for the gravitational wave power

spectrum.
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4.4 Perturbations: Odd Sector

As described in §4.3.3, the quadratic action separates into two uncoupled pieces ac-

cording to a residual symmetry under parity transformations. We’ll therefore analyze

the two “sectors”—which we refer to as “odd” and “even” for reasons discussed in

appendix 4.A—in different sections. We start in this section by analyzing the odd

sector13 because it is less complicated than the even sector, having only two coupled

degrees of freedom (a tensor and a vector degree of freedom) instead of three degrees

of freedom as in the even sector. The even sector, which includes the curvature per-

turbation, contains the most interesting physics; analyzing the odd sector is valuable

for extracting g∗grav and as a warm-up for the analysis of the even sector.

In this section we present the action for the odd sector to quadratic order in gauge-

invariant perturbation variables. Then we argue that the form of the action implies

that the background is classically stable. Next we diagonalize the kinetic term in the

action by defining new perturbation variables in terms of which the kinetic term in

the action is canonically normalized. This diagonalization allows us to identify the

fields that should be quantized. The Hamiltonian derived from the diagonal form of

the action is then separated into a “free” part and an “interacting” part, and “in-in”

perturbation theory is used to find the autocorrelations (power spectra) and cross

correlations of the vector and tensor degrees of freedom (see (4.36)) in terms of the

preferred direction and the background quantities H and Σ. The most interesting

result in this section is the tensor perturbation power spectrum, given in (4.80).

13Our odd sector corresponds to the 2d-vector sector analyzed numerically in [68].
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In the odd sector, the action takes the form

Sodd =

∫
dη

∫
d3k

(2π)3

(1

2
ĥ×∗′ĥ×′ +

1

2
Â−∗′Â−′

− 1

2
ĥ×∗ĥ×

(
k2 − a′′

a
− 4ρ̂Aα

′2/3 +
1

2
∆~kα

′2
(

2ρ̂A/3 + 6Σ2 − 3

2
∆~kΣ

2

))
− 1

2
Â−∗Â−

(
k2 − f ′′

f
+ 2Σα′

f ′

f
+ α′2(2ρ̂A − 2Σ + 2∆~kρ̂A/3− Σ2)

)
+

(
iψ′~kĥ

×∗Â−
(
f ′

f
+ α′Σ + ∆~kα

′Σ

)
− iψ′~kĥ

×∗Â−′ + h.c.

))
(4.41)

where

k2 ≡ γijkikj = k2
1e

4β + k2
2e
−2β, (4.42)

∆~k ≡
k2′

k2β′
=

4 k2
1e

4β − 2 k2
2e
−2β

k2
1e

4β + k2
2e
−2β

, (4.43)

ψ′~k
α′
≡ k2e

−β
√
k2

√
ρ̂A, (4.44)

and f ′ denotes the derivative of f(φ̄(η)) with respect to conformal time. Without

loss of generality we have set k3 = 0 and we have taken the preferred direction (the

direction along which the background electric field points) to be x̂1.

By inspection we can see that ĥ× and Â− decouple when the wave vector is parallel

to the preferred direction (so k2 = 0). This decoupling should be expected due to the

enhanced rotational symmetry about the wave vector in this case.

4.4.1 Preliminary Look at Stability

By design, the kinetic terms are canonically normalized. And in the short wavelength

limit (k � aH), the action simplifies to that of two uncoupled harmonic oscillators;

there’s no indication of instability in the short wavelength limit.

Let’s consider the case where k2 = 0 so the wave vector corresponding to a mode

points in the preferred direction. In this case, ψ′~k = 0 and ∆~k = 4. By inspection,
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one sees that the cross-terms vanish. More explicitly,

Sodd −→k2→0

∫
dη

∫
d3k

(2π)3

(1

2
ĥ×∗′ĥ×′ +

1

2
Â−∗′Â−′ − 1

2
ĥ×∗ĥ×

(
k2 − a′′

a

)
− 1

2
Â−∗Â−

(
k2 − f ′′

f
+ 2Σα′

f ′

f
+ α′2(14ρ̂A/3− 2Σ− Σ2)

))
. (4.45)

When k2 → 0 the action for ĥ× takes the same form as in the isotropic case.

Though the effective mass for ĥ× is not real for all time (so naively, there’s a tachyon),

the important point is that ĥ×/a, which we assumed to be much less than one in our

perturbative expansion of the metric (see (4.38)), oscillates with decaying amplitude

before horizon crossing, and then remains constant or decays after horizon crossing.

In other words, ĥ× ∼ aE× never increases faster than a, which is consistent with the

perturbative expansion. Similarly, given that 2Σα′ f
′

f
+ α′2(14ρ̂A/3− 2Σ−Σ2)� f ′′

f
,

the long wavelength solution for Â− is approximately, Â− ≈ C1f + C2f
∫

dη
f2 . Now

given that f ≈ a−2 ≈ H2η2, one can see that |~k|
F̄ηx

δA− ∼ (C1 + C2

H
a3)a−4 (which is

decaying) in the long wavelength limit. So clearly the perturbative expansion of the

action remains valid when k2 = 0.

Now let’s consider a wave vector that’s antiparallel to the preferred direction, so

k1 = 0. In this case, ψ′~k =
√
ρ̂A α

′ and ∆~k = −2. Then the effective mass squared for

ĥ× becomes

m2
eff = k2 − a′′

a
− α′2(2ρ̂A + 9Σ2). (4.46)

Compared to the isotropic case, the effective mass squared for ĥ× receives an addi-

tional negative contribution. This suggests that ĥ× will grow slightly faster than a

outside the horizon. The situation is, of course, complicated by the coupling to Â−,

but all extra terms in the action when k1 = 0 compared to the terms present when

k2 = 0 are small. This suggests that any possible growth of the perturbative fields in

this case will be very moderate and does not represent an instability. This reasoning
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will be checked by calculating the power spectra of perturbative fields; we can check

that the magnitudes of power spectra do not grow rapidly in time.

The same situation occurs in the even sector; perturbations clearly do not grow

when k2 = 0 and all extra terms in the action when k1 = 0 compared to the terms

present when k2 = 0 are small.

4.4.2 Diagonalized Action

In general, the canonical quantization of a theory can only proceed once the kinetic

interactions have been diagonalized. Usually the diagonalization is accomplished

by some constant field redefinition. In our case, we need a time-dependent field

redefinition because the “coefficients” in the kinetic portions of the action are not

constant. (See appendix 4.C.)

The kinetic terms can be diagonalized by performing a time-dependent unitary

rotation  ĥ×
Â−

 =

 cosψ~k(η) −i sinψ~k(η)

−i sinψ~k(η) cosψ~k(η)


U1

U2

 . (4.47)

In terms of the rotated fields, Ui, the odd-sector action takes the form

Sodd =

∫
dη

∫
d3k

(2π)3

1

2

U ′1
U ′2


†U ′1

U ′2

− 1

2

U1

U2


†

M

U1

U2


 (4.48)
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where the Hermitian matrix M is defined

M ≡

(
k2 − 1

2

(
a′′

a
+
f ′′

f

)
+ Σα′2

(
f ′

fα′
− 1− 1

2
Σ +

3

2
Σ∆~k −

3

8
Σ∆~k

2

)

+
1

3
ρ̂Aα

′2 (3 + ∆~k

))
I

+
[
sin(2ψ~k)σ3 − cos(2ψ~k)σ2

](ψ′~k
α′

)
α′2
(

1− f ′

fα′
+ Σ− 3

2
Σ∆~k

)
+
[
cos(2ψ~k)σ3 + sin(2ψ~k)σ2

](1

2

(
f ′′

f
− a′′

a

)

− Σα′2
(
f ′

fα′
− 1− 1

2
Σ− 3

2
Σ∆~k +

3

8
Σ∆~k

2

)
− 1

3
ρ̂Aα

′2
(

5 +
1

2
∆~k

))
(4.49)

and where I is the 2 × 2 identity matrix and we have used the following convention

for the Pauli matrices

σ2 =

0 −i

i 0

 and σ3 =

1 0

0 −1

 . (4.50)

Physical quantities should not depend on the initial value of ψ~k. Indeed, we will

see that correlations of ĥ× and Â− at a time, η, calculated using the “in-in” formalism

of perturbation theory, depend only on the change in ψ~k after horizon crossing.

4.4.3 Correlations Using Perturbation Theory

In order to calculate correlations, we use the “in-in” formalism of perturbation theory,

taking the small parameters to be ε, δ, ρ̂A, and Σ. As discussed at the end of §4.2 we

take

ε =
α′2 − α′′

α′2
� 1, δ =

∂2
tH

2H∂tH
� 1, ρ̂A ≈ 9Σ/2 . O(ε),

ρ̂′A
ρ̂Aα′

. O(ε).

(4.51)
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Given these assumptions and the background field equations (4.8) - (4.10) ,

f ′

fα′
= −2 +O(ε),

f ′′

fα′2
= 2 +O(ε) =

a′′

aα′2
and α′ ≈ −1

η
. (4.52)

We choose as our free Hamiltonian

Hodd
0 ≡

∫
d3k

(2π)3

1

2

U ′1
U ′2


†U ′1

U ′2

+
1

2

U1

U2


†

M (0)

U1

U2


 (4.53)

where

M (0) ≡
(
γij(η0)kikj −

2

η2

)
I. (4.54)

The interaction-picture fields then obey the following equations:

d2U I
i

dη2
+

(
γij(η0)kikj −

2

η2

)
U I
i = 0. (4.55)

Each of these fields can be expanded in terms of time-independent creation and an-

nihilation operators as,

U I
i (~x, η) =

∫
d3k

(2π)3
eikjx

j

U I
i (~k, η)

=

∫
d3k

(2π)3

(
eikix

i

χ(0)(kη0 , η)âi~k + e−ikix
i

χ(0)∗(kη0 , η)(âi~k)
†
)
, (4.56)

where the canonically normalized mode functions are

χ(0)(k, η) =
e−ikη√

2k

(
1− i

kη

)
(4.57)

and where the commutation relations of the creation and annihilation operators are

[
âi~k, (â

j
~q)
†
]

= (2π)3δijδ(~k − ~q) and
[
âi~k, â

j
~q

]
= 0. (4.58)
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Here,

kη0 ≡
√
γij(η0)kikj. (4.59)

If we choose β0 = 0 then γij(η0) = δij. But then if β changes during inflation,

the coordinates at the end of inflation will not be isotropic. On the other hand, if we

choose β0 so that β = 0 at the end of inflation (when the dynamics returns to being

isotropic), then the coordinates at the end of inflation will be isotropic. The latter

choice is more convenient.

Using the results of the previous section and the form of the matrix M in (4.49),

the interaction-picture Hamiltonian takes the form

HI(η) =

∫
d3k

(2π)3

1

2

U I
1

U I
2


†

M (1)

U I
1

U I
2


 (4.60)

where

M (1) = M −M (0) = f1(η,~k)I

+
[
sin(2ψ~k)σ3 − cos(2ψ~k)σ2

]
f2(η, k̂) +

[
cos(2ψ~k)σ3 + sin(2ψ~k)σ2

]
f3(η, k̂) (4.61)

and we have defined

f1(η,~k) ≡ (γij(η)− γij(η0))kikj −
1

2

(
a′′

a
+
f ′′

f
− 4

η2

)
+ Σα′2

(
f ′

fα′
− 1− 1

2
Σ +

3

2
Σ∆~k −

3

8
Σ∆~k

2

)
+

1

3
ρ̂Aα

′2 (3 + ∆~k

)
(4.62)

f2(η, k̂) ≡
(
ψ′~k
α′

)
α′2
(

1− f ′

fα′
+ Σ− 3

2
Σ∆~k

)
(4.63)

f3(η, k̂) ≡ 1

2

(
f ′′

f
− a′′

a

)
− Σα′2

(
f ′

fα′
− 1− 1

2
Σ− 3

2
Σ∆~k +

3

8
Σ∆~k

2

)
− 1

3
ρ̂Aα

′2
(

5 +
1

2
∆~k

)
. (4.64)
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Our convention for the correlations of the fields will be

〈
Ui(~k, η)Uj(~q, η)

〉
= Cij(~k, η)(2π)3δ(~k + ~q), (4.65)

where the power spectra are the diagonal entries of the matrix Cij. Using (4.34), the

correlations can be written as

〈Ui(~p, η)Uj(~q, η)〉 = 〈U I
i (~p, η)U I

j (~q, η)〉+ i

∫ η

dη′〈[HI(η
′), U I

i (~p, η)U I
j (~q, η)]〉+ . . .

(4.66)

More explicitly, the correlations take the form

Cij(~p, η) = |χ(0)(pη0 , η)|2δij + i

∫ η

dη′M
(1)
ij (~p, η′)Ipη0 (η′, η) + . . . (4.67)

where

Ip(η
′, η) =

(
(χ(0)(p, η′)χ(0)∗(p, η))2 − (χ(0)∗(p, η′)χ(0)(p, η))2

)
. (4.68)

It is clear from this formula that the zeroth-order power spectra of the fields Ui

are isotropic and scale invariant and that the cross-correlation vanishes. Here it’s

convenient to define the function

Ĩ(pη′, pη) ≡ ip2Ip(η
′, η) (4.69)

where

Ĩ(x, y) =

(
1

2x2y2
− 1

2x2
+

2

xy
− 1

2y2
+

1

2

)
sin(2x− 2y)

+

(
1

x2y
− 1

xy2
+

1

x
− 1

y

)
cos(2x− 2y). (4.70)

Solving for the correlations of the variables ĥ× and Â− in terms of the correlations
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of the rotated variables Ui, we find

Pĥ×(~p) = cos2 ψ~pC11(~p) + sin2 ψ~pC22(~p) +
i

2
sin(2ψ~p)(C12(~p)− C21(~p)) (4.71)

PÂ−(~p) = sin2 ψ~pC11(~p) + cos2 ψ~pC22(~p)− i

2
sin(2ψ~p)(C12(~p)− C21(~p)) (4.72)

Cĥ×Â−(~p) = cos2 ψ~pC12(~p) + sin2 ψ~pC21(~p) +
i

2
sin(2ψ~p)(C11(~p)− C22(~p)) (4.73)

= −CÂ−ĥ×(~p)

where we have used the fact that ψ−~k = −ψ~k. All of the above correlations, and ψ~p,

are functions of time. It is understood that these expressions are evaluated at the

end of inflation.

From here on, we will use the short hand notation

p = pη0 . (4.74)

Using (4.67) and the expression for M (1), the power spectra and correlations are



116

given more explicitly by,

Pĥ×(~p, η) = |χ(0)(p, η)|2 + p−2

{∫ η

f1(η′, ~p) Ĩ(pη′, pη)dη′

+

∫ η

sin (2ψ~p(η
′)− 2ψ~p(η)) f2(η′, p̂) Ĩ(pη′, pη)dη′

+

∫ η

cos (2ψ~p(η
′)− 2ψ~p(η)) f3(η′, p̂) Ĩ(pη′, pη)dη′

}
+ . . . (4.75)

PÂ−(~p, η) = |χ(0)(p, η)|2 + p−2

{∫ η

f1(η′, ~p) Ĩ(pη′, pη)dη′

−
∫ η

sin (2ψ~p(η
′)− 2ψ~p(η)) f2(η′, p̂) Ĩ(pη′, pη)dη′

−
∫ η

cos (2ψ~p(η
′)− 2ψ~p(η)) f3(η′, p̂) Ĩ(pη′, pη)dη′

}
+ . . . (4.76)

Cĥ×Â−(~p, η) = ip−2

{∫ η

cos (2ψ~p(η
′)− 2ψ~p(η)) f2(η′, p̂) Ĩ(pη′, pη)dη′

−
∫ η

sin (2ψ~p(η
′)− 2ψ~p(η)) f3(η′, p̂) Ĩ(pη′, pη)dη′

}
+ . . . = −CÂ−ĥ×(~p, η).

(4.77)

It’s clear from the expression above that the correlations are functions only of the

change in the angle ψ~p.

4.4.4 Discussion

We are interested primarily in direction-dependent modifications to the power spectra—

i.e. ,modifications of the power spectra that depend on the direction of the wave

vector, not just its magnitude. Non-direction-dependent effects will modify spectral

indices, but such effects cannot be disentangled experimentally as due to primordial

anisotropy. In principle, one could use our method to calculate spectral indices and,

for example, relate them to the size of the direction-dependent effects.

The largest direction-dependent contribution comes from the piece involving f2.
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The contribution is given by

p−2

(∫ η

sin (2ψ~p(η
′)− 2ψ~p(η)) f2(η′, p̂) Ĩ(pη′, pη)dη′

)
≈ −(aH)2

p3

(
cos[2

ψ′~p
α′

log(aH/p)]− 1

)
(4.78)

assuming
ψ′~p
α′

is approximately constant throughout inflation, where we’ve used the

fact that
(

1− f ′

fα′

)
≈ 3 and the relevant integral is calculated in appendix 4.D.

Modes of astrophysical interest crossed the horizon about sixty e-folds before the end

of inflation, so for such modes, log(aH/p) ≈ 60.

When

f(φ) = exp

{
2cκ

∫ (
∂φV

κV

)−1

dφ

}
, (4.79)

for c−1 ∼ O(1) we found that ρ̂A ≈ 3(c−1)
2c

ε during the anisotropic period of expansion.

If the anisotropic period of expansion were to last all sixty e-folds before the end of

inflation, then we should expect order one direction-dependent corrections to the

gravitational wave power spectrum for inflationary scenarios in which
√
ε & 1

60
. Such

values of ε can easily be realized in large-field inflationary models. This analytic result

seems to confirm the numerical findings in [68].

Demanding that the direction-dependent effect on the gravitational wave power

spectrum for modes of astrophysical interest is less than, say, about 30% would mean

that the argument of the cosine function in (4.78) is small so that the cosine can be

expanded in a Taylor series. In this case the power spectrum for ĥ× is approximately

Pĥ×(~p, η) ≈ (aH)2

2p3
(1 +

(
2
ψ′~p
α′

log(aH/p)

)2

)

≈ (aH)2

2p3

(
1 + 4ρ̂A(log(aH/p))2(1− (n̂ · p̂)2)

)
. (4.80)
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where n̂ is the preferred direction. Thus we may identify

g∗grav ≈ −4ρ̂A(log(aH/p))2 ≈ −18Σ(log(aH/p))2. (4.81)

Note that g∗grav is nearly (though not exactly) scale invariant for modes of astrophys-

ical interest.

Imposing a limit like |g∗grav| < 0.3 for modes of astrophysical interest corresponds

to a limit on ρ̂A like

ρ̂A|average after horizon crossing . 10−4 when |g∗grav| < 0.3. (4.82)

4.5 Perturbations: Even Sector

The even-sector action is much more complicated than that of the odd sector. This

sector contains three dynamical degrees of freedom that, in the isotropic limit, trans-

form as a scalar, vector and tensor under rotations. This sector is further complicated

by additional nondynamical scalar variables.

As in the previous section, we begin in this section by diagonalizing the kinetic

part of the quadratic action. This process is more complicated for the three dynamical

degrees of freedom in this (even) sector than for the two of the odd sector, and the

smallness of certain background quantities must be exploited; we eventually work

in the limit ρ̂A � ε � 1, which is confirmed to be a sensible limit at the end

of the calculation. As in the odd-sector calculation, we quantize and use “in-in”

perturbation theory to calculate power spectra and cross correlations of the scalar,

vector, and tensor degrees of freedom. The most interesting results in this section

are the scalar perturbation power spectrum (4.111) and corresponding value for g∗

(4.112), and also the ratio of the direction-dependent correction to the scalar power

spectrum over that of the tensor power spectrum (4.116).
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Instead of presenting the entire quadratic action (as we did in (4.41) for the odd

sector), here we present the action to lowest order in δ, ε, ρ̂A, and Σ. We expand the

action assuming that ρ̂A, Σ, and ρ̂′A/ρ̂A are order ε or smaller. For simplicity, we first

present the action to lowest order before elimination of the auxiliary fields Φ and Ψ.

(See appendix 4.A for the definitions of Φ and Ψ.) The action can be written

Seven =

∫
dη

∫
d3k

(2π)3

[
H†M1H + Φ†QH + H†Q†Φ + Φ†M2Φ

]
(4.83)

where the vectors H and Φ are defined by

H =



ĥ+′

Â+′

r̂′

ĥ+

Â+

r̂


Φ =

Φ

Ψ

 (4.84)

and the matrices M1, M2, and Q are given by

M1 =



1
2

0 0 0 0 0

0 1
2

0 −iψ′~k 0 −i2
√

2 a
κz
ψ′~k

0 0 1
2

0 0 0

0 iψ′~k 0 α′2 − k2

2
2iψ′~kα

′ 2
√

2 a
κz
ψ′~k

2

0 0 0 −2iψ′~kα
′ α′2 − k2

2
−i4
√

2aα
′

κz
ψ′~k

0 i2
√

2 a
κz
ψ′~k 0 2

√
2 a
κz
ψ′~k

2 i4
√

2aα
′

κz
ψ′~k

1
2
z′′

z
− k2

2
+ 16 a2

κ2z2
ψ′~k

2 − 8a
2α′2

κ2z2
ρ̂A


+O(ε), (4.85)
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M2 = a2

κ2ψ
′
~k

2 −3a2

κ2 (ψ′~k
2 + (2/3)ρ̂Aα

′2)− 3
2
z2α′2

−3a2

κ2 (ψ′~k
2 + (2/3)ρ̂Aα

′2)− 3
2
z2α′2 9a2

κ2 (ψ′~k
2 + (2/3)ρ̂Aα

′2)− κ2z2

a2 ) + 3z2α′2

2
(1 + 2z′

α′z
)


+
a2k2

κ2

 0 −(1− ∆~k
Σ

4
)

−(1− ∆~k
Σ

4
) (1 +

∆~k
Σ

2
− κ2z2

2a2 )

+O(ε2), (4.86)

Q =

0 i a√
2κ
ψ′~k 0

√
2 a
κ
ψ′~k

2 −i a√
2κ
ψ′~kα

′ 4 a2

κ2z
ψ′~k

2

0 0 0 −3
√

2 a
κ
ψ′~k

2 + ak2§
4
√

2κ
(∆~k − 4) 0 1

2
k2z − 12 a2

κ2z
ψ′~k

2


+O(ε3/2), (4.87)

and ψ′~k is as in (4.44). Note here the identity

α′2(∆~k − 4)ρ̂A = −4ψ′~k
2
. (4.88)

Solving the (constraint) equations of motion derived by varying the action with

respect to Φ and Ψ and plugging the constraint equations back into the action leads

to the action in terms of the three dynamical fields:

Seven =

∫
dη

∫
d3k

(2π)3

[
H†
(
M1 −Q†M−1

2 Q
)

H
]
. (4.89)

Keep in mind that ψ′~k is a direction-dependent quantity that varies from zero to

plus or minus
√
ρ̂A, depending on the orientation of the wave vector with respect to
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the preferred direction. The bottom right element of M1, representing (minus) the

effective mass for r̂, is 1
2
( z
′′

z
−k2) in the isotropic limit. So if, for example, ρ̂A is order

κ2z2

a2 = O(ε) then we should expect a very dramatic direction-dependent effect on the

curvature perturbation power spectrum, because the direction-dependent term would

be on the same order as the normal, isotropic term (at least in the long wavelength

limit). In fact, assuming that taking into account the Q†M−1
2 Q correction to M1 and

properly diagonalizing the kinetic term in the action would not weaken the direction-

dependent effect on the power spectrum, we can get a rough limit on the average value

of ρ̂A/(κ
2z2/a2) during inflation, after horizon crossing. Based on the argument of

§4.3.5, we may take a 30% direction-dependent contribution to curvature perturbation

power spectrum to be an upper limit. Noting that z′′

z
= α′2(2 + O(ε, δ)), the 30%

limit translates roughly to14

ρ̂Aa
2

κ2z2

∣∣∣
average

≈ ρ̂A
2ε

∣∣∣
average

< 10−2 (approximate). (4.90)

Given phenomenological constraints, it is therefore most interesting to consider

scenarios in which ρ̂A � ε. Taking

ρ̂A ∼ (9/2)Σ� ε, (4.91)

by inspection one can see that in the long wavelength limit

Q†M−1
2 Q = O(ρ̂A/ε) (4.92)

14The first equality can be seen from equations (4.16) and (4.37), given that ρ̂A must be small
compared to κ2z2/a2.
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and

M1 =



1
2

0 0 0 0 0

0 1
2

0 0 0 −i2
√

2 a
κz
ψ′~k

0 0 1
2

0 0 0

0 0 0 α′2 − k2

2
0 0

0 0 0 0 α′2 − k2

2
−i4
√

2aα
′

κz
ψ′~k

0 i2
√

2 a
κz
ψ′~k 0 0 i4

√
2aα

′

κz
ψ′~k

1
2
z′′

z
− k2

2


+O(ε, ρ̂A/ε). (4.93)

We will find, with a careful analysis in the ρ̂A � ε limit, that the actual constraint

on ρ̂A is much stronger than the approximate constraint in (4.90). Thus the ρ̂A � ε

approximation is valid.

4.5.1 Diagonalizing the Action

Once again, the resulting kinetic terms are not diagonalized and canonical quantiza-

tion cannot proceed. In the ρ̂A � ε� 1 limit, the kinetic terms can be diagonalized

by performing a time-dependent unitary rotation

 r̂

Â+

 =

 cos θ~k(η) −i sin θ~k(η)

−i sin θ~k(η) cos θ~k(η)


U1

U2

 , (4.94)

where

θ′~k(η) ≡ −2
√

2
a

κz
ψ′~k = −2

√
2
a

κz

(
k2e
−β

√
k2

√
ρ̂Aα

′
)

(4.95)

and where ψ′~k is the rotation angle in the odd sector, given by (4.44). The rotation of r̂

and Â+ occurs on a much faster timescale than that of ĥ× and Â− since ψ′~k = O(
√
ρ̂A)

and θ′~k = O(
√
ρ̂A/ε).
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In terms of these rotated fields the even action takes the form

Seven =

∫
dη

∫
d3k

(2π)3

[
1

2
ĥ+′ĥ+∗′ − 1

2

(
k2 − 2α′2

)
ĥ+ĥ+∗

+
1

2

U ′1
U ′2


†U ′1

U ′2

− 1

2

U1

U2


†

M

U1

U2

+ . . .

]
(4.96)

where the Hermitian matrix M is defined

M ≡
(
k2 − 2α′2

)
I +

[
sin(2θ~k)σ3 − cos(2θ~k)σ2

](
3
θ′~k
α′

)
α′2 (4.97)

up to corrections of order ε, δ, and ρ̂A/ε.
15 We’ve used the same convention for Pauli

matrices as in Eq. (4.50) and, again, I is the 2× 2 identity matrix.

4.5.2 Correlations Using Perturbation Theory

The analysis of correlations of dynamical fields in this sector will be very similar

to that of the odd sector, up to minus signs and replacing ψ~k with θ~k. It should

be noted that the largest direction-dependent corrections to correlations in the odd

sector are order
√
ρ̂A, whereas here we’re working to order

√
ρ̂A/ε assuming ρ̂A � ε.

It therefore should be unsurprising that the autocorrelation of the gravitational wave

amplitude, ĥ+, has no anisotropic contribution at O(
√
ρ̂A/ε). The same can be said

of the cross-correlation between ĥ+ and Â+.

Considering now only terms up to order
√
ρ̂A/ε given ρ̂A � ε, we choose as our

15 Recall that, e.g., z′′/2z = α′2 +O(ε, δ) and z′/z = α′ +O(ε, δ).
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free Hamiltonian

Heven
0 ≡

∫
d3k

(2π)3

[
1

2
ĥ+′ĥ+∗′ +

1

2

U ′1
U ′2


†U ′1

U ′2

+
1

2

(
γij(η0)kikj −

2

η2

)
ĥ+ĥ+∗

+
1

2

U1

U2


†

M (0)

U1

U2

] (4.98)

where

M (0) ≡
(
γij(η0)kikj −

2

η2

)
I. (4.99)

The interaction-picture fields then obey the following equations:

d2U I
i

dη2
+

(
γij(η0)kikj −

2

η2

)
U I
i = 0. (4.100)

As in §4.4, the fields can be expanded into appropriately normalized mode functions

and time-independent creation and annihilation operators. Dropping terms of or-

der ε, ρ̂A/ε, δ or higher (including terms with coefficients (γij(η) − γij(η0))kikj) the

interaction-picture Hamiltonian takes the form

HI(η) =

∫
d3k

(2π)3

1

2

U I
1

U I
2


†

M (1)

U I
1

U I
2


 (4.101)

where

M (1) = M −M (0) = 3
[
sin(2θ~k)σ3 − cos(2θ~k)σ2

](θ′~k
α′

)
α′2. (4.102)

After computing correlations of the rotated variables using the “in-in” formalism, we

can find the correlations of the unrotated variables using the equations analogous to

equations (4.71) - (4.73).



125

The correlations are approximately given by

Pr̂(~p, η) ≈ |χ(0)(p, η)|2 + p−2

∫ η

sin (2θ~p(η
′)− 2θ~p(η)) 3

θ′~p(η
′)

α′(η′)
α′

2
(η′) Ĩ(pη′, pη)dη′

(4.103)

PÂ+(~p, η) ≈ |χ(0)(p, η)|2 − p−2

∫ η

sin (2θ~p(η
′)− 2θ~p(η)) 3

θ′~p(η
′)

α′(η′)
α′

2
(η′) Ĩ(pη′, pη)dη′

(4.104)

Cr̂Â+(~p, η) ≈ ip−2

∫ η

cos (2θ~p(η
′)− 2θ~p(η)) 3

θ′~p(η
′)

α′(η′)
α′

2
(η′) Ĩ(pη′, pη)dη′

≈ −CÂ+r̂(~p, η). (4.105)

where Ĩ is defined in (4.70).

Assuming ρ̂A and κφ′

α′
= z

κa
are nearly constant during inflation, as in the scenarios

we described in §4.2, then

θ~p(η) ≈
θ′~p
α′
α(η) (4.106)

and we may estimate the relevant integral as in appendix 4.D. Then we see that

Pr̂(~p, η) ≈ (aH)2

2p3

(
1− 2

(
cos

((
2
θ′~p
α′

)
log(aH/p)

)
− 1

))
, (4.107)

PÂ+(~p, η) ≈ (aH)2

2p3

(
1 + 2

(
cos

((
2
θ′~p
α′

)
log(aH/p)

)
− 1

))
, (4.108)

Cr̂Â+(~p, η) = −CÂ+r̂(~p, η) ≈ i
(aH)2

p3
sin

((
2
θ′~p
α′

)
log(aH/p)

)
, (4.109)

where
θ′~p
α′

should be taken as the average value after horizon crossing.

Now g∗, the parameter that characterizes the effect of a preferred direction on the

CMB power spectrum, is roughly given by

|g∗| ≈ −2

(
cos

((
2
θ′~p
α′

)
log(aH/p)

)
− 1

) ∣∣∣
max

. (4.110)
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The maximal value of
θ′~p
α′

for a given wave vector is approximately 2
√

ρ̂A
ε

. So even

if ρ̂A/ε is, say, order 10−4, the argument of the cosine in (4.110) could be significant

for modes of astrophysical interest because for such modes log(aH/p) ≈ 60. It’s then

clear that |g∗| could be order one even for very small values of Σ and ρ̂A.

Let’s suppose that ρ̂A is small enough to satisfy the |g∗| < 0.3 bound of §4.3.5.

Then the cosine in (4.107) can be expanded in a Taylor series to give

Pr̂(~p, η) ≈ (aH)2

2p3

(
1 + 16

ρ̂A
ε

(log(aH/p))2(1− (n̂ · p̂)2)

)
, (4.111)

where n̂ is the preferred direction, and therefore

g∗ ≈ −16
ρ̂A
ε

(
log

(
aH

p

))2

≈ −72
Σ

ε

(
log

(
aH

p

))2

. (4.112)

Note that g∗ is negative, as is g∗grav (see equation (4.81)). A negative g∗ means

that, for a given scale, power is minimized in the preferred direction. We can un-

derstand this general feature in the following way: the pressure contributed by the

background electric field slows the expansion of the direction along which the electric

field points. In other words, expansion is slower along the preferred direction. Gener-

ically the power in primordial perturbations increases in proportion to the Hubble

parameter squared; the faster the expansion, the more quickly quantum fluctuations

are stretched into “classical” perturbations. Since the power of primordial pertur-

bations increases with the Hubble parameter, squared, and since in our scenario the

space-time is expanding most slowly in the preferred direction, we might expect that

the power of perturbations with wave vectors parallel to the preferred direction will

be smaller than the power of perturbations with wave vectors in any other direction.

We predict that, generically, models in which a preferred direction expands more

rapidly/slowly than other directions will lead to positive/negative values of g∗.

The limit |g∗| < 0.3 translates into a limit on the average value of ρ̂A
ε

during
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inflation (after horizon-crossing) for modes of astrophysical interest:

ρ̂A
ε

∣∣∣
average after horizon crossing

<
3

160 (60)2
. (4.113)

Since ρ̂A is assumed to be essentially constant during inflation (as is ρ̂φ), the limit

can be written,

ρ̂A
ρ̂φε

∣∣∣
average after horizon crossing

. 10−6. (4.114)

The measurement of g∗ puts a very stringent constraint on the ratio of vector field

energy density to the inflaton energy density. At the same time, we see that even a

very small U(1) gauge field energy density during inflation could lead to a significant

direction-dependent effect on the curvature perturbation power spectrum.

Supposing that ρ̂A � ε, as we’ve just seen must be the case in order to comply

with observation, the ratio of the gravitational wave power spectrum (PT ) to the

scalar power spectrum (PS) is approximately16,17

PT
PS

= 4
PE+ + PE×

Pr
≈

8Pĥ×

Pr̂

(
κ2z2

a2

)
≈ 16ε. (4.115)

This fact, in conjuction with (4.81) and (4.112), leads to the prediction

g∗grav

g∗
≈ 1

64

PT
PS
. (4.116)

The direction-dependent effects of a small persistent anisotropy during inflation on

the tensor power spectrum are suppressed with respect to the direction-dependent

effects on the scalar power spectrum by a number of order the tensor-to-scalar ratio.

This is a consistency condition for the model, given the constraint from observation,

16In the last equality we used equations (4.16) and (4.37), given that ρ̂A must be small compared
to κ2z2/a2.

17What are identified as tensor perturbations are the amplitudes of the transverse, traceless (TT)
part of δgij/a2. We defined δgij,TT /a

2 = 2Eij , thus the extra factor of 22.
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ρ̂A � ε.

4.6 Conclusions

In this chapter, we considered gauge-invariant perturbations in a class of models with

a persistent background anisotropy. After determining the quadratic action in terms

of the dynamical fields, we computed the dominant direction-dependent effects of the

background anisotropy on primordial power spectra.

We showed that even a very small persistent anisotropy (with the anisotropy

parameter much smaller than the slow-roll parameter ε) can give rise to a dramatic

direction-dependent effect on the primordial power spectra of dynamical fields. In an

anisotropic background, the coupling between what reduce to the spin-1 and the spin-0

and spin-2 degrees of freedom in the isotropic case is extremely important. We showed

that such couplings give rise to the dominant direction-dependent contributions to

the primordial power spectra of tensor and scalar perturbations.

There has been a fair amount of work on vector fields with time-dependent cou-

plings that are put in by hand, assuming exponential expansion. We found that the

amount of anisotropy in power spectra are quite sensitive to the details of how nonex-

ponential the expansion is, and how long the expansion lasts. Perhaps this sensitivity

is unsurprising in light of the no-hair theorem.

We found that for a given scale |~k|, the curvature power, P (~k), is minimized when

~k points along the preferred direction.18 We attribute this feature to the fact that, in

the class of models we considered, the preferred direction is expanding more slowly

than other directions.

We showed that anisotropic effects are more pronounced in the scalar power

spectrum than in the tensor power spectra. In fact, we showed that the direction-

18In other words, we found that g∗ is negative.



129

dependent effects on the tensor power spectrum are suppressed with respect to the

direction-dependent effects on the scalar power spectrum by a number of order the

tensor-to-scalar ratio. A priori one might have expected that the tensor power spec-

tra and the scalar power spectrum would develop fractional direction dependence of

the same magnitude. We find that this is not the case.

Finally, upon examination of the quadratic action for all dynamical degrees of

freedom, we find no indication of instabilities in this model. This should not be

surprising since the matter stress-energy satisfies the dominant energy condition.

We did not calculate the cross correlation between tensor and scalar perturba-

tions. But one can see from the form of the quadratic action19 that such a nonzero,

direction-dependent correlation should exist. The cross-correlation effect will be small

compared to the direction-dependent effect on the curvature power spectrum, but it

could be interesting.

4.A Appendix: Parametrization of Perturbations

In the following we use many of the same conventions and notation as in [69]. Since

the background space-time is homogeneous, we decompose our perturbations into

Fourier modes

δ(xi, η) =

∫
d3k

(2π)3
eikjx

j

δ(ki, η). (4.117)

For a given Fourier mode, characterized by the time-independent wave vector ki,

we form an orthonormal basis {e1
i , e

2
i } for the subspace perpendicular to the wave

vector such that

γijeai e
b
j = δab and γijeai kj = 0. (4.118)

Here γij is the spatial metric defined in (4.4). Such an orthonormal basis for the

19See equations (4.85) - (4.89).
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spatial hypersurfaces is uniquely defined up to a spatial rotation about the wave

vector ki. To remain properly normalized with the above normalization condition,

these basis vectors must be time dependent.

For definiteness, and without loss of generality, we will take wave vectors to be of

the form ki = (k1, k2, 0). The basis vectors can then be written as

e1
i =

(
−e
−3βk2√
k2

,
e3βk1√
k2
, 0

)
and e2

j =
(
0, 0, eβ

)
, (4.119)

where γijkikj = k2.

It turns out that there always exists a choice of basis vectors e1
i and e2

j that results

in the basis vectors having definite sign under what we will call

k parity: ki → −ki. (4.120)

Our basis (4.119) is such that under k parity, eai → (−1)aeai . Such a choice of basis is

now unique up to discrete spatial rotations around the ki axis by multiples of π/2.

We parametrize the most general perturbations about the background Bianchi I

metric (4.4) in the standard way,

ds2 = −a(η)2
[
(1 + 2A)dη2 + 2Bidx

idt+ (γij(η) + hij)dx
idxj

]
. (4.121)

Following [69],

Bi = ∂iB + B̄i (4.122)

hij = 2C
(
γij +

σij
H

)
+ 2∂i∂jE + 2∂(iEj) + 2Eij (4.123)
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where σij = 1
2
γ′ij and H = α′ and also,

γij∂iB̄j = 0, γij∂iEj = 0, γij∂iEjk = 0 and γijEij = 0. (4.124)

We parametrize perturbations of the inflaton field and the electromagnetic field by

δφ and δFµν , respectively.

One can show that the following are U(1) gauge and diffeomorphism invariant

variables,

Φ(k) = A+
1

a(η)

(
a

(
B − (k2E)′

k2

))′
, (4.125)

Ψ(k) = −C − a′(η)

a(η)

[
B − (k2E)′

k2

]
, (4.126)

Φi(k) = B̄i − (Ei)′, (4.127)

Eij, (4.128)

χ(k) = δφ+ φ′(η)

[
B − (k2E)′

k2

]
, (4.129)

ΦF
ij(k) = δFij + 2F̄η[iikj]

[
B − (k2E)′

k2

]
, (4.130)

ΦF
i (k) = δFηi − γjkF̄ηjiki(ikkE + Ek) +

(
F̄ηi

[
B − (k2E)′

k2

])′
. (4.131)

The perturbation in the gauge field can be decomposed along directions transverse

and parallel to the spatial wave vector:

δAi = (iδA(⊥,+)(k, η))e1
i + (δA(⊥,−)(k, η))e2

i + (iδA‖(k, η)))k̂i, (4.132)

where the amplitudes δA(⊥,±)(k, η) are U(1) gauge invariant.20 In A0 = E = B =

Bi = 0 gauge the electromagnetic gauge fields δA(⊥,±)(k, η) are simply related to the

20The factors of i accompanying some perturbations is to ensure that the relation δ∗(k, η) =
δ(−k, η) holds for all Fourier amplitudes.



132

gauge-invariant magnetic and electric field perturbations. In particular we may define

δA+(k, η) ≡
i(e1)ikjΦF

ij

k2
and δA−(k, η) ≡ −

(e2)ikjΦF
ij

k2
, (4.133)

where γijkikj = k2 and where spatial indices are understood to be raised and lowered

with the spatial metric, γij. The dynamical, gauge-invariant dynamical electromag-

netic variables are δA±(k, η) as defined above and are equal to δA(⊥,±)(k, η) as defined

in (4.132) in A0 = E = B = Bi = 0 gauge (a modified Newtonian gauge).

The tensor perturbations, Eij are gauge invariant by construction. We will further

decompose the tensor perturbations by constructing the two independent symmetric

traceless tensors that are transverse to the wave vector ki. We again follow [69] and

define these tensors as

Eij = E+ε+ij + iE×ε×ij, (4.134)

ε+ij =
e1
i e

1
j − e2

i e
2
j√

2
, (4.135)

ε×ij =
e1
i e

2
j + e2

i e
1
j√

2
. (4.136)

We have chosen this normalization since

γikγjlελijε
λ′

kl = δλλ
′
. (4.137)

Because we have chosen a basis with the property that, under k parity, eai → (−1)aeai

these tensors have k parity transformations ε+ij → +ε+ij and ε×ij → −ε×ij.

We will take the Mukhanov-Sasaki scalar variable (which is conserved outside the

horizon in the isotropic limit) to be

r ≡ α′

φ̄′
χ+ Ψ. (4.138)
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In a gauge with spatially flat slicing, this variable corresponds to minus the curvature

perturbation, −ζ, as defined, e.g., in [72].

Some of the variables listed are not dynamical and must be removed from the

action using constraint equations. There are a total of five dynamical variables in

the theory. In the isotropic limit, these variables correspond to two electromagnetic

perturbations, two tensor perturbations and one scalar perturbation. Furthermore,

the action separates into uncoupled parts according to the transformation of fields

under k parity: a piece including E+, δA+ and r and one including E× and δA−.

4.B Appendix: Quadratic Action and Einstein’s

Equations

Given a metric gµν = ḡµν + δgµν , the Einstein-Hilbert action to quadratic order in

δgµν can be written as

δ(2)SEH =

∫
d4x
√
−ḡ
{ 1

4κ2
ḡµν(∇̄αδgβµ)(∇̄βδgαν)−

1

4κ2
ḡµν(∇̄αδgµν)(∇̄βδgαβ)

+
1

8κ2
ḡµν ḡρσ(∇̄αδgµν)(∇̄αδgρσ)− 1

8κ2
ḡµν ḡρσ(∇̄αδgµρ)(∇̄αδgνσ)

+
1

2κ2
R̄µν ḡρσ(δgµρ)(δgνσ)− 1

4κ2
R̄µν ḡρσ(δgµν)(δgρσ) +

1

8κ2
R̄ (ḡµνδgµν)

2

− 1

8κ2
R̄ ḡµν ḡρσ(δgµρδgνσ)

}
(4.139)

after dropping boundary terms. In the above equation, the covariant derivatives (∇̄)

are compatible with the background metric

∇̄αḡµν = 0. (4.140)

We used this form of the action and our parameterization to compute Einstein’s

equations. In particular, the first-order change in the components Einstein tensor can
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be written in the following way (in Newtonian gauge, where E = B = Bi = 0):

a2δGη
η = −2∆Ψ + 6HΨ′ −

(
Ψ

H

)′
σ2 +

σij

H
∂i∂jΨ− σij∂iΦj + (Ei

j)
′σji + (6H2 − σ2)Φ

− 1

2
(σ2)′

Ψ

H
(4.141)

a2δGη
i = −σ2∂iΨ

H
+ σji ∂j

(
Φ +

(
Ψ

H

)′)
− 2∂i(Ψ

′ +HΦ)− 1

2
∆γijΦ

j

− 2σjk∂jE
k
i + σkj ∂iE

j
k + 3σji ∂jΨ +

(σji )
′

H
∂jΨ (4.142)

a2δGi
j = δij

[
2Ψ′′ + (2H2 + 4H′)Φ + ∆(Φ−Ψ) + 2HΦ′ + 4HΨ′

]
− ∂i∂j(Φ−Ψ)

− 2
σ

(i
k

H
∂j)∂

kΨ + σij

[
−H

(
Ψ′

H2

)′
+

(
H′

H2

)′
Ψ +

∆Ψ

H
− Φ′

]
+ δij

[
σ2(Φ + (Ψ/H)′) +

σkl

H
∂k∂lΨ

]
+ (Ei

j)
′′ −∆Ei

j + 2H(Ei
j)
′ − σlk(Ek

l )′δij

+ δij(σ
k
l ∂kΦ

l)− 2Hγik∂(kΦj) − γik
[
∂(kΦ

′
j) − 2σl(k∂|l|Φj)

]
+ (σij)

′
[
2
H′

H2
Ψ− 2

Ψ′

H
− 2(Φ + Ψ)

]
+ σij

[
2
H′

H
Ψ− 4HΦ

]
+

1

2
δij
σ2′

H
Ψ−

(σij)
′′

H
Ψ + 4H

[
σikE

k
j − σkjEi

k

]
+ 2

[
σikE

k
j − skjE

i
k

]′ − 5σijΨ
′

+ 2H
[
σik∂jE

k − σkj ∂kEi
]

+
[
(σik)

′∂jE
k − (σkj )′∂kE

i
]
, (4.143)

where ′ denotes derivatives with respect to conformal time and

H =
a′

a
, σij =

1

2
γ′ij. (4.144)

In these equations, spatial indices are raised and lowered with γij.

Our expressions (4.141) - (4.143) do not match those of [69]. In particular, the

expression in [69] does not contain the gauge noninvariant terms on the last line in

(4.143).21 We are confident that our expression is correct, in part because our Einstein

tensor is gauge covariant while theirs is gauge invariant.

21Some of our manifestly gauge-invariant terms disagree with those of [69] as well.
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4.C Appendix: Diagonalizing a Kinetic Term

Suppose a kinetic term takes the form

K =
1

2
X†′X ′ +X†′MX +X†M †X ′ (4.145)

where X is a vector of fields and M is a time-dependent matrix. Diagonalizing the

kinetic term requires a change of variables

X −→ V Y, (4.146)

where V is a time-dependent unitary matrix, such that

K −→ 1

2
Y †′Y ′ + total derivative + Y †QY (4.147)

where Q is some Hermitian matrix. We can calculate directly that

K =
1

2
Y †′Y ′ + Y †

(
V †′V + V †(M † −M)V

)
Y ′ + total derivative + Y †QY. (4.148)

The kinetic term is diagonalized by a unitary matrix V that satisfies

V †′V = −V †(M † −M)V or equivalently V V †′ = M −M †. (4.149)

If M were a time-independent matrix, then the kinetic term would be diagonalized

by a constant unitary matrix V such that

V †(M −M †)V = D (4.150)

where D is a constant diagonal matrix.
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4.D Appendix: Estimates of Integrals

In order to get a quantitative estimate of the effect of the anisotropic background on

power spectra, we must estimate the integrals in (4.75) - (4.77). We may take ρ̂A, Σ,

and the slow-roll parameters to be nearly constant. Then the relevant integrals are

p−2

∫ η

sin (2ψ~p(η
′)− 2ψ~p(η)) α′(η′)2 Ĩ(pη′, pη)dη′,

p−2

∫ η

cos (2ψ~p(η
′)− 2ψ~p(η)) α′(η′)2 Ĩ(pη′, pη)dη′ (4.151)

∫ η

(e2nβ(η′) − e2nβ(η0)) Ĩ(pη′, pη)dη′ and p−2

∫ η

α′(η′)2 Ĩ(pη′, pη)dη′

(4.152)

where Ĩ(x, y) was defined in (4.70) as

Ĩ(x, y) =

(
1

2x2y2
− 1

2x2
+

2

xy
− 1

2y2
+

1

2

)
sin(2x− 2y)

+

(
1

x2y
− 1

xy2
+

1

x
− 1

y

)
cos(2x− 2y). (4.153)

During slow-roll inflation,

α′(η) = eα(η)H(η) ≈ −1

η
(4.154)

ψ~p(η
′)− ψ~p(η) ≈ (α(η′)− α(η))

k2e
−β0

k0

√
ρ̂A (4.155)

(e2nβ(η′) − e2nβ(η0)) ≈ 2nΣ (α(η′)− α(η0)) . (4.156)

Let us define a new variable z by22

− pη = e−z. (4.157)

22This is just a convenient dimensionless variable and is not equal to aφ′/α′ as in (4.37).
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From (4.154) it’s clear that

ez ≈ aH

p
and so z ≈ log(H/p) + α. (4.158)

We may thus rewrite the integrals (4.151) and (4.152) in terms of the variable z:

Is ≡ p−1

∫ z∗

sin

(
2
ψ′~p
α′

(z − z∗)
)
Ĩ(−e−z,−e−z∗)ezdz,

Ic ≡ p−1

∫ z∗

cos

(
2
ψ′~p
α′

(z − z∗)
)
Ĩ(−e−z,−e−z∗)ezdz (4.159)

I1 ≡ p−1

∫ z∗

(z − z0) Ĩ(−e−z,−e−z∗)e−zdz, I2 ≡ p−1

∫ z∗

Ĩ(−e−z,−e−z∗)ezdz

(4.160)

where z∗ is the value of z at the end of inflation and

ψ′~p
α′
≡ p2e

−β0

p

√
ρ̂A. (4.161)

The function

Ĩ(−e−z,−e−z∗)ez (4.162)

oscillates rapidly with growing amplitude for z < 0. See Fig. 4.2. For z > 0 and

values of z∗ on the order of tens, the function is well approximated by a constant

Ĩ(−e−z,−e−z∗)ez ≈ −2

3
e2z∗ 0 < z < z∗. (4.163)

The constant can be found by expanding the function about z∗ =∞ and then about

z =∞.

The contribution of terms that go like I1 will be subdominant compared to con-

tributions from terms proportional to the other integrals23, so we will not bother to

23The contribution from I1 can be important if inflation lasts a very long time — on the order of
103 e-folds.
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-
2

3
ã2 z*

z*

Figure 4.2: The function ez Ĩ(−ez,−e−z∗) on a linear scale. The axes cross at the point
{0, 0}. For 0 < z < z∗ the function is well approximated by −2

3
e2z∗ . The frequency of

oscillation for z < 0 does not vary much as z∗ increases—only the amplitude changes.
The plot above was generated using z∗ = 15.

calculate I1. Since the dominant contribution to the other integrals will occur when

z > 0 (which corresponds to after horizon crossing) we may approximate the integrals

by

Is ≈ −
2

3
e2z∗p−1

∫ z∗

0

sin

(
2
ψ′~p
α′

(z − z∗)
)
dz = −2

3
e2z∗p−1

[
2ψ′~p
α′

]−1(
cos

[
2ψ′~p
α′

z∗

]
− 1

)
,

(4.164)

Ic ≈ −
2

3
e2z∗p−1

∫ z∗

0

cos

(
2
ψ′~p
α′

(z − z∗)
)
dz = −2

3
e2z∗p−1

[
2ψ′~p
α′

]−1(
− sin

[
2ψ′~p
α′

z∗

])
(4.165)

I2 = p−1

∫ z∗

Ĩ(−e−z,−e−z∗)ezdz ≈ −2

3
e2z∗p−1z∗. (4.166)

Modes of astrophysical interest crossed the horizon about 60 e-folds—plus or minus

a few—before the end of inflation. Such modes of astrophysical interest therefore

correspond to z∗ ≈ 60.



139

Bibliography

[1] S. M. Carroll, T. R. Dulaney, M. I. Gresham, and H. Tam, Phys. Rev. D79,

065011 (2009), arXiv:0812.1049.

[2] S. M. Carroll, T. R. Dulaney, M. I. Gresham, and H. Tam, Phys. Rev. D79,

065012 (2009), arXiv:0812.1050.

[3] T. R. Dulaney and M. I. Gresham, Phys. Rev. D81, 103532 (2010),

arXiv:1001.2301.

[4] D. Baumann and H. V. Peiris, Adv. Sci. Lett. 2, 105 (2009), arXiv:0810.3022.

[5] A. H. Guth, Phys. Rev. D23, 347 (1981).

[6] L. Ackerman, S. M. Carroll, and M. B. Wise, Phys. Rev. D75, 083502 (2007),

arXiv:astro-ph/0701357.

[7] M.-a. Watanabe, S. Kanno, and J. Soda, Phys. Rev. Lett. 102, 191302 (2009),

arXiv:0902.2833.

[8] V. F. Mukhanov, Physical Foundations of Cosmology (Cambridge University

Press, Cambridge, UK, 2005).

[9] S. Weinberg, Cosmology (Oxford University Press, 2008).

[10] R. W. Wald, Phys. Rev. D28, 2118 (1983).

[11] L. Bianchi, Soc. Ital. Sci. Mem. di Mat. 11 (1898).



140

[12] T. Jacobson and D. Mattingly, Phys. Rev. D64, 024028 (2001), arXiv:gr-

qc/0007031.

[13] T. Jacobson, PoS QG-PH, 020 (2007), arXiv:0801.1547.

[14] B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev. D79, 063517 (2009),

arXiv:0812.1231.

[15] S. Weinberg, Phys. Rev. D72, 043514 (2005), arXiv:hep-th/0506236.

[16] S. Weinberg, Phys. Rev. D67, 123504 (2003), arXiv:astro-ph/0302326.

[17] S. Weinberg, Phys. Rev. D69, 023503 (2004), arXiv:astro-ph/0306304.

[18] C. M. Will and J. Nordtvedt, Kenneth, Astrophys. J. 177, 757 (1972).

[19] M. Gasperini, Class. Quant. Grav. 4, 485 (1987).

[20] V. A. Kostelecky and S. Samuel, Phys. Rev. D40, 1886 (1989).

[21] D. Colladay and V. A. Kostelecky, Phys. Rev. D58, 116002 (1998), arXiv:hep-

ph/9809521.

[22] C. Eling and T. Jacobson, Phys. Rev. D69, 064005 (2004), arXiv:gr-qc/0310044.

[23] S. M. Carroll and E. A. Lim, Phys. Rev. D70, 123525 (2004), arXiv:hep-

th/0407149.

[24] T. Jacobson and D. Mattingly, Phys. Rev. D70, 024003 (2004), arXiv:gr-

qc/0402005.

[25] E. A. Lim, Phys. Rev. D71, 063504 (2005), arXiv:astro-ph/0407437.

[26] C. Eling, T. Jacobson, and D. Mattingly, (2004), arXiv:gr-qc/0410001.



141

[27] T. R. Dulaney, M. I. Gresham, and M. B. Wise, Phys. Rev. D77, 083510 (2008),

arXiv:0801.2950.

[28] J. B. Jimenez and A. L. Maroto, JCAP 0902, 025 (2009), arXiv:0811.0784.

[29] V. A. Kostelecky and R. Lehnert, Phys. Rev. D63, 065008 (2001), arXiv:hep-

th/0012060.

[30] J. W. Elliott, G. D. Moore, and H. Stoica, JHEP 08, 066 (2005), arXiv:hep-

ph/0505211.

[31] D. Mattingly, Living Rev. Rel. 8, 5 (2005), arXiv:gr-qc/0502097.

[32] C. M. Will, Living Rev. Rel. 9, 3 (2005), arXiv:gr-qc/0510072.

[33] N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Mukohyama, JHEP 05, 074

(2004), arXiv:hep-th/0312099.

[34] N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, S. Mukohyama, and T. Wiseman,

JHEP 01, 036 (2007), arXiv:hep-ph/0507120.

[35] H.-C. Cheng, M. A. Luty, S. Mukohyama, and J. Thaler, JHEP 05, 076 (2006),

arXiv:hep-th/0603010.

[36] S. M. Carroll, M. Hoffman, and M. Trodden, Phys. Rev. D68, 023509 (2003),

arXiv:astro-ph/0301273.

[37] S. L. Dubovsky and S. M. Sibiryakov, Phys. Lett. B638, 509 (2006), arXiv:hep-

th/0603158.

[38] C. Eling, B. Z. Foster, T. Jacobson, and A. C. Wall, Phys. Rev. D75, 101502

(2007), arXiv:hep-th/0702124.

[39] V. A. Kostelecky, (2001), arXiv:hep-ph/0104227.



142

[40] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis, and R. Rattazzi, JHEP

10, 014 (2006), arXiv:hep-th/0602178.

[41] R. Bluhm, N. L. Gagne, R. Potting, and A. Vrublevskis, Phys. Rev. D77, 125007

(2008), arXiv:0802.4071.

[42] J. L. Chkareuli, C. D. Froggatt, and H. B. Nielsen, Nucl. Phys. B821, 65 (2009),

arXiv:hep-th/0610186.

[43] B. M. Gripaios, JHEP 10, 069 (2004), arXiv:hep-th/0408127.

[44] M. A. Clayton, (2001), arXiv:gr-qc/0104103.

[45] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton

University, Princeton, N.J., 1992).

[46] Y. Nambu, Progr. Theoret. Phys. Suppl. Extra No. , 190 (1968).

[47] R. Bluhm, S.-H. Fung, and V. A. Kostelecky, Phys. Rev. D77, 065020 (2008),

arXiv:0712.4119.

[48] B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev. Lett. 102, 111301

(2009), arXiv:0809.2779.

[49] M. D. Seifert, Phys. Rev. D76, 064002 (2007), arXiv:gr-qc/0703060.

[50] T. R. Dulaney and M. I. Gresham, (2008), arXiv:0805.1078.

[51] T. S. Koivisto and D. F. Mota, JCAP 0808, 021 (2008), arXiv:0805.4229.

[52] S. Kanno and J. Soda, Phys. Rev. D74, 063505 (2006), arXiv:hep-th/0604192.

[53] B. Li, D. Fonseca Mota, and J. D. Barrow, Phys. Rev. D77, 024032 (2008),

arXiv:0709.4581.

[54] S. M. Carroll and H. Tam, Phys. Rev. D78, 044047 (2008), arXiv:0802.0521.



143

[55] L. Parker, Phys. Rev. Lett. 21, 562 (1968).

[56] M. S. Turner and L. M. Widrow, Phys. Rev. D37, 2743 (1988).

[57] B. Ratra, Astrophys. J. 391, L1 (1992).

[58] V. Demozzi, V. Mukhanov, and H. Rubinstein, JCAP 0908, 025 (2009),

arXiv:0907.1030.

[59] K. Bamba, N. Ohta, and S. Tsujikawa, Phys. Rev. D78, 043524 (2008),

arXiv:0805.3862.

[60] S. Kanno, J. Soda, and M.-a. Watanabe, JCAP 0912, 009 (2009),

arXiv:0908.3509.

[61] D. Grasso and H. R. Rubinstein, Phys. Rept. 348, 163 (2001), arXiv:astro-

ph/0009061.

[62] K. Dimopoulos, M. Karciauskas, and J. M. Wagstaff, Phys. Lett. B683, 298

(2010), arXiv:0909.0475.

[63] S. Yokoyama and J. Soda, JCAP 0808, 005 (2008), arXiv:0805.4265.

[64] A. Golovnev and V. Vanchurin, Phys. Rev. D79, 103524 (2009), arXiv:0903.2977.

[65] K. Dimopoulos, M. Karciauskas, D. H. Lyth, and Y. Rodriguez, JCAP 0905,

013 (2009), arXiv:0809.1055.

[66] C. A. Valenzuela-Toledo, Y. Rodriguez, and D. H. Lyth, Phys. Rev. D80, 103519

(2009), arXiv:0909.4064.

[67] C. A. Valenzuela-Toledo and Y. Rodriguez, Phys. Lett. B685, 120 (2010),

arXiv:0910.4208.

[68] B. Himmetoglu, JCAP 1003, 023 (2010), arXiv:0910.3235.



144

[69] T. S. Pereira, C. Pitrou, and J.-P. Uzan, JCAP 0709, 006 (2007),

arXiv:0707.0736.

[70] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys. Rept. 215,

203 (1992).

[71] P. Adshead, R. Easther, and E. A. Lim, Phys. Rev. D79, 063504 (2009),

arXiv:0809.4008.

[72] S. Dodelson, Modern Cosmology (Academic Pr., Amsterdam, Netherlands, 2003).

[73] N. E. Groeneboom, L. Ackerman, I. K. Wehus, and H. K. Eriksen, (2009),

arXiv:0911.0150.

[74] D. Hanson and A. Lewis, Phys. Rev. D80, 063004 (2009), arXiv:0908.0963.

[75] A. R. Pullen and M. Kamionkowski, Phys. Rev. D76, 103529 (2007),

arXiv:0709.1144.


	Acknowledgments
	Abstract
	Introduction
	The Big Picture
	How This Thesis Emerged
	Synopsis
	CMB Temperature Correlations
	From Primordial Perturbations to CMB Temperature Correlations
	The Cosmic No-Hair Theorem
	Æther
	Hairy Inflation
	Standard Slow-Roll Inflation
	Background Equations
	Perturbations from Single-Field Slow-Roll Inflation


	Instabilities in the Æther
	Introduction
	Models
	Validity of Effective Field Theory

	Boundedness of the Hamiltonian
	Timelike Vector Field
	Spacelike Vector Field
	Smooth Potential
	Discussion

	Linear Instabilities
	Timelike Vector Field
	Spacelike Vector Field
	Stability is Not Frame Dependent

	Negative Energy Modes
	Spin-1 Energies
	Spin-0 Energies

	Maxwell and Scalar Theories
	Maxwell Action
	Scalar Action

	Conclusions
	Appendix: Solutions to the Linearized Equations of Motion

	Sigma-Model Æther
	Introduction
	Excitations in the Presence of Gravity
	Experimental Constraints
	Cosmological Evolution
	Extra Dimensions
	Conclusions

	Primordial Perturbations from Anisotropic Inflation
	Introduction
	Model and Background Solution
	Perturbations: Setup and Strategy
	Physical Scenario
	Correlations Using ``in-in'' Formalism
	Decomposition of Perturbations
	Canonically Normalized Variables
	Comparison with Data

	Perturbations: Odd Sector
	Preliminary Look at Stability
	Diagonalized Action
	Correlations Using Perturbation Theory
	Discussion

	Perturbations: Even Sector
	Diagonalizing the Action
	Correlations Using Perturbation Theory

	Conclusions
	Appendix: Parametrization of Perturbations
	Appendix: Quadratic Action and Einstein's Equations
	Appendix: Diagonalizing a Kinetic Term
	Appendix: Estimates of Integrals

	Bibliography

