Syntheses of Polymers with Diverse Architectures via

Metathesis Polymerization

and

Investigation of Their Structure-Property Relationships

Thesis by

Yan Xia

In Partial Fulfillment of the Requirements for the

Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2010

(Defended on April 19, 2010)

© 2010

Yan Xia

All Rights Reserved

For Mom, Dad, and my Wife

Acknowledgements

Many people asked me "what do you like about Caltech best?" After nearly five years, I give my short answer without hesitation: "The People!" It is all the wonderful people at Caltech that make it the world's best place to explore science and made my time here truly unforgettable.

My advisor, Bob Grubbs, has been giving me the total freedom to pursue my interests on some projects that are quite nontraditional in the Grubbs group, yet providing his complete support whenever it is needed. I have been constantly impressed by his broad interest, deep knowledge, and repetitive enthusiasm. (As he said, when you get older and more forgetful, you can get excited about the same thing many times.) His often brief yet insightful and encouraging advice has taught me to think with the big perspective, and the much longer stories almost always following his scientific advice (often about the history of certain chemistry or about his outdoor adventure) have definitely been the best delightful reliefs when I was stressed with not-going-well projects. Outside the lab, the Grubbs camping trips have allowed me to enjoy more American culture; the Christmas dinners with his family have always made me feel I have a home away from home.

"Thank you, Bob!" for providing all these to shape me into an independent researcher and to give me the confidence to challenge myself in the future.

Julie Kornfield has been my coadvisor, and she has a completely different character from Bob. She is definitely the smartest and the most critical lady I have ever seen. Being both means that she will NEVER let it go if I try not to be meticulous in

v

research. With her training, I will not be afraid of any scientific criticism in the future. On the other hand, she is also a very caring person, always putting others' personal needs/feelings first. From her, I have learned to consider things from the angles of others.

I have also been blessed by an excellent committee: Dave Tirrell, Mark Davis, and Jim Heath. They are all wonderful scientists as well as mentors, and their knowledge pretty much covers the full range of chemistry and materials science, which is sometimes scary as I talk to them about my prop ideas and my research. I have also used certain equipment from all three labs for free at some point of my graduate research (sometimes it can be as long as over a year) and they never seemed to mind. Many members from these groups have also provided me with generous help on training and discussions about my need.

In the Grubbs group, I have had the privilege to work with AJ Boydston for three years on the tough yet enjoyable journey of making cyclic polymers. Since day one, I have been impressed with his outside-the-box thinking, vast chemistry knowledge, and incredible efficiency in everything, ranging from finishing up a reaction to writing up a proposal to setting up a science party for his lovely kids. I also owed him half a tooth on the basketball court. Being an absolutely outstanding scientist and such a fun person to work with, he has become my best friend and a role model for doing research. I am sure he will have a stellar career at the University of Washington soon.

I also had the fortune to work with many other members in the polymer sub-group: Masao Yanagawa and Ron Walker first taught me how to ROMP, although Ron seemed to be more interested in Louisiana and Chinese culture, and he also helped me buy a nice car with his good knowledge of cars (although I had to get the transmission fixed two months after I bought it). John Matson, "beef", has been the most polymer person in the group during my time in the Grubbs group, and our basketball coach for a while. John and Ron have also been fixing the clogged GPC tirelessly during the time I had to work with multimillion molecular weight polymers. I really appreciate the effort from both of you! Paul Clark, a professional fisherman and a chemist, is in my year. He has a truly selfless heart and neat skills for kilogram-scale reactions. I look forward to working with him again in a few months. Erin Guidry was the rotaxane master in the group; Mike Page is the happiest person I have seen; Irina Gorodetskaya introduced the cyclic polymer project to me; Rose Conrad is great sources for synthetic chemistry; Jeremiah Johnson is the most hipster chemist I have met with lots of wild ideas. I am happy that Benjamin Sveinbjornsson is going to carry the torch of brush polymers.

The Grubbs group is never short of talents. I have had interactions with other excellent fellow students Jason Jordan, Soon Hong, Donde Anderson, Matt Whited, Kevin Kuhn, Jean Li, Chris Daeffler, Keith Keitz (Thank you for taking good care of the vulnerable "Flory"!), Matt Van Wingerden, Renee Thomas, and Myles Herbert; as well as fabulous postdocs with diverse backgrounds: Cheol Chung, Georgios Vougioukalakis J. B. Bourg, Koji Endo, Vince Lavallo, Peili Teo, and Guangbin Dong. I would like to thank them for all their friendship and help!

Rafael Verduzco was a senior grad student when I worked in Julie's lab in my first year. He introduced me to basic polymer physics, especially liquid crystal polymers and rheology, and never hesitated to offer his help to get me started. More importantly, he taught me how to communicate with chemical engineers. I look forward to his future success. I also had many happy chats with Matt Mattson, Ameri David, Zuli Kurji, and Jeremy Wei in Julie's lab.

Brad Olsen was a joint postdoc in three (!) groups at Caltech, but we got to know each other quite a while before he came to Caltech. He is an excellent scientist, mentor, and coworker. He offered tremendous help on the characterization of the brush copolymers, and taught me about almost all aspects of the physics of block copolymers. Without him, Chapter 5 of this thesis would not be complete. I am sure he will have an outstanding independent career and become a rising star in the field of polymer science.

There are so many more wonderful people that I cannot list all their names with the fear that I will forget some. Thank you all of you!

Outside Caltech, I would like to acknowledge our long-time collaborator, Professor Greg McKenna and his student Miao Hu at Texas Tech University, for all their teaching about rheology and patience to bear with my samples; as well as Professor Hans Spiess and his former student Yefeng Yao at Max-Plank Institute for their generous help on the melt state ¹³C NMR experiments.

Last but not least, I would like to take this time to memorialize my grandma, who taught me to be a genuine person but did not wait to see me finish my study. May you rest peacefully. No words can really describe my gratitude to my parents and to my wife for always putting me first and always being willing to sacrifice everything.

Abstract

Metathesis polymerization using highly active, functional-group-tolerant catalysts is a powerful and versatile method for polymer synthesis. This thesis focuses on the preparation of a variety of advanced polymer architectures using well-defined rutheniumbased metathesis catalysts and the study of materials properties dictated by those unique macromolecular structures.

Chapter 1 introduces olefin metathesis, metathesis polymerization, and recent developments in living/controlled polymerization and polymer functionalization. The goal is to provide a summary of the current toolbox of polymer chemists. The second part of Chapter 1 describes using these tools to synthesize different macromolecular architectures.

Chapters 2 and 3 describe ring-expansion metathesis polymerization (REMP) using cyclic catalysts. Chapter 2 focuses on catalyst development, while Chapter 3 focuses on the REMP mechanism and cyclic polymer characterization.

Chapters 4 and 5 focus on brush polymers. Chapter 4 describes the syntheses of linear and cyclic brush polymers using ring-opening metathesis polymerization (ROMP) and REMP of macromonomers (MMs), respectively. Chapter 5 describes the efficient synthesis of brush copolymers and the study of their melt state self-assembly into highly ordered nanostructures.

Chapter 6 describes the synthesis and electro-optic response of well-defined liquid crystalline (LC) gels that were made from controlled end-linking of telechelic LC

polymers. These gels possessed very fast, reversible electro-optic switching; the degree of response was closely related to network structure.

Table of Contents

Acknowledgements	iv
Abstract	viii
Table of Contents	ix
List of Schemes	xii
List of Figures	xiv

Ch	apter 1: Introduction	1
	Olefin Metathesis	2
	Ring-Opening Metathesis Polymerization (ROMP)	4
	Expansion of Polymer Chemistry Toolbox	7
	Control of Polymer Architectures	11
	Thesis Research.	21
	References	.23

Chapter 2: Cyclic Ruthenium-Alkylidene Catalysts for Ring-Expansion Metathesis

Polymerization	26
Introduction	28
Results and Discussion	32
Conclusions	42

	Х
Experimental Section	43
References	50
Chapter 3: Ring-Expansion Metathesis Polymerization: Catalyst	Dependent
Polymerization Profiles	53
Introduction	55
Results and Discussion	60
Conclusions	80
Experimental Section	81
References	85

Chapter 4: Efficient Syntheses of Linear and Cyclic Brush Polymers via Ring-

Opening Metathesis Polymerization of Macromonomers	87
Introduction	89
Results and Discussion	93
Conclusions	107
Experimental Section	107
References	112

Chapter 5: Efficient Synthesis of Narrowly Dispersed Brush Copolymers and Study

of Their Assembly	115
Introduction	117
Results and Discussion	
Conclusions	141

	xi
Experimental Section	
References	146

Chapter 6: Well-Defined Liquid Crystal Gels from Telechelic Polymers via Ring-

Opening Metathesis Polymerization and "Click" Chemistry	149
Introduction	151
Results and Discussion	153
Conclusions	166
Experimental Section	167
References	172

Appendix 1: GPC Characterization of Cyclic Polymers	17	7	5	1
---	----	---	---	---

Appendix 2: Hydrogenation of Polyalkena	ners
---	------

List of Schemes

Chapter 2: Cyclic Ruthenium-Alkylidene Catalysts for Ring-Expansion Metathesis Polymerization

Scheme 1	Proposed REMP catalytic cycle	
Scheme 2	Synthesis of cyclic REMP catalysts UC-4 – UC-7	32
Scheme 3	Synthesis of "saturated" catalysts SC-5 and SC-6	34
Scheme 4	Proposed species observable upon ROMP of COE us	ing open
	catalysts pre-UC-5 – pre-UC-7	
Scheme 5	Equilibration of cyclic catalyst and linear PCOE	42

Chapter 4: Efficient Syntheses of Linear and Cyclic Brush Polymers via Ring-Opening Metathesis Polymerization of Macromonomers

Scheme 1	Ru-based metathesis catalysts	93
Scheme 2	Synthesis of monomer 4	94
Scheme 3	Synthesis of macromonomers	95
Scheme 4	Synthesis of polymacromonomer from ω -norbornenyl MM	100

Chapter 5	5: Efficient	Synthesis	of Narrowly	Dispersed	Brush (Copolymers	and S	Study
	of Their	Assembly						

Scheme 1	Synthesis of macromonomers	122
----------	----------------------------	-----

Chapter 6: Well-Defined Liquid Crystal Gels from Telechelic Polymers via Ring-Opening Metathesis Polymerization and "Click" Chemistry

Scheme 1	Synthesis of mo	nomer	s 1 and 2			154
Scheme 2	ROMP of funct	ionaliz	ed cyclooctene	e monomers		155
Scheme 3	Cross-linking	of	telechelic	polymers	by	"click"
	chemistry					156

Appendix 2: Hydrogenation of Polyalkenamers

Scheme 1	Noncatalytic	(top)	and	catalytic	(bottom)	hydrogenation	of
	PCOE					1	84

List of Figures

Chapter 1: Introduction

Figure 1	General mechanism of olefin metathesis2
Figure 2	Representative ruthenium-based olefin metathesis catalysts3
Figure 3	Representative cyclic olefin monomers used in ROMP4
Figure 4	Secondary metathesis reations
Figure 5	Generic mechanism of chain-transfer in ROMP to generate
	telechelic polymers
Figure 6	Generic mechanism of controlled radical polymerizations: ATRP,
	NMRP, and RAFT9
Figure 7	Representative polymer architectures11
Figure 8	Synthesis of cyclic polymers via cyclization of telechelic
	polymers13
Figure 9	Synthesis of cyclic poly(methylene) from cyclic boranes16

Figure 10	Synthesis of cyclic polycaprolactone block copolyme	ers from a			
	cyclic tin alkoxide initiator and photo-crosslinking to s	tabilize the			
	cyclic structure	16			
Figure 11	Proposed mechanism for NHC-mediated z	witterionic			
	polymerization of lactide	17			
Figure 12	Synthetic approaches toward star polymers				
Figure 13	Synthetic approaches toward brush polymers	21			

Chapter 2: Cyclic Ruthenium-Alkylidene Catalysts for Ring-Expansion Metathesis Polymerization

Figure 1	Representative Ru-based metathesis catalysts
Figure 2	Cyclic Ru-alkylidene metathesis catalysts
Figure 3	X-ray crystal structures and ¹ H NMR spectra (C_6D_6) of alkylidene
	proton of SC-5 , UC-6 , and SC-6
Figure 4	Conversion of COE to PCOE using pre-UC-5 40

Chapter 3: Ring-Expansion Metathesis Polymerization: Catalyst Dependent Polymerization Profiles

Figure 1	Olefin r	netathesis	catalys	t 1 and cy	clic REN	AP catalys	sts	57
Figure 2	Key me	chanistic s	steps inv	volved in 1	REMP			58
Figure 3	Depicti	on of rev	ersible	polymer	"pinchi	ng" via	intramol	ecular
	chain	transfer	and	"fusion"	via	intermol	ecular	chain
	transfer							59

	XV
Figure 4	REMP of COE using catalysts UC-4, UC-5, SC-5, UC-6, SC6
	and UC-7 62
Figure 5	Log plots for REMP of COE using catalysts UC-4, UC-5, SC-5
	UC-6, SC-6, and UC-764
Figure 6	Weight-average molecular weight vs. monomer conversion for the
	polymerization of COE using catalysts UC-6, UC-5, and SC
	5
Figure 7	Equilibration of molecular weight of PCOE after 100% monome
	conversion
Figure 8	Molecular weight equilibrium of PCOE69
Figure 9	GPC traces of REMP of CDT using SC-5 at different conversions
	and molecular weight vs. monomer conversion for REMP of CDT
	using SC-5
Figure 10	Melt-state ¹³ C NMR spectra of linear PCOE
Figure 11	Synthesis of cyclic and linear poly(5-acetoxy-cyclooctene)79
Figure 12	MALDI-TOF mass spectra of cyclic and linear poly(5-acetoxy
	cyclooctene)

Chapter 4: Efficient Syntheses of Linear and Cyclic Brush Polymers via Ring-Opening Metathesis Polymerization of Macromonomers

Figure 2	(A) Evolution of GPC traces during ROMP of NB(PtBA)4.7k; (B)
	Dependence of M_n and PDI on MM conversion, and (C)
	dependence of $\ln([M]_0/[M]_t)$ on time
Figure 3	GPC traces of macromonomer and crude brush polymers99
Figure 4	Tapping mode AFM images of brush polymer PNB-g-
	PS104
Figure 5	Tapping mode AFM images of cyclic brush polymers106

Chapter 5: Efficient Synthesis of Narrowly Dispersed Brush Copolymers and Study of Their Assembly

Figure 1	Schematic illustration of the synthesis of brush copolymers121
Figure 2	Dependence of $ln([MM]_0/[MM]_t)$ on time for ROMP of MMs and
	dependence of <i>M</i> n,GPC and PDI on conversion125
Figure 3	Representative GPC RI traces of the first block brush
	homopolymer and the brush diblock copolymer without any
	purification
Figure 4	SAXS curves for brush random copolymers132
Figure 5	Inverse intensity of peak heights in the vicinity of the order-
	disorder transition for brush random copolymers133
Figure 6	Proposed assembly of symmetric brush random copolymer and
	block copolymer
Figure 7	AFM height images of brush random copolymer thin films on
	silicon wafer and their cross-sectional analysis135

	xviii
Figure 8	AFM height image of thin films of a mixture of two brush random
	copolymers135
Figure 9	Inverse intensity of peak heights vs inverse temperature for
	asymmetric brush random copolymers136
Figure 10	SAXS curves for symmetric brush block copolymers140
Figure 11	SAXS curves for asymmetric brush block copolymers140
Figure 12	AFM phase images of individual PLA brush homopolymers on
	mica; brush block copolymer morphology in thin film141
Figure 13	Photograph of slowly dried <i>g</i> -[PLA ₂₀₀ - <i>b</i> -P <i>n</i> BA ₂₀₀]141

Chapter 6: Well-Defined Liquid Crystal Gels from Telechelic Polymers via Ring-Opening Metathesis Polymerization and "Click" Chemistry

Figure 1	Dynamic electro-optic response of a constrained LC gel under 19
	V/µm, 1000 Hz AC signal159
Figure 2	Transient electro-optic response of an unconstrained LC gel under
	various AC electric fields at 1000 Hz161
Figure 3	Transmittance as a function of voltage applied for an
	unconstrained LC gel in a 100 µm thick gap161
Figure 4	Polarized optical micrograph of unconstrained LC gel between
	ITO and lecithin coated glass plate162
Figure 5	Transient electro-optic response of an unconstrained LC gel under
	an AC electric field of 2.0 V/ μ m at 1000
	Hz163

Appendix 1: GPC Characterization of Cyclic Polymers

Figure 1.	Intrinsic viscosities of cyclic and linear PCDT and their mixtures
	from GPC178
Figure 2	Comparison of intrinsic viscosity, hydrodynamic radius, and
	elution time of PCOAc prepared without and with different amount
	of CTA180
Figure 3	Exemplary manual measurement of dn/dc181

Appendix 2: Hydrogenation of Polyalkenamers

Figure 1	IR spectra of PCOE and hydrogenated PCOE using Pd/CaCo	O ₃ and
	TSH	185
Figure 2.	Comparison of dynamic rheological spectra of PCOE pre	cursor
	polymers and H-PCOE by TSH	186
Figure 3.	Comparison of dynamic rheological spectra of PCOE pre	cursor
	polymers and H-PCOE	187