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Abstract 

Metathesis polymerization using highly active, functional-group-tolerant catalysts 

is a powerful and versatile method for polymer synthesis.  This thesis focuses on the 

preparation of a variety of advanced polymer architectures using well-defined ruthenium-

based metathesis catalysts and the study of materials properties dictated by those unique 

macromolecular structures.  

 Chapter 1 introduces olefin metathesis, metathesis polymerization, and recent 

developments in living/controlled polymerization and polymer functionalization. The 

goal is to provide a summary of the current toolbox of polymer chemists. The second part 

of Chapter 1 describes using these tools to synthesize different macromolecular 

architectures.   

 Chapters 2 and 3 describe ring-expansion metathesis polymerization (REMP) 

using cyclic catalysts. Chapter 2 focuses on catalyst development, while Chapter 3 

focuses on the REMP mechanism and cyclic polymer characterization. 

 Chapters 4 and 5 focus on brush polymers. Chapter 4 describes the syntheses of 

linear and cyclic brush polymers using ring-opening metathesis polymerization (ROMP) 

and REMP of macromonomers (MMs), respectively. Chapter 5 describes the efficient 

synthesis of brush copolymers and the study of their melt state self-assembly into highly 

ordered nanostructures. 

Chapter 6 describes the synthesis and electro-optic response of well-defined liquid 

crystalline (LC) gels that were made from controlled end-linking of telechelic LC 

 



  ix 
polymers. These gels possessed very fast, reversible electro-optic switching; the degree 

of response was closely related to network structure. 
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