
Chapter 1

Introduction and Overview

During the past thirty years, dualities have been a cornerstone of progress in theoretical

physics, and have motivated some of the most interesting and nontrivial new relations

between physics and mathematics. Almost all such dualities have proven to have some basis

in string theory. Prominent examples include the AdS/CFT correspondence [8] and mirror

symmetry. More related to the present thesis is the Gromov-Witten/Donaldson-Thomas

correspondence [9, 10, 11, 12], which related (via M-theory) the spaces of holomorphic

maps into a Calabi-Yau threefold to the spaces of holomorphic curves on the threefold

itself. In a somewhat different context, Chern-Simons theory with compact gauge group

provided the first intrinsically three-dimensional interpretation of knot polynomials [13];

different descriptions of the theory then related the finite-type Vassiliev invariants with the

Kontsevich integral [14].

Along these lines, this thesis is about developing new connections: between physical

theories, between mathematical theories, and most importantly between physics and mathe-

matics. We will begin by studying so-called refined Bogomol’nyi-Prasad-Sommerfield (BPS)

invariants of Calabi-Yau threefolds and their wall-crossing behavior. We show that they

can be described and calculated in many ways, including via melting crystal models, and we

will conjecture that they are related to the motivic Donaldson-Thomas invariants of Kont-

sevich and Soibelman [15]. We will then turn to Chern-Simons theory with noncompact

gauge group, a theory intrinsically different from the compact Chern-Simons theory that

computes Jones polynomials. We use a multitude of approaches to understand the rela-

tion between the compact and noncompact theories, to calculate exact partition functions
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and new knot invariants, and to relate noncompact Chern-Simons theory to “quantum”

hyperbolic geometry.

Refined BPS invariants

The BPS invariants of a Calabi-Yau threefold X can be thought of in several different

ways. Physically, they describe the states of 1/2-BPS D-branes in type II string theory

that is compactified on a product of X and four-dimensional Minkowski space, X × R3,1.

Equivalently, the same BPS invariants describe the bound states of supersymmetric point-

like black holes in the low-energy supergravity theory on R3,1 [16]. Or, in a mathematical

setting, BPS invariants describe objects in the derived category of coherent sheaves on X

[17].

The actual Hilbert space of BPS states HBPS in any of these descriptions depends on

stability conditions, which in turn depend (say, in a type IIA duality frame) on the values

of the Kähler moduli or “size parameters” of X [16, 17, 18]. In terms of D-branes, the

stability conditions ensure roughly that a brane wraps a cycle of minimal volume, and that

it cannot decay into a sum of noninteracting branes. Since HBPS is a discrete object, it

must be locally constant as a function of moduli. However, it can jump at special values of

moduli where the stability conditions change. This happens at real codimension-1 wall in

moduli space, and is a phenomenon known as wall crossing.

To study the properties of the space HBPS , it is useful to construct well-behaved super-

symmetric indices that count its states. Often, such indices are sufficient for applications

like approximating the entropy of black holes in string theory [19]. The simplest option for

constructing an index is to observe that the Hilbert space HBPS is graded by charge — in a

string theory picture, this is the charge of the D-branes that make up various states. Then

one can define an unrefined index Ω(γ) to be the signed count of charge-γ states in HBPS .

For special values of Kähler moduli, the generating function of these unrefined indices is just

the partition function of the well-known Gromov-Witten or Donaldson-Thomas invariants

[20]. Indeed, as mentioned above, this is the context in which BPS invariants first became

important in mathematics.

The refined BPS indices that play a main role in this thesis are defined by summing

states in the Hilbert space HBPS with an extra weight (−y)2J3 that keeps track of their spin
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content. In terms of four-dimensional supergravity, this spin is just the physical S̃O(3) '

SU(2) spin of massive point-like particles. The resulting index Ωref (γ; y) retains much more

of the information in HBPS and reduces to the unrefined Ω(γ) when y → 1. Alternatively,

in situations where HBPS has a description as the cohomology of a classical D-brane moduli

space M (cf. [21]), the refined index is associated to the Poincaré polynomial of M, while

the unrefined index is its Euler characteristic.

Refined indices were first introduced in the special case of Gromov-Witten/Donaldson-

Thomas theory. They allowed topological strings (i.e. Gromov-Witten theory) to compute

equivariant instanton sums in four-dimensional gauge theory [22, 23]. For toric Calabi-Yau’s,

ordinary Gromov-Witten/Donaldson-Thomas generating functions could be calculated us-

ing the topological vertex of [24, 25], and a refined vertex was constructed to compute

the corresponding refined generating functions [26]. Moreover, using large-N duality [27]

and the relation between topological strings and compact Chern-Simons theory [28], it was

realized that the refined partition functions should be related to homological invariants of

knots (which categorify Jones, etc., polynomials) [29, 30].

All these previous applications of refined BPS invariants were restricted exclusively

to the Gromov-Witten/Donaldson-Thomas chamber of Calabi-Yau moduli space (i.e. the

special choice of moduli for which Ωref (γ) are refined Donaldson-Thomas invariants). In this

thesis, we want to move beyond Gromov-Witten/Donaldson-Thomas theory and analyze

refined BPS invariants in all chambers of Kähler moduli space, focusing in particular on

their wall-crossing behavior.

In Chapter 2, we define refined indices more carefully, and generalize the wall-crossing

formulas derived by Denef and Moore [20] from the unrefined to the refined case. There are

some important differences between unrefined and refined invariants, such as a dependence

of Ωref (γ) on complex structure (or hypermultiplet) moduli as well as the potential existence

of new walls in Kähler moduli space where Ωref (γ) could jump. We give a (non)example

of the latter in Section 2.4. In Chapter 3, we apply refined wall crossing to the resolved

conifold geometryO(−1,−1)→ P1, and derive a picture of refined generating functions in an

infinite set of chambers, analogous to an unrefined description presented by [31]. Moreover,

we relate the generating function in each chamber to a statistical melting crystal model of

refined “pyramid partitions” with varying boundary conditions, which generalize the refined

topological vertex. These models will suggested a new combinatorial interpretation of wall
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crossing in [1], which has since been extended beyond the conifold [32, 33].

In Chapter 4, we arrive at our main mathematical conjecture: that refined invariants are

equivalent to the motivic Donaldson-Thomas invariants of Kontsevich and Soibelman [15].

Kontsevich and Soibelman defined a version of Donaldson-Thomas invariants for Calabi-

Yau categories that depend on a stability condition (just like physical BPS invariants),

and obey a very general wall-crossing formula. It has previously been argued [34] that the

“classical” or unrefined versions of motivic Donaldson-Thomas invariants are equivalent to

physical unrefined BPS invariants. Motivic invariants, however, naturally depend on an

extra parameter ‘L’ or ‘q’ (the motive of the affine line), which we argue is to be identified

with the refined spin variable y. We substantiate our claim both theoretically, by matching

refined and motivic wall-crossing formulas, and with direct examples from SU(2) Seiberg-

Witten theory.

The ultimate goal of the present program would be to study not the refined indices

Ωref (γ) but the entire Hilbert space HBPS , its full dependence on all moduli, and its

homological properties. We have by now come quite close to doing this, and hope it will be

the subject of future interesting work.

Chern-Simons theory

In the second part of this thesis, we shift our focus to three-dimensional Chern-Simons

gauge theory with complex, noncompact gauge group. Chern-Simons theory is a preeminent

example of a topological quantum field theory (TQFT). By now, Chern-Simons theory with

compact gauge group G is a mature subject with a history going back to the 1980’s (see e.g.

[35, 14] for excellent reviews), and has a wide range of applications, ranging from invariants

of knots and 3-manifolds [13] on one hand, to condensed matter physics [36, 37] and to

string theory [38] on the other.

We will specifically be interested in a version of Chern-Simons gauge theory with complex

gauge group GC. Although at first it may appear merely as a variation on the subject,

the physics of this theory is qualitatively different from that of Chern-Simons theory with

compact gauge group. For example, one important difference is that to a compact Riemann

surface Σ Chern-Simons theory with compact gauge group associates a finite-dimensional

Hilbert spaceHΣ, whereas in a theory with non-compact (and, in particular, complex) gauge
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group the Hilbert space is infinite-dimensional. Due to this and other important differences

that will be explained in further detail below, Chern-Simons gauge theory with complex

gauge group remains a rather mysterious subject. The first steps toward understanding this

theory were made in [39] and, more recently, in [40, 41].

As in a theory with a compact gauge group, the classical action of Chern-Simons gauge

theory with complex gauge group GC is purely topological — that is, independent of the

metric on the underlying 3-manifold M . However, since the gauge field A (a gC-valued

1-form on M) is now complex, one can write two topological terms in the action, involving

A and Ā:

S =
t

8π

∫
M

Tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
(1.0.1)

+
t̄

8π

∫
M

Tr
(
Ā ∧ dĀ+

2
3
Ā ∧ Ā ∧ Ā

)
.

Although in general the complex coefficients (“coupling constants”) t and t̄ need not be

complex conjugate to each other, they are not entirely arbitrary. Thus, if we write t = k+σ

and t̄ = k − σ, then consistency of the quantum theory requires the “level” k to be an

integer, k ∈ Z, whereas unitarity requires σ to be either real, σ ∈ R, or purely imaginary,

σ ∈ iR [39].

Given a 3-manifold M (possibly with boundary), Chern-Simons theory associates to

M a “quantum GC invariant” that we denote as Z(M). Physically, Z(M) is the partition

function of the Chern-Simons gauge theory on M , defined as a Feynman path integral

Z(M) =
∫
DA eiS (1.0.2)

with the classical action (1.0.1). Since the action (1.0.1) is independent of the choice of

metric on M , one might expect that the quantum GC invariant Z(M) is a topological

invariant of M . This is essentially correct even though independence of metric is less

obvious in the quantum theory, and Z(M) does turn out to be an interesting invariant.

How then does one compute Z(M)?

One approach is to use the topological invariance of the theory. In Chern-Simons theory

with compact gauge group G, the partition function Z(M) can be efficiently computed

by cutting M into simple “pieces,” on which the path integral (1.0.2) is easy to evaluate.

Then, via “gluing rules,” the answers for individual pieces are assembled together to produce
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Z(M). In practice, there may exist many different ways to decompose M into basic building

blocks, resulting in different ways of computing Z(M).

Although a similar set of gluing rules should exist in a theory with complex gauge group

GC, they are expected to be more involved than in the compact case. The underlying

reason for this was already mentioned: in Chern-Simons theory with complex gauge group

the Hilbert space is infinite dimensional (as opposed to a finite-dimensional Hilbert space in

the case of compact gauge group G). One consequence of this fact is that finite sums which

appear in gluing rules for Chern-Simons theory with compact group G turn into integrals

over continuous parameters in a theory with non-compact gauge group. This is one of the

difficulties one needs to face in computing Z(M) non-perturbatively, i.e. as a closed-form

function of complex parameters t and t̄.

A somewhat more modest goal is to compute Z(M) perturbatively, by expanding the

integral (1.0.2) in inverse powers of t and t̄ around a saddle point (a classical solution). In

Chern-Simons theory, classical solutions are flat gauge connections, that is gauge connec-

tions A which obey

dA+A ∧A = 0 , (1.0.3)

and similarly for Ā. A flat connection on M is determined by its holonomies, that is by a

homomorphism

ρ : π1(M)→ GC , (1.0.4)

modulo gauge transformations, which act via conjugation by elements in GC.

Given a gauge equivalence class of the flat connection A, or, equivalently, a conjugacy

class of the homomorphism ρ, one can define a “perturbative partition function” Z(ρ)(M)

by expanding the integral (1.0.2) in inverse powers of t and t̄. Since the classical action

(1.0.1) is a sum of two terms, the perturbation theory for the fields A and Ā is independent.

As a result, to all orders in perturbation theory, the partition function Z(ρ)(M) factorizes

into a product of “holomorphic” and “antiholomorphic” terms:

Z(ρ)(M) = Z(ρ)(M ; t)Z(ρ)(M ; t̄) . (1.0.5)

This holomorphic factorization is only a property of the perturbative partition function.

The exact, non-perturbative partition function Z(M) depends in a non-trivial way on both
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t and t̄, and the best one can hope for is that it can be written in the form (cf. [40, 41])

Z(M) =
∑

ρ

Z(ρ)(M ; t)Z(ρ)(M ; t̄) , (1.0.6)

where the sum is over classical solutions (1.0.3) or, equivalently, conjugacy classes of homo-

morphisms (1.0.4).

In the greater part of this thesis, we study the perturbative partition function Z(ρ)(M).

Due to the factorization (1.0.5), it suffices to consider only the holomorphic part Z(ρ)(M ; t).

Moreover, since the perturbative expansion is in the inverse powers of t, it is convenient to

introduce a new expansion parameter ~ = 2πi/t , which plays the role of Planck’s constant

(the semiclassical limit corresponds to ~ → 0). In general, the perturbative partition

function Z(ρ)(M ; ~) is an asymptotic power series in ~. To find its general form one applies

the stationary phase approximation to the integral (1.0.2):

Z(ρ)(M ; ~) = exp

(
1
~
S

(ρ)
0 − 1

2
δ(ρ) log ~ +

∞∑
n=0

S
(ρ)
n+1~

n

)
. (1.0.7)

This is the general form of the perturbative partition function in Chern-Simons gauge theory

with any gauge group, compact or otherwise, computed with standard rules of perturbation

theory [13, 42, 43, 44] that will be discussed in more detail below. Roughly speaking,

S
(ρ)
0 is the value of the Chern-Simons functional evaluated on a flat gauge connection A(ρ)

associated with the homomorphism ρ, and each subleading coefficient S(ρ)
n is obtained by

summing over Feynman diagrams with n loops.

In Chern-Simons theory with compact gauge group, perturbation theory is often devel-

oped in the background of a trivial (or reducible) flat connection A(ρ). As a result, the

perturbative coefficients S(ρ)
n have a fairly simple structure; they factorize into a product of

topological invariants of M — the finite type (Vassiliev) invariants and variations thereof

— and group-theory factors [14]. In particular, they are rational numbers. In contrast,

Chern-Simons theory with complex gauge group naturally involves perturbation theory in

the background of genuinely non-abelian (non-reducible) flat connections. Physically, this

is a novelty that has not been properly addressed in previous literature. We shall see that

the information about a non-abelian flat connection and the 3-manifold M is mixed within

the S(ρ)
n (M) in a non-trivial way, and results in S(ρ)

n (M)’s that are not finite type invariants

and are typically not valued in Q.
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A primary example of non-abelian representations in the complex case comes from con-

sidering hyperbolic 3-manifolds, which, in a sense, constitute the richest and the most inter-

esting class of 3-manifolds. A hyperbolic structure on a 3-manifold M corresponds to a dis-

crete faithful representation of the fundamental group π1(M) into Isom+(H3) ∼= PSL(2,C),

the group of orientation-preserving isometries of 3-dimensional hyperbolic space H3. Adding

a choice of spin structure, this lifts to a representation ρ : π1(M) → SL(2,C), which can

then be composed with a morphism φ to any larger algebraic group GC to obtain a repre-

sentation ρ : π1(M)→ GC. The flat connection associated to such a ρ is non-reducible (in

fact, for a complete hyperbolic structure the holonomies of the connection are parabolic),

and the corresponding perturbative coefficients S(ρ)
n are interesting new invariants of the

hyperbolic 3-manifold M . See Table 6.3 on page 117 for the simplest example of this type.

A direct computation of the perturbative invariants S
(ρ)
n via Feynman diagrams is

straightforward in principle, but quickly becomes unwieldy as the number of loops n grows.

Thus, it is useful to look for alternative methods of defining and computing these invariants.

Altogether, different physical descriptions and quantizations of Chern-Simons theory lead

us to the following four approaches:

1. Feynman diagrams, as already mentioned.

2. Geometric quantization of Mflat(GC; Σ), the moduli space of flat connections on

the boundary Σ of a three-manifold M , which serves as the classical phase space of

Chern-Simons theory.

3. “Analytic continuation” from Chern-Simons theory with compact gauge group G

to its complexification GC.

4. State sum model obtained by decomposing M into tetrahedra, assigning a simple

partition function to each tetrahedron, and integrating out boundary conditions as

the tetrahedra are glued back together.

The first three have been previously employed to tackle Chern-Simons theory with complex

gauge group, while the fourth is completely new. Used in conjunction, these methods lead

to very powerful results, mathematically and physically.

We will begin by describing the “traditional” approach of Feynman diagrams in Chapter

5. They will lead us to define the concept of an Arithmetic TQFT, and conjecture that
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Chern-Simons theory with complex gauge group belongs to this special class. For hyperbolic

M , the arithmeticity of Chern-Simons theory will be very closely related to the arithmeticity

of hyperbolic invariants.

In Chapter 6, we then consider the geometric quantization of Chern-Simons theory with

complex gauge group on a three-manifold M with boundary Σ. One advantage of Chern-

Simons theory with complex gauge group is that the classical phase spaceMflat(GC,Σ) is a

hyper-Kähler manifold, a fact that considerably simplifies the quantization problem in any of

the existing frameworks (such as geometric quantization [45], deformation quantization [46,

47], or “brane quantization” [48]). We will see that the partition functions Z(ρ)(M ; ~) obey

a system of Schrödinger-like equations ÂiZ
(ρ)(M ; ~) = 0, which, together with appropriate

boundary conditions, uniquely determine Z(ρ)(M ; ~).

Combining geometric quantization with “analytic continuation” will lead to a very ef-

ficient computation of the operators Âi, since it will turn out that they also act on and

annihilate partition functions of Chern-Simons theory with compact gauge group. Mathe-

matically, perhaps the most interesting consequence of combining “analytic continuation”

with geometric quantization is (almost) a physical proof of the volume conjecture. We will

discuss this in Chapter 6 as well. Note that “analytic continuation” involves a very subtle

limit of the compact Chern-Simons invariants, and, in particular, does not contradict the

fact that the complex Chern-Simons invariants turn out to be qualitatively different from

compact ones.

Our main examples throughout this work involve knot or link complements in closed

three-manifolds. (In particular, all hyperbolic manifolds are of this type.) In Chern-Simons

theory with compact gauge group, however, knot invariants are typically associated with the

expectation values of Wilson loops in closed manifolds. In Chapter 7, we define Wilson loops

also that carry infinite-dimensional irreducible representations of complex-gauge group, and

explain how their expectation values are equivalent to partition functions on knot/link

complements. The discussion will also clarify the limiting process involved in “analytic

continuation.”

In Chapter 8, we finally proceed to the fourth approach: the state sum model for

Chern-Simons theory with complex gauge group. This involves cutting a manifold M into

tetrahedra, assigning to each tetrahedron a partition function — specifically, an element of

a Hilbert space H associated to the tetrahedron boundary — and taking inner products in



10

these boundary Hilbert spaces to glue the tetrahedra back together. Conceptually, such a

cutting and gluing procedure should always be possible in TQFT; it was often employed

to study Chern-Simons theory with compact gauge group, where boundary Hilbert spaces

are finite-dimensional (cf.. [49, 50, 51]). In the complex case, boundary Hilbert spaces are

infinite-dimensional, so that what one seeks is really a state integral model. We construct

such a model for the case GC = SL(2,C) and for M hyperbolic based on the work of K.

Hikami [52, 53]. Extensions to completely general M and GC should be possible, though

they have not yet been fully developed.

Chapter 9 is then devoted to examples of computations in the state integral model.

Schematically, the state integral model expresses Z(ρ)(M ; ~) as a multi-dimensional integral

of a product of quantum dilogarithm functions, on which classical saddle-point methods can

be used to extract the invariants S(ρ)
n (M). We consider in detail the complements of the

figure-eight knot 41 and the knot 52, computing S(ρ)
n (M) to high order. We also compare

the integrals of the state integral model to similar expressions obtained by direct analytic

continuation of compact G-invariants in some special cases, showing that the latter can also

be used to find S
(ρ)
n (M)’s.

Future directions and the quantum dilogarithm

There are many directions in which to continue the studies of refined BPS invariants

and complex Chern-Simons theory that have begun here. They are both still relatively

unexplored fields. In the case of BPS invariants, it would be very exciting to find a proof

of refined = motivic directly in physics, extending the proof of the classical Kontsevich-

Soibelman formula in gauge theory given by [34]. Some progress along these lines was

recently made in [54]. There is also much yet to be understood about the wall-crossing (or

“locus-crossing”) behavior of refined invariants in hypermultiplet moduli space, and about

the existence of potential new walls in the vector multiplet moduli space. Ultimately, one

would like to describe the full “categorical” dependence of the Hilbert space HBPS itself on

moduli.

In the case of Chern-Simons theory with complex gauge group, an immediate goal

(and a subject of current research) is to generalize the state integral model to arbitrary

manifolds and gauge groups. It is also not fully understood how to obtain the Schrödinger-
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like operators Â directly in geometric quantization. Perhaps more importantly, all the

results that appear in this work describe Chern-Simons theory and knot invariants in the

perturbative regime, and it would be exciting to move beyond this and understand Chern-

Simons theory with complex gauge group nonperturbatively. The first steps in this direction

were made in [41]. It is quite possible that a fully developed state integral model will be

able to complete the program.

A final related direction concerns an intriguing connection between BPS invariants and

the Chern-Simons state integral model. At the most rudimentary level, one find the same

special function — a quantum dilogarithm — appearing in both. The simplest definition

for the quantum dilogarithm is via the infinite product

Eq(x) =
∞∏

r=1

(
1 + qr−1/2x

)−1
, |q| < 1 . (1.0.8)

It obeys a remarkable “pentagon” identity: if operators x1 and x2 are such that x1x2 =

qx2x2, then

Eq(x1) Eq(x2) = Eq(x2) Eq(q−
1
2x1x2) Eq(x1) . (1.0.9)

The central role of the quantum dilogarithm and (1.0.9) throughout this thesis (see especially

Chapters 2, 4, 8, and 9) has motivated its presence in the title.

Elsewhere in physics, the quantum dilogarithm appears as the generating function of a

gas of free (charged) bosons. In a more specialized context, it also features as an ingredient

in open topological string partition functions. In mathematics, the quantum dilogarithm is

ubiquitous in representation theory of quantum groups and (noncompact) affine Lie alge-

bras.

In the context of both BPS invariants and Chern-Simons theory, the quantum diloga-

rithm function really signals the presence of an entire structural apparatus involving quan-

tizations of complex tori and cluster transformations [55] acting on triangulated surfaces.

These triangulated surfaces were recently given physical meaning in terms of BPS wall

crossing by [56]. In Chern-Simons theory, the quantization of triangulated surfaces is the

quantization of boundary moduli spaces. It would be truly interesting to connect these two

pictures via a physical duality — this will hopefully be the subject of future work.


