STUDIES ON THE MICROSCOPIC MOTION OF A

DIATOMIC IN A MONATOMIC SOLVENT

Thesis by

Edward Francis O'Brien

In Partial Fulfillment of the Requirements

For the Degree of

Master of Science

California Institute of Technology
Pasadena, California

—1970~ 17°) |

(Submitted September , 1970)



it

ACKNOWLEDGMENTS

1 wish to express my sincere appreciation to those individuals and
organizations who have contributed so much to this reseaxjch and to my
own personal development: 7

Professor G. Wilse Robinson, my research advisor, whose confi-
dence carried me through severe setbacks and whose concern enabled
me to overcome them.

Dr. Paul L. Fehder, who painstakingly and patiently introduced
me to the field of molecular dynamics and computers.

Dr. R. P. Futrelle and Mr. David J. McGinty, whose comments
resulted m a deeper and wider understanding of this area.

The Chemistry Department for its financial support, which has
allowed me to come here and to experience life on this side of North
America.

The American Cyanamid Corporation for its support during one
summer's research.

Mrs. Adria Larson, whdse aid helped to remove many peripheral
problems and last minute panics.

And finally, T would like to thank my wife for her encouragement
and understanding during periods of great pressure and for her financial
support that has enabled me to experience many of the finer aspects of

life and of life in Southern California.



iii

ABSTRACT

The microscopic motion of a diatomic in a monatomic solvent has
been studied using the molecular dynamics method and a model of
Lennard-Jones spheres for the monatomics and two such spheres joined
by a rigid bond for the diatomic. Data were generated by computer for
three systems, each at the same density but varying in temperature.
From these data autocorrelation functions were calculated for the follow-
ing random quantities of the motion of the diatomic: orientation of the
diatomic, velocity of its center of mass, angular velocity and momentum,
mean square diSplacement of its center of mass, and the forces on the
diatomi;: bond. Infrared and Raman band shapes and NMR relaxation
times were determined from the above correlation functions.

The decay times of the correlation functions were found to be in the
range of 0.25 to 2.5 x 10" sec. The band shapes were symmetrical and
their bandwidth change reflects the change in inhomogeneous broadening
with respect to temperature. The NMR relaxation times also behave
correctly with respect to temperature and indicate which of the relaxa-
tion mechanisms studied is dominant.

Further studies are proposed to determine the reason for the
discrepancies between the above calculated quantities and those quanti-

ties obtained from experimental data.
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1. INTRODUCTION

Many properties of molecules in solution are affected by their
microscopicrthermal motions. These properties can be divided into
two general groups--spectral and transport propérties. Spectral
band shapes have been found to depend on thermal fluctuations of the

rotational motion of the solute molecules; this applies to IR, 1,2,3

Raman, 1 24 1-13
1-13

and NMR spectroscopy. Relaxation times for

1,2,4,5,14

NMR and rotation relaxation times also depend on

these fluctuations. The transport properties of 'singlet' and 'pair’

diffusion 15,16

depend on thermal effects on the translational motion.
Evaluation of these somewhat random motions can then lead to

functional relationships for the above.

18 2,4,5,19

Zwanzig, 17 Abragam, =~ Gordon and others have
shown that correlation functions of variables of the thermal motion
(described later) do yield measures of the fluctuations and can give
the desired relationships. Unfortunately, these correlation functions
involve interactions of the solute molecules with their environment
on the microscopic level and, as a result, are incalculable at the
moment. But theorists, hating a void, have developed many models
and theories. Each of these involve approximations, of one degree
or another, to determine the shape or functionality of the correlation
function. Often an exponential form is assumed in order to obtain’

comparable results.



One of these models is molecular dynamiés. Using a simple
interaction potential and periodic boundary conditions, the motion of
the solute and solvent can be followed by employing Newtonian

mechanics and the predictor-corrector technique of Rahman 20, 21 or

Verlet. 22

This model has the advantage of being precise within the
potential chosen--no further approximations need be made. Its dis-
advantage lies in that the potential may not be completely real. Yet
this model should mirror a real system within a small percentage
error and, as such, should yield results that are in the right range
and that change correctly (with respect to temperature and density).
AnWay, using this model, time-dependent positioh, velocities, and
acceleration data can be obtained and evaluated to determine the

form and functionality of the above mentioned correlation functions.



2. THEORY

a) Correlation Functions

The time correlation function c(t) of a dynamical variable A is
defined as the ensemble average ( ) of the scalar product of A(t) and

At +t), e,

clt) = (A®M) - A’ +1)). | (1)

This function measures the decay of the average 'memory' of the
system with time. The above expression involves only one variable
and is called an autocorrelation function. Similarly a correlation

function of two variables c,(t) can be deﬁned;17

c,(t) = (AM) - B’ +t) | (2)

it would measure the average interaction 'memory’.

These correlation functions play the same role in transport
processes as do the partition function in equilibrium statistical
mechanics. The analogy breaks down in that for each transport
process a different correlation function may be needed. For these
processes there are two categories into which the correlation
functions may be divided: those processes driven by external forces
and those driven by internal (thermodynamics) forces. The first

category can be described by a Kubo method, 23 the latter by a



number of more complex formulations. 17

This work is involved with
the thermodynamic forces.

These thermodynamic forces produce somewhat random thermal
motion (in the system being studied). Variables of this motion would
also be somewhat random. Then autocorrelation functions of these
variables would measure how that variable is randomized (the form
of the autocorrelation function) by this motion and how long it takes

for A(t’+t) to become independent of the known initial condition A(t’).

That is, at some time 7

(AM)- A’ + 7)) = (Al)AL + 7). (3)

At this time the correlation function has decayed to zero, for the
first-order average of a random variable (A) is zero.

Although both the form of the correlation function and the time
T give a measure of the randomizing character of the thermal motions,
only 7 has to be considered to obtain a simple picture of what is
happening in the system. The size of 7 is directly related to the
degree of fluctuations of the thermal motion. A large 7 indicates that
A is randomized slowly; this implies the fluctuations are slow and
small (on the average). A small 7 indicates large and rapid fluctu-
ations.

If the system is a solution where A is a variable of the motion
of the solute, A can be considered as changing because of the inter-

actions of the solute with the solvent. These interactions can be



considered from two approaches; the first is the collisions between
the solvent and the solute (assuming no solute-solute interactions)
producing random motion on the part of the solute. The second is
that the solute molecules exist in a number of types of local environ-
ments due to the inhomogeneity of the solvent. Changes in a local
environment cause random motion in the solute molecule. Since
these changes cause Ato undergo random motion, the autocorrelation
function of A should reflect a measure of their effect on the solute.
These factors are responsible for various phenomena: inhomogene-
ous or collisional broadening of vibration-rotation spectral bands

and pure rotational and NMR lines; spin relaxation in NMR; rotational
and vibrational relaxation. And, as such, relationships should exist
that will relate the above to appropriate correlation functions.

Before these relationships are developed (in the succeeding
sections), the propertiés of cgjrrelation functions must be presented,
for they are used to calculate these functions. They are given below:

1) Although the correlation function can be described as

(At') - A(t’+t)) it is dependent only on the variable t.

(A[R) - A"+ 1)) = (A0) - Al)). (4)

In other words, | the starting point can be arbitrarily chosen.
2) The correlation functions exhibit time reversal properties;

Clt) = (A(0) - Ab))

1l

i
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(A(0) - A(-t))

C(-t) (5)

The function C(t) is symmetric about the t = 0 axis.

3) If the data from which the correlation functibn is calculated
is equilibrium data and if, in a sufficiently long time, the variable A
for each system of the ensemble will pass through all values accessible
to it, then time averaging can replace ensemble averaging. 32 For
example, take A(K) for the Kth system of the ensemble and measure it
over a long time. Divide this time into large intervals such that the
behavior of A,(K) in one interval is independent of its behavior in
another. A large collection of such intervals should be as good a
representative ensemble of the statistical behavior of A as the original '

ensemble. For this work, time averaging will replace ensemble

averaging in the calculation of the correlation functions.

b) Wiener-Khintchine Theorem

It was shown in section (a) that there should exist relations
between various phenomena and appropriate correlation functions.
Such a relation has been developed for classical systems; it is called

the Wiener-Khintchine theorem. 33

Using an electrical system as an
example , where the random variable is the electric current through

a resistor, the relationship between the power spectrum G(w) (the
average‘power dissipated per unit resistance per unit frequency band
width) and the correlation function of the random current C(t) is known

to be



Glw) = T/'IET? I :cm e i 4t , (6)

Since all spectroscopy involves energy being absorbed or
emitted per unit time per unit 'resistance' term per unit frequency
band width, there exists a power spectrum for each kind of spectros-
copy. (The 'resistance' term can be, for a solution, the concent-
ration per unit volume.) And since these pcwer spectra depend on
random variables of the solute (fluctuating thermal motions), there
should exist a similar relationship as given above. Unfortunately,
the mathematics and manipulations are more complicated for these

quantum systems. They will be carried out in the next sections.

c) Vibration-Rotational and Pure Rotational IR Spectra

This relationship betweerﬁ:he power spectrum and the corre-
lation function can be generated in the Heisenberg approach to quan-
tum mechanics. 2 The usual expression for an absorption band shape,
in terms of transitions between quantum states (Schrédinger approach)
where, for simplicity, the coupling between internal vibrations and

the other degrees of freedom is neglected, is (Gordon's derivation)

heo(w + wy)

1) 4 (w+ wo){ 1 - exp [-h(w+ w)/KT] }

I(w)

iZchilmg.Mlez o (Bg- E;) /- )], (7



where o is the absorption cross section per molecule, w, is the
vibrational band center, w is the frequency displacement from w,,
i) and |f) are initial and final quantum states for the (coupled)
rotation-translational motion of the solute molecules with energy
eigenvalues Ei and Ef, respectively. ¢; is the Boltzmann factor for
the initial rotation-translational state |i), assuming the sample is in
thermal equilibrium. ¢ is the unit vector along the electric vector of
the incident radiation. 1}{1V is the transition dipole moment vector for
the particular vibration band v. The first step in transforming to the
Heisenburg approach is to represent the & function by its Fourier
integral,

6(w) = o f_wexp(wt) dt. . (8)

Then

) = 28 (il M0 (e M 1)
1 .

x [ exp[i(E,- Ept/n] o719 ot ©)

The energy eigenvalues Ef and Ei are now expressed in terms of the

Hamiltonian operator H for the rotational-translational motion, giving

I(w) = f e'iwtzgi(ilg~lef)

1
2m -00 if

x (£1elH/N ¢ ¥ o IH/M 4y (10)



Now the sum over the complete set of final states may be performed:

I(w) = %f e'iwt?é‘i

o) ‘
x Ciles MYEEYE ¢ v HY B g )
Since (eth/ h €- MY e'th/ ﬁ) is the Heisenberg operator for the

direction of the transition dipole moment at time t, Eq. (11) may be

expressed more concisely,

I(w) = i%fwe‘iwtqe-m”(m][e. MY(t)] ) dt. (12)

~ ~ ~ ~
- 00 -

Where the brackets {( ) represent an equilibrium statistical average,

(Opy = 27 §(ilOpli).
1

For an isotropic sample, the same result is obtained if we

average over the polarization directions € of the radiation giving
(W) = o= [ Temiwt Loy, MY(t) )t (13)
T TV Vi .
Finally to ,convért to a spectrum normalized to unit area,

Iw) = H(w)/ IR L (14)
n
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1
and to a vector u= 1\//\1"/ { (MV)2> 2 along the direction of the transition

dipole moment, Eq. (13) then becomes

) = L f_Ze'iwt (u(0)- ut)ydt. (15)
(Using a ndrmalized spectrum largely eliminates dielectric effects
on the local electric field due to the radiation. Only fluctuations
about the average local field will effect the normalized spectrum. )
This equation expresses the Heisenberg-type description of the infra-
red band shape: The distribution of absorption frequencies about the
vibration frequency is the Fourier transform of the average motion
of the transition dipole moment. Note that for a diatomic mOlecu’le{,
u is the unit vector along the bond, the symmetry axis.

Analogously, for a pure rotational spectrum 2 we obtain (in the

Heisenberg picture)

310 (w) ) _;._f‘”e-iwt
47w [1 - exp(-iw/KkT)] 2T 7 _ o
X [Cpe(0) -+ py(t)) + ,Z (1, (0) - py(t) ) ]dt, (16)
1
sth

where K is the permanent dipole moment of the molecule.

Using the unit vector u = LL/ | L"'l and very dilute solutions
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Eq. (16) becomes

3f0(w) |
477w[1 - exp(iw/kT)]

= o [ e w0 wtpe. @)

Where it is assumed that there is no correlation between the dipole
moments of the different solute molecules (the solvent is monatomic)

and thus

L (5(0)- 5®) = 0. (18)
1=

Again for a diatomic molecule u is the unit vector along the bond.

The correlation function (}1‘(0,) . g(t)) applies to both vibration-

\

rotational and pure rotational band shapes. For pure rotational
speétroscopy this is valid, for the above correlation function measures
the fluctuations in the rotational motion of the solute molecule. For:
vibration-rotational spectra the inhomogeneity of the solvent affects
both the rotations and the vibrations of the solute molecule. Gordon
has assumed that the solvent has no effect on the vibrations. As a
result of this, the frequency w in exp(-iwt) is taken to be measured
relative to the shifted vibration frequency. The shift is due to the
effect of the solvent on the vibrational motion. By this the oscilla-
tions of the vibrational transition dipole moment are taken into account.
These then may be considered to change with time only as the rota-

tional motion changes the direction of the molecule.
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d) Vibration-Rotational Raman Spectroscopy

A similar derivation can be performed for Raman scattering. 15

Starting with the polarizability formula for non-resonant Raman

scattering, one obtains (Gordon's derivation)

M(do/a®) = T g2 |(ile - 1| 60 - of +w 4 wp- 0y,
1 P U -4 v' f i

(19)

where 2mx is the scattered wave length, do/dQ is the differential
light-scattering cross section per molecule, for the transition from
the ground vibrational state to a vibrational state v with vibrational

energy HwV . g”

is the off-diagonal matrix element of the electric
polarizability tensor between the Jground vibrational state of the
molecule and vibrational state v. We assume Q{V is constant in a
coordinate system rotating with the molecule. o.)I is the frequency
of the incident photon, whose electric vector is polarized along the
unit vector EI; w® and gs are the analogous quantities for the
scattered photon.

Performing the same derivation as before (Section c) yields the

following equation
x(do/dQ) =

.

- S AL %0 1[N ¢ - 8]) exp(-wt) ct (20)
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where g(t) = exp (iHt/h) g(O) exp (-iHt/hH) and w = Wl - WS - w,.

For spatially isotropic systems (liquids and gases) and for scattering

in which the incident and scattered electric vectors are perpendicular,

Eq. (20) can be expressed as26
ado _
¥ s = 60nf (3Tra”(0)- o”(t)

-[Tr QV(O)] [Tr gv(t)] Yy exp (-iwt) dt (21)

where the traces are taken over the spatial indices of gv. This
simplifies if we decompose the transition polarizability g” into its

spherical (gy) and traceless (QV) parts:

Tr@v =

ado

¥l = — /. il—(TrB (0) - V(t))exp(—iwt) dt. (22)

Then the normalized intensity distribution is

~ ado 2 do
I = == d
(@) dg |_L / fBand | N

_ 17 ;

= 5= f_ wc(t) exp(-iwt) dt | (23)

where
14 v

E(t) - (Trﬁ (0) - é () (24)

(Tr g"(0)- 7(0))
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Now we consider the form of ¢(t) for a specific case of a totally
symmetric vibration in a linear molecule. These vibrations (by
definition) maintain the symmetric-top form of the molecule so that
the anisotropic part of the transition polarizability has the form

N z 7z 1
Bij = constant X (u].L u1j - §6ij) | (25)

th

where uiZ is the i component of a unit vector fixed along the

symmetry axis (z) of the molecule and 6ij is the Kronecker delta.

Thus
2 z Z 1 ;z z 1
Tr B(O) B(t) o« i,?il [ui (0) uj (O) - §5ij][ui (t) uj (t) = §5ij]
. 3 : )
Z z VA Z
= 1,23:1 [w(0) o (0) u“(t) o ®)] - 3 (26)

and the normalized correlation function Eq. (24) is

3
€t = 5¢3 T ol vl ul) ol - 1. @)

o o

1)]=1

In the classical limit E(O) and E(t) commute so, in this case, the

correlation function reduces to
clt) = (P, [u’(0)- v*®)]) (28)

where P,(x) = $(3x°-1). This is the classical form. For a

diatomic molecule EZ = y, the unit vector along the bond. Therefore,
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for diatomic molecules,

(@) = 5= [ (P;[u(0)- u(t)]) exp(-iwt)dt (29)

Here, the correlation function measures the same thing as does
(u(0) - u(t)) --the inhomogeneity of the solvent and how it changes with
time. The difference between these two cases lies in the random
variable (dipole moment vs. the polarizability tensor) and the method

of measuring the absorption or emission experimentally.

e) NMR Spectroscopy

NMR spectroscopy has two points significantly different from
IR and Raman spectroscopy. Firstly the resonance condition is
described by a classical equation, w = yH,, where y is the gyromag-
netic ratio and H, the static field. Secondly the motional narrowing
limit exists. The effect of the former makes the correlation function
formulism somewhat classical in nature. This can be seen in the
random opera,tors involved in the correlation function. They are the
fluctuating local fields (which effect the resonance condition) exerted
on a nuclear spin by (1) a neighboring spin through magnetic dipole-
dipole coupling, (2) the spin itself due to the rotational motion of the
molecule, or (3) by fluctuating electric field gradients when the spin
ﬁa.s a quadrupole moment. Each of these randomly change the reso-
nance frequency and thus cause broadening. The local fields are also
responsible for transferring energy to the lattice and allowing the spin
system to relax to its equilibrium magnetism along the static field

direction (this is spin-lattice relaxation, described by a time T,).
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They are also responsible for the relaxation of thev magnetism that
can appear in a plane perpendicular to the static field due to a

'90 degree’ pulse (this sets up a phase relationship between the spins).
The couplings gradually destroy the phase relationship causing the
magnetism to average to zero (spin-spin relaxation, described by a
time T,).

While the above couplings result in broadened bands, motional
narrowing causes the bands to become very narrow. This is also a
result of the classical nature of the calculation. In guantum
systems the random operator does not change unless the local environ-
ments change. But in the NMR calculations the local fields change
with any change in thermal motion relative to the direction of the
static field. When this motion is sufficiently rapid the spin senses
an average local field, not a time dependent one. Therefore, since
all spins would feel the same average local field, the resonance is
narrowed, as is the absorption band. In extreme narrowing where
the band is very narrow, T, is equal to T,.

Using this limit, which applies in liquids and dense gases, and

18 % has shown that the

employing Abragam's formalisms, =~ Gordon
correlation function associated with Raman spectroscopy is also
involved in the magnetic dipole-dipole and quadrupole spin relaxation
processes. For magnetic dipole, spin-spin relaxation the formula

(assuming T, = T,) is 5,19

Tl-l = Tz_l = y4ﬁ2 I(I-f- 1) (r-S )sz< Pz[g(o) ° l}\(t)]> dat 9 (30)
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where vy is the magnetogyric ratio for the nuclei, r is the distance
between thernuclei, and I is the nuclear spin.

| When the nuclei have a spin of one or more, its charge distri-
bution has a quadrupole moment, which interacts with intramolecular
electric field gradients. When it is present this interaction usually
provides the dominant mechanism for spin relaxation. The formula

for this type of relaxation is 5,19

R T i CIQ) [ IEA ORI P SER
401°(21-1)

where equ/ﬁ is the quadrupole coupling constant. These two
formulae are valid in the extreme narrowing limit, which applies to
liquids, except for very viscous ones. |

Spin-rotational coupling, where the spins are weakly coupled to
the rotational and tranélational motion, also causes spin relaxation. |
This coupling is an important relaxation process for nuclei of spin 3

For a linear molecule, this interaction Hamiltonian is of the form
€ = -cl-J (32)

where c is a spin-rotation constant, I and J are angular momenta of

the nuclear spin and the molecular rotation, respectively. Using .

of Eq.(32), Gordon gives for the relaxation time* 6

2

- f< J(t))dt
0

[oV]

;J
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(J(0)- J(t)>

2 ¢
= =5 (J(0)") —2—— dt
A [ IR
- 2oy B0 g (33)

0o (w(©0)?)

(See the section on transport mechanisms under angular velocity for

this transformation. )

f) Transport Mechanisms

i) Angular velocity

For the solute molecule, the rotational diffusion constant D;
about the ith principle axes depends on the angular velocity corre-
lation function. The normalized angular velocity correlation function

is
(w(0) - oi(t)7>/ (w(0)*). (34)

This is also the same correlation function for J the angular momen-
tum, for J = I'wwhere 1’ is constant for a diatomic molecule;
(J(0)- I(t))  (w(0)- wit))

= - = . (35)
(30 (w(0))

This correlation function is used to calculate the diffusion constant

for ith principal axis of rotation;8

At
D; = {) (wy(0) - w;(t)) dt. (36)
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The rotational diffusion tensor principal axis system coincides with
the principal symmetry axis of the molecule as does the principal
inertial system. For a diatomic the axes of interest are perpendicular
to the bond. Since the diffusion constant D; = kT/£;, the friction

constant §; can also be determined, 14

KT/, = fo (wy(t) + w(0)) dt. | (37)

ii) Diatomic center of mass motion
Fehder et al. 16 1iave calculated diffusion constants for a two-
dimentional liquid. The diffusion constant for singlet diffusion Dy is

related to the mean square displacement (MSD) correlation function
2it) = ([x - x(0)]) (38)
and the velocity autocoi;relation function

AL = (Y0 y(t) (39)

by the following relations

L
DS = —‘IE(t)

f (40)
D, = % fe A (bt

They found that there was poor agreement between the two values of

Dg. These equations should apply to the diatomic center of mass
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displacement and velocity.
Note that the velocity and momentum correlation functions are
related. The normalized translational momentum corrélation func-

tion t) i
i Cp()lS

cp,t) = (R(0)- P(t))/(R(O)). (41)
Therefore

(Po(0)- Po(0))  (¥4(0)- Vo(t))

2 - 2 (42)
(P(0)%) (¥c(0?)

where c refers to the center of mass.

iii) Solvent transport mechanisms
The question of what effect the diatomic has on the solvent
structure can be determined by the MSD and velocity auto correlation

functions 20,21, 15, 27

for the system. These functions are the same
as the ones described in the previous section, except the vectors r
and v refer to the solvent molecules now. Also, the relationship
between the momentum and the velocity is the same.

These correlation functions can also be used to determine if the
whole system is behaving approximately‘correctly. Further infor-
mation of this type can be obtained from the velocities and speed
distributions. The most accurate determination, of course, comes

from the thermodynamic data (i. e., total energy, potential, kinetic

energy, and pressure vs. time).
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g) Total Force on the Bond

Berne, Jortner and Gordon 24, 25

have developed a correlation
function for vibrational relaxation for the high frequency components
of the power spectrum of the rotational kinetic energy. The coupling
between the diatomic and its environment (necessary to produce
vibrational relaxatibn) requires the system and the diatomic to vibrate
at similar frequencies. The frequencies of the diatomic are the
vibrational frequencies, which are usually very high. The system
frequencies can be determined in terms of phonons and they occur at
lower values on the frequency scale. The high frequency components
of the system frequencies are almost non-existent. Therefore, their

formulation 24,25

must be restricted to diatomics with low frequencies
of vibrations (i.e., a classical vibrator or oscillator). Keeping this
in mind, the rate of radiationless decay (dependent on vibrational
relaxation)‘ is W

=2

Wy apger = B 1, Vo'1| f a exp(-iwgt) (£(0) - t(t)) (43)

where q is the deviation of the internuclear separation from its

equilibrium value, and
ftt) = fint(t) + fce nt(t) : (44)

fint(t) is the force on the bond due to the solvent and f ¢ ent(t) is the

centrifugal force. Then
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fmt(t) = [El(t) ° El(t) + Ra(t) ° Ez(t)]/z
(45)
fcent(t) = 2 Er(t)/Ro

where Uy is the unit vector from the center of mass of the diatomic
to the ith atom of the diatomic, Ei is the force on that atom due to the
solvent, E, is the rotational kinetic energy and R, the equilibrium

interatomic distance. Therefore
1 = [{w® FO +u®- BOY2+ 2E.0/R, 1. (46)

Since u,(t) = -u,(t), Eq. (46) can be expressed as

) - |20 {50-EO)

5 + 2E.(t)/R, } : (47)

This can be simplified if the unit vector u, is replaced by u which is

the unit vector along the diatomic bond running from atom 2 to atom 1;

then

f(t) = [9' {El(tz) - EWMF, 2Er(t)/Ro] . (48)

The vibration relaxation time can be found from the correlation

function (£(0)f(t)).
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3. METHOD OF CALCULATION

a) Reduced Units

In order to obtain some generality in this model reduced units

were used. The following is a list of those units:lB’ 20

Distance:
_r 0, € = Lennard-Jones
* =5 ’ parameters (49)
Velocity:
1
v* = v/(e/m)?2 m = mass of an (50)
- - argon atom
Time:
-~ 1
AT = At(€/m)?2 (%) (51)
Potential:
; 12 6
Py = 4e{(zT) - (5) )
~ij ~ij
1 .12 6
o*(r,) = 4{(2)7 - (L)%} (52)
PR T T T |

Acceleration:

s
#*
1]
b)
B3
]
e |
*
8
*
]
ey
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NN 5
A”; = - =1 NN = nearest neighbor
~ j=1 or
iy 2.0 1.0
=242 {22 1.0,
=1 (%) )"
1
NN
=154 ()" (r
Ax*,
Ax* = U A%
r¥x, ~1
Al] B
X*
Ax* = 2420 1 1{20-10} (54)
i r..z )12 (r¥ )6
(similar for A§i and A% N
Temperature:
T* = T/(e/k) | (55)

3/2kT = imv

il
Ol
<N
~
m
~
g
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T* = iv® = Z(K.E.)*. (56)

This system loses some generality when the parameters €, o

are chosen for some substance. This potential function is applicable

for argonzo’ 2l and € and o are the argon parameters:
o = 3.407A
€ = 1.656x 107" ergs
m = 6.6321x107%g
e/k = 119,8°K
(€/m)Z = 1.5804 X 10* cm/sec
AT = 4,6386842 X 107 for At=107",

~ Above, the potential function for the argon solvent is presented.
The diatomic solute has to be represented by a more complicated
function. We shall employ a two-center Lennard-Jones (6-12)
potential. Choosing N, as the diatomic and using the data of Sweet

28

and Steele™” with an intercenter separation of 0.30,; , the potential
2

function for two interacting N, molecules is

4
O |12 Ony | 6
o = B (7 2]
N () = L4 € —2 - =2 .
R 1A b - (57)
j=1
For N,-A interactions the combining laws
Opn = 5(0, +0,) €xnn = ( 5 58
AB = z(7y+0p AB ~ (€p€p) (58)
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must be used. Also there will be only two interaction distances not

four as was the case for N,-N,.

N2_A
Then
% O'NZA 12 O'NzA 6
) = 2 [ - 59
Pn-a %) = 2 A ( Ly U Ly oY

where oy = 3. 3824, € =138.9°K. To express these quantities in
2 2
reduced units, 0N2 A and €N A are expressed in units of Op and € A

giving

1.0768

€n,A/ €A
0.9965.

]

on,A7 A

The only other quantity that needs to be re-expressed is the mass

term in the acceleration formula,

mass of N

reduced N, mass
2 mass of A

11

2.8518 .

i

Then
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2 12 6
0% _alr;) = 2.1536 23[ 0-9965) ; (9%95-5-) ] (60)
e =15 1y Ly
2 NN x*_ x*
A%y , = Z12x2.8518 2 LS
s T 5 | j=1 Lif
12 6
r*, r*.
~1]) ~1]

This slight loss of generality isn't severe. The system can still
be considered as having other constituents if they aren't much different

from the N,-A system (i.e., NO-A, CO-A, etc.).

b) Calculation Algorithm

The method of calculating the positions, velocities and the
accelerations for every AT is a ndodified version of Rahman's 20
predictor-corrector technique. This algorithm is equationally
summarized below (where N-1, N, N+1 refer to three consecutive
AT's; Vx is the velocity in the x direction, etc.; Ax is the accele-

ration in the x direction, etc.; and x is the x position, etc.):

i) Predict the velocities

Vxi(N+1) = VxI(N-1) + 2(A7) Vx}(N) | (62)
ii) Determine the positions

xy(N+1) = x5 + 3(an{veim) + vei+ 1)} (63)
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iii) Caléulate the accelerations

NN 24N+ 1) - x¥N+1) |
= A = 24 8 ] Cigey
=t ~ij Lij Ly
(64)

iv) Calculate the velocities

ViN+1) = VK(N) + 3(A7) {AxY(N) + Axi(N+1)}  (65)

v) Redetermine the positions

_L— x’;(N+ 1) = x"{(N) + 3 (AT) {Vx"i‘(N) + V#"{(N+ 1)}

At this point the velocities have been predicted and their first
corrections made. To insure that successive values of x; differ only
by some small number, iterations (as shown) can be performed.

The number of iterations necessary to achieve this is very small
(one or two). The above also applies for those quantities in the y and
z directions,

The potential function cg*(r*), which determines the accelera-
tions, has a cut-off distance of r* = 2.5. This introduces a small
error [¢* (r* >2.5)<0,01] but this has been shown to be small. °
This cut-off also necessitates neighbor searching to find those neigh-
bors within a sphere of radius 2.5 centered at the particle for which
the potential is being calculated. This neighbor search is done as

follows: all particles with Ax* > 2.5 are ignored. Of the rest, all
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those with Ay* > 2.5 are deleted from the list. Then the remaining
are tested for Az* > 2.5. At this point there exists a cube of particle
neighbors with an edge of 5 units. These are then tested to see if the
distance between them and the central particle is greater than 2. 5.
Those whose distance is less than 2.5 are the nearest neighbors over
which the potential on the central particle is determined.

The above equation for determining the accelerations apply only
to the monatomic solvent. For the diatomic a different approach must
also be taken in order fo describe the diatomic rotational and trans-
lational motion. Since the diatomic is a rigid rotor, the complicated
and expensive inertial tensor analysis is not necessary.

Analysis of the angular momenta and the torques yields an

equation for the angular accelerations. The angular momentum L is

given by
i r; = +R
ry v = vi'+V
r. - o~ -~~~
7 V = v T+ |
R cm X =% U7 g
0 L = 2r, XD

Substituting for ry and Pi = m,v,
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d ’
X o ?(m.r.). | (67)

The last two terms disappear when the center of mass of the diatomic
is taken as the origin. This origin is all that is needed to determine

the angular accelerations.

VI 14 4 ’
L= ZRxmY+ 2y x B P/ -myv) (69
L = RXxMY + 2/ xP/. M= )im, (69)
1

The angular momentum L can then be divided into two parts: R X MV
is the angular momentumr of the diatomic about the origin 0 where the
total mass M of the diatomic is concentrated at the center of mass
of the diatomic. ? ri' X P is the angular momentum of the diatomic
about its center of mass. Then labelling the former as L(e) and the

latter as L(I) )
L - I:(e) N I:(I)
1:(1) - L - I:(e)

17:(1) = L } i:(e)
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By definition the torque N is related to L

[ - N® . IS(I) - I,\\I(e).

-~

D)

The internal torque N( is due to internuclear effects, which are not

present for this problem. Therefore

I"d(I) - n® 1:(6)

~

(D -4

LY = Ly x Fy - gRXMY) (11)
where g(e) = E’ﬁi XF; jli‘i is the force on the diatomic atom i. Then

LD - Pr. x - _d_R;x x 4

L 3 % iF:i dt MY + R dt(MY)}

(@

LY = Zigy X By - Y X MY - R X Fop. (72)

The second term on the right vanishes. But L(I) = torque about the

diatomic center of mass,

(@ o
LY = Taen (73)
where o cm is the angular acceleration about the diatomic center of

2

mass and 1’ = 2 m, ri' is the moment of inertia. Therefore

_ 1 (@) jpr
~Ccm I,:‘ /I
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_ 2
a = (Er.xFi-Rxgcm)/ZmiEi. (74)

° ~~, Cald Cad
1

For an homonuclear diatomic m=m, =m,andr’=r/=1r, =

(bond length B/2).

_ : mBz)
Zem _(?Eixfi'gxgcm)/(__ﬁ— ’ (75)

In reduced units

* * _ R¥ * B* )
gcm - ( ? £* X E‘l - B X Ecm /( N (76)
or
o = |ZrX*xa*_-R*xa * |/ ____B*2) (77)
~Ccm S RS ~cm 2 1°

Using this acceleration, the predictor-corrector technique can be

applied to the angular velocities w.

Qe +1) = @ X M) + z(an{a f () + ol N+ D} (78)

Then the linear rotational velocity can be determined

L3 * ’
= w* X
Viot Yem © L

and the velocity on the ends of the diatomic calculated

Yl* = Y* + Y:ot
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T Y Y 2

From these velocities the positions of the diatomic can be determined
by the technique described before. The iterative process is the
same, except for the diatomic, a c*m’ w :m’ Y;ot" Y* are the vectors
involved.

To apply this algorithm, it is necessary to retain two sets of
data corresponding to the two previous time intervals in order to
calculate the next one . Initially these do not exist and therefore must
be supplied. The first set can be generated by uniformly placing the
particles in é. box with periodic boundary conditions and randomly

assigning the velocities. The second cycle is produced by a less

accurate algorithm. Instead of Eq.(62) the following was used;

in*(N+1) = in*(N) + (A1) in*(N). (80)

After the first two cycles have been calculated the reguar algorithm
is applied. Then for every succeésive calculation the two preceding
sets of data are retained.

This method of calculation will be applied to a system of 156
Lennard—J ones spheres (argon parameters) and a rigid diatomic (N,
parameters) molecule. The box has dimensions of approximately
six units of distance to an edge. This distance may vary slightly to

produce different densities.
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¢) Correlation Functions

Since the correlation functions are independent of the initial
times t’ (Eq. (4)) and since for the range over which the correlation
functions are calculated the system is in equilibrium, ‘ensemble

averaging can be replaced by time averaging. 15, 21'23

Then the
function 'é(t’) . é(t’+t) is calculated for many initial times t’ and
averaged for each value of t to give (é(O) . é(t) ). Normalization is
determined by the average over the initial times é(t')z, giving
(A(0). |

Since the correlation functions have the time reversal property,
they are also calculated in reverse to yield a bettér statistical
average. But since this system has only one diatomic, a great
number of calculations have to be done (110 for some and 168 for

others). Although these numbers are large, there should still exist

some statistical fluctuation.
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4. DATA

a) Systems Calculated

Three systems have been calculated: The first involves an A,
diatomic in an argon solvent. (The potential function for this system
is very simple for Tp,-A = %A and €p,-A = €A and the masses are
the same.) The last two systems involve a N,-A solution. The
thermodyanmic data for these systems are presented in Table 1.
Plots of these data are presented for the first system (Figs. 1-4).
There is much instantaneous fluctuation but the average kinetic
energy, potential energy, and pressure are essentially constant.

The total energy shows a slight increase with time but this increase
involves a change of 0. 0038 over 3000 intervals of calculation for an
energy of approximately -2.0 units per particle. This is 0.19 per
cent change--well within the error limit of the algorithm (1%). 15
Therefore this system is stable.

These same data were calculated and plotted for the N,-A
systems. As for the A,-A system there were instantaneous fluctu-
ations about some constant value. And again the change in the total
energy over the 3000 intervals of calculation was within the 1% limit.
These plots aren't presented in this thesis for they add nothing

different from the A,-A plots.
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b) Solvent Calculations

As another check on the system stability the solvent data were
analyzed to determine their mean square displacement (MSD) and
velocity autocorrelation functions. Assuming that the diatomic doesn't
effect these functions sighificantly, they should be similar to the argon
calculations1 5,16, 21, 22--the MSD function should become linear rapidly
and the velocity autocorrelation functioh should die within 50 cycles.
These functions are presented (for A,;-A) in Figs. 5 and 6 and do show
the a,bove characteristics.

The speed and velocity distributions were also calculated
(for A,-A) and compared to the theoretical Gaussi:an distributions.

These distributions are presented in Figs. 7-10 and show that, in this
respect, the solvent behaves correctly.

Although no data are presented for the N,-A systems for the above
fuhctions, their results are the same; the MSD and the velocity
correlation functions behave correctly and the velocity and speed
distributions are Gaussian within statistical fluctuations.

A previous calculat:i.on29 on a diatomic and one monatomic
showed that the diatomic behaves correctly with respect to rotation

and constant total energy. Therefore it is concluded that this system

is stable and behaves correctly within its error limits.
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c) Diatomic Calculations

i) Correlation functions

Presented in Table 2 are the correlation times (where the
correlation function has an effective value of zero) for' each of the six
correlation functions mentioned before for each calculation. The data
for the A,-A system are different from the others because of its large
bond distance (3.4A) and its higher temperature (Table 1),

The first five correlation functions for the A,-A system are
presented (Figs. 11-13, 16, 19), but for the N,-A systems only the
first three of Table 2 are. The last three for these systems were
excluded, except the bond forces correlation funciiions of calculation
2,

The angular velocity correlation functions are shown in Figs.
13-15. The A,-A function is ignored for further calculations. For
the N,-A systems the relaxation times are almost identical. This is
probably a statistical fluctuation problem. Both are at the same
liquid densities and they are only separated by 30°K in temperature.
This may cause their decay times to be close together.

The bond vector correlation functions (u(0) - u(t)) are presented
in Figs. 16-18. The A,-A system has a large correlation time
because of the iarge moment of inertia that results from the long bond
distance; this causes the diatomic to reorientate slower and increases
the randomizing time. The (PZ[E(O)e g(t)]) correlation functions are
shown in Figs. 19-21. Here also the A,-A has a large correlation

time. Since the A,-A systems are so unreal they will not enter into any
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further calculations; they are included for comparison only.

The N,-A systems show a strong temperature dependence in the
(u(0) -u(t)) and <PzE}1(0) -u(t)]) correlation functions. At T* =
0.9396 (112°K) the correlation (or decay) times are over twice as
large as these times at T* = 1.19 (143°K). This strong dependence
does not appear in the other correlation functions. This is probably
due to the fact that at the higher temperature more collisions result
in greater interaction with the repulsive part of the potential. Since
the repulsive part of the Lennard-Jones (6-12) potential goes as the 12th
power it has a stronger reorientational effect on the diatomic, causing
the orientation to be randomized quicker. Therefore the correlation
function will decay to zero in a smaller time. The only effect on the
other correlation functions (those that don't involve the orientation of
the diatomic) would be due to the increase in temperature only; they
should charge slightly as the thermal motions are increased.

An interesting result appears in the bond forces correlation
function. This function is presented for calculation 2 system in
Fig. 22, It can be seen that the correlation function does not reach
zero, except in some fluctuations. This is so because the function
expressed in Eq. (48) does not take into account the average forces
on the bond due to the solvent or the rotations (see Table 3). Only
fluctuations about the average are important in this relé.xation
process; the average forces merely cause a change in the force

constant, Then Eq. (48) has to be corrected to include this constant
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ft) = [% {E“(t) B E‘a(t)} + 2Er/Ry - FconstantJ‘ (81)

Then the correlation function will decay to zero as is shown for the
corrected version in Fig. 23. The same occurs for the other systems.

In all the correlation functions there exist statistical fluctuations.
These results from the small number of time intervals into which the
whole calculation can be divided. Because of these fluctuations it is
difficult to judge where the correlation function has reached zerb.
Fortunately, in those areas where comparisons are to be made (IR
and Raman band shapes and NMR relaxation times) the correlation
times are very different (by a factor of 2); therefére approximations
to the forms and the decay times of the correlation functions should
not invalidate these comparisons for these approximations are within
10% of the real situation for this model (molecular dynamics).

ii) Band shapes

According to Eq. (15) and Eq. (29) the appropriate correlation
function can be Fourier transformed to produce IR and Raman band
shapes. This was done for the N,-A systems using smoothed functions
for (u(0)-u(t)) and (P,[u(0)- u(t)]) (Figs. 24-27); the resulting
bands are presented in Figs. 28-31. These bands represent IR and
Raman transitions that have been broadened by the motions of the
solvent. VTherefore the frequency w in I(w) repfesents the displace-

ment frequency.
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Although the calculations were performed for N,-A systems,
they should apply (within a small error)to a CO-A system. The change
in the moment of inertia (important for the calculation of angular
accelerations) is small and the effect of the dipole-induced dipole
potential is small (<1%) compared to the Lennard-Jones (6-12) potential
for such a system (the dipole moment of CO is very small ~.1 Debye).
Making the above assumption, the (u(0)-u(t)) and (PZ[E(O) . g(t)] )
functions are applied to CO and considered as data for CO in Argon.

There are two points to note about the band shapes. First, they
are symmetrical about w = 0. This is a consequence of the classical
nature of the calculation. The CO-A system is a quantum mechanical

-jwt

one, with a complex e such that

f C(t dt = 2 f C(t) cos wt dt. (82)

This allows asymmetric band shapes. Therefore this analysis is
restricted to the symmetrical portion of such a band. The more
symmetrical the experimental band is, the more applicable is the
above analysis.

The second is to note that the change in the bandwidths mirrors
the change in the decay times of the appropriate correlation functions.
More will be said on this later. |

iii) Relaxation times
The relaxation times for the three types pf spin-lattice coupling

mentioned before were also calculated. Using a spin-rotation
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30 and a value of 3.35 x 107

constant for N'° of 1. 38 X 10° radians/sec
radians/sec for equ/ﬁ, 31 these times were determined and are
presented in Table 5 for the N,-A systems. The quadrupole coupling
is by far the strongest and the dominant relaxation mechanism for N
at these temperatures and densities. The spin-rotational coupling
yields relaxation times two orders of magnitude smaller than the
dipole-dipole coupling under these conditions. The long time for the
dipole-dipole coupling results from the fact that a nuclear spin
experiences a somewhat average local field (extreme narrowing limit)
rather than a fluctuating local field which allows energy to be trans-
ferred to the lattice. Then at higher temperatureé ‘(at the same
density), where the above limit is even more applicable, the relax-
ations times should be even longer for those couplings that don't
directly depend on the thermal motion of N, (dipole-dipole and quad-
rupolar couplings). This effect occurs in the N,-A systems calculated
as is shown in Table 5. Note that the spin-rotation coupling undergoes

an opposite effect with respect to temperature.
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5. DISCUSSION AND POSSIBLE ANALYSIS

a) IR and Raman Spectroscopy

The above data were obtained for systems of liquid densities
and low temperatures. It indicates a strong temperature dependence
in the decay times of the correlation functions for IR and Raman
spectroscopy. Then at higher temperatures (still liquid densities)
the decay times should become very small. Yet Gordon has calculated
from experimental data these times for CO dissolved in liquid
CHCl;, CCl,, N-C;H,;, and argon gas and obtained values for these

T3, 2,19 This would seem

times of approximately 3 X 107" to 7 X 10
to indicate that increasing the temperature beyond 141°K has less effect
on the decay times than decreasing it below 141°K. A room tempera-
ture calculation for N,-A at liquid densities would show whether this
phenomena actually occurs. |

Furthermore, the correlation functions ({u(0)-u(t))) calculated
by Gordon have rather interesting but somewhat unexplainable
forms. 2,17 For liquid CCl, and CHCl, a shoulder appears, while for
CO in dilute gas the correlation function dips below zero significantly.
These forms can be checked by the above calculation and by another
one at a gas density but at the same temperature.

The same inconsistencies between this calculated data and
Gordon's exist for his <Pz[9;(0) -g(t)]) calculated for liquid N,. There

2, 4

exists a shoulder in the correlation function that doesn't appear in

these calculations even though the temperature-density conditions are
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similar. The above analysis as applied to Raman spectroscopy should
throw some light on this problem.

Gordon's correlation function times and forms are derived
from Fourier transforms of experimental lines and bands. If these
experimental data involve any factor that is not included in Gordon's
formulism, the times and forms of the correlation functions will be
incorrect; If the vibrational transition is affected by the solvent
inhomogeneities, the band is further broadened and the decay times
become shorter. A multiple peaked band shape causes the correla-
tion function to have shoulders or dips. Then calculation of the
correlation functions by molecular dynamics would yield an evalua-
tion of Gordon's formulism, his correlation functions, and the sys-

tems in which his formulism is applicable.
b) NMR Spectroscopy

The above analysis can also be applied in this area to give the
temperature dependence of the relaxation times. Also the dominant
mechanism for relaxation can be determined. Further data on the
magnetic dipole-dipole relaxation process should result in a clearer
picture of the effect of the thermal motion of the diatomic on the

relaxation time.
¢) Decay Times and Potential Functions

It was postulated that the temperature dependence of the decay
times of the IR and Raman correlation functions depended on what

part of the potential function applied most on the average. The effect
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of the repulsive wall of the potential function can be determined by
trying potential functions other than the Lennard-Jones (6-12). One

possibility would be the hard sphere potential

¢ =0 r = a
(83)
=L r>a.
r¢ -

This analysis should give the dependence of the correlation function

on potential functions and an evaluation of the potential functions used.

d) Functionality of the Correlation Function

In working with formulisms similar to Gordon's many authors have

had to assume various functional forms for the correlation functions.

8,11,14

These functions involve mainly exponentials such as

e't/T; e'(t/T)Z;‘ [1-t/7] e"t/T (84)

where 7 is the decay time. Gordon has postulated polynomial forms

for (u(0)-u(t)) and (P,[u(0)-u(t)]) §2’ 19

(u(0)-ut)) = 1- (KD [%(‘ﬂ>2+(§ﬁ>2<(o et oy

(85)

' _ 3KT, 2 kT2 1 2\ | .4 6
<P2[2(0)'9;(t)]> = 1-—(—~i—)t + [4(—1—-—) +§F((OV) ):}t + O(t")

(86)



45

where T is the temperature, I the molecular moment of inertia, and
OV the torque on a molecule due to its neighbors.

All these forms can be analyzed to check their validity and their
effects if they are used. These effects could be quite striking in the
band shépes they give for IR and Raman spectroscopy. Since in NMR
spectroscopy only the rate of relaxation is sought, these effects should
be much smaller. |

This analysis allows one to calculate the correlation functions
that others have had to approximate. This leads to analyses in the
opposite direction, from the correlation functions back to the quantity
that depends on it. Thus many formulisms or théir applications can

be checked. This is the advantage of the molecular dynamics approach.
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Table 1
Calcuation  System o* T* P.E.* E* p*
1 A,-A  0.7341 1,533 -4.32  -2.02 1.20
2 N,-A  0.7341 1,190  -4.93 -3.16 0.895
3 N,-A  0.7341 0.9396 -5.14 -3.73 0.679

6* is the reduced density, T* the reduced temperature,
P. E. * the reduced potential energy, E* the reduced total energy,
and P* the reduced pressure. |

Table 2

Correlation Times (10" *®sec)

Correlation Calculation 1 2 ; 3
Function System A,-A N,-A N,-A

(u(0) - u(t)) 84.0 10. 63 21,25

(P[u(0) -ut)]) 80.0 3.45 8.50

(w(0) - w(t)) 4.0 2.40 2.50

T2 4.59 x 10 1,52 x 10" 1.86 x 10
| (=0 -x®)1) cmYsec cni/sec cm/sec
(v.(0)- v .(t)) 4.6 3.50 5.7
(£(0) £(t)) 2.0 1. 80 2.1
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Table 3

Average Value of Forces on the Bond

Calculation System fint feent fint * feent
1 A,-A -4.68 3.05 -1.63
2 N,-A -15.44 21.46 6.02
3 N,-A -13.84 13.89 0.046
Table 4

Bandwidths (Aw X 107*%)

Calculation IR Band Raman Band
2 0.7735 2.0995
3 0.3808 1.222
Table 5

Relaxation Times for Spin-Lattice Couplings
Calculation  Spin-rotation  Magnetic dipole-dipole Quadrupolar

2 7.46 X 10°sec  4.62 X 10*sec (N;°)  8.61 msec (N2)
(N2°) 6.70 X 10%sec (N3

3 9.64 X 10° sec 2,84 X 10*sec (NY

e ) 5.29 msec (N,
(N2') 4,12 x 10%sec (N1
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