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Chapter 4

LCS and the Perturbed Pendulum

We are now at a point where we can introduce the use of the FTLE-LCS method

for identifying homoclinic tangles in time-dependent flows. Our main goal will be

to identify these tangle structures in atmospheric and oceanic flows, but as a first

example, it is instructive to apply the method to the case of the simple pendulum.

Consider the flow generated by the coupled differential equations

θ̇(t) = ω(t) ,

ω̇(t) = − sin t− 0.65ω(t) sinπt . (4.1)

This flow is identical to the simple pendulum investigated in Section 3.2, but now

an extra periodic forcing term has been added. We shall see that chaotic trajectories

emerge from the existence of homoclinic points and a homoclinic tangle. However,

our approach to obtain this understanding will be from a different perspective than

that of Poincaré.

To appreciate the effect of the periodic forcing, it is instructive to first view an

animation of the velocity field and then ask the questions: “Where do trajectories

go now?”, “How are portions of phase space transported?”, “What happens to the

separatrix between windmill and oscillating motions?”. In short, the time-dependent

velocity field provides very little intuition in answering these questions. Furthermore,

plots of instantaneous streamlines in a snapshot of the velocity field are misleading in

determining the important Lagrangian structures and transport mechanisms (Figure
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Figure 4.1: Snapshots of streamlines plotted in the time-dependent velocity field of
the perturbed pendulum do not reveal the underlying transport mechanisms.

4.1).

Since the perturbation is periodic, we can follow the insight of Poincaré by con-

sidering t as a periodic variable with period 2π, and introducing a Poincaré section at

t = 0. As described in Chapter 2, this reduces the flow to a discrete map on the two-

dimensional section. Plotting iterates of this map produces the static plot in Figure

4.2 in which we recognize resonance islands that persist under the perturbation, and

the chaotic sea corresponding to chaotic trajectories.

When we compute the LCS for this perturbed pendulum, we use a different ap-

proach that elucidates the time-dependent transport mechanism in the flow. Multiple

intersections of the repelling and attracting LCS reveal a homoclinic tangle, and the

time-dependence of the LCS reveals the continuous motion of the lobes defined by

these intersections. Figures 4.3(a) through 4.3(d) show how lobes defined by the in-

tersection of the repelling and attracting LCS delineate precisely the areas of phase

space transported from one region to another via the mechanism of lobe dynamics : the

green lobes are entrained into the region of oscillatory motion while yellow lobes are

detrained. The action of lobe dynamics has previously been observed in laboratory

flows [Shadden 2007] and in bio-propulsion flows [Franco 2007].

If we replace the periodic sinusoidal forcing in Equation (4.1) with a chaotic ape-

riodic forcing, the Poincaré section analysis can no longer be applied – there is no

sensible definition for the Poincaré section. However, we can still proceed to com-

pute the time-dependent LCS to understand the effect of the aperiodic perturbation



40

Figure 4.2: The Poincaré section for the periodically-forced pendulum reveals reso-
nance islands and the chaotic sea.

on transport. Figure 4.4 shows the lobe structures present when the pendulum is

perturbed with forcing obtained by coupling the pendulum to chaotic trajectories in

the Lorenz equations. The lobes are now irregularly spaced in accordance with the

irregularity of the time-dependence in the forcing, but they nevertheless persist as

the important structures that indicate the passages to transport.

In this way, the FTLE-LCS method provides a technique for revealing homoclinic

trajectories in aperiodic flows. The identification of lobes, and their subsequent en-

trainment and detrainment, will be a repeated theme in the study of geophysical flows

in the remaining chapters.
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Figure 4.3: LCS analysis of the perturbed pendulum reveals that transport occurs
through the action of lobe dynamics. Panes (c) through (f) illustrate the entrainment
and detrainment of lobes: green lobes are entrained, yellow lobes are detrained.

Figure 4.4: The LCS method can be applied to a chaotically forced aperiodic flow,
and reveals the aperiodic lobe structures that govern transport. Here, the pendulum
is chaotically forced by coupling to the Lorenz attractor.


