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Chapter 6

Simulations of spectra and spin
relaxation

1 Simulations of two-spin spectra

We have simulated the noisy spectra of two-spin systems in order to characterize the

sensitivity of the example resonator presented in table 5.3. Simulations had normally

distributed noise added to each sampled point of the FID, with the variance of the

noise determined by equation (4.50) in the case of spin-locked detection, and equation

(4.53) in the case of freely-precessing spins. The value

Adet = 16

was used to characterize noise in the motion detector, as in the measurements reported

in reference [25]. This value of Adet renders the spin noise negligible in comparison

to instrument noise. For detection of freely-precessing spins, resonator-induced re-

laxation was included in the simulation by writing GAMMA programs [39] which

simulated the motion of the spin system under the reduced master equation (2.17).

For spin-locked detection using the scheme described in section 1 of chapter 5, no

relaxation was included in the simulation. (This detection scheme measures a single

point hIx (t1)i of the FID with each shot of the measurement, and the spins are off

resonance from the mechanical oscillator until time t1.) We assumed that transverse

decay of a two-spin system in a lattice at 10 mK would be negligible during the range
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of values t1 sampled during spin-locked measurements, which included times up to

3 s after the beginning of the FID. As in the optimization described in section 6 of

chapter 5, we used

T1ρ = 1 s ,

rather than assuming that resonator-induced relaxation was responsible for the decay

of the spin-locked signal, which would have yielded

T1ρ = 2/Rh = 1.5 s .

1.1 Noninteracting spins

For a system of two noninteracting spins coupled to the mechanical resonator, the

discussion of section 5 of chapter 3 suggests that a chemical-shift difference of

δω/2π = 200Hz

would yield the same time constant for resonator-induced transverse relaxation of the

freely precessing dipole that would be observed for a single spin:

2/Rh = 1.5 s .

Under these conditions, section 6 of chapter 4 shows that detection of the freely pre-

cessing transverse dipole is more sensitive than spin-locked detection, particularly if

the lifetime of the spin-locked signal is shortened from 2/Rh to 1 s. Indeed, equations

(4.50) and (4.56) predict that under these conditions, detection of freely-precessing

spins will be more sensitive than spin-locked detection by a factor of about 1.75.

Figures 6.1 and 6.2 are consistent with this prediction, since the peaks at 100Hz and

300Hz stand out more sharply from the noise in the case where the freely-precessing

spins drive the magnet than in the case of spin-locked detection.

Each of these spectra requires 32,000 transients. In estimating the time required

to obtain the spectra, note first that the time constant for resonator-induced longi-
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Detection of the free precession of noninteracting spins

Figure 6.1: Simulated spectrum of two noninteracting spins detected without spin-
locking. The spin Hamiltonian is H = (100Hz) I1z + (300Hz) I2z. Transverse
relaxation induced by the example resonator of table 5.3 is included in the simulation
of the noiseless FID, and normally distributed instrument noise associated with de-
tection by the same resonator is added to the FID. Thermal polarization is assumed
at the beginning of each transient. The acquisition time is ∼ 50 h.
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Figure 6.2: Simulated spectrum of two noninteracting spins detected with spin-
locking, with T1ρ = 1 s. The spin-resonator system is the same as in figure 6.1,
but resonator-induced transverse relaxation is eliminated from the simulation. Ac-
quisition time for the spectrum is ∼ 60 h. Figures 6.1 and 6.2 are consistent with the
prediction that for this system, detection of freely-precessing spins is more sensitive
than spin-locked detection by a factor of about 1.75.
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tudinal relaxation between transients is

1/Rh = 0.77 s , (6.1)

and we estimate the relaxation time between transients as 3/Rh = 2.3 s, for consis-

tency with the assumption that thermal polarization is present at the beginning of

each transient. For both figures, the detection period for a single transient lasts

3 s. In the case where freely precessing magnetization is detected, this is twice the

time constant 2/Rh for resonator-induced transverse relaxation (chosen after exper-

imenting with simulated FIDs of different lengths in order to produce peaks clearly

differentiated from the noise), while in the case of spin-locked detection, this is 3T1ρ

(an assumed value for the protocol used to analyze the resonator’s detected mechan-

ical motion). The acquisition time for figure 6.1 is therefore

(2.3 s+3 s)× 32000 ≈ 50 h .

For the spin-locked detection simulated in figure 6.2, an initial period of free preces-

sion which precedes the detection period is also required, and the average length of

this period is 1.5 s, which gives an acquisition time of

(2.3 s+3 s+1.5 s)× 32000 ≈ 60 h .

1.2 Vinyl bromide

Reference [40] has studied the structure of dibromoethylene adsorbed on a silicon

surface and proposed the two structures shown in figure 6.3. We simulated spin-

locked detection of one of these structures, adsorbed vinyl bromide, using the exam-

ple resonator. Standard bond angles and bond lengths were used to estimate the

Hamiltonian for dipolar coupling. A chemical shift difference was incorporated into

the Hamiltonian by using the value 0.6 ppm given in the literature for vinyl bromide
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Figure 6.3: Two possible structures for dibromoethylene adsorbed on a silicon surface,
proposed by reference [40].

in deuterated dichloromethane [41]. The spin Hamiltonian obtained in this way is

Hvinyl bromide = (0.6) (628Hz) Iz,1 + (1840Hz) (2Iz,1Iz,2 − Ix,1Ix,2 − Iy,1Iy,2) .

Figure 6.4 shows the simulated spectrum, for which the acquisition time is ∼ 60 h,

as in figure 6.2. Since the dipolar coupling is sensitive to variations in geometry

such as those shown in figure 6.3, this simulation suggests the possibility of chemical

studies in which NMR spectroscopy is used with single-spin sensitivity.

2 Simulations of spin relaxation

Chapter 3 analyzes resonator-induced spin relaxation in samples containing more

than one spin. Here we present GAMMA simulations [39] which illustrate and

extend the results obtained in that section. The resonator used for these simulations

has parameters similar to those given in table 5.3, although simplifications have been

made to facilitate the interpretation of the graphs. For simulations of spin relaxation,

the rate constant for spontaneous emission is R0 = 1 s−1, the Larmor frequency has a

magnitude of 600MHz, and the temperature is approximately zero Kelvins, i.e., we
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Simulated spectrum of two spins

Figure 6.4: Simulated spectrum of a single molecule of adsorbed vinyl bromide, de-
tected with spin-locking. The FID contains 1024 sampled complex points, averaged
during 32,000 transients. Thermal polarization is assumed at the beginning of each
transient. Acquisition time for this spectrum is ∼ 60 h.
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have set nth < 10−4 in equation (2.17). The interaction frame used for simulations

of the relaxation of hIxi is defined as follows: the interaction-frame reduced density

matrix for the spins ρs (t) is found by evolving the spin system forward in time

for a period t from the initial state ρs (0) using the full evolution superoperator

corresponding to equation (2.17), and then evolving the spins backward in time for

the same period using the superoperator for evolution under the full spin Hamiltonian

without relaxation.

2.1 Relaxation of noninteracting spins

Figure 6.5 presents the results of two simulations performed in order to test the

estimate (3.21) of the time Ttrap required for an initially disordered system to approach

its spin-trapped equilibrium state:

Ttrap =
1

R0
p
N/2

.

Note that Ttrap also characterizes the time required for resonator-induced spin-spin

correlations to develop, and it can be used to estimate the frequency at which indirect

spin-spin torques must be modulated if spin trapping is to be suppressed. The solid

and dashed curves show the relaxation of two systems of noninteracting spins which

all experience the same field while relaxing from an initially disordered state, with the

respective systems having N = 144 and N = 36 spins. The curves are normalized

to take the value 1 when a system has relaxed to its spin-trapped equilibrium state.

Figure 6.5 suggests that (3.21) works reasonably well as an estimate of the character-

istic time required for hIzi to approach its equilibrium value. For both curves, the

time t = Ttrap corresponds to a point at which the system has relaxed to about 70%

of its spin-trapped polarization.

The semiclassical model used to estimate Ttrap suggests that chemical-shift offsets

could reverse the sign of indirect spin-spin torques, thereby allowing resonator-induced

relaxation to be characterized by a rate constant, and the simulations shown in figures

6.6 through 6.9 are consistent with this hypothesis. In figures 6.6 and 6.7, the
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Relaxation of two spin−trapped systems

Figure 6.5: The solid and dashed curves show the respective relaxation of noninter-
acting systems having N = 36 and N = 144, with R0 = 1 s−1. The curves are
normalized to take the value 1 when a system has relaxed to its spin-trapped equi-

librium state. For each curve, the time t =
³
R0
p
N/2

´−1
corresponds to a point at

which the system has relaxed to about 70% of its spin-trapped polarization.
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spins are initially aligned along the x-axis. The dashed curves show resonator-

induced longitudinal and transverse relaxation, while the solid curves show the ideal

longitudinal and transverse relaxation which would be observed if the relaxation were

exponential with the respective rate constants R0 and R0/2 that govern the relaxation

of an isolated spin interacting with the resonator. The dotted curve in each figure

displays the evolution of

N/2− I2x − I2y

®
. Since the relaxation equation for hIzi can

be expressed as

d

dt
hIzi = −Rh

½
hIzi−

N/2

2 hnthi+ 1

¾
−R0


N/2− I2x − I2y

®
,

a plot of

N/2− I2x − I2y

®
displays the instantaneous contribution of indirect spin-

spin torques to longitudinal relaxation. Adding chemical shift offsets spaced in steps

of 1Hz causes the indirect spin-spin torques to be modulated quickly enough that

the contribution of these torques to the relaxation is effectively suppressed, and the

simulated relaxation closely follows the exponential curves.

Figures 6.8 and 6.9 show longitudinal relaxation from a completely disordered ini-

tial state. Note that in figure 6.9, the spacing of chemical shift frequencies in steps

of 1Hz is sufficient to suppress completely the contribution of the indirect torques

to longitudinal relaxation. The value of

N/2− I2x − I2y

®
, which shows the instan-

taneous contribution of indirect spin-spin torques, oscillates without ever becoming

large enough to affect the relaxation substantially. By way of contrast, the same

spacing of chemical shift frequencies leaves noticeable wiggles in the simulated curves

of figure 6.7, and

N/2− I2x − I2y

®
initially oscillates between much larger values.

These differences can be rationalized by noting that when the spins are initially dis-

ordered, the indirect torques do not add coherently, and modulation of these torques

during a period of one or two seconds is sufficient to suppress their contribution to

longitudinal relaxation. In the case where the spins are initially aligned along the

x-axis, the indirect torques add coherently, and the effect of these torques can be seen

even when their contribution is modulated within a similar time period.
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Figure 6.6: Relaxation of four isochronous spins which are initially aligned along the
x-axis. The dashed curves show the simulated relaxation of hIxi and hIzi, while
the solid curves show ideal exponential longitudinal and transverse relaxation with
respective time constants 1/R0 and 2/R0. The dotted curve shows the evolution of
N/2− I2x − I2y

®
, which determines the instantaneous contribution of indirect spin-

spin torques to longitudinal relaxation.
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Figure 6.7: Adding chemical shift offsets spaced in steps of 1Hz causes the indirect
spin-spin torques to be modulated quickly enough that their contribution to relaxation
is effectively suppressed.
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Figure 6.8: Relaxation of four noninteracting spins which experience the same field
and are initially completely disordered. The dashed curve shows the simulated
relaxation of hIzi, while the dotted curve shows the evolution of


N/2− I2x − I2y

®
.

The solid curve shows exponential longitudinal relaxation with time constant 1/R0.
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Figure 6.9: Adding chemical shift offsets spaced in steps of 1Hz causes the indirect
spin-spin torques to be modulated quickly enough that their contribution to relaxation
is completely suppressed, and the simulated curve closely follows the ideal exponential
curve.
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2.2 Relaxation of dipole-dipole coupled spins

Figures 6.10, 6.11, and 6.12 show GAMMA simulations of the relaxation of four-

spin systems coupled by the dipolar Hamiltonian. The spin Hamiltonian for these

simulations has the form

H = ω0Iz +HD,

HD =
X
i>j

ωij (3Iz,iIz,j − Ii · Ij) . (6.2)

In these figures, the dotted curve corresponds to a system in which the dipolar cou-

pling was eliminated by choosing ωij = 0 for all i, j. The system characterized by the

dash-dot curve has a Hamiltonian obtained by letting each ωij/2π be randomly cho-

sen, with a flat probability distribution between 1 kHz and 2 kHz. The Hamiltonian

yielding the dash-dash relaxation curves was obtained by broadening the distribution

of ωij/2π to lie between 0Hz and 2 kHz. The solid curves show ideal exponential re-

laxation with the rate constants for longitudinal relaxation and transverse relaxation

given by R0 and R0/2, respectively.

Longitudinal relaxation of an initially disordered system is shown in figure 6.10.

The dipole-dipole coupled systems show two different time scales for relaxation, with

a short initial period of fast relaxation being followed by a longer period of slow

relaxation. Extending the simulations to t = 150 s shows that the systems effectively

remain trapped away from the ground state.

This behavior can be rationalized using results obtained in section 4 of chapter 3

for a system of three dipole-dipole coupled spins. The rules for addition of angular

momenta allow a collection of three spins 1/2 to be represented as a single particle

with I = 3/2 and two particles with I = 1/2. Equations (3.28) and (3.29) show that

one of the I = 1/2 particles (or "manifolds") can be defined in such a way that its two

states |1/2,+i, |1/2,−i are eigenstates of HD. As the spins interact with the cold

mechanical resonator, the combined population of this manifold will be transferred

to the lower-energy state |1/2,+i within a time period of order R0 and then remain
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Relaxation of four dipole−dipole coupled spins

Figure 6.10: Longitudinal relaxation of four dipole-dipole coupled spins from an ini-
tially disordered state. For the dash-dot curve, the dipolar Hamiltonian was obtained
by letting the frequencies ωij/2π of equation (6.2) be randomly chosen, with a flat
probability distribution between 1 kHz and 2 kHz. For the the dash-dash curve, the
frequencies ωij/2π were randomly selected between 0Hz and 2 kHz. For purposes of
comparison, the solid curve shows exponential relaxation with time constant 1/R0,
and the dotted curve shows the relaxation of a system of noninteracting spins.



157

in that state indefinitely. Table 3.1 shows that HD does not strongly couple the

remaining I = 1/2 manifold with the I = 3/2 manifold unless the magnitudes of the

dipolar couplings are well separated. When the coupling between angular momentum

manifolds is weak, two different time scales of relaxation are expected. An initial

period of fast relaxation occurs as population is transferred to the lowest-energy state

of each manifold, and this is followed by a period of slow relaxation as population is

slowly transferred to the I = 3/2 manifold and then relaxes to the ground state of the

spin system. Simulated relaxation of three-spin systems confirms these expectations.

The four-spin simulations of figure 6.10 can be rationalized by the hypothesis that

the relaxation is governed by similar processes. The systems appear to relax quickly

from a disordered state to a state in which the population of each manifold is in the

manifold’s ground state. Relaxation out of this trapped state occurs on a slower

time scale as population is transferred between manifolds with different values of I.

In figure 6.10, the efficiency of transfer between manifolds of different I separates the

three simulated curves after an initial period in which they relax at the same rate.

Extending the simulation to t = 150 s suggests that the systems represented by the

dash-dash curve and the dash-dot curve effectively become trapped away from the

ground state. A system of four spins 1/2 yields one I = 2 manifold, three I = 1

manifolds, and two I = 0 manifolds. The dash-dash curve can be rationalized by the

hypothesis that population is trapped in the two I = 0 manifolds, while the dash-dot

curve can be rationalized by the hypothesis that population is trapped in the two

I = 0 manifolds and one of the I = 1 manifolds. Both curves become flat at a value

a fraction of a percent below the trapped value predicted by these hypotheses.

The discussion in section 5 of chapter 3 analyzes the way in which the resonator

can induce fast transverse relaxation in a system of two or more spins. A coherence

ρab between states |ai and |bi can be disrupted when the system makes a transition

away from one of these states. Transitions do not necessarily decrease the order

within a system, however. A transition from |ai to |ci might replenish a coherence

ρcb at the same time that it depletes ρab, leaving the sum ρab + ρcb unchanged. If

a perturbation changes the frequency of ρab or ρcb so that their relative phase varies
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during the time needed for non-negligible transfer from ρab to ρcb, however, then

transfer from ρab to ρcb depletes ρab without replenishing ρcb, since the terms added

to ρcb during different time steps interfere destructively. An addition to the spin

Hamiltonian which perturbs the degeneracies of distinct coherences can therefore

transform reversible transfer between coherences into irreversible decay, and in this

way modify the rate of resonator-induced transverse relaxation. In section 5 of

chapter 3, this was illustrated using analytic expressions for the transverse decay of

two-spin systems.

Figure 6.11 shows that the presence of dipolar couplings can substantially ac-

celerate transverse relaxation in a four-spin system. The solid curve shows ideal

exponential relaxation with time constant

2/R0 = 2 s ,

and the dotted curve shows the simulated relaxation of a system of four noninteracting

isochronous spins. Addition of the dipolar Hamiltonian HD increases the relaxation

rate, with the magnitude of the change depending on the spacing of the frequencies

ωij which appear in (6.2). The fast transverse relaxation induced by the resonator in

these examples would significantly decrease the sensitivity of a scheme which detects

freely precessing spins

The tendency of the dipolar Hamiltonian HD to accelerate transverse relaxation

cannot be interpreted as radiation damping, which is associated with rotation of

a sample dipole rather than true decay. This is demonstrated by figure 6.12,

which shows the longitudinal relaxation of four-spin systems having the spins ini-

tially aligned with the x-axis. The dotted curve shows longitudinal relaxation in the

absence of HD, while the dash-dash curve corresponds to the same Hamiltonian HD

as the dash-dash curves in figures 6.10 and 6.11. The solid curve shows exponential

relaxation with a time constant 1/R0. "Turning on" the dipolar coupling slows down

longitudinal decay at the same time that it accelerates transverse decay; hence, it is

not associated with simple rotation of the sample dipole.
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Figure 6.11: Transverse relaxation of four dipole-dipole coupled spins which are ini-
tially aligned with the x-axis. For the dash-dot curve, the dipolar Hamiltonian
was obtained by letting the frequencies ωij/2π of equation (6.2) be randomly chosen,
with a flat probability distribution between 1 kHz and 2 kHz. For the dash-dash
curve, the frequencies ωij/2π were randomly selected between 0Hz and 2 kHz. For
purposes of comparison, the solid curve shows exponential relaxation with time con-
stant 2/R0, and the dotted curve shows the relaxation of a system of noninteracting
spins. This figures shows that "turning on" the dipolar interaction can accelerate
resonator-induced transverse relaxation.
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Figure 6.12: Longitudinal relaxation of four-spin systems. The solid curve shows
exponential relaxation with time constant 1/R0. The dash-dash curve represents a
dipole-dipole coupled system, and the dotted curve represents a system of noninter-
acting spins. "Turning on" the dipolar coupling slows down longitudinal decay.

Figure 6.13 reinforces the distinction between radiation damping and fast trans-

verse relaxation induced by the resonator. In section 5 of chapter 3, we studied

transverse relaxation of a two-spin sample having a weak dipolar coupling and a large

chemical shift offset between the spins. We showed that the large chemical shift

offset guaranteed that longitudinal relaxation would proceed exponentially with time

constant 1/Rh (or 1/R0 in the case where the resonator is at zero Kelvins), while the

presence of the dipolar coupling accelerated the transverse relaxation induced by the

resonator. Figure 6.13 extends the results of that section by presenting simulated

relaxation of a four-spin system which has a chemical-shift offset of j×4000Hz added

to spin j, in addition to the same dipolar coupling HD which yielded the dash-dash

curves in figures 6.10 through 6.12. For purposes of comparison with the simulation,

the longitudinal and transverse relaxation predicted for a single-spin sample is shown

using solid curves. Simulated longitudinal relaxation is only slightly perturbed from

that of a single spin, while the transverse dipole relaxes in a fraction of the time
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Figure 6.13: Relaxation of a four-spin system which includes dipolar couplings smaller
than the spacing of chemical shift offsets. All spins are initially aligned along the x-
axis. Solid curves show ideal exponential longitudinal and transverse relaxation with
respective time constants 1/R0 and 2/R0. The dashed curves show the simulated
relaxation of hIxi and hIzi. The transverse relaxation is accelerated by the presence
of the dipolar coupling, while the longitudinal relaxation closely follows the ideal
exponential curve, due to the presence of large chemical shift offsets.
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Figure 6.14: Resonator-induced relaxation of a spin-locked sample of four dipole-
dipole coupled spins. The solid curve shows the predicted exponential transverse
relaxation with time constant 2/R0.

required for transverse relaxation of a single spin.

Figure 6.14 illustrates the result (3.35) obtained in section 6 of chapter 3:

T1ρ = Rh/2.

The dash-dash curve shows simulated relaxation of a spin-locked system of four dipole-

dipole coupled spins. The internal spin Hamiltonian is the same dipolar Hamiltonian

HD used for the dash-dash curves in figures 6.10 through 6.12, and ω1/2π = 10 kHz.

The solid curve shows exponential relaxation with time constant R0/2 = Rh/2. We

see from figure 6.14 that spin-locking with a Rabi frequency of 10 kHz is sufficient

to average both HD and the superoperator for resonator-induced relaxation, thereby

suppressing the fast transverse relaxation shown in figure 6.11.

The qualitative character of resonator-induced longitudinal relaxation of N À 1

dipole-dipole coupled spins depends on the efficiency with which the Hamiltonian HD

transfers populations between angular momentum manifolds corresponding to differ-
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ent values of I. In the limiting case where transfers between manifolds occur quickly,

HD equalizes the population of all states within a given eigenspace of Iz. Resonator-

induced transfers of population to low-energy states within a manifold immediately

result in compensating transfers between manifolds as the population of all states

within each eigenspace of Iz are equalized. Figures 6.15 and 6.16 present simulations

of longitudinal relaxation for this limiting case. The dashed curves show simulations

in which population is equalized among all states of each Iz eigenspace at the end of

each 0.01 s time step of resonator-induced relaxation. (For these figures, the initial

state is completely disordered, and the simulation includes no spin-spin interactions

during the time steps.) The solid curves show ideal exponential relaxation with rate

constant R0. In spite of the fact that the number of angular momentum manifolds

having small I is vastly greater than the number of manifolds having I near N/2 for

these systems, the simulations suggest that efficient redistribution within eigenspaces

of Iz can result in fast longitudinal relaxation to a polarization near 1.
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Figure 6.15: Resonator-induced longitudinal relaxation of 50 spins from a disordered
state. The dashed curve shows simulated relaxation in the regime where dipolar
interactions efficiently redistribute population within each eigenspace of Iz during
the relaxation. For purposes of comparison, the dotted curve shows relaxation of
noninteracting spins to a trapped state, and the solid curve shows ideal exponential
relaxation with time constant 1R0.
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Figure 6.16: Resonator-induced longitudinal relaxation of 150 spins from a disordered
state. As in figure 6.15, the dashed curve shows simulated relaxation in the regime
where dipolar interactions efficiently redistribute population within each eigenspace
of Iz during the relaxation. The dotted curve shows relaxation of noninteracting
spins to a trapped state, and the solid curve shows ideal exponential relaxation with
time constant 1R0.




