Development of Enantioselective Organocatalytic Technologies for the Alpha-functionalization of Aldehydes and Ketones

Thesis by

Teresa Diane Beeson

In Partial Fulfillment of the Requirements for the

Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2008

(Defended April 18, 2008)

© 2008

Teresa Diane Beeson

All Rights Reserved

To Dad for all your love, support and encouragement that enabled me to achieve my dreams

and

Tony

pour toute la joie et le bonheur que tu apportes à ma vie qui font passer les jours avec douceur, et qui rend possible la poursuite de tous les désires de mon coeur

Acknowledgements

When I look back at the series of events that led to this day, I can't help but remember a few people who went out of their way, even defied their own superiors to help me succeed, and without whom I would not have reached this day. I am forever indebted to Mr. Ron Kramer, my junior high school history and civics teacher, who spent hours and hours with me after school, teaching me on his own time, to make up for several weeks of absences due to illness. He not only gave freely of his time to ensure I would maintain my good grades, he then fought against the school district so that I would not have to repeat the grade level due to the extent of my absence. His passion and skill for teaching is, without doubt, the best I have ever seen. Throughout the years he has remained an inspiration to me, and I will always remember him with the greatest esteem. I also owe a debt of gratitude to Mr. Steve Sayers and Mr. Jerry Bogard, my high school math teachers, for giving me the benefit of the doubt and cutting me slack when I needed it most. They risked their own jobs by doing so, and I am very grateful for the extraordinary kindness they showed me. I would also like to express much appreciation to Prof. Nancy Levinger, who during my undergraduate years in college and thereafter, has been an advocate for me and whose encouragement led me to pursue loftier goals than I otherwise would have had the courage to pursue. To Mr. Kramer, Mr. Sayers, Mr. Bogard, and Prof. Levinger, your kindness has not been forgotten.

Prior to graduate school, I had the privilege of working under some wonderful advisors who have contributed to the direction and success of my career. I am thankful to my research advisors while at Colorado State University, Prof. Steven Strauss and Prof. Frank Stermitz, who kindled my enthusiasm for chemical research and enabled me to obtain valuable laboratory skills that made much of my future endeavors possible. Had it not been for the silent direction of Dr. James Tata and the strong support and encouragement of Dr. Subha Raghavan, Dr. Kevin Chapman and Dr. Emma Parmee at Merck Research Laboratories, my choice of graduate school advisor and the course of my career may have been very different. I am grateful to all of them for their support.

It's very likely that my interest in science was acquired from my dad, a biologist who probably would have been a chemist had he not wanted to get paid to walk around in lakes and rivers (and fly fish after work). His strong support, guidance, and encouragement made it possible for me to pursue and achieve my dreams. Thanks Dad. The rest of my family initially didn't want me to pursue chemistry, and the toxic chemicals I work with continues to give my mom anxiety, but they have all been supportive nonetheless of my career choice. I need to thank my mom for her love and support and always admonishing me to take care of my health, and believe it or not Mom, I was paying attention. I'm also grateful for all the many effortless conversations my twin sister, Danni, provided when I was too tired to contribute to the conversation, which gave me the company I needed and made these graduate school years easier. Of course, graduate school would not have been nearly as pleasant had I not been able to share half of it with my husband, Tony. I was really concerned that working in the same lab for so many hours each day would be detrimental to our marriage. Dave mused that he would place Tony in Arcadia (when we were still in Pasadena at Caltech), and promised to always keep us at opposite ends of the lab. Dave kept his promise but decided to add Tony to my project at the time. Yet, because Tony almost never leaves his hood (anyone who has worked next to him will understand what I mean), it honestly feels as though I saw less of him than I did when we were working in two separate buildings at Merck. Tony is one-of-a-kind, and I'm so honored that he chose me for his wife.

During my tenure as a graduate student in the MacMillan lab, I have had the pleasure of working with many brilliant young scientists. I am especially grateful to Dr. Young Chen for his insightful suggestions and scientific discussions that truly impacted my graduate school experience. Similarly, Dr. Hahn Kim and Rob Knowles have often been willing to lend their time to offer prudent advice and scientific knowledge, for which I am very thankful. I owe a debt of gratitude to Dr. Nikki Goodwin and Dr. Young Chen for helping me type NMR data and calculate J-values (certainly the most tedious and dreadful part of writing a paper) so that I could submit one of my papers for publication on schedule. I especially want to thank those who donated their time for proofreading this dissertation: Casey Jones, Diane Carrera, Connie Lee, and Dr. Maud Reiter. Although there are too many to thank individually by name, I would like to express much appreciation to all who gave of their time to assist me with editing and proofreading manuscripts over the past few years. I would like to thank my former bay-mate, Dr. Roxanne Kunz, and all my past and current coworkers for making graduate school an enjoyable experience. I truly hope that the comaraderie of the MacMillan lab will continue for years to come.

I would like to thank my thesis committee members, Profs. Dennis Dougherty, Douglas Rees, and David Tirrell for their willingness to serve on my committee and their invaluable time that was required of them to do so.

Lastly and most importantly, I would like to express deep appreciation to my doctoral research advisor, Professor David MacMillan, for his unparalleled mentorship these past five years. Besides providing an exciting educational work environment, he has showed true concern, extraordinary generosity, and utmost fairness towards me which has made graduate school a pleasant experience and for which I will always be very grateful. He is a superb academic advisor, and I could not be more pleased with my decision to work for him.

Abstract

The development of an expeditious and room-temperature conversion of aliphatic aldehydes to chiral terminal epoxides is described. α -Chloroaldehydes were prepared via asymmetric enamine catalysis with an imidazolidinone catalyst followed by *in situ* reduction and cyclization to generate the terminal epoxide. Epoxides with a variety of aliphatic groups and functionalities were produced in 75 minutes with good yields and excellent selectivities.

The catalytic enantioselective direct α -fluorination of aldehydes and ketones is also reported. α -Fluoroaldehydes were conveniently prepared via enamine catalysis with an imidazolidinone catalyst and *N*-fluorobenzenesulfonimide (NFSI) as an electrophilic fluorine source. The method tolerated a wide variety of aldehyde substrates and functional groups. Catalyst loadings as low as 1 mol% generated the fluorinated products in good yield and excellent enantioselectivity. Additionally, various catalyst architectures were studied to apply the α -fluorination reaction to ketone substrates. Cinchona alkaloidderived catalysts were found to successfully facilitate the α -fluorination of ketones in high yields and excellent enantioselectivities.

Also presented is the advent of SOMO catalysis, a new mode of organocatalytic activation based on the catalytic generation of radical cations. A secondary amine catalyst reacts with an aldehyde to transiently generate an enamine that, in turn, undergoes a singleelectron oxidation to yield a stabilized radical cation that is subject to enantiofacial discrimination. While the parent enamine reacts only with electrophiles, the radical cation combines with SOMO nucleophiles at the same reacting center, thereby enabling a diverse range of previously unknown asymmetric transformations. As a first example and proof of principle, the development of the direct and enantioselective α -allylation of aldehydes using SOMO catalysis is described.

Table of Contents

Acknowledgements	iv
Abstract	viii
Table of Contents	ix
List of Schemes	xii
List of Figures	xii
List of Tables	xiv
List of Abbreviations	xvi

Chapter 1: Asymmetric Organocatalysis: New Modes of Chemical Activation

I.	Introduction	.1
II.	Asymmetric Catalysis	.3
III.	Organocatalytic Modes of Activation	.5
IV.	Summary of Thesis Research	.8

Chapter 2: Direct and Enantioselective Conversion of Aliphatic Aldehydes to Terminal Epoxides

I.	Introduction	10
II.	Initial Strategy	14
III.	Improved Strategy	17
	i. Reducing the Reaction Time	18
	ii. Substrate Scope	19
IV.	Conclusion	20
V.	Supporting Information	.22

Chapter 3: Enantioselective Organocatalytic Direct α-Fluorination of Aldehydes

I.	Introduction	38
II.	The Enamine Approach to α -Fluorinations	40
	i. Prior Investigations	40
	ii. Overcoming the Challenges	42
	iii. The Effect of Solvent	43
	iv. The Effect of Temperature	44
	v. The Effect of Catalyst Loading	45
	vi. Substrate Scope	46
III.	Conclusion	47
IV.	Supporting Information	48

Chapter 4: Enantioselective Organocatalytic α-Fluorination of Ketones

I.	Introduction	59
II.	α-Fluorination using Imidazolidinone Catalysts	62
	i. The Ketone Aldol Imidazolidinone Catalyst	63
	ii. Variation of Catalyst Architechture	63
	iii. Mono-Substituted Imidazolidinone Catalysts	65
III.	Cinchona Alkaloid Catalysts	66
	i. Initial Results	67
	ii. The Effect of Base Additives	68
	iii. The Effect of Temperature	69
	iv. Reversing the Stoichiometry	69
	v. Comparing Cinchona-Derived Catalysts	70
	vi. Substrate Scope	71
IV.	Conclusion	72
V.	Supporting Information	73

Chapter 5: SOMO Catalysis: A New Mode of Organocatalytic Activation

I.	Introduction	.80
II.	Proof of Concept Validation	.82
III.	α-Allylation of Aldehydes	.85
	i. Proposed Catalytic Cycle	.86
	ii. Initial Results	.87
	iii. Overcoming Challenges	.88
	iv. Optimization Studies	.89
	v. Substrate Scope	.92
IV.	SOMO-Catalysis Applications	.93
V.	Conclusion	.95
VI.	Supporting Information	.96
VII.	Appendix A	15

List of Schemes

Chapter 5: SOMO Catalysis: A New Mode of Organocatalytic Activation

Numb	ber	Page
1.	Formation of a reactive radical cation by enamine single-electron oxidation	. 81
2.	The interaction of the SOMO of a radical with (a) HOMO and (b) LUMO orbitals	. 84

List of Figures

Chapter 1: Asymmetric Organocatalysis: New Modes of Chemical Activation

Numbe	er		Page
1.		aceuticals marketed as racemic mixtures. Many were later marketed enantiopure form when generics of the racemic drug became available	2
2.		ve species of the atom transfer reactions catalyzed by Shi's chiral se-derived ketone catalyst and Jacobsen's manganese salen catalyst	5
3.	Organ	ocatalytic modes of HOMO-raising activation	7
4.	Organ	ocatalysts used in LUMO-lowering activation of electrophiles	8
Chapt	er 2:	Direct and Enantioselective Conversion of Aliphatic Aldehydes Terminal Epoxides	to
Numbe	er		Page
1.	The ch	loroaldehyde as a platform for chiral structural diversity	13

catalyst 7 compared to catalyst 6..... 17

2. 3D models showing increased coverage of the nitrogen lone pair in

Chapter 3: Enantioselective Organocatalytic Direct α-Fluorination of Aldehydes

		0
1.	Examples of chiral stoichiometric fluorinating reagents reported in the literature	39
2.	Catalysts for the enantioselecvtive α -fluorination of aldehydes	41

Chapter 4: Enantioselective Organocatalytic α-Fluorination of Ketones

Number

Number		Page	
1.	Structures of monosubstituted imidazolidinone catalysts and Jørgensen's <i>cis</i> -diphenyl-diamino catalyst	65	
2.	Structures of cinchona alkaloid-derived catalysts		

Chapter 5: SOMO Catalysis: A New Mode of Organocatalytic Activation

Number		Page
1.	Singly occupied molecular orbital (SOMO) catalysis, a new activation mode that electronically bisects iminium and enamine catalysis	. 81
2.	First Ionization potentials of an enamine and its precursor aldehyde and amine	. 82
3.	3-D representations depicting the two lowest energy conformations for both the enantio-differentiated enamine and its radical cation	. 83
4.	Proposed catalytic cycle of the SOMO-catalyzed α -allylation reaction	. 86

Page

List of Tables

Chapter 2: Direct and Enantioselective Conversion of Aliphatic Aldehydes to Terminal Epoxides

Number

Survey of Solvents with Catalyst 6	15
Comparison of Bases for Oxirane Formation	15
Effect of Concentration using Catalyst 7	18
Enantioenriched Terminal Epoxides: Substrate Scope	19
	Comparison of Bases for Oxirane Formation Effect of Concentration using Catalyst 7

Chapter 3: Enantioselective Organocatalytic Direct α-Fluorination of Aldehydes

Number		Page
1.	Survey of Solvents for the Aldehyde α -Fluorination	. 43
2.	Effect of Catalyst and Temperature on the α -Fluorination	. 44
3.	Effect of Catalyst Loading on the α -Fluorination	. 45
4.	Enantioselective α -Fluorination: Substrate Scope	. 46

Chapter 4: Enantioselective Organocatalytic α-Fluorination of Ketones

Number		Page
1.	Effect of Modifications to Catalyst 2 Architecture	64
2.	Mono-Substituted Imidazolidinone Catalysts	65
3.	Effect of Concentration and Base	68
4.	Effect of Temperature and Stoichiometry	69
5.	α-Fluorination of Ketone Substrates	71

Page

Chapter 5: SOMO Catalysis: A New Mode of Organocatalytic Activation

Number		Page	
1.	Effect of Temperature and Concentration	89	
2.	Effect of Solvent on the α -Allylation Reaction	90	
3.	SOMO-Catalyzed Reactions with Substituted Allylsilanes	92	
4.	SOMO-Catalyzed α -Allylation of Various Aldehydes	92	
5.	Effect of Co-catalyst on the α -Allylation Reaction	115	
6.	Effect of Catalyst Architecture on the α -Allylation Reaction	115	
7.	Effect of Catalyst Architecture on the α -Allylation Reaction	116	
8.	Steric and Electronic Effects of the Allylsilane Component	117	
9.	Effect of Solvent with Water on the α -Allylation Reaction	117	
10.	Effect of Base Additive on the α -Allylation Reaction	118	

 $\mathbf{X}\mathbf{V}$

List of Abbreviations

АсОН	acetic acid
AIBN	2,2'-azo-bis(isobutyronitrile)
BINAP	2,2'-Bis(diphenylphosphino)-1'1-binaphthyl
BOC	tert-butyl carbamate
Bn	benzyl
Bz	benzoyl
СА	cinchonine amine
CAN	ceric ammonium nitrate
CDA	cinchonidine amine
dba	dibenzilideneacetone
DBSI	dibenzenesulfonimide
DCA	dichloroacetic acid
DHQA	dihydroquinine amine
DHQDA	dihydroquinidine amine
DME	1,2-dimethoxyethane
DMF	dimethylformamide
DMS	dimethylsulfide
DNBA	dinitrobenzoic acid
DTBP	di-tert-butyl pyridine
ee	enantiomeric excess
EI	electron impact

ES	electrospray
Et	ethyl
EtOAc	ethyl acetate
EtOH	ethanol
FAB	fast atom bombardment
F-TEDA	1-Chloromethyl-4-Fluoro-1,4-Diazoniabicyclo [2.2.2]Octane Bis-(Tetrafluoroborate)
GLC	gas liquid chromatography
HCIO ₄	perchloric acid
h	hour
HCIO ₄	perchloric acid
HCN	hydrocyanic acid
НОМО	highest occupied molecular orbital
HMDS	bis(trimethylsilyl)amide
HPLC	high pressure liquid chromatography
HRMS	high resolution mass spectrometry
IPA	isopropyl alcohol
<i>i-</i> Pr	isopropyl
IR	infrared
LUMO	lowest unoccupied molecular orbital
Me	methyl
MeOH	methanol
min	minutes
MsOH	methanesulfonic acid

xvii

NaOEt	sodium ethoxide
NaOMe	sodium methoxide
NMR	nuclear magnetic resonance
NFSI	N-fluorobenzene sulfonimide
OEt	ethoxy
OMe	methoxy
PMB	para-methoxybenzyl
Ph	phenyl
<i>p</i> -TSA	para-toluenesulfonic acid
QA	quinine amine
QDA	quinidine amine
SFC	supercritical fluid chromatography
SOMO	singly occupied molecular orbital
TADDOL	trans-a,a'-(dimethyl-1,3-dioxolane-4,5
TBAF	tetrabutylammonium fluoride
ТСА	trichloroacetic acid
TEA	triethyl amine
TFA	trifluoroacetic acid
TfOH	trifluoromethanesulfonic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
t _r	retention time
vol	volume