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Abstract 

The development of an expeditious and room-temperature conversion of aliphatic 

aldehydes to chiral terminal epoxides is described.  α-Chloroaldehydes were prepared via 

asymmetric enamine catalysis with an imidazolidinone catalyst followed by in situ 

reduction and cyclization to generate the terminal epoxide.  Epoxides with a variety of 

aliphatic groups and functionalities were produced in 75 minutes with good yields and 

excellent selectivities.  

The catalytic enantioselective direct α-fluorination of aldehydes and ketones is also 

reported.  α-Fluoroaldehydes were conveniently prepared via enamine catalysis with an 

imidazolidinone catalyst and N-fluorobenzenesulfonimide (NFSI) as an electrophilic 

fluorine source.  The method tolerated a wide variety of aldehyde substrates and functional 

groups.  Catalyst loadings as low as 1 mol% generated the fluorinated products in good 

yield and excellent enantioselectivity.  Additionally, various catalyst architectures were 

studied to apply the α-fluorination reaction to ketone substrates.  Cinchona alkaloid-

derived catalysts were found to successfully facilitate the α-fluorination of ketones in high 

yields and excellent enantioselectivities.   

 

Also presented is the advent of SOMO catalysis, a new mode of organocatalytic 

activation based on the catalytic generation of radical cations.  A secondary amine catalyst 

reacts with an aldehyde to transiently generate an enamine that, in turn, undergoes a single-

electron oxidation to yield a stabilized radical cation that is subject to enantiofacial 

discrimination.  While the parent enamine reacts only with electrophiles, the radical cation 

combines with SOMO nucleophiles at the same reacting center, thereby enabling a diverse 

range of previously unknown asymmetric transformations.  As a first example and proof of 

principle, the development of the direct and enantioselective α-allylation of aldehydes 

using SOMO catalysis is described. 

 



 ix 

 

 
Table of Contents 

 
Acknowledgements.............................................................................................. iv 

Abstract ............................................................................................................. viii 

Table of Contents................................................................................................. ix 

List of Schemes .................................................................................................. xii 

List of Figures..................................................................................................... xii 

List of Tables..................................................................................................... xiv 

List of Abbreviations.......................................................................................... xvi 

 
 
 

Chapter 1:  Asymmetric Organocatalysis: New Modes of Chemical Activation 
 
I. Introduction.....................................................................................1 

II. Asymmetric Catalysis......................................................................3 

III. Organocatalytic Modes of Activation ...............................................5 

IV. Summary of Thesis Research ...........................................................8 

 

Chapter 2:  Direct and Enantioselective Conversion of Aliphatic Aldehydes to  
 Terminal Epoxides 
 

I. Introduction...................................................................................10 

II. Initial Strategy...............................................................................14 

III. Improved Strategy .........................................................................17 

 i.   Reducing the Reaction Time .....................................................18 

 ii.  Substrate Scope ........................................................................19 

IV. Conclusion ....................................................................................20 

V. Supporting Information..................................................................22 

 



 x 

 

 
 
 
Chapter 3:  Enantioselective Organocatalytic Direct α-Fluorination of Aldehydes 
 

I. Introduction....................................................................................38 

II. The Enamine Approach to α-Fluorinations......................................40 

 i.   Prior Investigations ....................................................................40 

 ii.  Overcoming the Challenges .......................................................42 

 iii. The Effect of Solvent ................................................................43 

 iv.  The Effect of Temperature ........................................................44 

 v.   The Effect of Catalyst Loading..................................................45 

 vi.  Substrate Scope ........................................................................46 

III. Conclusion .....................................................................................47 

IV. Supporting Information...................................................................48 

 

Chapter 4:  Enantioselective Organocatalytic α-Fluorination of Ketones 
 

I. Introduction....................................................................................59 

II. α-Fluorination using Imidazolidinone Catalysts...............................62 

 i.   The Ketone Aldol Imidazolidinone Catalyst ...............................63 

 ii.  Variation of Catalyst Architechture ............................................63 

 iii. Mono-Substituted Imidazolidinone Catalysts..............................65 

III. Cinchona Alkaloid Catalysts...........................................................66 

 i.   Initial Results.............................................................................67 

 ii.  The Effect of Base Additives......................................................68 

 iii. The Effect of Temperature .........................................................69 

 iv.  Reversing the Stoichiometry......................................................69 

 v.   Comparing Cinchona-Derived Catalysts ....................................70 

 vi.  Substrate Scope ........................................................................71  

IV. Conclusion .....................................................................................72 

V. Supporting Information...................................................................73 



 xi 

 

 
 

 
Chapter 5:  SOMO Catalysis: A New Mode of Organocatalytic Activation  
 

I. Introduction....................................................................................80 

II. Proof of Concept Validation............................................................82 

III. α-Allylation of Aldehydes ..............................................................85 

 i.   Proposed Catalytic Cycle ...........................................................86 

 ii.  Initial Results.............................................................................87 

 iii. Overcoming Challenges.............................................................88 

 iv. Optimization Studies..................................................................89 

 v.  Substrate Scope..........................................................................92 

IV. SOMO-Catalysis Applications ........................................................93 

V. Conclusion .....................................................................................95 

VI. Supporting Information...................................................................96 

VII. Appendix A..................................................................................115



 xii 

 

 
List of Schemes 

Chapter 5: SOMO Catalysis: A New Mode of Organocatalytic Activation  
 
 Number    Page 
 

1. Formation of a reactive radical cation by enamine single-electron oxidation ............................   81 

2. The interaction of the SOMO of a radical with (a) HOMO and (b) LUMO orbitals .................   84 

 

 

List of Figures 

Chapter 1: Asymmetric Organocatalysis: New Modes of Chemical Activation 
 
 Number  Page 
 

1. Pharmaceuticals marketed as racemic mixtures.  Many were later marketed 
 in the enantiopure form when generics of the racemic drug became available ..........................  2 

2. Reactive species of the atom transfer reactions catalyzed by Shi’s chiral 
 fructose-derived ketone catalyst and Jacobsen’s manganese salen catalyst ...............................  5 

3. Organocatalytic modes of HOMO-raising activation..................................................................  7 
 
4. Organocatalysts used in LUMO-lowering activation of electrophiles........................................  8 
 
 

Chapter 2: Direct and Enantioselective Conversion of Aliphatic Aldehydes to  
 Terminal Epoxides 
 Number  Page 
 

1. The chloroaldehyde as a platform for chiral structural diversity.................................................  13 

2. 3D models showing increased coverage of the nitrogen lone pair in 
 catalyst 7 compared to catalyst 6..................................................................................................  17 

 

 



 xiii 

 

 
Chapter 3: Enantioselective Organocatalytic Direct α-Fluorination of Aldehydes 
 
 Number   Page 
 

1. Examples of chiral stoichiometric fluorinating reagents reported in the literature.....................  39 

2. Catalysts for the enantioselecvtive α-fluorination of aldehydes.................................................  41 
 

Chapter 4: Enantioselective Organocatalytic α-Fluorination of Ketones 
 
 Number   Page 
 

1. Structures of monosubstituted imidazolidinone catalysts and Jørgensen’s 
 cis-diphenyl-diamino catalyst ......................................................................................................  65 

2. Structures of cinchona alkaloid-derived catalysts .......................................................................  66 

 

Chapter 5: SOMO Catalysis: A New Mode of Organocatalytic Activation 
 
 Number    Page 
 

1. Singly occupied molecular orbital (SOMO) catalysis, a new activation mode 
 that electronically bisects iminium and enamine catalysis..........................................................  81 

2. First Ionization potentials of an enamine and its precursor aldehyde and amine .......................  82 

3. 3-D representations depicting the two lowest energy conformations for both the 
 enantio-differentiated enamine and its radical cation..................................................................  83 

4. Proposed catalytic cycle of the SOMO-catalyzed α-allylation reaction.....................................  86 



 xiv 

 

 
List of Tables 

Chapter 2: Direct and Enantioselective Conversion of Aliphatic Aldehydes to  
 Terminal Epoxides 
 Number  Page 
 

1. Survey of Solvents with Catalyst 6 ..............................................................................................  15 

2. Comparison of Bases for Oxirane Formation..............................................................................  15 

3. Effect of Concentration using Catalyst 7 .....................................................................................  18 

4. Enantioenriched Terminal Epoxides: Substrate Scope................................................................  19 
 

Chapter 3: Enantioselective Organocatalytic Direct α-Fluorination of Aldehydes 
 
 Number   Page 
 

1. Survey of Solvents for the Aldehyde α-Fluorination ..................................................................  43 

2. Effect of Catalyst and Temperature on the α-Fluorination .........................................................  44 

3. Effect of Catalyst Loading on the α-Fluorination .......................................................................  45 

4. Enantioselective α-Fluorination: Substrate Scope.......................................................................  46 

 

Chapter 4: Enantioselective Organocatalytic α-Fluorination of Ketones 
 
 Number   Page 
 

1. Effect of Modifications to Catalyst 2 Architecture......................................................................  64 

2. Mono-Substituted Imidazolidinone Catalysts..............................................................................  65 

3. Effect of Concentration and Base ................................................................................................  68 

4. Effect of Temperature and Stoichiometry....................................................................................  69 

5. α-Fluorination of Ketone Substrates............................................................................................  71 

 
 
 
 
 
 
 



 xv 

 

 
 
Chapter 5: SOMO Catalysis: A New Mode of Organocatalytic Activation 
 
 Number    Page 
 

1. Effect of Temperature and Concentration....................................................................................  89 

2. Effect of Solvent on the α-Allylation Reaction...........................................................................  90 

3. SOMO-Catalyzed Reactions with Substituted Allylsilanes ........................................................  92 

4. SOMO-Catalyzed α-Allylation of Various Aldehydes...............................................................  92 

5. Effect of Co-catalyst on the α-Allylation Reaction.....................................................................  115 

6. Effect of Catalyst Architecture on the α-Allylation Reaction.....................................................  115 

7. Effect of Catalyst Architecture on the α-Allylation Reaction.....................................................  116 

8. Steric and Electronic Effects of the Allylsilane Component.......................................................  117 

9. Effect of Solvent with Water on the α-Allylation Reaction........................................................  117 

10. Effect of Base Additive on the α-Allylation Reaction ................................................................  118 

 



 xvi 

 

 
List of Abbreviations 

AcOH acetic acid 

AIBN 2,2’-azo-bis(isobutyronitrile) 

BINAP 2,2'-Bis(diphenylphosphino)-1'1-binaphthyl 

BOC tert-butyl carbamate 

Bn benzyl 

 

 

 

 

Bz benzoyl 

CA cinchonine amine 

CAN ceric ammonium nitrate 

CDA cinchonidine amine 

dba dibenzilideneacetone 

DBSI dibenzenesulfonimide 

DCA dichloroacetic acid 

DHQA dihydroquinine amine 

DHQDA dihydroquinidine amine 

DME  1,2-dimethoxyethane 

 DMF dimethylformamide 

DMS dimethylsulfide 

DNBA dinitrobenzoic acid 

DTBP di-tert-butyl pyridine 

ee enantiomeric excess 

EI electron impact 



 xvii 

 

 

ES electrospray 

Et ethyl 

EtOAc ethyl acetate 

EtOH ethanol 

FAB fast atom bombardment 

F-TEDA 
1-Chloromethyl-4-Fluoro-1,4-Diazoniabicyclo 
[2.2.2]Octane Bis-(Tetrafluoroborate) 
 
 GLC gas liquid chromatography 

HClO4 perchloric acid 

h hour 

 HClO4 perchloric acid 

HCN hydrocyanic acid 

HOMO highest occupied molecular orbital 

HMDS bis(trimethylsilyl)amide 

HPLC high pressure liquid chromatography 

HRMS high resolution mass spectrometry 

IPA isopropyl alcohol 

i-Pr isopropyl 

IR infrared 

LUMO lowest unoccupied molecular orbital 

Me methyl 

MeOH methanol 

min minutes 

MsOH methanesulfonic acid 



 xviii 

 

 

NaOEt sodium ethoxide 

NaOMe sodium methoxide 

NMR nuclear magnetic resonance 

NFSI N-fluorobenzene sulfonimide 

OEt ethoxy 

OMe methoxy 

PMB para-methoxybenzyl 

Ph phenyl 

p-TSA para-toluenesulfonic acid 

QA quinine amine 

QDA quinidine amine 

SFC supercritical fluid chromatography 

SOMO singly occupied molecular orbital 

TADDOL trans-a,a'-(dimethyl-1,3-dioxolane-4,5 
diyl)bis(diphenylmethanol 

TBAF tetrabutylammonium fluoride 

TCA trichloroacetic acid 

TEA triethyl amine 

TFA trifluoroacetic acid 

TfOH trifluoromethanesulfonic acid 

THF tetrahydrofuran 

TLC thin layer chromatography 

tr retention time 

vol volume 

 


