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ABSTRACT 

In this thesis, nanometer scale semiconductor lasers and micrometer scale polymer based 

dye lasers are our focus in bringing the miniaturized lasers to applications in data 

transmission; ultra-small chemical / biological sensors; and ultra-compact spectroscopic 

sources. Combining the advantage of electrically driven semiconductor lasers and the 

advantage of a broad emission spectrum of dye molecules would utilize the highly dense 

multi-functional lab-on-a-chip by integrating microfluidic PCR, microfluidic fluorescent 

detection system, and compact visible and NIR detectors which are commercially available. 

On the other hand, in the meantime of pushing the size limit of the laser cavities, new 

phenomena with the nanoscale lasers enable further exploration and understanding in 

fundamental physics.  

In the first part of this thesis, two sub-micron scale semiconductor lasers are presented. The 

smallest lasers utilizing the disk structures—with diameters of approximately 600 nm—

were realized in the InGaP/InGaAlP quantum well material system at room temperature, 

featuring ultra-small mode volumes of approximately 0.03 μm3, and exhibiting single-

mode operation at low threshold powers. And the first visible photonic crystal ultra-small 

mode volume lasers, with cavity volumes of approximately 0.01 μm3, are realized in the 

same material system. They are ideally suited for use as spectroscopic sources and both of 

them can be lithographically tuned from 650 – 690 nm.  

In the second part of this thesis, two sub-millimeter-scale polymer-based dye lasers—a 

poly(dimethylsiloxane) (PDMS)-based mechanically tunable DFB dye laser and a 
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poly(methylmethacrylate) (PMMA)-based second-order circular grating distributed 

feedback dye laser—are presented. Both of them are compatible with microfluidic 

technology, which gives freedom in integrating the lasers with the microfluidic chips. 

Compared to the soft lithography used in the PDMS-based dye laser, the nanoimprint 

lithography used in the PMMA-based dye laser would be more useful for fabricating ultra-

small dye lasers and enabling mass production in the near future.  

At the end of the thesis, a nano-linewidth metal grating mask pattern transferred transient 

grating (MPT-TG) technique is described as a potential technique using the ultra-small 

lasers for molecular-dynamics study in solutions. 
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