Forays into the Synthesis of Zoanthenol: Intriguing Patterns in Reactivity and Selectivity

Thesis by

Jennifer L. Stockdill

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, CA

2009

(Defended 5 December 2008)

© 2009

Jennifer L. Stockdill

All Rights Reserved

DEDICATION

To my parents, Dave and Lucy Stockdill, who have sacrificed so much for me.

To my sister and brother, Teresa Barth and Jon Stockdill, who have been role models to me all of my life.

To my eighth grade science teacher, Mary Alice Robinson, who sparked a passion that has not died.

Finally, to my nieces and nephews, Hudson Barth, Deirdre Stockdill, Landen Barth, Jonah Stockdill, and Zoe Barth, who have provided the extra motivation to finish my Ph.D.

ACKNOWLEDGEMENTS

...It is impossible to start....

It cannot be argued with that the most influential person in my graduate career has been my advisor, Brian M. Stoltz. Brian's passion, guidance, and discipline have been indispensable to my growth as a scientist and as a person over these past five and a half years. I am especially grateful to Brian for his devotion to his students' education and success. I have not heard of another professor who goes so far out of his/her way to make sure students are prepared for whatever the next step in their journeys may be. Also, Brian introduced me to my best friend EVER, TLC. After all, it *is* the fastest, cheapest, easiest way to obtain meaningful information about what's going on in your reaction flask!

I am especially indebted to my thesis committee members, who have been simply unreal. Dennis Dougherty, my committee chair, has done a surprising job of keeping Harry in line, not to mention the insights he has provided in discussing my ideas and the depth to which he forces me to think. Harry Gray has been a constant source of support that has proven to be truly invaluable over the past two years when life has seemed so overwhelming. Bob Grubbs, the most recent addition to my committee has been asking me regularly how my research is going for years (I always regret not having a more cheerful reply, but the inquiries have meant a lot to me), and he always remembers to tell me when he's going climbing and I have to stay in lab! In all seriousness, all of my committee members have been very gracious and generous with their time, ideas, and recommendation letters. Thank you so much to all of them.

I have had the great pleasure of working on my project with Dr. Doug Behenna and Dr. Andy McClory. Doug was the single most influential person on my development as a

bench chemist. He taught me everything from what a TBS group is, to how to run a column, to the true meaning of scale-up. His hard work and friendship over the past years have been critical. I am grateful to Andy for helping me to learn that there is more than one way to approach a problem. He is a brilliant scientist, and I am sure he will be an amazing professor.

The various members of the Stoltz group have provided a diverse, if occasionally tumultuous, environment that has not only shaped me as a chemist, but also as a person. Through all of the ups and downs of the 72+ hours/week that we spend together, I wouldn't replace *any* of the people I have had the opportunity to work with in the lab. The early lab members were instrumental to me in learning techniques and in how to think about chemistry. I am especially grateful to Eric Ashley, Eric Ferreira, Doug Behenna, and Raissa Trend for their advice in my early years. Toward the middle and through the end of my graduate career, I had the great fortune of becoming close friends with Dave Ebner and Ryan McFadden, who were both willing to talk endlessly with me about my chemistry and who always tried the ideas that I suggested for their work. They, of course, have both ditched me, and I miss them dearly. (Congratulations to RMAC on the birth of his son, Nathan!! And Dave...you can't escape! I'll be in NYC soon.) I am more and more grateful to Dan Daspi every day as I write my thesis. Dan is so thoughtful in always trying to make the annoying parts of lab life run more smoothly. He has created a macro for everything you might need to do with a spectrum, and I think I'd still be trying to figure out how to get the things into my thesis right now if it weren't for him. My classmates are an awesome crew. I'm grateful to JT, who is a fountain of info from what's the deal with my NMR or the pKa of chemical X to what's the last step of the Rubik's cube algorithm. (Congratulations to JT on the birth of his daughter, Marie!!) Mike Krout always has what I'm looking for, whether it be a reagent or a procedure, and his generosity with both is appreciated. Also, I've always been grateful to

him for being so nice during group sports... I suck at most of them, and he is always patient. Mike Meyer has been a great friend over the years, and he will always hold a special place in my heart. Which brings me to Jenny Roizen...Jenny, I'll put your part at the end. The fou...fifth years are an eclectic bunch, that I have loved having around for the past four years. Nat Sherden has always been good to me, from bringing my mail in that ended up at his house to walking out of his way to walk me home when it's late at night, to apologizing when I have done something wrong, his kindness is overwhelming. Also, the emails... I love the emails. I hope I don't get taken off the group list right away because I will miss the misspelled sarcasm-rich frustrations. John Enquist is one of the most dedicated people I've known. It has been fun trying to break through his wall of seriousness (the trick is mint-chip ice cream!), and his dry sense of humor really gets me laughing sometimes. I have really enjoyed Kevin Allan's company as a baymate (briefly) and on years of coffee runs. I will always cherish the memory of late night flash columns listening to Ok Go, and I really admire his enthusiasm in the lab. Also, thanks for the cookie. Sandy Ma is one of the more unusual (in a good way) characters I've met. (DOGGIE!) She always makes me laugh and has the most quotable quotes. Brinton Anna Seashore-Ludlow was a fun baymate and is a great friend. I have missed her often since she moved to Sweeden. I've enjoyed getting to know Pam Tadross better over the past 9 months or so, and I'm sad that it took so long. She is a really thoughtful person and devoted friend. Chris Gilmore has always cracked me up. He's a great person to talk about life with, and lately I've enjoyed talking Obama with him as well. It's been awesome to have Hosea in the lab. He has such a different perspective from the statusquo, it's always fun to see what he thinks. I've really enjoyed Narae's company over the past few years. She is a genuine and sweet person, and I've grown to expect her in lab on Saturday over the past 6 months. I always thought she was joking when she said he hobby was sleeping, but she seems to be in lab the rest of the time! :P I've grown to

really enjoy having Allen Hong in 264, and it will be really sad to say goodbye. I'm thankful for all the candy and especially for his concern...he always wants to know how you're doing when he asks. Of course, I'll miss my secret admirer, aka Hahvard, aka Matt Winston. Matt has been a great cheerleader in my thesis effort and his support is really appreciated. Also, he cheers Jenny up, which cheers me up! The first years in the group are a hilarious bunch, and I regret that I won't have the opportunity to get to know them better. Nathan Bennett, my newest baymate, always has something nice to say, and he is very encouraging, even to himself ... "Alright, self ... " Jonny Gordon is just too cool for school (but he comes anyway). I dig the purple sweatband and the blue glasses. Alex Goldberg is our newest member, and he seems to share my sarcastic sense of humor. Finally, there are the postdocs. There have been many...I'm especially grateful to Amanda Jones, who has been a really good friend, and is always a pleasure to have in lab, but most importantly, hosts the poker night (no boss allowed!). Jan Streuff has been a fun companion over the past year, and I will miss him when he goes back to Deutschland. Also, Corinne Baumgartner has been a fun exercise buddy, and Christian Defieber always tried to speak German with me. If it weren't for Nolan McDougal, I would not be able to say that I've walked from campus to Roscoe's, or worse, I might not know how to properly eat bread at a nice dinner! I'm grateful to him for the fun memories and for introducing me to scallops. I mentioned Andy McClory briefly, but I need to mention here that he is one of the more loyal friends a person could ask for, and I really enjoyed his friendship. A recent addition to the lab, Chris Henry, has fast become one of my closest friends, and I am very thankful to have met him. Thanks also to Xiaoquing Han (X-Dog), Andy Harned, Haiming Zhang, and Kousuke Tani for their kindness and advice.

I need to make a separate paragraph here for my baymates. Eric Ashley was my first baymate, and I am ever grateful to him for all that he taught me those first few years. Also, I wouldn't know important things like "what ever happened to a good old fashioned passionate *%&-whuppin', getting your shoes, coat and your hat tooken." Brinton Seashore-Ludlow is one of those people that you just love right away. We had lots of fun hiking and going to yoga, and of course running collumm-collummns!! Enough cannot be said about Thomas Jensen, who among other things was the first baymate I had who liked *all* the same music as me. We had a blast jammin' in the lab and talking chemistry. Not to mention playing 10:1 with Dave!

I would like to thank Thomas Jensen, Dave Ebner, Chris Henry, and Brian Stoltz for proofreading *all* of my thesis. Amanda Jones, Doug Behenna, Kevin Allan, Jenny Roizen also edited chapters. Jenny, thanks for doing it at the last minute with no notice. I am especially grateful to Chris Henry for his help with numbering compounds and to Dave Ebner for making my table of contents and list of figures. Dave is also the only person who proofread my whole thesis twice (or was it three times?). He must be really bored over in New Jersey waiting to start his postdoc! ;) Thank you all so much. This document would be a mess without you.

In addition to the outstanding members of the Stoltz group, I have been warmly welcomed by the Grubbs, Bercaw, Gray, Dougherty, and Reisman labs. To thank each of the people in these groups would be overwhelming, but they are all truly appreciated, and I look forward to seeing them in the future.

Amazingly, I managed to meet some people outside of the department, and it turns out that many of them have been among my most critical and constant supporters. I would not be the same person without the friendships of Justin Bois, Raviv Perahia, Hernan Garcia, Tristan Smith, Anna Folinsky, Erin Koos, Nhat Vu, Nate Bode, Vikram Deshpande, Eric Peterson, Lucia Cordiero, Heidi Privett, Crystal Shih, Jeff Byers, Steve Baldwin, Dan Grin and Harmony Gates. You guys have all been truly amazing friends, and I am so thankful for all the times you've scraped me off the ground and reassembled me into a human again. My move to the West Coast would not have been conceived of without Joe Polidan, and my last year of college would have definitely not been as fabulous without Sheila (a.k.a. Pony 2) Gradwell. Boo Shan Tseng and Hari Shroff were indispensable companions in Argentina/Chile. Likewise, Mike Olsen was a blast to have along in Costa Rica. It was a pleasure spending two weeks with each of them in paradise.

Those memories bring me to Tristan Ursell, who was my companion for three of the most challenging, yet adventure-packed years of grad school. Tristan remains one of my closest friends, and I cannot thank him enough for everything that we shared. I will always treasure our many memories in some of the most beautiful places in the world. Tristan also helped me to learn a lot about myself and ultimately led me in the direction of actually paying attention to what's happening in the world. He taught me to look deeper into myself and to become the person I wanted to be instead of wishing things were different.

I've put this off for awhile now, but it comes time to try to thank Jenny Roizen. There aren't words to express my gratitude to Jenny. For the first three years of grad school, Jenny was my roommate, labmate, and friend. We did everything together. I could not possibly have gotten through some of the rougher times of the past five and a half years without Jenny's constant love and support. I have grown to really appreciate her direct candor with me about everything. To put it briefly, Jenny rocks. I'm so sad to be leaving her in the lab without me. I know that she will get through everything fine, but I wish I could be here to support her, as she has so devotedly supported me over this thesis journey.

Most people are lucky to have one friend as constant and close to their heart as Jenny is to mine. I have had the great fortune during my graduate career of having developed two such friends. Professor Dr. Jen Dionne has become a critical appendage over the years. To lose her would be like losing an arm. I am left frustrated again with the English language for not having the appropriate words to match the quality and magnitude of Jen's friendship. She has become like a twin sister to me, which is exciting because I never had a twin sister! I will just say to both Jen and Jenny, I love you. You are irreplaceable.

Finally, to thank the people who shaped me into who I am. Becky (Doyal) Orrock and Aimee (Dudash) Ketner have been my best friends since I can remember, and it has been awesome watching each other grow from little girls ogling at cute boys at the beach to grown women, ogling at cute boys at the beach. ^(C) Sally, I am glad you moved to Virginia. It's been nice having some extended family nearby, and I always enjoy our phone calls, surprisingly also often relating to ogling at boys at the beach! Grandma Stockdill, it has been fabulous visiting with you more often over the past ten years. I'm glad you were persistent about calling. Your support has been treasured. Grandma Vorlicek, I wish I could see you more, but I wanted to take this chance to thank you for working so hard to keep the family together over the years. I know it was challenging raising 8 kids as a single mom, and I'm amazed that you managed to do it so successfully. Teresa and Jon, thanks for all that you have done for me over the years. I have always looked up to you, and I continue to be awed by your talents as you raise your families. You have the 5 coolest kids in the world. I can't wait to be back with you and with them. Mom and Dad, I love you both and I wish you all the happiness and adventure that you have ensured that I had the opportunity to experience. You have all contributed irreversibly to the person I have become. I cannot thank you enough.

ABSTRACT

The zoanthamine family of alkaloids has attracted the attention of synthetic chemists for over two decades, beginning with the first report of their isolation in 1984. Not only are these stereochemically dense polycyclic compounds structurally fascinating, but they also display interesting and important biological activities. Foremost among these is the potent anti-osteoporotic effect of norzoanthamine. To date, norzoanthamine remains the only member to have succumbed to total synthesis, by Miyashita and coworkers in 2004. Our studies began by targeting zoanthenol, a structurally similar natural product that possesses the key stereochemical challenges of norzoanthamine, while offering unique opportunities for strategic development as compared to the other family members.

The synthetic work described herein focuses on approaches to the tricyclic core of zoanthenol, specifically employing an approach by which the stereochemical complexity of the C ring, marked by the challenging vicinal all-carbon quaternary centers, is addressed early in the synthesis. These functionalized C ring synthons are then tethered to an aromatic A ring synthon, and methods to form the final bond of the B ring are explored. Special attention is given to the acid-mediated Friedel-Crafts cyclization approach. In addition to the acid-mediated cyclization approach, an alternative cyclization method is discussed wherein the A ring is substituted with a halogen in order to enable generation of a radical. This radical then undergoes a 1,4-addition into a fully substituted enone to close the B ring and provide the desired stereochemistry both of the two new stereocenters that are generated in the cyclization.

In these efforts, we have learned a great deal about the factors governing selectivity and reactivity in these systems. For each case, stereochemical models are discussed and key structural requirements for future investigations are outlined.

PROLOGUE

The Importance of Natural Products Synthesis

This prologue is primarily for the benefit of readers outside of the field of chemistry, who may not be familiar with the nuances of the field of total synthesis, and thus, the impact of the research described in this thesis.

Natural products are complex molecules that have been isolated from a natural source, such as a tree bark, a fungus, a bacterial species, or even a marine creature. The study of natural products synthesis is essential to the advancement of organic chemistry, as well as to society as a whole. A natural product synthesis involves looking at a structure that has been isolated from nature, and then finding a way to make it from much smaller starting materials. As such, it is an ideal platform for the discovery of new reactions because every natural product presents a unique array of bonds that have likely not been made before. In order to make some of these bonds, new chemistry must be invented. These new reactions are typically applied to related molecules of varying levels of complexity, leading to the development of a new reaction methodology. Thus, total synthesis fuels the discovery of new methodology, while new methodology simultaneously allows for the completion of total syntheses.

The broader impact of these studies is realized largely through the pharmaceutical industry. Although pharmaceutical companies invest a great deal of time and money into their own research programs, they are generally very focused on a specific goal such as finding a drug for breast cancer. This is a large enough problem on its own that the company cannot invest their own man-hours into synthesizing natural products from scratch. Thus, they turn to academic groups for key information about what bonds were the most challenging to make and what disconnections lead to the shortest and most modular synthesis of a compound. Short syntheses are important to pharmaceutical companies because even if every step of a 30-step synthesis of a compound proceeds with 90% yield (this is not typical), the overall yield for the process is (.9)³⁰ or 4%. If the company is going to conduct testing on the compound, they cannot afford to waste 96% of their original materials. Thus, it is important for academic groups to discover as many different types of reactions and ways to disconnect natural products as possible. It is also important to have a modular synthesis, so that analog compounds can be made and tested. In many cases, the best pharmaceutical agents are modified versions of natural products. Natural products offer the great advantage of having already been compatible with at least one living system, the one from which they were isolated. If that creature was able to survive with this compound inside it, it is more likely that a human will be able to tolerate the compound than for a molecule that has been 100% designed. Some important drugs that are natural products or derivatives include the antibiotics penicillin and vancomycin, contraceptives (+)-norgestrel and 17α -ethynylestradiol, the antiinflammatory agent indomethacin, and the ovarian, breast, and small lung cancer drug paclitaxel (taxol).

The research presented herein centers around the synthesis of a marine alkaloid, zoanthenol, isolated off the coast of the Canary Islands from polyps of the genus *Zoanthus*. A number of very similar compounds were also isolated from the zoanthids, and they comprise a family of natural products called the zoanthamines. As a family, the zoanthamines offer a range of biological activities including inhibition of inflammation in mouse ears, cytotoxicity against murine leukemia cells, broad-spectrum antibacterial activity, and activity against human platelet aggregation. Perhaps the most exciting biological activity is the excellent anti-osteoporotic activity demonstrated by norzoanthamine. In ovarioectomized mice, a good model for post-menopausal osteoporosis, treatment with norzoanthamine hydrochloride prevented the loss of bone mass and strength. Additionally, bone strength can be restored in ovarioectomized mice

by treatment with norzoanthamine hydrochloride without any observed uterine atrophy, a side effect of treatment with 17 β -estradiol, the current standard in this type of therapy. This difference points to the possibility of a different mechanism of action than estrogen therapy, making the zoanthamines an important family of natural products to target for synthesis.

TABLE OF CONTENTS

Dedica	itioniii
Ackno	wledgementsix
Abstra	ctxi
Prolog	uexii
Table (of Contentsxv
List of	Figuresxx
List of	Schemesxxxiii
List of	Tablesxl
List of	Abbreviationsxliii
СНАРТ	ER 1: THE BIOLOGY AND CHEMISTRY OF THE ZOANTHAMINE ALKALOIDS 1
1.1.1	Introduction 1
1.2	The Zoanthamine Natural Products
1.2.1	Isolation and Structural Characterization of the Zoanthamine Natural
	Products3
1.2.2	Biosynthesis of the Zoanthamine Natural Products6
1.2.3	Reactivity Studies of Norzoanthamine11
1.3	Biological Activities of Zoanthamine Alkaloids13
1.3.1	Anti-Osteoporotic Activity13
1.3.2	Miscellaneous Biological Activities15
1.4	Synthetic Approaches Toward the Zoanthamine Natural Products17
1.4.1	General Remarks 17
1.4.2	Miyashita's Synthesis of Norzoanthamine18
1.4.3	Tanner's Diels-Alder Approach to the Zoanthamine ABC Ring System22

	xvi		
1.4.4 Uemura's Approach to the Norzoanthamine ABC Ring System	28		
1.4.5 Williams's Approach to the Norzoanthamine AB and EFG Ring Systems	28		
1.4.6 Theodorakis's Annulation Approach to the Norzoanthamine ABC Ring			
System	31		
1.4.7 Kobayashi's Synthesis of the Heterocyclic CDEFG Zoanthamine Ring			
System	33		
1.4.8 Hirama's Strategy for the Zoanthenol ABC Ring System	34		
1.5.1 Summary and Outlook	38		
References	40		
CHAPTER 2: EARLY EFFORTS TOWARD THE SYNTHESIS OF ZOANTHENOL	43		
2.1.1 Introduction and Retrosynthetic Analysis	43		
2.2.1 Synthesis of the A Ring Synthon	45		
2.2.2 Synthesis of the C Ring Synthon	45		
2.2.3 Synthesis of the Tricyclic Core of Zoanthenol	 47		
2.3.1 Enantioselective Synthesis of the DEFG Synthon	53		
2.4.1 Summary of Early Synthetic Work	55		
2.5.1 Materials and Methods	56		
2.5.2 Preparation of Compounds	58		
References	References		
Synthetic Summary			
APPENDIX A: SPECTRA AND X-RAY CRYSTALLOGRAPHIC DATA: EARLY EFFORTS			
TOWARD THE SYNTHESIS OF ZOANTHENOL	92		
CHAPTER 3: ACID-MEDIATED CYCLIZATION APPROACHES TO THE DENSELY			

3.1.1	Revised Retrosynthetic Analysis
3.2	Toward a Vicinal Quaternary Center-Containing C Ring Synthon182
3.2.1	Synthesis and Desymmetrization of a <i>meso</i> -Anhydride182
3.2.2	Elaboration of the Half-Ester186
3.3.1	Toward a Lactone-Derived C Ring Synthon
3.3.2	Acid-Mediated Cyclizations of Lactone-Derived A–C Ring Systems
3.4.1	Functionalization of Allylic Alcohol 248 190
3.5.1	Toward a 7-Membered Acetal-Derived C Ring191
3.5.2	Acid-Mediated Cyclization of the 7-Membered Acetal Substrate193
3.6.1	Synthesis of a Homologated C Ring Synthon194
3.6.2	Acid-Mediated Cyclizations of the Homologated A–C Ring System195
3.7.1	Modification of the Homologated A–C Ring System196
3.7.2	Acid-Mediated Cyclizations of Carboxylic Acid-Derived A–C Ring Systems 196
3.8.1	Mechanistic Hypotheses197
3.8.2	Mechanistic Summary and Substrate Requirements201
3.9.1	Summary of Brønsted Acid Cyclization Efforts 202
3.10.1	Materials and Methods 203
3.10.2	Preparation of Compounds 205
Refere	nces
Summ	ary Schemes 243

APPENDIX B: SPECTRA AND X-RAY CRYSTALLOGRAPHIC DATA: ACID-MEDIATED

CYCLIZATION APPROACHES TO THE DENSELY SUBSTITUTED CARBOCYCLIC	
CORE OF ZOANTHENOL	3

	CORE OF ZOANTHENOL
4.1.1	Introduction
4.2.1	Synthesis and Cyclization of a Lactone-Derived Precursor
4.3.1	Synthesis and Cyclization of a Homologated Nitrile-Derived Cyclization
	Precursor
4.4.1	Synthesis and Cyclization of a Homologated Ester-Derived Cyclization
	Precursor
4.5.1	Synthesis and Cyclization of a 7-Membered Acetal-Derived Cyclization
	Precursor
4.6.1	Substrate Requirements and Limits of System
4.7.1	Summary
4.8.1	Materials and Methods
4.8.2	Preparation of Compounds
Refere	nces
Summ	ary Schemes

APPENDIX C: SPECTRA AND X-RAY CRYSTALLOGRAPHIC DATA: RADICAL CYCLIZATION

APPENDIX D: CURRENT AND FUTURE INVESTIGATIONS TOWARD ZOANTHENOL		
D.1	Introduction417	
D.2	Proposed Methods for the Utilization of Tricycle 192 417	
D.3.1	Development and Cyclization of a 6-Membered Acetal-Derived A–C Ring	
	System with Inverted C(10) Stereochemistry	
D.3.2	Advancement of Cyclopentylidene-Derived C Ring Synthon for	

	Acid-Mediated Cyclization
D.3.3	Advancement of Cyclopentylidene-Derived C Ring for Radical Cyclization422
D.4.1	Alternative Approaches to the Tricyclic Core of Zoanthenol423
D.4.2	Allylation/Diels-Alder Approach424
D.4.3	α-Arylation Approach427
D.5.1	Precedence for Planned Late-Stage Side Chain Couplings
D.5.2	Alkyne Addition into Enantiopure Lactam Synthon
D.5.3	Synthesis of a Horner-Wadsworth-Emmons Reagent for Side Chain
	Synthesis431
D.6.1	Summary
D.7.1	Materials and Methods432
D.7.2	Preparation of Compounds433
Refere	nces454

APPENDIX E: SPECTRA AND X-RAY CRYSTALLOGRAPHIC DATA: CURRENT AND FUTURE

IVESTIGATIONS TOWARD ZOANTHENOL456

Comprehensive Bibliography	509
Notebook Cross-references	
About the Author	

LIST OF FIGURES

Figure 1.1.1	Representative zoanthids1
Figure 1.1.2	Natural products isolated from zoanthids3
Figure 1.2.1	Zoanthamine natural products isolated by Rao4
Figure 1.2.2	Zoanthamine natural products isolated by Uemura and
	Clardy5
Figure 1.2.3	Zoanthamine natural products isolated by Norte6
Figure 1.3.1	$\rm IC_{50}$ values for the inhibition of IL-6 production in Uemura's
	SAR study15
Figure 1.3.2	$\rm IC_{50}$ values for the inhibition of IL-6 dependent cell growth15
Figure 1.4.1	Miyashita's retrosynthetic analysis of norzoanthamine18
Figure 1.4.2	Tanner's retrosynthetic analysis of zoanthamine 22
Figure 1.4.3	Uemura's retrosynthetic analysis of norzoanthamine
Figure 1.4.4	Williams's retrosynthetic analysis of norzoanthamine 29
Figure 1.4.5	Theodorakis's retrosynthetic analysis of norzoanthamine31
Figure 1.4.6	Hirama's retrosynthetic analysis of zoanthenol

APPENDIX A

Figure A.1	¹ H NMR (300 MHz, CDCl ₃) of compound 172	.93
Figure A.2	Infrared spectrum (thin film/NaCl) of compound 172	•94
Figure A.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 172	•94
Figure A.4	¹ H NMR (300 MHz, $CDCl_3$) of compound 174	• 95
Figure A.5	Infrared spectrum (thin film/NaCl) of compound 174	.96
Figure A.6	¹³ C NMR (75 MHz, CDCl ₃) of compound 174	.96

Figure A.7	¹ H NMR (300 MHz, CDCl ₃) of compound 173 97
Figure A.8	Infrared spectrum (thin film/NaCl) of compound 173 98
Figure A.9	¹³ C NMR (75 MHz, CDCl ₃) of compound 173 98
Figure A.10	¹ H NMR (300 MHz, CDCl ₃) of compound 175 99
Figure A.11	Infrared spectrum (thin film/NaCl) of compound 175 100
Figure A.12	¹³ C NMR (75 MHz, CDCl ₃) of compound 175 100
Figure A.13	¹ H NMR (300 MHz, CDCl ₃) of compound 168 101
Figure A.14	Infrared spectrum (thin film/NaCl) of compound 168 102
Figure A.15	¹³ C NMR (75 MHz, CDCl ₃) of compound 168 102
Figure A.16	¹ H NMR (300 MHz, CDCl ₃) of compound (+)- 1 77103
Figure A.17	Infrared spectrum (thin film/NaCl) of compound (+)-177104
Figure A.18	¹³ C NMR (75 MHz, CDCl ₃) of compound (+)- 1 77104
Figure A.19	¹ H NMR (300 MHz, CDCl ₃) of compound (–)- 1 77105
Figure A.20	Infrared spectrum (thin film/NaCl) of compound (–)-177106
Figure A.21	¹³ C NMR (75 MHz, CDCl ₃) of compound (–)- 1 77106
Figure A.22	¹ H NMR (300 MHz, CDCl ₃) of compound 178 107
Figure A.23	Infrared spectrum (thin film/NaCl) of compound 178 108
Figure A.24	¹³ C NMR (75 MHz, CDCl ₃) of compound 178 108
Figure A.25	¹ H NMR (300 MHz, CDCl ₃) of compound 169 109
Figure A.26	Infrared spectrum (thin film/NaCl) of compound 169 110
Figure A.27	¹³ C NMR (75 MHz, CDCl ₃) of compound 169 110
Figure A.28	¹ H NMR (300 MHz, CDCl ₃) of compound (–)- 170 111
Figure A.29	Infrared spectrum (thin film/NaCl) of compound (–)-170112
Figure A.30	¹³ C NMR (75 MHz, CDCl ₃) of compound (–)- 170 112
Figure A.31	¹ H NMR (300 MHz, CDCl ₃) of compound (+)- 180 113
Figure A.32	Infrared spectrum (thin film/NaCl) of compound (+)-180114

Figure A.33	¹³ C NMR (75 MHz, CDCl ₃) of compound (+)- 180 114
Figure A.34	¹ H NMR (300 MHz, CDCl ₃) of compound 183 115
Figure A.35	Infrared spectrum (thin film/NaCl) of compound 183 116
Figure A.36	¹³ C NMR (75 MHz, CDCl ₃) of compound 183 116
Figure A.37	¹ H NMR (300 MHz, CDCl ₃) of compound 184
Figure A.38	Infrared spectrum (thin film/NaCl) of compound 184 118
Figure A.39	¹³ C NMR (75 MHz, CDCl ₃) of compound 184 118
Figure A.40	¹ H NMR (300 MHz, CDCl ₃) of compound 187 119
Figure A.41	Infrared spectrum (thin film/NaCl) of compound 187 120
Figure A.42	¹³ C NMR (75 MHz, CD ₂ Cl ₂) of compound 18 7120
Figure A.43	¹ H NMR (500 MHz, CDCl ₃) of compound 188 121
Figure A.44	Infrared spectrum (thin film/NaCl) of compound 188 122
Figure A.45	¹³ C NMR (125 MHz, CDCl ₃) of compound 188 122
Figure A.46	¹ H NMR (300 MHz, CDCl ₃) of compound 189 123
Figure A.47	Infrared spectrum (thin film/NaCl) of compound 189 124
Figure A.48	¹³ C NMR (75 MHz, CDCl ₃) of compound 189 124
Figure A.49	¹ H NMR (300 MHz, CDCl ₃) of compound 191 125
Figure A.50	Infrared spectrum (thin film/NaCl) of compound 191 126
Figure A.51	¹³ C NMR (75 MHz, CDCl ₃) of compound 191 126
Figure A.52	¹ H NMR (300 MHz, CDCl ₃) of compound 192 127
Figure A.53	Infrared spectrum (thin film/NaCl) of compound 192 128
Figure A.54	¹³ C NMR (75 MHz, CDCl ₃) of compound 192 128
Figure A.55	¹ H NMR (500 MHz, C ₆ D ₆) of compound 193 129
Figure A.56	Infrared spectrum (thin film/NaCl) of compound 193 130
Figure A.57	¹³ C NMR (125 MHz, C ₆ D ₆) of compound 193 130
Figure A.58	¹ H NMR (500 MHz, CDCl ₃) of compound 194 131

xxii

Figure A.59	Infrared spectrum (thin film/NaCl) of compound 194 132
Figure A.60	¹³ C NMR (125 MHz, CDCl ₃) of compound 194 132
Figure A.61	¹ H NMR (500 MHz, CDCl ₃) of compound 195 133
Figure A.62	Infrared spectrum (thin film/NaCl) of compound 195 134
Figure A.63	¹³ C NMR (125 MHz, CDCl ₃) of compound 195 134
Figure A.64	¹ H NMR (500 MHz, CDCl ₃) of compound 196 135
Figure A.65	Infrared spectrum (thin film/NaCl) of compound 196 136
Figure A.66	¹³ C NMR (125 MHz, CDCl ₃) of compound 196 136
Figure A.67	¹ H NMR (300 MHz, CDCl ₃) of compound (–)- 210 137
Figure A.68	Infrared spectrum (thin film/NaCl) of compound (–)- 210 138
Figure A.69	¹³ C NMR (75 MHz, CDCl ₃) of compound (–)- 210 138
Figure A.70	¹ H NMR (300 MHz, CDCl ₃) of compound (–)- 211 139
Figure A.71	Infrared spectrum (thin film/NaCl) of compound (–)- 211 140
Figure A.72	¹³ C NMR (75 MHz, CDCl ₃) of compound (–)- 211 140
Figure A.73	¹ H NMR (300 MHz, CDCl ₃) of compound (–)- 212 141
Figure A.74	Infrared spectrum (thin film/NaCl) of compound (–)- 212 142
Figure A.75	¹³ C NMR (75 MHz, CDCl ₃) of compound (–)- 212 142
Figure A.76	¹ H NMR (300 MHz, CDCl ₃) of compound 213 143
Figure A.77	Infrared spectrum (thin film/NaCl) of compound (–)- 213 144
Figure A.78	¹³ C NMR (75 MHz, CDCl ₃) of compound (–)- 213 144
Figure A.79	¹ H NMR (300 MHz, CDCl ₃) of compound 214 145
Figure A.80	Infrared spectrum (thin film/NaCl) of compound 214 146
Figure A.81	¹³ C NMR (75 MHz, CDCl ₃) of compound 214 146
Figure A.82	¹ H NMR (300 MHz, CDCl ₃) of compound 215 147
Figure A.83	Infrared spectrum (thin film/NaCl) of compound 215 148
Figure A.84	¹³ C NMR (75 MHz, CDCl ₃) of compound 215 148

Figure A.85	¹ H NMR (300 MHz, CDCl ₃) of compound 215a 149
Figure A.86	Infrared spectrum (thin film/NaCl) of compound 215a 150
Figure A.87	¹³ C NMR (75 MHz, CDCl ₃) of compound 215a 150
Figure A.88	¹ H NMR (300 MHz, CDCl ₃) of compound 203 151
Figure A.89	Infrared spectrum (thin film/NaCl) of compound 203 152
Figure A.90	¹³ C NMR (75 MHz, CDCl ₃) of compound 203 152
Figure A.91	¹ H NMR (500 MHz, CDCl ₃) of compound 168 153
Figure A.92	Infrared spectrum (thin film/NaCl) of compound 168 154
Figure A.93	¹³ C NMR (125 MHz, CDCl ₃) of compound 168 154
Figure A.94	Representation of Lactone 184 155
Figure A.95	Representation of Acid 187•CHCl ₃ 164
Figure A.96	Representation of Diketone 196 173

CHAPTER 3

Figure 3.2.1	Known <i>meso</i> -anhydride desymmetrization substrates 184	4
Figure 3.8.1	Requirements for future acid cyclization substrates	2

APPENDIX B

Figure B.1	¹ H NMR (500 MHz, CDCl ₃) of compound 225 241
Figure B.2	Infrared spectrum (thin film/NaCl) of compound 225 242
Figure B.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 225 242
Figure B.4	¹ H NMR (500 MHz, CDCl ₃) of compound 226 243
Figure B.5	Infrared spectrum (thin film/NaCl) of compound 226 244
Figure B.6	¹³ C NMR (125 MHz, CDCl ₃) of compound 226 244
Figure B.7	¹ H NMR (500 MHz, CDCl ₃) of compound 242 245
Figure B.8	Infrared spectrum (thin film/NaCl) of compound 242 246
Figure B.9	¹³ C NMR (125 MHz, CDCl ₃) of compound 242 246

Figure B.10	¹ H NMR (300 MHz, C ₆ D ₆) of compound 247 247
Figure B.11	Infrared spectrum (thin film/NaCl) of compound 247
Figure B.12	¹³ C NMR (75 MHz, C ₆ D ₆) of compound 247
Figure B.13	¹ H NMR (500 MHz, CDCl ₃) of compound 247a 249
Figure B.14	Infrared spectrum (thin film/NaCl) of compound 247a 250
Figure B.15	¹³ C NMR (125 MHz, CDCl ₃) of compound 247a 250
Figure B.16	¹ H NMR (500 MHz, CDCl ₃) of compound 248 251
Figure B.17	Infrared spectrum (thin film/NaCl) of compound 248 252
Figure B.18	¹³ C NMR (125 MHz, CDCl ₃) of compound 248 252
Figure B.19	¹ H NMR (300 MHz, CDCl ₃) of compound 250 253
Figure B.20	Infrared spectrum (thin film/NaCl) of compound 250 254
Figure B.21	¹³ C NMR (75 MHz, CDCl ₃) of compound 250 254
Figure B.22	¹ H NMR (300 MHz, CDCl ₃) of compound 251 255
Figure B.23	Infrared spectrum (thin film/NaCl) of compound 251 256
Figure B.24	¹³ C NMR (75 MHz, CDCl ₃) of compound 251 256
Figure B.25	¹ H NMR (300 MHz, CDCl ₃) of compound 251a 257
Figure B.26	Infrared spectrum (thin film/NaCl) of compound 252 258
Figure B.27	¹³ C NMR (75 MHz, CDCl ₃) of compound 252 258
Figure B.28	¹ H NMR (300 MHz, CDCl ₃) of compound 252 259
Figure B.29	Infrared spectrum (thin film/NaCl) of compound 252
Figure B.30	¹³ C NMR (75 MHz, CDCl ₃) of compound 252
Figure B.31	¹ H NMR (300 MHz, CDCl ₃) of compound 253 261
Figure B.32	Infrared spectrum (thin film/NaCl) of compound 253 262
Figure B.33	¹³ C NMR (75 MHz, CDCl ₃) of compound 253 262
Figure B.34	¹ H NMR (300 MHz, CDCl ₃) of compound 255 263
Figure B.35	Infrared spectrum (thin film/NaCl) of compound 255 264

Figure B.36	¹³ C NMR (75 MHz, 255) of compound 255
Figure B.37	¹ H NMR (500 MHz, CDCl ₃) of compound 256
Figure B.38	Infrared spectrum (thin film/NaCl) of compound 256 266
Figure B.39	¹³ C NMR (75 MHz, CDCl ₃) of compound 256
Figure B.40	¹ H NMR (500 MHz, CDCl ₃) of compound 257
Figure B.41	Infrared spectrum (thin film/NaCl) of compound 257 268
Figure B.42	¹³ C NMR (125 MHz, CDCl ₃) of compound 25 7268
Figure B.43	¹ H NMR (300 MHz, CDCl ₃) of compound 258
Figure B.44	Infrared spectrum (thin film/NaCl) of compound 258 270
Figure B.45	¹³ C NMR (125 MHz, CDCl ₃) of compound 258 270
Figure B.46	¹ H NMR (300 MHz, CDCl ₃) of compound 259 271
Figure B.47	Infrared spectrum (thin film/NaCl) of compound 259
Figure B.48	¹³ C NMR (75 MHz, CDCl ₃) of compound 259
Figure B.49	¹ H NMR (300 MHz, CDCl ₃) of compound 260
Figure B.50	Infrared spectrum (thin film/NaCl) of compound 260 274
Figure B.51	¹³ C NMR (75 MHz, CDCl ₃) of compound 260
Figure B.52	¹ H NMR (300 MHz, CDCl ₃) of compound 261
Figure B.53	Infrared spectrum (thin film/NaCl) of compound 261 276
Figure B.54	¹³ C NMR (75 MHz, CDCl ₃) of compound 261
Figure B.55	¹ H NMR (300 MHz, CDCl ₃) of compound 262a 277
Figure B.56	Infrared spectrum (thin film/NaCl) of compound 262a 278
Figure B.57	¹³ C NMR (75 MHz, CDCl ₃) of compound 262a
Figure B.58	¹ H NMR (300 MHz, CDCl ₃) of compound 262b 279
Figure B.59	Infrared spectrum (thin film/NaCl) of compound 262b 280
Figure B.60	¹³ C NMR (75 MHz, CDCl ₃) of compound 262b 280
Figure B.61	¹ H NMR (300 MHz, C ₆ D ₆) of compound 263
	Figure B.36Figure B.37Figure B.38Figure B.39Figure B.40Figure B.41Figure B.42Figure B.43Figure B.43Figure B.44Figure B.45Figure B.46Figure B.47Figure B.48Figure B.49Figure B.49Figure B.50Figure B.51Figure B.51Figure B.53Figure B.54Figure B.54Figure B.55Figure B.55Figure B.56Figure B.56Figure B.57Figure B.58Figure B.59Figure B.59Figure B.50Figure B.50Figure B.50Figure B.55Figure B.55Figure B.56Figure B.56

Infrared spectrum (thin film/NaCl) of compound 263 282
¹³ C NMR (300 MHz, C ₆ D ₆) of compound 263
¹ H NMR (300 MHz, CDCl ₃) of compound 264
Infrared spectrum (thin film/NaCl) of compound 264 284
¹³ C NMR (75 MHz, CDCl ₃) of compound 264
¹ H NMR (300 MHz, CDCl ₃) of compound 265 285
Infrared spectrum (thin film/NaCl) of compound 265 286
¹³ C NMR (75 MHz, CDCl ₃) of compound 265
¹ H NMR (300 MHz, CDCl ₃) of compound 266 287
Infrared spectrum (thin film/NaCl) of compound 266
¹³ C NMR (75 MHz, CDCl ₃) of compound 266
¹ H NMR (500 MHz, CDCl ₃) of compound 270 289
Infrared spectrum (thin film/NaCl) of compound 270
¹³ C NMR (125 MHz, CDCl ₃) of compound 270
¹ H NMR (500 MHz, CDCl ₃) of compound 272 291
Infrared spectrum (thin film/NaCl) of compound 272 292
¹³ C NMR (125 MHz, CDCl ₃) of compound 272 292
¹ H NMR (300 MHz, CDCl ₃) of compound 273 293
Infrared spectrum (thin film/NaCl) of compound 273 294
¹³ C NMR (75 MHz, CDCl ₃) of compound 273 294
¹ H NMR (300 MHz, CDCl ₃) of compound 274 295
Infrared spectrum (thin film/NaCl) of compound 274 296
¹³ C NMR (75 MHz, CDCl ₃) of compound 274 296
¹ H NMR (300 MHz, C ₆ D ₆) of compound 276 297
Infrared spectrum (thin film/NaCl) of compound 276
¹³ C NMR (75 MHz, C ₆ D ₆) of compound 276

Figure B.88	¹ H NMR (300 MHz, CDCl ₃) of compound 278 299
Figure B.89	Infrared spectrum (thin film/NaCl) of compound 278 300
Figure B.90	¹³ C NMR (75 MHz, CDCl ₃) of compound 278 300
Figure B.91	¹ H NMR (300 MHz, CDCl ₃) of compound 279
Figure B.92	Infrared spectrum (thin film/NaCl) of compound 279 302
Figure B.93	¹³ C NMR (75 MHz, CDCl ₃) of compound 279 302
Figure B.94	¹ H NMR (500 MHz, CDCl ₃) of compound 280
Figure B.95	Infrared spectrum (thin film/NaCl) of compound 280 304
Figure B.96	¹³ C NMR (125 MHz, CDCl ₃) of compound 280
Figure B.97	¹ H NMR (500 MHz, CDCl ₃) of compound 281a
Figure B.98	Infrared spectrum (thin film/NaCl) of compound 281a
Figure B.99	¹³ C NMR (125 MHz, CDCl ₃) of compound 281a 306
Figure B.100	¹ H NMR (500 MHz, CDCl ₃) of compound 281b
Figure B.101	Infrared spectrum (thin film/NaCl) of compound 281b 308
Figure B.102	¹³ C NMR (125 MHz, CDCl ₃) of compound 281b 308
Figure B.103	¹ H NMR (300 MHz, CDCl ₃) of compound 282
Figure B.104	Infrared spectrum (thin film/NaCl) of compound 282
Figure B.105	¹³ C NMR (75 MHz, CDCl ₃) of compound 282
Figure B.106	¹ H NMR (300 MHz, CDCl ₃) of compound 269
Figure B.107	Infrared spectrum (thin film/NaCl) of compound 269 312
Figure B.108	¹³ C NMR (75 MHz, CDCl ₃) of compound 269
Figure B.109	¹ H NMR (300 MHz, CDCl ₃) of compound 283 313
Figure B.110	Infrared spectrum (thin film/NaCl) of compound 283 314
Figure B.111	¹³ C NMR (75 MHz, CDCl ₃) of compound 283 314
Figure B.112	Representation of Allylic Alcohol 248
Figure B.113	Representation of Allylic Alcohol 253

APPENDIX C

Figure C.1	¹ H NMR (500 MHz, CDCl ₃) of compound 255a
Figure C.2	Infrared spectrum (thin film/NaCl) of compound 255a 394
Figure C.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 255a
Figure C.4	¹ H NMR (500 MHz, CDCl ₃) of compound 255b
Figure C.5	Infrared spectrum (thin film/NaCl) of compound 255b
Figure C.6	¹³ C NMR (125 MHz, CDCl ₃) of compound 255b
Figure C.7	¹ H NMR (500 MHz, CDCl ₃) of compound 315 397
Figure C.8	Infrared spectrum (thin film/NaCl) of compound 315 398
Figure C.9	¹³ C NMR (125 MHz, CDCl ₃) of compound 315
Figure C.10	¹ H NMR (500 MHz, CDCl ₃) of compound 317 399
Figure C.11	Infrared spectrum (thin film/NaCl) of compound 317 400
Figure C.12	¹³ C NMR (125 MHz, CDCl ₃) of compound 317 400
Figure C.13	¹ H NMR (300 MHz, CDCl ₃) of compound 320 401
Figure C.14	Infrared spectrum (thin film/NaCl) of compound 320 402
Figure C.15	¹³ C NMR (75 MHz, CDCl ₃) of compound 320 402
Figure C.16	¹ H NMR (300 MHz, CDCl ₃) of compound 322 403
Figure C.17	Infrared spectrum (thin film/NaCl) of compound 322 404
Figure C.18	¹³ C NMR (75 MHz, CDCl ₃) of compound 322
Figure C.19	¹ H NMR (500 MHz, CDCl ₃) of compound 323 405
Figure C.20	Infrared spectrum (thin film/NaCl) of compound 323 406
Figure C.21	¹³ C NMR (125 MHz, CDCl ₃) of compound 323
Figure C.22	¹ H NMR (500 MHz, CDCl ₃) of compound 324 407

Figure C.23	Infrared spectrum (thin film/NaCl) of compound 324 408
Figure C.24	¹³ C NMR (125 MHz, CDCl ₃) of compound 324 408
Figure C.25	Representation of Alcohol 324 409

APPENDIX E

Figure E.1	¹ H NMR (500 MHz, CDCl ₃) of compound 341	457
Figure E.2	Infrared spectrum (thin film/NaCl) of compound 341	458
Figure E.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 341	458
Figure E.4	¹ H NMR (300 MHz, CDCl ₃) of compound 342	459
Figure E.5	Infrared spectrum (thin film/NaCl) of compound 342	460
Figure E.6	¹³ C NMR (125 MHz, CDCl ₃) of compound 342	460
Figure E.7	¹ H NMR (500 MHz, CDCl ₃) of compound 343	461
Figure E.8	Infrared spectrum (thin film/NaCl) of compound 343	462
Figure E.9	¹³ C NMR (75 MHz, CDCl ₃) of compound 343	462
Figure E.10	¹ H NMR (500 MHz, CDCl ₃) of compound 344	463
Figure E.11	Infrared spectrum (thin film/NaCl) of compound 344	464
Figure E.12	¹³ C NMR (125 MHz, CDCl ₃) of compound 344	464
Figure E.13	¹ H NMR (500 MHz, CDCl ₃) of compound 346	465
Figure E.14	Infrared spectrum (thin film/NaCl) of compound 346	466
Figure E.15	¹³ C NMR (125 MHz, CDCl ₃) of compound 346	466
Figure E.16	¹ H NMR (500 MHz, CDCl ₃) of compound 34 7	467
Figure E.17	Infrared spectrum (thin film/NaCl) of compound 347	468
Figure E.18	¹³ C NMR (125 MHz, CDCl ₃) of compound 347	468
Figure E.19	¹ H NMR (300 MHz, CDCl ₃) of compound 348a	469
Figure E.20	Infrared spectrum (thin film/NaCl) of compound 348a	470
Figure E.21	¹³ C NMR (125 MHz, CDCl ₃) of compound 348a	470

Figure E.22	¹ H NMR (500 MHz, CDCl ₃) of compound 348b 471
Figure E.23	Infrared spectrum (thin film/NaCl) of compound 348b 472
Figure E.24	¹³ C NMR (125 MHz, CDCl ₃) of compound 348b 472
Figure E.25	¹ H NMR (300 MHz, CDCl ₃) of compound 348c 473
Figure E.26	Infrared spectrum (thin film/NaCl) of compound 348c 474
Figure E.27	¹³ C NMR (125 MHz, CDCl ₃) of compound 348c 474
Figure E.28	¹ H NMR (500 MHz, CDCl ₃) of compound 364 475
Figure E.29	Infrared spectrum (thin film/NaCl) of compound 364 476
Figure E.30	¹³ C NMR (500 MHz, CDCl ₃) of compound 364 476
Figure E.31	¹ H NMR (500 MHz, CDCl ₃) of compound 365 477
Figure E.32	Infrared spectrum (thin film/NaCl) of compound 365 478
Figure E.33	¹³ C NMR (125 MHz, CDCl ₃) of compound 365 478
Figure E.34	¹ H NMR (500 MHz, CDCl ₃) of compound 366 479
Figure E.35	Infrared spectrum (thin film/NaCl) of compound 366 480
Figure E.36	¹³ C NMR (125 MHz, CDCl ₃) of compound 366
Figure E.37	¹ H NMR (500 MHz, CDCl ₃) of compound 368 481
Figure E.38	Infrared spectrum (thin film/NaCl) of compound 368
Figure E.39	¹³ C NMR (125 MHz, CDCl ₃) of compound 368
Figure E.40	¹ H NMR (500 MHz, CDCl ₃) of compound 379 483
Figure E.41	Infrared spectrum (thin film/NaCl) of compound 370
Figure E.42	¹³ C NMR (XXX MHz, XX) of compound 379
Figure E.43	¹ H NMR (300 MHz, CDCl ₃) of compound 380 485
Figure E.44	Infrared spectrum (thin film/NaCl) of compound 380 486
Figure E.45	¹³ C NMR (75 MHz, CDCl ₃) of compound 380
Figure E.46	¹ H NMR (300 MHz, CDCl ₃) of compound 387 487
Figure E.47	Infrared spectrum (thin film/NaCl) of compound 387

Figure E.48	¹³ C NMR (75 MHz, CDCl ₃) of compound 38 7488
Figure E.49	¹ H NMR (300 MHz, CDCl ₃) of compound 388 489
Figure E.50	Infrared spectrum (thin film/NaCl) of compound 388 490
Figure E.51	¹³ C NMR (75 MHz, CDCl ₃) of compound 380 490
Figure E.52	¹ H NMR (300 MHz, CDCl ₃) of compound 389 491
Figure E.53	Infrared spectrum (thin film/NaCl) of compound 389 492
Figure E.54	¹³ C NMR (75 MHz, CDCl ₃) of compound 389 492
Figure E.55	¹ H NMR (300 MHz, CDCl ₃) of compound 391 493
Figure E.56	Infrared spectrum (thin film/NaCl) of compound 391 494
Figure E.57	¹³ C NMR (75 MHz, CDCl ₃) of compound 391 494
Figure E.58	¹ H NMR (500 MHz, CDCl ₃) of compound 392 495
Figure E.59	Infrared spectrum (thin film/NaCl) of compound 392 496
Figure E.60	¹³ C NMR (125 MHz, CDCl ₃) of compound 392 496
Figure E.61	¹ H NMR (500 MHz, CDCl ₃) of compound 393 497
Figure E.62	Infrared spectrum (thin film/NaCl) of compound 393 498
Figure E.63	¹³ C NMR (125 MHz, CDCl ₃) of compound 393 498
Figure E.64	¹ H NMR (300 MHz, CDCl ₃) of compound 396 499
Figure E.65	Infrared spectrum (thin film/NaCl) of compound 396 500
Figure E.66	¹³ C NMR (75 MHz, 75) of compound 396 500
Figure E.67	Representation of Allyl ketone 366

xxxiii

LIST OF SCHEMES

Scheme 1.2.1	Hypothetical polyketide precursor7
Scheme 1.2.2	Potential mechanism for cyclization of polyketide precursor 22 8
Scheme 1.2.3	Proposed biosynthesis of norzoanthamine9
Scheme 1.2.4	Structure of zooxanthellamine10
Scheme 1.2.5	Equilibria between lactone and enamine isomers of
	norzoanthamine12
Scheme 1.2.6	Anomalous reduction of norzoanthamine 12
Scheme 1.4.1	Miyashita's Diels-Alder construction of the ABC core19
Scheme 1.4.2	Functionalization of the ABC core 20
Scheme 1.4.3	Attaching the southern sidechain21
Scheme 1.4.4	The completion of norzoanthamine22
Scheme 1.4.5	Tanner's approach to a model ABC ring system23
Scheme 1.4.6	Model cyclizations of compounds derived from (–)-carvone24
Scheme 1.4.7	Mechanism for formation of undesired products25
Scheme 1.4.8	Tanner's approach to the functionalized ABC ring system26
Scheme 1.4.9	Mechanism for formation of by-product 95 26
Scheme 1.4.10	Diels-Alder cyclization and cycloadducts advancement27
Scheme 1.4.11	Uemura's approach to norzoanthamine28
Scheme 1.4.12	Williams's early efforts toward the norzoanthamine AB
	rings29
Scheme 1.4.13	Williams's recent efforts toward the norzoanthamine AB
	rings
Scheme 1.4.14	Williams's synthesis of a model EFG ring system

Scheme 1.4.15	Theodorakis's approach to the ABC ring system
Scheme 1.4.16	Theodorakis's installation of the C(9) quaternary center
Scheme 1.4.17	Kobayashi's sulfone approach to the CDEFG ring system
Scheme 1.4.18	Hirama's Heck strategy for the zoanthenol ABC ring system 35
Scheme 1.4.19	Hirama's alternative assembly of the B ring
Scheme 1.4.20	Hirama's installation of the C(9) methyl group
Scheme 1.4.21	An alternate approach by Hirama37
Scheme 1.4.22	Hirama's synthesis of the fully functionalized ABC core of
	zoanthenol

CHAPTER 2

Scheme 2.1.1	Retrosynthetic analysis of zoanthenol44
Scheme 2.2.1	Synthesis of the A ring synthon45
Scheme 2.2.2	Racemic synthesis of the C ring synthon 46
Scheme 2.2.3	Decarboxylative alkylation enables enantioselective
	synthesis
Scheme 2.2.4	Diastereoselective Grignard addition47
Scheme 2.2.5	Discovery of an unusual acid-mediated cyclization48
Scheme 2.2.6	Other substrates for cyclization49
Scheme 2.2.7	A proposed mechanism for the S_N ' cyclization
Scheme 2.2.8	Deoxygenation of the A ring50
Scheme 2.2.9	Refunctionalization of the C(20)-C(21) olefin51
Scheme 2.2.10	Plan for the elaboration of the tricyclic core
Scheme 2.2.11	Attempts to enolize at C(9)53
Scheme 2.3.1	Retrosynthetic analysis of the DEFG synthon53
Scheme 2.3.2	Jacobsen hetero-Diels-Alder cycloaddition54

Scheme 2.3.5 Vinylation of the ϵ -lactam to access the enone synthon55

SUMMARY SCHEMES

Scheme S2.1	Retrosynthetic Analysis of Zoanthenol89
Scheme S2.2	Synthesis of the A Ring Synthon89
Scheme S2.3	Racemic Synthesis of the C Ring Synthon
Scheme S2.4	Enantioselective Synthesis of C Ring Methyl Ketone 177 90
Scheme S2.5	Fragment Coupling and Acid-Mediated Cyclization of the A
	and C Rings
Scheme S2.6	Deoxygenation of the A Ring and Refunctionalization of C(20)91
Scheme S2.7	Enantioselective Synthesis of DEFG Synthon91

CHAPTER 3

Scheme 3.1.1	Revised retrosynthesis of zoanthenol	.182
Scheme 3.2.1	Synthesis of vicinal all-carbon quaternary centers	.183
Scheme 3.2.2	Mechanism of <i>meso</i> -anhydride desymmetrization by	
	cinchona alkaloids	. 183
Scheme 3.2.3	C ring functionalization: iodolactonization and	
	displacement	. 187
Scheme 3.3.1	Synthesis of a lactone-derived C ring synthon	.188
Scheme 3.3.2	Grignard addition to synthon 252	.188
Scheme 3.3.3	Lactone-derived A–C ring system cyclizations	.189
Scheme 3.4.1	Lactone reduction and triol differentiation	.190
Scheme 3.5.1	Synthesis of a 7-membered acetal-derived C ring	191

Scheme 3.5.2	Grignard addition and oxidation to access cyclization
	substrates192
Scheme 3.5.3	Cyclization of allylic alcohol 265 192
Scheme 3.5.4	Cyclization of 7-membered acetal-derived enone substrate193
Scheme 3.6.1	Synthesis of a homologated C ring synthon195
Scheme 3.6.2	Fragment coupling and cyclization of the nitrile-derived
	A–C system195
Scheme 3.7.1	Synthesis of an acid-derived A–C ring system 196
Scheme 3.7.2	Cyclization of carboxylic acid-derived tethered A–C ring
	systems197
Scheme 3.8.1	Proposed mechanism for formation of bis-lactone 256 198
Scheme 3.8.2	Proposed mechanism for formation of acetal 270 199
Scheme 3.8.3	Proposed mechanism for formation of tetracycle 269 200

SUMMARY SCHEMES

Scheme S3.1	Revised retrosynthetic analysis243
Scheme S3.2	Access to a meso anhydride243
Scheme S3.2	Desymmetrization and elaboration of a meso anhydride
Scheme S3.3	Synthesis of a lactone-derived C ring synthon244
Scheme S3.4	Fragment coupling and cyclization of the A and
	lactone-derived C rings244
Scheme S3.5	Elaboration of lactone 248 245
Scheme S3.6	Synthesis of a 7-membered acetal-derived C ring synthon 245
Scheme S3.7	Fragment coupling and cyclization of the A and 7-membered
	acetal derived C rings245
Scheme S3.8	Synthesis of a homologated nitrile-derived C ring synthon246

Scheme S3.9	Fragment coupling and cyclization of the A and homologated
	nitrile-derived C rings246
Scheme S3.10	Synthesis, fragment coupling, and cyclization of the A and
	homologated carboxylic acid-derived C rings247

CHAPTER 4

Scheme 4.1.1	Failed methods for cyclization of tethered A–C ring
	systems
Scheme 4.1.2	Radical-induced cyclization of a tethered A–C ring system 368
Scheme 4.2.1	Synthesis of lactone-derived radical cyclization precursor
Scheme 4.2.2	Attempted cyclization of lactone-derived A–C ring system369
Scheme 4.3.1	Synthesis of homologated nitrile-derived radical cyclization
	precursor
Scheme 4.3.2	Attempted cyclization of nitrile-derived A–C ring system
Scheme 4.4.1	Synthesis of homologated ester-derived radical cyclization
	precursor
Scheme 4.4.2	Attempted cyclization of ester-derived A–C ring system
Scheme 4.5.1	Synthesis of 7-membered acetal-derived radical cyclization
	precursor
Scheme 4.5.2	Cyclization of 7-membered acetal-derived A–C ring system373
Scheme 4.6.1	3D representations of cyclization products
Scheme 4.6.2	Structural requirements for future radical cyclization
	products

SUMMARY SCHEMES

Scheme S4.1	Synthesis of brominated	radical cyclization	precursors 390
-------------	-------------------------	---------------------	----------------

XXXVIII	

	XXXVIII
Scheme S4.2 Ra	dical cyclization of a 7-membered acetal-derived
cyc	clization precursor
Appendix D	
Scheme D.2.1 Pla	an for functionalization of C(9)417
Scheme D.2.2 De	euteration to functionalize C(9) by allylation
Scheme D.2.3 Th	ermodynamic deprotonation to functionalize C(9) by
acy	vlation
Scheme D.3.1 Co	mmon intermediate for acid-mediated and radical
cyc	clizations
Scheme D.3.2 To	ward an optimal C ring synthon420
Scheme D.3.3 Pro	eparation of a C ring synthon with inverted C(10)
ste	ereochemistry421
Scheme D.3.4 Ac	id-mediated cyclization of cyclopentylidene-derived C
rin	g synthon422
Scheme D.3.5 Ra	dical cyclization of cyclopentylidene-containing
pre	ecursor

- Scheme D.3.6 Radical cyclization of C(19)-substituted cyclization precursor......423
- Scheme D.4.1 Revised retrosynthesis for allylation/Diels-Alder approach.......424
- Scheme D.4.2 Scheme D.4.3 Scheme D.4.4 Alternative alkylation and advancement of ketone 347 427 Scheme D.4.5 Revised retrosynthesis for α -arylation approach428
- Scheme D.4.6 Scheme D.4.7

Scheme D.4.8	B ring closure of α -arylation product 380 429
Scheme D.5.1	Side chain functionalization of a model ketone
Scheme D.5.2	Horner-Wadsworth-Emmons coupling strategy431

LIST OF TABLES

CHAPTER 1

Table 1.3.1	Cytotoxicity of the zoanthamine alkaloids	16
Table 1.3.2	Summary of antibacterial activities	16

APPENDIX A

Table A.1	Crystal data15	3
Table A.2	Atomic coordinates15	5
Table A.3	Full bond distances and angles (for deposit)15	5
Table A.4	Anisotropic displacement parameters15	9
Table A.5	Hydrogen atomic coordinates16	0
Table A.6	Crystal data16	2
Table A.7	Atomic coordinates 16	4
Table A.8	Full bond distances and angles (for deposit)16	5
Table A.9	Anisotropic displacement parameters16	7
Table A.10	Hydrogen atomic coordinates 16	8
Table A.11	Hydrogen bonds16	9
Table A.12	Crystal data17	'1
Table A.13	Atomic coordinates17	3
Table A.14	Full bond distances and angles (for deposit)17	4
Table A.15	Anisotropic displacement parameters17	6
Table A.16	Hydrogen atomic coordinates17	7

CHAPTER 3

Table 3.2.1	Optimized synthesis and desymmetrization of a C ring	
	meso-anhydride	.183

APPENDIX B

Table B.1	Crystal data
Table B.2	Atomic coordinates
Table B.3	Full bond distances and angles
Table B.4	Anisotropic displacement parameters
Table B.5	Hydrogen atomic coordinates374
Table B.6	Hydrogen bond distances and angles375
Table B.7	Crystal data
Table B.8	Atomic coordinates
Table B.9	Full bond distances and angles
Table B.10	Anisotropic displacement parameters
Table B.11	Hydrogen atomic coordinates
Table B.12	Hydrogen-bond distances and angles 390
Table B.13	Crystal data
Table B.14	Atomic coordinates
Table B.15	Full bond distances and angles
Table B.16	Anisotropic displacement parameters
Table B.17	Hydrogen atomic coordinates 398
Table B.18	Hydrogen bond distances and angles399
Table B.19	Crystal data401
Table B.20	Atomic coordinates
Table B.21	Full bond distances and angles 405

Table B.22	Anisotropic displacement parameters409
Table B.23	Hydrogen bond distances and angles411

APPENDIX C

Table C.1	Crystal data	454
Table C.2	Atomic coordinates	456
Table C.3	Full bond distances and angles	458

APPENDIX E

Table E.1	Crystal data	547
Table E.2	Atomic coordinates	549
Table E.3	Full bond distances and angles	550
Table E.4	Anisotropic displacement parameters	552
Table E.5	Hydrogen atomic coordinates	553

LIST OF ABBREVIATIONS

$[\alpha]_D$	specific rotation at wavelength of sodium D line
Ac	acetyl
ACN	acetonitrile
Ad	adamantyl
add'n	addition
AIBN	2,2'-azobis(<i>iso</i> -butyronitrile)
app.	apparent
aq	aqueous
Ar	aryl group
atm	atmosphere
В.	Bacillus
BBN	borabicyclo[3.3.1]nonane
BHT	2,6-di- <i>tert</i> -butyl-4-methylphenol
BINAP	2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl
bm	broad multiplet
Bn	benzyl
Boc	<i>tert</i> -butoxycarbonyl
BOM	benzyloxymethyl
bp	boiling point
br	broad
BRSM	based on recovered starting material
bs	broad singlet
BSA	N,O-bis(trimethylsilyl)acetamide
Bu	butyl

<i>n</i> -Bu	<i>n</i> -butyl
<i>t</i> -Bu	<i>tert</i> -butyl
Bz	benzoyl
С	concentration for optical rotation measurement
¹³ C	carbon 13, isotope
/C	supported on activated carbon
°C	degrees Celsius
cat.	catalytic
calc'd	calculated
CAM	ceric ammonium molybdate stain
CAN	ammonium cerium(IV) nitrate
Cbz	benzyloxycarbonyl
CCDC	Cambridge Crystallographic Data Centre
CDI	1,1'-carbonyldiimidazole
c-Hex	cyclohexyl
comb.	combined
comp.	complex
CSA	camphorsulfonic acid
conv	conversion
COSY	correlation spectroscopy
Су	cyclohexyl
d	doublet, deuterium, diameter, or day(s)
Δ	heat
δ	chemical shift in parts per million
DA	Diels-Alder
dba	dibenzylideneacetone

xliv

DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	1,3-dicyclohexylcarbodiimide
DCE	1,2-dichloroethane
DCM	dichloromethane or methylene chloride
DDQ	2,3-dichloro-5,6-dicyano- <i>p</i> -benzoquinone
DEAD	diethyl azodicarboxylate
decomp.	decomposes
DIBAL	diisobutylaluminum hydride
DIBAL-H	diisobutylaluminum hydride
DIOP	2,3-O-isopropylidene-2,3-dihydroxy-1,4- bis(diphenylphosphino)butane
DIPA	diisopropyl amine
DIPEA	diisopropylethylamine
DMA	N,N-dimethylacetamide
DMAP	4-dimethylaminopyridine
dmdba	3,5,3',5'-dimethoxydibenzylideneacetone
DMDO	dimethyldioxirane
DME	1,2-dimethoxyethane
DMF	dimethylformamide
DMP	Dess-Martin periodinane
DMPU	N,N'-dimethyl propylene urea
DMS	dimethylsulfide
DMSO	dimethylsulfoxide
DNA	deoxyribonucleic acid
dppb	1,4-bis(diphenylphosphino)butane
DPPE	1,2-bis(diphenylphosphino)ethane

dppp	1,3-bis(diphenylphosphino)propane
dr	diastereomeric ratio
DS.	Dean-Stark conditions
ee	enantiomeric excess
E	entgegen olefin geometry
Е.	Escherichia
EI	electrospray ionization
equiv	equivalent(s)
Et	ethyl
FAB	fast atom bombardment
g	gram
GC	gas chromatography
Grubbs II	Grubbs second-generation metathesis catalyst
[H]	reduction
h	hour(s) or height
h	
ΠV	light
¹H	light proton
иv ¹ Н ³ Н	light proton tritium
пv ¹ H ³ H HMBC	light proton tritium heteronuclear multiple bond correlation
¹ H ³ H HMBC HMDS	light proton tritium heteronuclear multiple bond correlation hexamethyldisilazide or hexamethyldisilizane
1V 1H 3H HMBC HMDS HMPA	light proton tritium heteronuclear multiple bond correlation hexamethyldisilazide or hexamethyldisilizane hexamethylphosphoramide
IV IH 3H HMBC HMDS HMPA HPLC	light proton tritium heteronuclear multiple bond correlation hexamethyldisilazide or hexamethyldisilizane hexamethylphosphoramide high-performance liquid chromatography
¹ H ³ H HMBC HMDS HMPA HPLC HRMS	light proton tritium heteronuclear multiple bond correlation hexamethyldisilazide or hexamethyldisilizane hexamethylphosphoramide high-performance liquid chromatography high-resolution mass spectroscopy
IV IH IH IH IMBC IMBC IMMDS IMPA IMPA IPLC IRMS ISQC	light proton tritium heteronuclear multiple bond correlation hexamethyldisilazide or hexamethyldisilizane hexamethylphosphoramide high-performance liquid chromatography high-resolution mass spectroscopy
IV IV IN IN IN IN IN IN IN IN IN IN IN IN IN	light proton tritium heteronuclear multiple bond correlation hexamethyldisilazide or hexamethyldisilizane hexamethylphosphoramide high-performance liquid chromatography high-resolution mass spectroscopy heteronuclear single quantum coherence hertz

X	V11

i	iso
IBX	2-iodoxybenzoic acid
IC ₅₀	concentration required for 50% growth inhibition
IL	interleukin
IMDA	intramolecular Diels-Alder
imid.	imidazole
Imid.	imidazole
IR	infrared spectroscopy
J	coupling constant
k	kilo
$k_{ m n}$	rate constant, n refers to various reactions, negative n indicates reverse reaction
kcal	kilocalories
KHMDS	potassium hexamethyldisilazide
L	liter
λ	wavelength
LAH	lithium aluminum hydride
LDA	lithium diisopropylamide
LD ₅₀	Lethal Dosage to kill 50% of test population
LiHMDS	lithium hexamethyldisilazide
LITA	lithium tantalate
lut.	lutidine
m	meta
m	multiplet, meter, or milli
μ	micro
Μ	mega, metal, or molar

m/z	mass to charge ratio
m-CPBA	meta-chloroperbenzoic acid
Me	methyl
(<i>R</i> , <i>R</i>)-Me-DUPHOS	(-)-1,2-Bis((2R,5R)-2,5- dimethylphospholano)benzene
MEK	methyl ethyl ketone
MH-60	mouse myelohybridoma cells
MIC	minimal inhibitory concetration
min	minute(s)
mol	mole(s)
mol%	percentage used based on moles
МОМ	methoxymethyl
(<i>R</i>)-MOP	(R)-(+)-2-(Diphenylphosphino)-2'-methoxy-1,1'- binaphthyl
mp or m.p.	melting point
Ms	methanesulfonyl
MS	molecular sieves
M.S.	molecular sieves
МТРА	α -methoxy- α -(trifluoromethyl)phenylacetic acid
MVK	methyl vinyl ketone
Ν	normal
n	normal
n	nano
NBS	N-bromosuccinimide
NMP	N-methylpyrrolidinone
NMR	nuclear magnetic resonance
nOe	nuclear Overhauser effect

xlviii

NOESY	2D nuclear Overhauser effect spectroscopy
NR	no reaction
0	ortho
[0]	oxidation
p	para
PCC	pyridinium chlorochromate
PDC	pyridinium dichromate
PG	prostoglandin
Ph	phenyl
pH	hydrogen ion concentration in aqueous solution
PhH	benzene
PhMe	toluene
РНОХ	phosphinooxazoline
Phth	phthalamidyl
Piv	pivaloyl
РМА	phorbol myristate acetate
PMB	<i>p</i> -methoxybenzyl
PMBM	<i>p</i> -methoxybenzyloxymethyl
<i>p.o.</i>	administered orally
ppm	parts per million
PPTS	pyridinium <i>p</i> -toluenesulfonate
Pr	propyl
<i>i</i> -Pr	isopropyl
psi	pounds per square inch
Py, py or Pyr	pyridine
q	quartet

QUINAP	(<i>R</i>)-(+)-1-(2-diphenylphosphino-1- naphthyl)isoquinoline
R	alkyl group
R	rectus (configurational)
Rearr.	Rearrangement
Red-Al	sodium bis(2-methoxyethoxy)aluminum hydride
R_f	retention factor
RNA	ribonucleic acid
ROESY	rotational nuclear Overhauser effect spectroscopy
S	singlet
S	sinister (configurational)
<i>S</i> .	Salmonella or Staphylococcus
SAE	Sharpless asymmetric epoxidation
SAR	structure activity relationship
sat.	saturated
sept.	septet
S _N '	allylic nucleophilic substitution
S _N 1	unimolecular nucleophilic substitution
S _N 2	bimolecular nucleophilic substitution
sp.	species
stoich.	stoichiometric
t	triplet
t	tertiary
t _{1/2}	half-life
TBAC	tetrabutylammonium chloride
TBAF	tetrabutylammonium fluoride

TBAI	tetrabutylammonium iodide
TBAT	tetrabutylammonium triphenyldifluorosilicate
TBDPS	tert-butyldiphenylsilyl
TBS	tert-butyldimethylsilyl
temp	temperature
TEA	triethylamine
TES	triethylsilyl
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin-layer chromatography
TMEDA	tetramethylethylenediamine
TMS	trimethylsilyl
TOF	turnover frequency
TON	turnover number
ТРАР	tetrapropylammonium perruthenate
TROC	trichloroethoxycarbonyl
Ts	p-toluenesulfonyl or p -toluenesulfonic
UV	ultraviolet
Vis	visual wavelength
v/v	volume per volume
wt%	percent by weight
w/v	weight per volume
X	halide or trifluoromethanesulfonate
Ζ	zusammen olefin geometry