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ABSTRACT

The object of this investigation is to determine the suitability of
photoelasticity for the purpose of quantitatively investigating stress
waves in solids. Specifically, procedures for determining the dynamic
mechanical and optical properties of a common photoelastic plastic,

CR -39, were investigated, as well as the techniques for reco1;ding
dynamic fringe lines.

The dynamic mechanical properties of CR-39 were determined
from the frequency and decay of free-free longitudinal vibrations of bars,
It was found that CR-39 is a viscoelastic plastic whose wave speed, com-
plex modulus, and damping depends on frequency. The stress-strain
relationship for CR-39 was found to be slightly nonlinear.

The birefringent properties of CR-39 were determined from impact
tests in which the fringe order was detected by a phototube, and strain
was measured by means of bonded wire strain gages, The results show
that CR-39 has a strain-fringe constant of 3.42 x 10—4 in/fringe + 3%,
which is the same as the static value within experimental error. Thus
this constant is independent of the rate of loading. CR-39 is not stress-
birefringent, which is the usual law quoted for photoelastic p_lastics.

An approximate theory of longitudinal stress waves in elastic bars
is derived, which shows that the Boussinesq theory, if used to calculate
the stress-fringe constant from sharp impacts, leads_to serious error,

Using the Ellis camera, strain wave isochromatics can be photo-
graphed at framing rates up to 400, 000 per second. An RCA 1P2]1 multi-
plier phototube was found to be extremely sensitive to optical retardation,
by using it to detect the time duration of transient strains caused by

cavitation. The tube has a frequency response of at least 18 megacycles,
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1
'I INTRODUCTION

Dynamic photoelasticity, until now, has not proven to be a practical
method of experimentally investigating stress waves. One limitation,
which is more fully discussed on pages 30 and 31, was the inadequate
techniques used to record fringe lines, Another limitation, described
more completely on pages 22 to 29, was the complete lack of quantitative-
ly accurate data regarding the mechanical and optical properties of photo-
elastic plasticsduring dynamic loading. The little data that was available
had been obtained under specific loading conditions by comparing the
fringe order of the wave to the value of stress that was calculated from
the Boussinesq theory of stress waves in bars. Tl';is same theory was
also used to calculate the elastic modulus from the. experirnenfal values
of the longitudinal wave speed. Extrapolation of this data to other
dynamic loading conditions is not warranted.

It is the object of this investigation to detérming the éuitability of
photoelasticity for the purpose of quantitaively investigating stress waves
in solids, This main objective is broken down into a number of specific
objectives, wh;u:h divide this thesis into its remaining sections. The
specific objective of each section is outlined below, and.discussions of
previous investigations are made in the appropriate part.

Part II contains the first of these objectives, which is the
development of methods of determining the optical and mechanical
properties of photoelastic plastics, not only for dynamic loading
conditions, but for static loading conditions as well, 'I‘hese methods

are applied to a common photoelastic plastic, CR-39, the choice of



which was largely a matter of convenience, The optical tests are
such that stress birefringence can be distinguished clearly from
étrain birefringence,

Part III contains the second objective, which is the adaption of
an ultra-high speed motion picture camera to dynamic ph’otoeﬂlasticity.
A full frame camera h;.s the obvious advantage of being capable of
photographing the entire spec.imen, but the time resolution is limited
by the specific camera used.

Part IV contains the third objective, which is the attaiﬁfnent of
the best possible time resolution by the use of a multiplier phototube.
The stress waves caused by cavitation is the specific phenomenon
investigated with the photocell, because of the extremely shoi‘t time
durations and localization usually associated with cavitation. |

Part V contains the final objective, which is a more accurate

Vanélysis of longitudinal stress waves in elastic bars. rI‘vhe‘bresult:s
of this analysis are to be compared to the Boussiﬁesq theory td
detefmine whether the latter theory is sufficiently accurate to be
utilized for the computation of the elastic mbdu.lus and stress-fringe
constants for photoelastic plastics, |

Part VI contains the conclusions of this study, based upon the

results of the investigations of the previous parts,



II MECHANICAL AND OPTICAL PROPERTIES OF CR-39

I;i order to interpret quantitatively the results of photo-
elastic expgriments, the mechanical and optical properties |
of the photc;elastic plastic must be known. No reliable dyna;nic
data was available in l“‘the literature; hence the selection of a
plastic was based almc;st solely on availability and ease of
machining. In addition it appeared desirable to use a
relatively stiff and hard photoelastic plastic. Such a plastic
is CR-39, which is available in clear sheets and is re.latively
easy to machine. It is a thermosetting polymer of allyl |
diglycol carbonate. According to Coolidge (1),

"Essentially, its manufacture consists of reacting:
phosgene with diethylene glycol to obtain a chloroformate
which is then esterified with allyl alcohol to produce the
diglycol carbonate monomer, This monomer is pély- :
inerized by heating in the presence of a catalyst such as
benzoyl peroxide to form the hard, strong, infusible,
insoluhle, clear, substantially colorless substance known
as CR-39, The commercially obtainable she‘ets of CR-39
are cast-polymerized between glass plates, producing

optically beautiful surfaces."
STATIC PROPERTIES OF CR-39

Although it is the dynamic properties of CR-39 that are of
main interest, the determination of the static properties is also of
interest, since the dynamic properties then can be compared to

the static values. This is of importance, because all other
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investigators in dynamic photoelasticity have found differences
in the optical retardation for dynamic as against static loading
conditiqns.
Static studies of the properties of CR-39 have been
made by the manufacturer, the Cast Optics Corporation of
Riverside, Connecticut; and by Coolidge (1). Their results are

compared to those of this study in Table I below.

Table 1

Static Properties of CR-39

Property Manufacturer's Coolidge's Author's
Data Data Data

Tensile strength, psi 5000-6000 5 7000% 5 T 5
Elastic Modulus, psi 2.5-3.3 x10 2.7x10 3.76:x107 *
Poisson's Ratio ——— ———— 0.443
Strain Creep = —ea-- yes yes (see text)
Specific Gravity 1.31 ——— 1.326
Stress-Fringe Constant, 86.6 78.5 %% 90. 8%

psi-in/fringe, 5461 A
Optical Creep none 20%/180min yes(see tei:t)
Stra]in-Fringe Constant, = ----- ———— 3.48 x 10"

in/_ .

fringe

Refractive index ND 1.50398 ———— R

* Immediately after application of load
**% Stress was increased by increments to 4300 psi during 14 minutes;
time between increments varied from one to two minutes,

Coolidge determined the mechanical properties on a tensile
specimen for which the load was increased by increments every 10
minutes, The optical properties were determined iﬁ a similar
fashion but with smaller time increments, Optical creep was
observed in a beam subjected to pure bending. As will be dis-
cussed later, all three of lthese procedures are subject to serious

error,



EXPERIMENTAL PROCEDURE

Static tests were made on a simple tensile specimen with a
working section 0, 252 inches thick, width of 0,500 inches, and
3 inches long., Baldwin A-8 strain gages were cemented with
Duco cement to the front and back of the specimen in both the
longitudinal and transverse directions, Strain was indicated
by a Baldwin~Foxboro portable strain indicator, which ‘cou'ld be
read to within 10 microinches per inch, The strain gage constant,
as given by the manufacturer, is supposed to be accurate to & 2%,

The specimen was placed in the spherical mirror polariscope
designed by Goetz (2), The light sourcewas alow pressure mercury
vapor lamp, used with a Wratten 77A filter to.produce monochro=
matic light of 5461 A wave length, The fringe order in the specimen
was determined by a Babinet-Soleil compensator that could be read
to within 1/100 of a fringe line, Both the strain indicator and comp-
ensator were calibrated; in addition, the strain gages were checked
against the readings of two Huggenberger extensometérs .

Creep tests were made by applying constant loads to the
tensile specimen for 180 minutes during which time the strain and
fringe order were determined; the load was then removed and

readings were made for another 180 minutes,
REDUCTION OF DATA

Figure 1 shows the results of a typical creep test. The
fringe order N has been determined with the Babinet-Soleil comp-

ensator; strain was read directly from the Baldwin-~Foxboro



strain indicator, The strain in the longitudinal direction is
eys in the transverse direction €5

T\&o corrections must be made to the creep data, one
to correct for changes in thickness of the specimen when
strained; the other for erroneous strain gage readings., As
for the first correction, the fringe order is supposed to be
directly proportional to the thickness of the specimen, hence
the value of the fringe order N must be multiplied by (1 - ez)
in order that N be based on original thickness._

As for the second correction, the A-8 strain gage
readings of Fig., 1 show that after 3 days, the birefringence
of the specimen has virtually disappeared, but the strain gages
still have a finite reading. In order to determine whether the
gages were in error, a tensile stress of 1300 psi was applied
in order to compare the A-8 gages with two Huggenbergef
mechanical extensometers. The Huggenbergers were used
immediately after calibration, and could be read to w:ithin
£ 10 microinches per inch, The results indicated that the A8
wire strain gages were in error, and must be multiplied by the
factors in Table II to obtain the Huggenberger readingé,

When the load was removed at 180 minutes after application,
the wire strain gages read approximately ten times that of the
Huggenbergers, These Huggenberger indications were very
small, from 3 to 31 microinches per inch, Due to their magnitude,

the accuracy of these measurements is poor, and no correction



factors could be computed.

Table II

A-8 Strain Gage Correction Factors for 1,300 psi

Time, min. Correction Factor

0 1.030

10 1, 044
20 1. 050
30 1,053
60 1.061
120 1.071
180 1,079

The error of the wire strain gages may be attributed
to shear lag during the application of fhe load; in addition, stress
relaxation of the Duco cement during the application of the load
could have caused the cement toyield plastically so that the gages
read high after removal of the load. The limited range of the
Huggenbergers restricted the calibration to small strain; hence
no other calibrations were made for larger loads. Instead, the
results for 1300 psi were extrapolated, that is, Table II is used

to correct the A-8 strain gage readings for all loads.
STRESS-STRAIN RELATION FOR CR-39

The stress divided by corrected strain is plotted as a
function of time in Fig, 2, It can be seen that CR-39 is not
linearly viscoelastic, since 0‘/e1 = f(t) for a linear viscoelastic

material, where ¢ is the stress, e, is the strain, and t is time;

1
but for CR-39, (J‘/el = f(t,0). The values of strain have been

interpolated from the original data; but the strain at zero time
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cannot be extrapolated because strain readings were not made
immediately after load application. However, the zero-time
modulus can be calculated if the zero-time fringe order is
known, as is shown later. Enough readings of the fringe ordef
were made so that the zero-time fringe order could be extra-
polated, and from this the calculated zero-time modulus of
elasticity is 3.76 x 105 psi.

To demonstrate more clearly the nonlinearlity of CR-39,
stress versus strain at 10 minutes after load application is
shown in Fig. 3, for which the Young's modulus is 3,36 x 105
psi. Stress is based on original cross sectional area. It must

be kept in mind that the usual range of A-8 wire strain gages is

limited to strains less than 1%.

POISSON'S RATIO

For the simple tensile specimen, strain in the axial
direction is plotted against strain in the transverse direction
in Fig. 4. Poisson's ratio is given by the slope, which is

0.443,
OPTICAL BIREFRINGENCE OF CR-39
It is postulated that some transparent materiais may be
stress birefringent; that is, they follow the Maxwell law,
N = ((J’l —O’Z)W/F | (1)

where N is the fringe order, 7y and 0’2 are the principal

stresses, w is the thickness of the specimen, and F is the stress-



fringe constant, which depends on the material and the wave
length of the light.
On the other hand, a material may be strain birefringent

and hence follow the Neumann law,
N = (e1 -ez)w/G (2)

where ) and e, are the principal strains and G is the strain-
fringe coefficient.

To be even more general, Coker and Filon (3) suggest
that all transparent materials follow a linear co.mbination of
the Maxwell and Neumann re_lations.

Figure 1 clearly indicates that the fringe order depends‘
on time as well as stress in a tensile specimen, and hence
CR-39 does not follow the Maxwell relation. To determine
whether or not CR-39 follows the Neumann relation, e, - ¢,
is plotted against fringe order N in Fig. 5. N has been corrected
for original thickness, and the strains have been correéted
according to Table II. Values of e, - ez in excess of 1,.44%
may have exceeded the working range of the strain gages,

and these points were not used to draw the line,

The strain-fringe constant, from Eq. (2) is given by
G = (e1 - ez)w/N (3)

where (e1 - ez) is given by the reciprocal of the slope of the line

in Fig. 5, and w = 0.252 inches., Using these values, for CR-39
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one gets for G:
-4 . .
G =3.48 x10 ~ in/fringe (4)

The stress fringe constant F(0) for zero time after load
application can be determined by extrapolating the fringe order
at zero time, N(O) from the creep tests. The zero-time fringe
orders for the various loads have been plotted in Fig. 6 against
stress multiplied by specimen thickness, and the slop¢ of this

curve gives F(0) since from Eq. (1),

F(t) = le/N(t) (5)
The value of F(0) is thus found to be 90. 8 psi-in/fringe. E(0), the

zero-time value of the elastic modulus can now be determined

from Eq. (1) and (2), since

N(0) = 0, w/F(0) = [e (0) - eZ(O)] w/G. (6)
Now, el(_O) - eZ(O) = (1 +D)e1(0), and (Tl = E(O)el(O), where

2 is Poisson's ratio; therefore:

E(0) = F(0)[1 +21/G = (90.8)(1.443) = 3.76 x 10° psi
3.48 x 10-2 '

which is greater yet than E(10) which was found to be 3,36 x 105

psi from Fig. 3,
DISCUSSION OF STATIC TESTS

From the data, it is evident that for CR-39, the optical
birefringence is directly proportional to the difference between

principal strains up to and possibly beyond 18 fringe lines for
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54612, On the other hand, CR-39 is definitely a non-linear
viscoelastic plastic, for not only does the strain increase
under load, but the rate of increase depends upon stress.
Referring to the method used by Coolidge, in which
stress versus strain was determined from a tensile specimen
by increasing the load every ten minutes; it is seen that the
value of E, the elastic modulus, so obtained is good only for
this method of loading and does not apply to prhotoelastic
specimens to which the entire load is applied at once. These
same comments apply to the method of determining the
stress-fringe constant, since the time variable was not cor-
rectly controlled. Lastly, Coolidge determined optical
creep from a beam subjected to pure bending, in which the
‘total load was applied for 180 minutes. Since Fig. 3 indicates
that CR-39 is not a linear viscoelastic plastic, stress is not
proportional to strain in the beam and hence his me'théd of
calculating fiber stresses is not correct, In additién, each
fiber of the beam cannot elongate individually according to
time and the local stress as shown in Fig. 2; to the contrary,
the longitudinal strain equals the distance from the neutral
axis divided by the radius of curvature which is constant for
all fibers so that stress relaxation must occur and hence the
stress becomes even more non-linear over the depth of the beam.
The results of these static tests on CR-39 will serve

for comparison with the dynamic values of Poisson's ratio,
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the dynamic elastic modulus, and the dynamic strain-fringe

constant.
DYNAMIC PROPERTIES OF CR-39

The suitability of any photoelastic plastic for the quan-
titative study of stress waves depends in a large part upon
knowledge of the dynamic mechanical and birefringent proper-
ties, In this section, experiments and results will be
described for the determination of Poisson's ratio, internal
damping, and longitudinal stress wave speed as a function of
frequency and wave length; and finally, the dynamic biréfring—

ent relations for CR-39,
DESCRIPTION OF DYNAMIC EQUIPMENT

The essential apparatus for these experiments is the
dynamic loading frame, shown in Figs. 7 and 8, The frame
has two tight wires in the vertical direction, one inch apart.
An aluminuﬁx hammer slides on the wires, while a specimen
rests on top of a steel anvil and is supported by two fixtures
that clamp to the wires and which allow the specimen to
slide vertically, but not laterally. In this way, the position
of the face of the tests specimen relative to the hammer does
not change between runs, The hammer is released from a
set of jaws from the top of the frame by a small elect\romagnet.

Just before the hammer strikes the specimen, it hits an
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insulated portion of a thin steel wire, which in turn makes
contact with another thin wire, closing the trigger circuit
and starting the data recording devices, With care, the
triggering is reproducible to within 10 microseconds for
each run,

The velocity of the hammer at the time of impact was
measured by removing the specimen and placing a lamp,
thin slit, and photocell at the same height as the impact end
of the specimen. As the hammer drops past the slit, the
output of the photocell is recorded as two pipé on an oscgllo—
graph. The velocity of fall is obtained by dividing the time
between pips by the length of the hamme%. ‘The velocity of
the hammer‘ at impact for fhe setup of Fig. 7 was 222
inches /sec, *1%.

Squareness of impact was obtained by placing a émall
rectangular piece of aluminum on top of the specimen, apply-
ing Duco cement to the top of this aluminum piece, énd then
bringing the hammer down into contact with the wet cement.
Since the aluminum piece was in uniform contact Wit‘hrthe
specimen and, when the cement hardened, formedan integral
part of the aluminum hammer; and since the wires mainfain
alignment between the hammer and specimen, squabr‘e impact
should be achieved., The completed hammer weighed 00360 1b,

To test for squareness of impact, a piece of carbon

paper and tissue paper were placed on the impact end of the
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specimen, and the hammer was released. The impact was fairly
even, as shown by Fig. 9, which are records of the impact pressure
that weré made three months after the alignment process had been
completed, As a final check, separate oscillograms of the output
of the strain gages on both sides of the specimen were made for
successive runs, The impacts were reproducible to within a few
percent, as indicated by the similarity of oscillograms of the same
strain gage. However, there was a definite difference between
oscillogramé of the outputs of the two strain gages, as shown in
Figs. 10(a) and 10(b). These show that even with the precautions
taken, square impact was still not achieved. However, if the
outputs of the two strain gages are added, the average strain will
be obtained without the bending strains, as shown in Fig, 10(c).
Similarly, for an optical path through a small area on the center-
‘line of the specimen, the average optical retardation will be
obtained, unaffected by bending in the forward or backward
direction. In all data redu:tion, the assumption is ma:.de that depart-
ures from a linear distribution of strain through the thickness of
the specimen result in a second order effect and is therefore
negligible. Since the gages and optical path are on the center=-
line of the specimen, they are unaffected by sideways bending.
Strain was detected by means of Type C-19 Baldwin wire
strain gages, which were cemented to the specimen with Duco
cement, which apparently had no effect on the CR=-39 plastic,
They were wired into a DC bridge that is essentially the same as

that used by Ripperger (4). This bridge has the advantage
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of subtracting out bending stresses. A calibrating resistor
can be switched in parallel with one of the gages to calibrate
the 6scilloscope. The output of the bridge is connected to a
Hewlett-Packard amplifier set at highest gain to reduce the
amplifier noise, and from the output of the amplifier int;)

an oscilloscope. .Oscillograms were made by means of the
Dumont-Land oscillograph camera, The frequency response
of the amplifier and oscilloscope was checked and found. to be
flat in the range between 2 and 200 kilocycles. The rise time
for a step input was found to be about 1.5 microseconds.

The specimen used for the Poisson ratio and biref:;ing-
ent dynamic tests was cut from a clear sheet of 0.248 inch
thickness CR-39. Its length is 10,75 inches, and its width is
0.500 +0.001 inches, Two C-19 strain gages were cemented
on either side of the specimen in the longitudinal direction 4
inchés below the impact end of the specimen, and:two C-19
gages in the transverse direction 7/A16 inch below the others,

The gage constant given by the manufacturer was 2,51 £3%.
DYNAMIC POISSON'S RATIO

For uniaxial stress, Poisson's ratio is equal to -ez/el,

is

where e, is the strain in the longitudinal direction and e, i

1

the strain in the transverse direction. Oscillographs of e,
during impact were made during a run, followed by another

run during which a record of e, was made. Typical records

2

are shown in Fig. 11. As can be seen, it is most convenient to
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compare strains at the first or second peaks, which correspond
to the initial wave and its reflection. The values of peak strain
vary  slightly from run to run, the largest difference being
about 5% from the mean.

For the first peak, the average Poisson's ratio for 4
tests was 0,440, For the second peak, the average Poisson's
ratio was 0.435 for 10 runs. In comparison with the étatic
value, the dynamic Poisson's ratio is the same within experi-
mental error, For the purpose of further calculations, a

value of 0,44 * 2% will be used.

WAVE SPEED, DYNAMIC ELASTIC MODULUS,

AND DAMPING IN CR-39

In brief, it is desired to make experimental measure-
ments that will determine the phase speed c of longitudinal
sinusoidal stress waves, and the rate of their attenuation
with distance. The experiments that are performed, how-
ever, determine the frequency and logarithmic deciement of
free-free bars of CR-39 for longitudinal vibrations. Use is made
of the theory of propagation of waves in solids having internal
friction, which is covered quite completely in Koisky (5)
the following is an adaption of his discussion to these experi-
ments.

If it is assumed that the material is a Voigt solid at any
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one frequency, the stress-strain relation will be:

= F' " de
a Ee + F 5 (7)

where ¢ and e are the stress and strain respectively in the
axial direction of the bar and E'and E" are constants., If the

strains are varying sinusoidally with time, then:
e = e¢@ (8)
and Eq. (7) becomes:
og=(E"+ {wE")e {9)

where e = 9u/9x. Therefore E'+ iwE" may be considered

to be a complex elastic modulus, that is:

E"=E'+ (wE"= E, +iE, =Ee'® (10)
where
E, = £ cos@
EZ =F sin ¢ {11)
lLan P = Ez /E—,

For longitudinal stress waves in a solid, if the wave lengths
are long in comparison to the radius, Newton's law for an

element becomes:

0% - 20 _ £ e'® Ju (12)
ot? X Ix*

where /0 is the mass per unit volume, and
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where ¢ is given by Eq. (9) and (10). When a bar of length
L is executing free-free longitudinal vibrations, for the
first mode the displacement in the axial direction may be

assumed to be:

w(z,t) = Ut sin mz/L . (13)

Substituting for u(x,t), Eq. (12) becomes:

FUW) , E °x Ult)=o0, (14)
ot? P 12

for which the solution is:
—sinl(L)ET ¢
sin(€)/EX
Ul(t) = cos{//g _Z_chosg}e 2)\/'; (15)

The frequency and period of oscillation are then:

!
= JF 2l cos2 (16)

_ fe 2L
T-/; cos (17)

N8

while the wave length from Eq. (13) is:
N =2L (18)
and the speed of the waves is:
= fA =/-E1 cos & 19
c 5 s g (19)

The logarithmic decrement, defined as 4 = In[u(t)/u(t+ T N, -

for a total of n cycles is:
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d=2ntan? = n—’[”;‘-ffi);)- (20)

Hence for a given bar undergoing free-free vibrations, if
measurements of the frequency and decay are made, J ;
@, c, E, E1 and E2 can be determi ned. However, one is
also interested in the rate of decay of a given wave as it

travels along a bar, For this purpose it may be assumed

that:
u = U (%) sinwt, (21)

When this is substituted into the differential equation, Egq. ‘(12)

and it is solved, one gets:

%‘?wmsg ze- /7.?— wéian” z

Ux) =e (22)

The real negative coefficient of x may be called the attenuation

factor a; and from Eq. (16) and (20)

a= J/N | (23)

and the amplitude of a wave will decrease according to e ¥,

If the logarithmic ' decrement is small, other simplifications

may be made, for if tan@v @ , from Eq.(l1l), (20) and (23},

¢ = EZ/EI {24)

d = Tr@ (25)
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a= T E,/E, (26)

and E, = sz. (27)

Sometimes the '"specific damping capacity' or "'specific loss"
is of interest. It is defined as the fractional change of enei-gy

in one cycle, and for small damping is given by:

AW/ W = 24. (28)

Experimental Procedure

Quarter -inch square rods of various length were placed
in the dynamic loading frame shown in Fig. 7, and supported
by a steel anvil on which sponge rubber had been placed. Two
strain gages were cemented on opposite sides of the bars at
the center; these were connected to an oscilloscope through the
dynamic strain gage bridge. The hammer was theg dropped,
and an oscillograph record was made with the Dumont camera.
After the initial transients died out, the bar vibrated freely
in the first longitudinal mode, and the strain gages recorded
the strain of the longitudinal vibrations,

For the shorter bars, a correction must be made for
lateral motion of the bar. This is a correction to the wave
speed c , and is analogous to the corrections for round bars
discussed in Part V, The data for the correction has been

taken from experiments by Morse (6) for square bars, and
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a theoretical analysis by Bancroit (7). In computing the
logarithmic decrement, strains were used instead of dis-

placements, but this has no effect upon the results.

Experimental Results

Typical oscillograph records are shown in Fig. (12).
The decay appears to be exponential, hence the previous _
analysis will be used to reduce the data. The results have been
plotted in Figs. 13, 14 and 15. It is evident that the phase
speed c only increases about 10% from wavelengths of 21.5
inches to 1. 264 inches, but the absolute valie of the elastic
modulus increases over 20%. Furthermore, all values of |
the dynamic E are greater than any reported static values
of E. The logarithmic decrement increases for shorter
wave lengths, but the most striking increase with short wave
length is the attenuation factor «, which increases about 27
times over the range that was investigated. Hence, .the am-
plitude of a wave of 1,264 inch wave length will be reduced to
16% of_its original amplitude in five inches, The experimental
error for the frequency of vibration is about +2%, and about
+#10% for the logarithmic decrement,

The leading edge of the strain wave shown in Fig. 10 (c)
may now be interpreted in accordance with these results,
The theoretical peak strain for that experiment was about

0,272%, but the measured peak strain was only 0, 207%.
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Morebver, the leading edge has a rise time of about 25

microseconds. These two effects are mostly due to the

attenuation of the shorter wave length components of the

leading edge of the wave, and to a lesser extent from in-

ternal reflections of the wave. A smaller effect is due

to the finite length of the strain gage, which is discussed later.
It thus appears that CR-39 leaves much to be deéired

as a photoelastic plastic for impact experiments, because

the phase speed of waves is not the same for all componénts,

and the attenuation is too great,.
DYNAMIC STRAIN-FRINGE CONSTANT

Introduction

Sehior and Wells (8) measured the dynamic stress-
fringe constant during the passage of a stress wave and
found it to be about 60% higher than the static value fér
Xylonite, Their method consisted of shooting pellets at
the end of a bar, and then taking one microsecond duration
single flash photographs of the resulting fringe pattern, and
then calculating the peak stress that would result if the im-
pact were square, using the formula ¢ = Ev/c, where v
is the particle velocity at the end of the bar, and ¢ was
assumed to be equal to \/ET/J_, where )0 is the mass density

of the plastic. As Flynn (9) has pointed out, these formulas
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may not be applicable.

In 1954 Flynn (9) determined the dynamic stress-
fringe ‘constant for Castolite and Bakelite by taking slit
photographs on a revolving-drum shutterless camera
oflthe fringe pattern that resulted from a heavy mass
hitting the end of a bar longitudinally. The fringe lines
showed step-wise increases in accordance with the Bousg-
inesq theory. Since the Boussinesq theory assumes that
c = W, and that 0 = Ev/c, these two formulas
were used, first to calculate the dynamic elastic modulus
from the speed of the stress wave, and then to calculaté
the stress-fringe constant., He found that for Castolite,
the dynamic and static elastic modulus was the same within
experimental error, but that the dynamic stress-fringe
constant was 27% higher than static. For Bakelite, the
dynarﬁic stress-fringe constant was found to be about 17%
higher than static., However Flynn asserts that the Max-
well law applies to all materials, while his results are
quite to the contrary. Furthermore, from his Fastax
motion pictures, even with poor time resultion, it is evi-
dent that the impact was not square. Finally, Flynn
recommends the use of strain gages and a ultra-high speed
full frame motion picture camera, which is precisely the

method evolved and used in this study.
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Since CR-39 apparently follows the Neumann law
for birefringence during creep tests; that is, the optical
retardation is proportional to the difference between
principal strains, it appears desirable to record simultane-
ously strain and optical retardation during the passage

of a stress wave,

Experimental Procedure

The method for recording strain has previously been
described, except that for this experiment only the strain

, is required, since e, =

in the longitudinal direction, e >

1

-ye To record the optical birefringence, the loading

1-
frame was placed in a polariscope, shown in Fig. 16. Two
slits 1/8 inch wide were placed on either side of the specimen,
such that the light path passes between the longitudinal and
transverse strain gages. The light source was a low pressure mercu-
/ry vapor lamp, and a Wratten 77A filter was used to eliminate
all wave lengths except the Hg green line 5461 ;X The intensity
of transmitted light was detected by an RCA 1P21 multiplier
phototube, the output of which was connected to a 514AD Tek-
tronic oscilloscape.
The trigger circuit causes the 513D Tektronic oscillo-
scope to sweep and record the strain of the leading edge of the

wave, The positive gate of this oscilloscope was connected to

the trigger input of the 514AD so that both oscilloscopes swept
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together. The delay trigger of the 513D oscilloscope was
capacitance coupled to the input of both oscilloscopes so
as to :rhake a single coordinating timing mark, Two Dumont
oscillograph cameras were used to obtain the oscillograph
records, and a calibrated square wave generator was used.
to calibrate the sweep times of both oscilloscopes, which
were set at about 5 microseconds per centimeter,

As before, the hammer weight was 0,0360 1b, and
the impact velocity was 222 *1% in/sec. The specimen is

the same one as used for the Poisson's ratio tests.

Results

Two typical oscillograph records are reproduced in
Fig. 17. They are for the le ading edge of the stress wave,
which has a rise time of about 25 microseconds, Oscilio-
gram (a) is Zeg, that is, twice the recorded strain:in the
longitudinal direction; and (b} is the intensity of light trans-
mitted through the specimen., The light intensity as shown

in Fig. 17 (b) is related to the fringe order by
[(t) = _Z; sin® w N (t) (29)

where I(t) is the instantaneous light intensity, I0 is the max-

imum light intensity, and N{t) is the instantaneous fringe

N(t) = —,;r sin” / II(“ (30)

o

order, Hence:
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This is plotted as curve (c) in Fig. 17, and has a similar
shape to curve (a) for strain. Finally, in Fig, 18 the

number of fringe lines N is plotted vs, (e, - ez)w for

1

eight runs, where (el - ez) is calculated from:

-

(e -e)w = (2e)e, )NI+v)wK/2¢! (31)

cal

where:

2e = ordinate of strain oscillograph in cm.

g

€. a] = Tesistor calibration strain = 0.3905 x lOgZin/in.
v = 0,44

w = thickness of specimen = 0,248 in.

K = correction factor for length of strain gage;

see Appendix
e'cal = ordinate in cm. of calibration line on oscillograph.
Therefore,
(6-¢€)w = Klze,) 0697 x107e, (32

Figure 18 has been plotted in the following manner: From the
time corresponding to that fringe order equal to one-half of
the maximum fringe order on the leading edge of the stress
wave, times were measured to integral and half-integral
intensities; ¢g, to where I = 0, I = 1/2 IO, and I = Io.
The fringe order corresponding to each of these times was

then computed from Eq. (30). For the same values of time
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as measured from the strain corresponding to one-half
maximum strain (allowing for the K factor), the ordinates

of the strain oscillographs were measured. Then (el -e_)w

. 2
was computed for each ordinate from Eq. (31), and is
Plotted as the ordinate of Fig. 18 vs, the fringe order for
the same times, As can be seen, the points fall close to a
straight line., Unfortunately, the process of measuring times
from the oscillograph records is somewhat inaccurate for
two reasons: first, the time divisions themselves are rather
minute and can be determined only to within about +5%.
Second, there seems to be some evidence that the oscillo-
.scopes do nof sweep with precisely the same speed each
time. Therefore the strain-fringe constant was not deter-
mined from the slope of a straight line through the points.
Instead, advantage was taken of the fact that the maximum
strain of the leading edge of the wave, and the maxifnurn

fringe order could be dtermined to within +3%. Therefore

G was computed for each run as (el - ez)maxw /Nmax, and

G was averaged over eight runs, The result is:

G = 3.42x10°% +3% in/fringe. (33)
The limitation in accuracy is primarily due to the C-19
Baldwin wire strain gages, and no way was found to cali-
brate them during transient straining. In comparison,

the static value of G was found to be:
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static = 3.48 x 10_4 +2% in/fringe (4)

The difference between the two values is less than
expgrimental error. It may be concluded that for dynamic
strains of el - e2 less than 0.25 x 10"2 in/in, and strain
rates up to 1.55 x 10_4 in/in per microsecond, the

dynamic strain-optical law is the same as the static strain-

optic law for CR-39,

Discussion

Referring to Flynn's experiments, it was found that
for Bakelite, both the stress-fringe constant and the elastic
modulus are greater for dynamic stresses than for static.
For Castolite, the stress-fringe constant was found to be
greater for dynamic stresses, but E was the sarn.e as
static. However, the data for the dynamic elastic modulii
are not conclusive, since they were based on the v:elocity
of the leading edge of a stress wave, which actually propa-
gates with the speeds of its Fourier components. A more
desirable method is to determine E for sinusoidal waves
of various wave lengths, as described previously.

The data demonstrates that for Bakelite, Castolite,
and Xylonite, the Maxwell relation for stress birefringence
is not valid over a large range of stress rates; but the data
is inconclusive insofar as demonstrating strain birefringence.

On the other hand, CR-39 seems to be strain birefringent
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over a wide range of strain rates, In addition, Fried (10)
found that polyethylene is strain birefringent in creep tests
up to sfrains of 96%. Hence the Neumann law of strain
birefringence has been demonstrated for two photoelastic
plastics; but no materials have yet been found to follow
Maxwell stress birefringence for all strain rates,

All of the foregoing tests were made at room temp -
erature, It would be interesting to determine the variation

of the strain-optic coefficient with temperature.



30

IIl ULTRA-HIGH SPEED PHOTOELASTIC MOTION

PICTURES OF STRESS WAVES IN CR-39

Introduction

For a large number of plastics, stress waves propa-
gate at a speed of about 60, 000 inches per second. Conse-
quently, in order to have a photographic resolution of at
least 0.03 inches in the specimen, each photograph can not
have an exposure time exceeding 0.6 microseconds. There-
fore, early photoelastic motion pictures by Frocht (11), Tuzi
and Nisida (12), and Murray (13) which had very long exposure
times , while they showed time-varying stresses, did not |
show stress waves,

More recently, Shardin and Struth (14), Senior and
Wells (7), and Christie (15) successfully photographed theA
isochromatics due to stress waves with a succession pf
single -flash photographs. Perkins (16) photographed the
slower stress waves of photoelastic rubber at 5,000 frames
per second, using a Fastax full frame motion picture camera,

Flynn (9) has taken slit photographs of stress waves
using a revolving-drum camera. It should be noted that
his claim of 1,500,000 frames per second is based on the
reciprocal of the exposure time, but does not take into account
lens resolution, focus, or film graininess. Examination of

his drum camera photographic records revealsthat the time
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resolution is more nearly 5 microseconds, or an equivalent
of 200,000 frames per second, In his conclusion, Flynn
recomrﬁends that an ultra-high speed full fram.ing camera
be used for recording transient isochromatics. He also
has a very complete bibliography pertaining to dynamic

photoelasticity and high speed motion picture techniques.

Photographic Techniques

In order to take motion pictures of the stress waves
in photoelastic plastic, the camera that was developed by
Dr. A, T. Ellis was utilized (17). Figure 19 shows the
camera in position for photographing cavitation bubbles,
This cameré is a revolving mirror type; the mirror distri-
butes a series of images onto the inner periphery of a
stationary drum in which a 7-1/2 foot length of 35 mm.
film has been.placed. Eastman linograph pan film was
used, and more recently a more sensitive film, Triple X,
when it became available. The exposure time for eéch
frame is achieved by a Kerr cell, which consists of a
glass cell containing nitrobenzene, On the front and back
of the cell are crossed Polaroids so that normally, no
light is transmitted through the cells. At right angles to
the light path are two electrodes; when a voltage diff-
erence of 13, 000 volts exists across these electrodes, the

nitrobenzene becomessufficiently optically active to rotate
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the plane of polarization by 900, and the Kerr cell passes
light, The Kerr cell was electrically pulsed fo.r 10_'7 seconds
to achiéve each frame, Repetition rates of up to 400, 000
individual frames per second have been attained by reducing
the time interval between electrical pulses to the Kerr celli
and adjusting the rotational speed of the mirror, The Kerr
cell is pulsed continuously during only one revolution of the
mirror during which time a General Electric FT524 flash
tube is illuminated by discharging through it the energy stored
in a bank of capacitors, Suitable inductances cause the light
intensity to be almost constant for about a millisecond. Figure
20 shows the mirror and air turbine,.

Figure 21 is a schematic diagram showing the arrange-

ment of the polariscope, specimen, and camera.

Experimental Results

| Figure 22 shows four consecutive frames fro.rn an
experiment in which the specimen was dropped onto a steel
anvil, White light was used and the repitition rate was 20
microseconds between frames, Stress waves can be seen
radiating from one corner of the specimen where contact with
the anvil was first made. The dispersion of the wave front
is also visible, |

These frames demonstrate the feasibility of taking

ultra-high speed photoelastic motion pictures of stress
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waves, Using the experimentally determined values of the
strain-fringe constant of CR~39, the difference in principal

strains can be determined,



34
IV THE USE OF A MULTIPLIER PHOTOTUBE TO DETECT

TRANSIENT STRAINS DUE TO CAVITATION

Introduction

Cavitation, as is well known, is that phenomenon
associated with the growth and collapse of §apor bubbles
in a liquid as it flows from a region in which the pressure
is less than vapor pressure into a region of higher pressure.
This process is usually accompanied by audible noise,
Structural materials in the vicinity of the cavitation usually
suffer severe damage in that the metal is gradually eaten
away,

In order to study cavitation damage in the laboratory,
Ellis has devised an acoustic method of creating cavitation (18).
The essential apparatus is shown in Fig. 23, and consists
of a glass beaker, a barium titinate ferroelectric ring
surrounded by closed-cell sponge rubber, and a specimen
holder, which in this case is a one-inch thick base of stain-
less steel. The specimen is held in the center of the base,
and the beaker is filled with distilled and deaerated water.
An audio-oscillator is connected to an amplifier whose output
is then connected to the electrode surfaces of the barium
titanate ring. When the audio-oscillator is tuned to the
lowest resonant frequency of the system, the first mode of
vibrations of the water-base-beaker system is excited. The

maximum pressure amplitude in the beaker is on the center-
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line near the base, and as the amplitude of oscillation is
increased, the minimum pressure during the negative part
of the cycle drops below vapor pressure, and cavitation can
be sfarted there. It takes the form of a small vapor bubble
cloud on the upper end. of the specimen,

Using this technique, Ellis and Plesset have subjected
a great number of metals to cavitation for various lengths;
of time (19). The damage takes the form of pitting of the
metal surface, but in addition, X-ray diffraction patte'rn"s
have shown that the metal below the surface has bec‘ome-
cold-worked. This cold-work increases with increased
exposure and hard metals are generally more resistant to-

damage than softer ones,

Experimental Procedure

In order to determine the cause of this cold-work, a
photoelastic specimen of CR-39, 1/16 x 1/16 x 1/8 in, was
placed in the beaker, which was then placed in a polariscope.
The light source is a General Electric AH-6 water céoled
Hg lamp. A lens condenses the light into a beam 'Wh’iéh passes
through the specimen and into an objective 1¢ns-, sov as to
magnify the specimen eight times, A light slit, 1/32 in.
square, could be moved about at the magnified image so that
the fringe lines in an area 0,004 in, square on the ‘slpecimen
could be observed. To determine the light intensity passing

through the slit, behind it was placed the 1P21 multiplier



36

phototube, enclosed in a double-wall vessel, with a vacuum
between the walls. Liquid nitrogen was poured into the vessel
to cool the phototube in order to reduce the noise. The photo-
tube output was connected to a Tektronic type 121 amplifier

and then into a type 513D Tektronic oscilloscope. The fre-
quency response of the amplifier is 12 mc., and the oscillo-
scope 18 mec., according to the manufacturer, The frequency
response of the phototube is at least as high as the oscilloscope,

as determined by light pulse tests through a Kerr cell.

Experimental Results

The light slit was c¢entered 0, 006 in, below the upper
surface of the CR-39 specimen. As the oscillator amplitude
is increased, a distinct sine wave becomes visible én the .
oscilloscope screen, whose amplitude and frequency corres-
pond to that of the oscillator. As the oscillator is tuﬁed to
the resonant frequency, 22 kc., the wave form of the light
intensity becomes distorted from sinusoidal toward a saw-
tooth form. The bubble cloud forms, and a pip appears on
the oscilloscope screen, at the part of the cycle where the
pressure becomes positive, A typical oscillograph Iis shown
in Fig., 24. The pips were present only when the bubble *
cloud was present. The bottom record, a double-exposure
shows that the time between pips is not a constant, The

time duration of the pip is about 2 microseconds. When
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the slit is moved down away from the upper end of the specimen,

the pips gradually decrease in amplitude.

Ultra-High Speed Motion Pictures of Cavitation Stresses,

Using a slightly different cavitation beaker with a resonant
frequency of 10 kc., ultra-high speed motion pictures were taken
of the bubble cloud and photoelastic specimen. A typicai cycle
is shown in Fig. 25, The specimen was 1/4 inch thick; its edge
is the black line nearest the bubbles. The next two black lines
are time-edge isochromatics, caused by leaving the specimen
immersed in water, These isochromatics are very sensitive;
their displacement indicates the presence of strains.

The cycle starts when the pressure drops below vapor
pressure, causing many small vapor bubbles to form, as in
Frame 1, As the pressure decreases, the bubbles continue to
grow, until the pressure starts to increase, at which time they
begin to collapse. The last bubbles appear as a black_ cloud in
Frame 11, In Frame 12, the time-edge isochromaticé have
become displaced, and the entire portion of the specimen in
field of view has become darkened, especially near the bubbles.
The bubbles in Frames 12 to 15 are rebound bubbles, which pro-
ceed also to collapse until no vapor bubbles are present, at which
time the next cycle begins. Thus, the collapse of vapor bubbles
is accompanied by strains in the vicinity of the last bubbles. To

refine this technique and interpret the pictures, further tests are

planned.
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V  ANALYSIS OF LONGITUDINAL. STRESS
WAVES IN BARS

Introduction

M‘ost of the experiments that are described in the previous sections
involve longitudinal impacts of bars, and most investigators have sought
a theoi‘y of impact to compare to their experiments., The exact theory of
longitudinal stress waves in round bars as developed by Pochhammer (20),
and in rectangular bars by Morse (21), were developed from the exact
equations of elasticity by assuming that the particle displacements in the
bar vary sinusoidally with time, while the lateral boundary remained
free of stress. This leads to a solution which contains an infinite number
of radial modes, and hence has not been found suitable for solving prob-
lems of impact (32). This has led to a number of attempts to derive
more usable approximate solutions. These involve assuming the radial
vérié.tions of the strains and then solving for the remainder, The general
procedure can be described by saying that the axial displacement u, and
the radial displacement v of a particle at distance r frorﬁ the centerline

of the bar should have the following form:

w=u + w, ) + u B (r) o+ (34)

v=yfr) + v Lr) ¢ v34)s (35)

where the u, and v are functions of the distance along the bar x, and
time t. The fn(r) are related to the radial modes of vibration in
the bar and the Fn(r) are related to the fn(r) in such a manner

so that for sufficiently long wave length stress waves that are
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propagating along the bar the u displacements are plane
waves, and for sufficiently short wave lengths they are
surface ‘wave s,

' The zero order approximation is obtained by taking

all of the v and u except u., equal to zero which leads to

1

the equation of motion
£ a_:zu — 32(,( (36)
o x? T
where E is the elastic modulus and/o is the mass density.
The velocity of propagation is given by c, = N E//o . This
simplest equation does not predict wave dispersion, Further
efforts were directed toward establishing an intermediate

theory between Eq,(36) and the exact theory,

n

The first order of approximation, v, = ou/ox; fl(r)

-vr; and u =V = 0 for n>1 was used by Rayleigh(22) to

deduce the influence of radial inertia only, from which Love

obtained the following equation of motion (23 ):

2 2 4
Qu U 4 2°k? du (37

ox? S Jt? & Ox%ot*

where v is Poisson's ratio and k is the polar radius of
gyration of the cross-section of the bar, which gives the
following expression for the velocity of sinusoidal waves

in a round bar of radius a:

c = e+ 2m2via®/Nn? (38)

where /L is the wave length.
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Equation (38) is plotted as Curve II of Fig, 26 where it is seen
that the phase speed goes to zero for shorter wavelengths,
which is not in accordance with either the exact theory
shown by Curve I, nor with experimental measurements
made by Morse (24).

Mindlin and Herrmann (25) analyzed a higher approx-

= Vl(X,t); and u = v = 0

imation by taking fl(r) = rfa; v n

1

for n > 1, This introduced the first radial mode into the

analysis and leads to a pair of differential equations in u and

vy, or when vy is eimimated, to an equation of fourth order in u.
It appears that any higher order approximations involving

the second or third radial modes lead to differential equations

of motion that are too complicated to lend themselves to

analysis of specific problems. The differential equation of

Mindlin and Herrmann is already in a form which makes

analysis extremely difficult, The differential equatidn of Love is

of relatively simple form but does not contain as many pertinent

physical characteristics as that of Mindlin and Herrﬁann. In

fact the equation of Love does not contain all of the physiqal

information implied by taking vlfl(r) = -(du/8x)pr. It is the

purpose of this section to examine the full implication of this

first order approximation. It will be noted that any approxi-

mation which includes only a finite number of terms in u and

v cannot satisfy the conditions that the sides of the bar be

stress-free, nor can it give a good approximation to the stress
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distribution for very short wave leng ths,

One-Dimensional Equations of Motion

The Rayleigh assumptions are that:

w = u(xt) (39)
~ _ppou, 40
v »r S (40)

Using Hooke's law it is found that = 4. = 0 and that =
Edju/ox, where Gé is the circumferential stress,d,. is the
radial stress, and 0;, is the axial stress, The strain

energy of extension, dVl’ in a small volume dAdx, where

dA is a small element of cross section, is:

dif = s(ge + ae + q6)dAdx.  (41)

x r
Equation (41} is next integrated over the entire length 2L

of the bar to get:
L P 2
V = SEA[ (2 |
¢ T 250 (52) dx. (42)
Using Eq.(40), the shear strain, ')x.’r, is given by:

-2V, du _ 2
xt ox ar ﬂ'”rj—-;:z—g (43)

from which the shear strain energy, VZ’ is:

L L -
= L 2 2/d%
A “2//7x,)§(ra/f4dz =—2,G~//7/r(g—xz)d/4dz. (44)
21 A 4
Equation (44) is next integrated over the cross section to

obtain :

L

2

v, = —E’*Gszk"/(g-fé)o{z. (45)
-1
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Neither Rayleigh nor L.ove included this term in their theory.

The kinetic energy of longitudinal motion, Tl’ is:
‘£ 2
u - pA / Ju
""//[a el dx ,%._L(at) dx (46)
The kinetic energy of lateral motion, TZ’ is then:

Fa
du
=L )dAd = Ayzky——— dx (47)
// zP _/ata

From Hamilton's principle, the variation equation of motion is:

ra t
J//T—v)dt =J/(T,+7;—I4-L;)dt ) (48)

Substitution of Eq. (42), {45), (46), and (47) into Eq. (48) gives:

(J/dt/dzfﬁﬁ/ﬂu) Mvzk Fu Z) _A/Q q&k? ja(49)

The terms in Eq. (49) are next integrated by parts as follows:

t t t '
é‘u - d 2
dt = 2 [du Qudt = 29% 8uf -2 (U §ud 4
( ) J ot o ot Z oaT:"J ¢ (49a)

tL, L +
e fuon - of [ s o - o s
iz /2, 0tdx Otdx ﬂtﬁz :91/
- ﬁf-_ Su Ldt' + 2 é’u Sudtdz (49b)
X [51‘2‘3}_" _/L / c?f du? g
2 L
4 (.3_1! dz = zéyJu/L-z du Su dr (49¢)
‘ dx?

/ 3u dy = 22 Jéu/ zau&/ +2 ﬂu&[dz (49d)

dx? dx/
-4
The integrated terms are then assumed to be zero, and the
indicated substitutions are made into Eq.(49). The equation

is satisfied if the coefficient of Ju is zero, which leads to

the following differential equation of axial motion:
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2 « '
4

which is the same as the Rayleigh-Love theory, Eq. (37),

except for the additional term containing G.

One -Dimensional Sinusocidal Stress Waves

Since the dependence of the phase speed c on wave
length A is of interest for comparison to other theories,

consider the following wave:
u = Dsin 2T (2-ct) (51)

where D is the amplitude of motion, If this is substituted

into the differential equation, Eq.(50), there is obtained:
c? + czzﬂkz(zf)z -E —cyszz(ﬁ’)z =0 (52)
Ly A A

Since G = E/2(1 +2), and for a round bar k2 = aZ/Z,

this gives:

|+ ZRgay
C = ¢ 1+ AZ (53)
I+ 22°%1 (Ia-) .
Curve III of Fig.26 is a plot of Eq.(53) for 2z = 0,29,
The asymptotic value of ¢ as a/A approaches infinity is
0.621 . which is equal to the velocity of distortional waves
in isotropic media, whereas it should be the velocity of

Rayleigh surface waves, which for 2= 0,29 is 0.5764 s (26).
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This discrepancy arises from the imposed condition that plane
sections remain plane,
In comparison, the equation that Mindlin and Herrmann

obtained is:

zZ ¥4
‘/Og_é_( +E_ﬂ_u + 3;’47)/0)%292

? iz HZI2?
_1-v kP 120 pkZ 3% -
z Jz? Zz /G ¢ " 0. (54)

The phase velocity of sinusoidal waves given by this equation
is shown as Curve IV in Fig.26 . The assumptions on which
Eq. (54) is based rule out the possibility of correct stress
distributions for short wave lengths; in particular the assump;
tions cause sizable shear stresses on the surface of the bar,.
To counteract this, Mindlin and Herrmann proposed modifying
the coefficients in Eq. (54) to obtain a closer agreement to |
Curve I. This could also be done with Eq. (50}, to bring Curve
III into closer agreement with Curve I. It will be noted that
Eq. (54) differs from Eq. (50) essentially only in the extra
term containing the fourth time derivative, This term, however,

makes Eq. (54) more difficult to solve than Eq. (50).

Characteristic Velocities

It is desirable to know whether or not Eq. (50) is a wave
equation, This can be accomplished by transforming the equa-
tion from x - t coordinates to ¢-J characteristic coordinates.

In the theory of characteristics (27), initial conditions cannot be
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specified on a characteristic; in addition, discontinuities may

propagate along a characteristic, Now, along a given charact-

eristic @,

d¢ = 0 = 2 dqt + 9OF dx
ot ’ ox (53)
Hence,
av
dt . _ 9x
dx 2@ (56)
at

Computing the derivatives,

ax v dx av Jx

Pu - Pu fo@Y , ;Fu 909¥ () L, dud? , ud’
% IP O POV Ox 0% “orya og Pr? = 3V dx?
e e . 57)
ax* e ox

Pu

It*Ix® 3@4( )(

By substitution of the derivatives of u into Eq. (50) from Eq. (57),

the following is obtained:

[P GG - 6K (31 G e o o

The solution of Eq. (58) is indeterminate if the coefficient of

&
‘_;9_’%‘ is zero. Hence the equation of a characteristic, after
substituting from Eq. (56) and simplifying, is:

2 P
rle) - (%)

(59)
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The above equation hasfour characteristics:

dx
dt

-gf =% //-‘2' (60b)

Therefore, there exists only one characteristic speed, that of

too, (60a)

Eq. (60b), The speed of infinity is similar to that obtained
from a diffusion differential equation. Hence the approximate
differential equation, Eq. (50), for axial motion of a bar is
partly a diffusion equation and partly a wave equation. It
should be noted that the same results as Eqs.(60a) and (60b)
can be obtained by taking the Laplace transform of Eq. (50);

for if the inversion formula for large p is of a form

_ plt- x/c)
u Z,”_/{(P)e dp

of - 200

of + 700
(61)
then the characteristic velocities are represented by c. In
comparison, the exact theory gives the Rayleigh surface wave
velocity as the speed of short waves in the first radial mode,

and the distortional velocity for the second radial mode.

Propagation of Longitudinal Stress Waves Due to a Concentrated

Disturbance at the End of a Bar,

Consider a semi-infinite bar for which Q0¢<x <20 . The bar is

initially undisturbed; that is:

u(z,o0) =o (62)
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and there are no disturbances at infinity; that is:

t) = U feot) = U (st) = .- =0,
u(-o,t) o (oo, t) St (o2, t) (63)

The problem of impact at the end of the bar is first solved
using Eq. (36), the simplest theory for the case of rigid mass
m with a velocity v, striking the end of the bar. It may

easily be shown that the induced velocities in the bar are:

AL (r-qt)
—aa—tu_(zat) = ,uaemco?- , t 7 =zl ;

(64)
_a_l_‘(zlf) = O t< E/Co ,
a¢

Next let m-»0 in such a manner that the product v, m remains
finite, to obtain the result that if t = x/co then 2u/ot = oo ,

but if t # x/'::0 then 8u/dt = 0. Hence 9u/dt is given by

g?zg = - h§(2-%) = achs(z-ct) (65)

where h is the dimensionless strength of the impact, which
may be determined by integrating Eqs. (64) and (65) with

respect to time and equating the two results, giving:

h =4ls (66)
Afa

The initial conditions at t = 0 for the Boussinesq theory are:

Ufz,0) =0; %‘-(l,a) = —ac, §(x). (67)

In addition, it is postulated that the end of the bar at x = 0 is
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free after impact so that:
ou =
<%(ot) = o. (68)

Next, Eq. (50), the intermediate theory is solved for the same

initial conditions by utilizing the Fourier cosine transform p'air:

(k1) = ‘.;:-'/u(z,i) cos kx dx

oo (69)
tixt)= Z/L.Z(Kli‘) cosxkzx dk

where Kk can be considered as 27 times the wave number; that is:
K = 27/N. (70)

Equation (50) is next multiplied by (1/w)coskx and integrated

from x = 0 to x = 00 to obtain:

o
-0 2_25( coskxrdx 4 coscx dx
/?fa/ 9t Ve T atzax

o<
« £ éjl:_l cos ¥x dx —('ZZ) 2% Ju co_s,(zdx o (71)
) Ix* ax

Since coswxx is not a funtion of t,

-2 ’ [wucoskxdx + p2k 3 [IU coskz dx
Je T at Ir?

+ £ Q_fg, coskxdx - C}zzzk/aﬂ cos Kx dx = =0, (72)
T/ x=2

Next, the terms involving derivatives of u are integrated by

parts to obtain:

002 0 oo
Ou coskrdx = % coskz/ rxf du, 73

[~
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The integrated term, from Eq.(68) is zero, Equation (73)

integrated by parts again to obtain:

o0 o
U = 2 d
gY cos kx dxr = -K°f u cos kx d=, (74)
) Ox /
Similarly,
[ ]
3“ %
/ o 4coskzd:z = —K'[fu coskxdz, (75)
o
Equation (72) then becomes:
2 = 2,2, .2 -
/Q._a__/u coskzr dx + /Q_g%_ls__/u cos kx dx
V(A &
4 [

o0

. EK%( cos kxdy + Gz)zkzkyu coskzdx = o. (76)
7 T ‘
[+] o

Then substitute from Eq.(69) for the Fourier transform to obtain:
/03 = +/0”2k2'(z§%: » Ex?d + GHU = 0 (17)
t .

or, rearranging,

2
X + W0 =0 (78)

at?
p 24 Y a K
+ 4(/+2))
P zKZ (79)

since G = E/2(1+#) and kz = a2/2 for a round bar. The

where:

solution of Eq. (78) is:

w = B sinwt + B, cos wt (80)
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for which the initial conditions at t = 0 are:

ol
Uet) = B, = ‘é—‘/u(zgo)coskzdz = o0,
° oo , (81)
) = wB = - ach v) cos kxdz = — %Ll
2 = a6t [ ) =
o
Hence Eq. (80) becomes:
[ aCo/z .
z — == sin wt (82)
From the inverse transform of Eq. (69),
o0
w = — 226k [ sinwt cos kz%}ﬁ. (83)

T

)

Using DeMoivre's theorem, Eq. (83) becomes:

o0 . oo |
= 2S[O [t g (84)
27 2 w w .,

The first term represents waves travelling in the negative x

direction; the second represents waves travelling in the
positive x direction; hence it is only necessary to integrate
the second term. This can be integrated approximately by

the method of stationary phase (28), giving the result:

. - T Z
_ ac, h/27 {e k)t -kx + X Sgn%;fg (%.)

2niffy %z__‘g(Ko) w (k)
K

. z ' (85)
~ifwlk)t - Kz *%sgrzgz)z(m]} _

The second term in the bracket arises from the fact that there
are two points of stationary phase; one each for +Ko and -KO.

Equation (85) when simplified becomes:
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"= — dfakyz(nz :,,'n[w(m)t Y3 'ZW‘ Sgﬂéje;(roy
wk)/E| %——E—’z(“) 8

(86)

where

k , the point of stationary phase, is determined by the
condition:

(87)
To simplify the calculations, the following substitutions are

used to make Eq.(87) dimensionless:

- ™
— [ 27

x = Sasmivm

t_ — [4 2 72

' Cof 4l1+2)
u = UakVz/7

£ = X 4(1+2) } (88)
° a rz

— ¢, /4(1+2)
w VZO /—-————pz
3___.2“’ = Yac ~_ 22
al(z - 1 4‘(/"”)

’

Using these subsitutions, Eq. (87) becomes:

az-
= sin[T(V-XZ) +F 9 58]
VvziY] '

(89)

For z = 0.5, the following relations are obtained:

- = / + ZXZ f-BX“ 2
(1+X2)"(1+3X2)%*

(90)
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v = XU r X))

(1 + 3x2)>* (91)
and
Y = x{ 4+ 12X? _ Z(0 +12X%)
(1+x3)%2(1+3X3)7*  (1+X°)(1+3X3)/- (92)

Z, Y, and V were calculated for various values of X. Henge to
find U at a particular value of t and x, Egs.(88) are used to
caléulate §‘, 7T, and then Z., From the tabulatio;ns, the corres-
ponding value of X is selected, then for that value of X, Y and
V are found from the calculated tables. Finally, U is calcu-
lated from Eq.(89). These calculations were made for ZZ= 0.5
and § = 100 (that is, x = 20.412a), Figure 27 is a plot of U
vs 7. The solution predicts an initial disturbance, which ié |
éhown dotted, as its shape is not given by Eq.(89) according to
Lamb's criterin for the method of stationary phase. At a later
time a disturbance travelling at the shear velocity appears,

Lamb's criterion is:
Y ‘
9w(f<o)t/[8 @ (1) ] 277 <« (93)

or in terms of the dimensionless variables,

Y /3X « )
ENTEL . (94)

For the wave of Fig27, Y = 0 near the wave fronf, and hence
Eq.(89) does not hold there. But when 7, = 107, Y is finite,
and 8Y/9X = 0. The only other zero of 'Y is near 7 = 190.
Thus Eq.(89) appears to be the valid solution from 7, = 107

!

to about 7 = 188, For valuesof 7, greater than 188 and less
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than 107, the solution is not reliable,
It is of interest to compare Eq.(89) with the simple
theory solution, which is:
=4 - z53 t> 2/ |
ahvz/n ° )
| (95)
U =0 t<x/c.

For dispersive wave systems, energy travels wifh the
group velocity, which is given by 8w/8xk. From Eq.(87) this
is just x/t. For a given group velocity, 8w/8«x is a function
of «, only, hence k, is a constant, From Eq.(70) it is seen
that the wave lengths of waves travelling with each group
velocity are constant. But the phase velocity for a given
wavelength ié greater than the group velocity; hence as the
" wave of Eq.(89) travels along the bar, the individual waves
move td_ward the wave front, increasing in wavelength,

The shortest waves are propagated with group’ f}elocities
equal to \,57/—; and form a discontinuity which is represeﬁted
schematically in Fig.27 . However, a/A is large fdr these
" waves, and Eq. (89) then does not give quantitatively ccr)rrerct
results because of the assumption of plane sections.

Experimental measurements of the strain at a point on
a bar impacted at one end have been made by Petersson using
wire strain gages (29). His experimental records indicate
an initial disturbance followed by an oscillation. Sﬁch exper -

imentally recorded oscillations have sometimes been a‘scribed
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to transducer or amplifier circuits; but Eq.(89) shows that
the oscillations are in the bar itself,

The discontinuity in Fig.27 at 7= 173,2 corresponds
to one characteristic velocity, r\/—G—ﬁO_ The disturbances
before this time are allowed by the infinite characteristié vel-
ocity. It should be mentioned that Eqs.(86) and (87) permit
the use of the Pochhammer results for sinusoidal waves, |
since wik), g—?(L/)/ and %;—“:(K) can be computed exactly for
the first radial mode, The discontinuity would then travél
with the Rayleigh surface wave velocity.

The Lapace transform, where
T |
U =/U€ dr, (96)
[~4

wés also investigated as a possible method of solving Eq (50)
by eliminating time as a variable, and solving the re sglting
differential equation in § . This gives the result that:

U = const. e_ag : (97)

where @ is determined by the fourth order algebraic equation:
# £ 2 -2 ,
a - {Z P+ /)6(2 + P = 0, (98)

Approximate methods of inverting Eq. (96) seem extremely
tedious., With regard to an exact inversion of U, Miklowitz (30)
has tried this on the Herrmann-Mindlin equation, Eq.(54),

but the determination of numerical results has been hindered
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by rapidly oscillating integrands of large amplitude, (31),

~ Influence .of Boundary Conditions

To make the lateral surfaces of the bar stress-free, it

is necessary that the axial displacement be a function of the

radius as well as x and t. This may be achieved by taking:

w = (1 + = )u,(zt)

(99)

and setting ¢, equal to zero. This determines v since:
T = A6 +6 +6) +Zué, (100)
where A and g are Lame's constants. Thus:
0= (5%t rE)  2rYE (101)
Now substituting from Eq.(99) into Eq.(101) gives:
(/””+—’ff=-(/-ﬁzi—zz§——” (102)
for which the solution is
v o= AP -2 (r - (103)
Since v = 0 at r = 0, A.l = 0, To determine B8, the shear
strain at the surface of the bar is set equal to zero;

Hence B is determined by:
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5= - va® du./dx*
2u, — va* 223(0 ’
3-22 gx=

(105)

For sinusoidal stress waves given by Eq.(51), the value of B is:

L% a* /N

42 wca’
+
< (3-22)NZ

s = (106)

By using Eqgs.(99) and (103) for u and v, and substituting
these into Egs.(42), (44), (46), and (47), and using Hamilton'!s

principle, Eq.(48), the phase velocity is found as:

/ng /JT) (107)

§, + 2% 7(1{:[) §,z

where, for 2 = 0,29,

5 = /-8+ B3 A

E = [/ < ii__ e Bz
Z 3(3-22) 2(3-22)%
L(108)

= | - B + 03439 B*
2
5 = 5 —wérz/%){l~3_(2§%i')) * 45227{'2/54).%

Equation (107) has the same form as Eq.(53), and it has been

plotted as Curve V in Fig.26 , where it is seen that it fits the
exact solution Curve I most closely, Figure 28 is a compar-
ison of the axial displacement u, given by Eq.(99) to the
exact solution as found by Davies (32) for a//t = 0,196. It
thus appears that significant improvement in approximate

analyses must be obtained by including additional longitudinal
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modes so that the cross-section is free to warp, Itis seen from
Fig. 26 that a//A = 0.8 is the regime of surface waves and no approxi-
mation that assumes plane sections can give satisfactory results in
this range.,
Summary

The approximate methods of investigating stress propagation in
a bar, because of the very nature of the approximations, cannot give
quantitative results when relatively short period waves are invol%red.
At best, the methods can be expected to give only qualitative informa-
tion in this regard. The differential equation, Eq.(50), contains suffi-
cient physical properties of the problem so that its solution for the case
of a concentrated initial disturbance shows dispersive oscillations.
which is in qualitative agreement with experimental observations.
Equation (50) is an improvement of the Rayleigh~lL.ove theory in that
it has one finite characteristic velocity, and because its sinusoidal
wave speeds vary with wave length in a manner similar to the first
made of the efcact theory. But this differential equation, together
with those of ,Love,r and Mindlin and Herrmann suffers from two defects:
the internal stresses described by it are not in agreement with those of
the exact solution, and the boundary conditions are not satisfied in that
the surface of the bar is not stress-free. An appreciable improvement
is obtained at longer wave lengths by making the boundary stress~free,
which indicates that a more accurate approximate theory must include

higher longitudinal modes,
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VI CONCLUSIONS

Several important criteria for the testing and s(aluation
of photoelastic plastics for dynamic photoelasticity c‘an now
be forfnulated. First, since the stress-fringe constant of
several photoelastic plastics has been found to depend upon
the réte of loading, it is necessary to make strain measurements
in order to determine the straip-fringe constant, For C‘R.-39,
this measurement gives a dynamic value of the strain-fringe
constant of 3.42 x 10-4 in/fringe * 3%, which apparently is
independent of the rate of loading. This value differs from the
static strain-fringe constant by less than 2%, which is within‘ ‘t‘he
experimental error. |
Second,’ most plastics are viscoelastic; that is, each of
‘the Fourier components of a stress wave travels with its own
speed and has its own damping factor. Thus, to determine
the mechanical properties of a plastic it is necessar? fo make
tests with sinusoidal stress waves and to find the elastic |
modulus, the wave speed, and the attenuation factor fﬁ:" each
wave length., If the elastic modulus and the wave speedris
constant, and if the damping is low, then correlation of the
experiments to metals is possible. CR-39 was found to be
a nonlinear viscoelastic plastic with frequency dependént wave
speed, and large attenuation which also depends upon the
frequency. Hence, correlation to metals of experiménts

using CR-39 can be made only if the rise time of the stress
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wave is relatively long, say greater than 25 microseconds,
and if the stress level is low, A complete study of available
photoelastic materials is necessary so that the plastic with
the most favorable mechanical properties can be selected.

Third, the analysis of waves in bars in Part V indicates
that the Boussinesq theory is not satisfactory for the computa-
tion of stresses or elastic modulii from experiments in bars
which have stress waves with rapid rise times, even if the
material is elastic, The theory can be used only if the lead-
ing edge of the stress wave has a length that is many times
greater than the thickness of the bar. Thus, previous compu-
tations by other investigators, which utilized the Boussinesq
theory for elastic bars, may be in serious error since visco-
elastic and dispersive effects are ignored in that theory. The
analysis contained in Part V also indicates the extreme com-
plexity of an analytic solution of impact in a bar,

As far as fringe recording devices are concerned, the
Ellis ultra-high speed motion picture camera has proved
satisfactory for obtaining photoelastic motion pictures at
repetition rates up to 400, 000 frames per second, and with
-an exposure time of 0,1 microsecond for each frame, The
multiplier phototube has proven to be extremely sensitive to
optical retardation, being capable of detecting a fraction of
a fringe, and having a frequency response of at least 18
megacycles, It has the disadvantage, however, of being

able to detect only those isochromatics passing by a small
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area, Depending upon the problem being investigated, a
combinaﬁon of the two techniques may be necessary.

"As a result of this investigation, the mathematical
analysis of stress waves does not appear feasible.for eng-
ineéring purposes. The most satisfactory method of
quantitatively analyzing stress waves is to use the equip-
ment that was investigated and the techniques that were

developed in this thesis,
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APPENDIX

Correction of Strain Gage Measurements of Strain Waves,

For the Error Caused by the Finite Length of the Strain Gage

Since the leading edge of a strain wave, such as shown
in Fig.17, has a length of about six times that of the length
of the strain gage, a correction may be necessary to account
for the finite length of the strain gage., This leading edge,

as shown in Fig. 17(c), may be represented quite closely by:

U - 4 inP T (2 -t) (108)
Ix 27T '

in which 9u/8x is the actual longitudinal strain e A is the

1;
amplitude; 7 is the rise time of the leading edge; and c is
the speed of the wave along the bar. Equation (108) is plotted
in Fig.32 against experimental data for birefringence. The
fit is extremely close, hence Eq.(108) represents the leading
edge of the wave quite closely,

On the other hand, the strain gage output may be

different because of its finite length, and can be represented as:

o= 4 - Acosz(t-7,) (109)

where A' is the amplitude of the recorded strain, and Tlag
is the time lag, The gage is centered at x = 0, Two

different assumptions can be made concerning the strain gage,

(1) that the strain gage measures the average strain over the
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entire length a of the paper backing, and (2) that strain is
transmij:ted to the strain gage only through the endsof the paper
backing. The effectsof shear lag and cement creep are not
considered in the following analysis, nor is the speed of
propagation of strain in the gage and backing.

In case (1) above, for a continuing sin2 wave, the

strain gage output is:

a/z
/ %y 1) dx
e = -a/2 Ix .
g a7z . -(110)
dz
-a/z2

Equation (108) is substituted above to obtain:

- A - ATC[ na 7t
& = %2 T xalzwc cos 2t (111)

Hence, although there is no phase lag,

A ra/RTC |
7’ sin ma/27Tc (112)
In terms of
y = a/27c (113)

the amplitude ratio becomes:
-’/}’ = 7TYy/sinny. (114)

As an example, if T = 25x 10_6 sec, a = 0,5in, and c =
6 x 104 in/sec, then vy = 1/6, and A/A' = 1,048, Figure 29
is a plot of A/A' as given by Eq.(114) vs. y until the first

infinity,
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For case (2), which is the extreme from case (1), the

recorded strain is given by:

€ = wulasz) - ul-a/z) (115)
a

Using a trigonometric identity, Eq.(108) becomes:

du _ A _ -
g - Af1 - cosZ(xse t)] - (116)

Hence by integration,

x = %Z - gc;SIh-g(z’/c -4, (117)

By substitution in Eq.(115),

€q = 2/-]- - %g .s/n:,_?'_[a/zc -t) + 51'/7.;’__/61/.& +t)_z (118)

giving the same result as in case (1),

The preceding equations have been derived for a cont- -
inuous §vave, but the leading edge of the wave, given by Eq.(108)
only applies when 0 < t - x/c < T+ To’ where 7 ¢ To is
the duration of the trigonometric form. Hence Eq. (:lll) only
applies while some portion of the sinusddal part of the léading
edge covers the entire length of the strain gage, that is,
af2c<t< T4 T, - a/2c.

To obtain eg between the time that the leading edge of
the strain first encounters the strain gage paper backing, and
the time when the entire backing has the trigonometric portion

of the wave on it, the limits of integration must be changed to
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-a/2 as lower limit to ct as upper limit, with -a/2c < t < a/2¢;

that is:
A ct
Ax ATc .,
+ 228 sin T - —a 23
e.‘i 2a zma O F ( Z/C)a/z zc <t< 2c (119)

which, by using Eq. (113) integrates to:

(t) A ;/y'r +2L __L_/.szhgcos”y+s:h7ryc05¥2]

_y <'$: < y (120)

The complete solution is then Eqgs.(111) and {120}, rewritten

below in dimensionless form:

ej(tA/'r) = ;‘_/g’!‘ +2 —27719 (5in_7%_tras7ry +SinTY ‘05—7.5—_[)],

~y<t<y
(121)

_ f . o
69(77') —E//—ﬂ—f?(squcoszgg)]‘ q<37i_</*“;“ v

Figure 30 is a plot of the strain gage output gi:ven by Eq.
(121), in comparison to the instantaneous strain at f:he center
of the strain gage as given by Eq. (108) with x equal to zero.
This has been plotted for v = 1/6, which is the value for the
series of experiments described in Part II, Two points may
be observed: first that the maximum eg is 0.9775 (au/ax)max
an error of 2.25%; and secondly, the strain gage produces a
signal before t = 0. This latter effect has been observed; for
Fig. 17, shows that the rise time of the strain is slightly

longer than the rise time of the birefringence. Since y = 1/6
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in this experiment, a correction of the data is made,

Cdncerning the assumptions, the qualitative effect upon
the analirsis of the previously omitted effects are as follows:

(a) Creep in the cement. Since the rise time of the
stress wave is about 25/,4,sec, the effect of creep is probably
negligible,

(b) Shear lag. This refers to the finite thickness of the
wire strain gage, which causes the strain of the wire to be
less than the strain in the specimen., This will increase the
error,

(c) Finite velocity of propagation of wave  in the strain
gage. In the above analysis this velo;::ity was assumed to be
infinite, but it can be seen that the more nearly the properties
- of the gage backing matches the properties of the bar, the less
will be the error.

It is not probable that the effect of (b) exactly cancels
that of (c), but since the increased rise time for the leading
edpe has been observed; in the absence of more detailed
information, carrections as computed from Eq. (121) are
applied to the data of the dynamic experiments of Part Il

These correction factors are shown in Fig.31 for
y = 1/6. They are used to multiply the observed strain in
order to obtain the actual strain, Figure 33 is a comparison
of the actual recorded strain of run no, 8 with the theoretical

strain given by Eq.(121).
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Tencile Stress, psi
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Figure 3. Tensile siress vs, longitudinal strain after 10 minutes of
creep for CR-39 tensile specimen, ’
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N, fringe order

o’lw, Stress times thickness, psi-inch
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Figure 5, Eirefringence vs, strain during creep for CR -39
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Figure 6.
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N{0), Zero-time fringe order
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Zero-time fringe order vs. Stress for CR-39
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Figure 7. Dynamic loading apparatus. Left: photomultiplier.
Center: loading frame with wire strain gages cemented to the

specimen, Right: strain gage bridge and oscilloscope.
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Figure 8, Close-up of dynamic loading apparatus.
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Figure 9, Carbon paper records of contact pressure

during impact of hammer with specimen.



T

Figure 10,

records during impact,

(b) Gage on back of specimen.

additive,

Longitudinal strain gage oscillograph

(a) Gage on front of specimen.

(c) Both gages
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Figure 11. Oscillograph records of strain vs. time.

Top: longitudinal strain. Bottom: transverse strain.

Figure 12, Strain gage oscillograph for free-iree
longitudinal vibrations of a bar of CR-39, excited

by impact.
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Figure 13, Wave speed and logarithmic decrement vs.
frequency and wave number for CR-39,
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Figure 14, Elastic modulus and ratio of real to imaginary
parts of elastic modulus vs, frequency and wave number
for CR-39,
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Figure 16, Apparatus for determining the dynamic strain-
fringe constant, From left to right: multiplier photocell
with filter, analyzer, and quarter-wave plate; loading frame;
quarter -wave plate, polarizer and condensing lens; strain
gage bridge; Hg lamp; two oscillp_scopes; square wave gen-

erator; amplifier,
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o °
stress wave for T R-39, Tight runs, 5461 A
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Figure 19, Ultra-high speed motion picture apparatus.
Left foreground: cage containing flash tube capacitors.
Center: timing and pulsing apparatus. Rear: camera

and flash tube.
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Figure 20, Rotating mirror and air turbine,
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Schematic diagram showing arrangement for photographing

Frhieure 21,
Specimen strikes

transient waves with the ultra-high speed camera.

anvil,
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Figure 22. Four successive frames from ultra-high speed photo-
elastic motion pictures of stress waves in a bar of CR-39 striking
a steel anvil, Exposure time of 0.1 microseconds. Time between

frames, 20 microseconds.
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Figure 23. Acoustic cavitation in water, A small bubble cloud
can be seen on top of the photoelastic specimen.

Figure 24. Oscillographs of the light intensity through a 0.004 x
0.004 in. slit centered 0, 006 in. below the surface of a 1/16 x
1/16 x 1/8 in., CR-39 specimen when cavitation is occurring.
Horizontal sweep time: 10 microseconds per division.
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Figure 25. 10 kec. bubble cloud cycle, taken with ultra-high
speed camera. Magnification: 10 X.
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Figure 22, Longitudinal displacement amplitude for a/A = 0,196
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wavez length sinusoidal waves. ’



v fu_\.ﬂ = A 0¥

‘ureals pajedipul [el1IBI03Y) SA SATM IO 3Fp2 BUIPEI] JO UTLI}S PIUNSSY tig 2anBry

JUAT] SBI[UCISULUIP /%
G0 ¥°0

"1 0T .

g"

AL



208 Gz =y ‘oAem JoO 28pe Burpeay 107 [euldis 28ud WIRIIS ACJ 3 SIO0IDTJ UCIDIECT

0°1

8°0

9°0

0

‘2aem Jo 28po Buipee] WO 2LULY, <1/%

Z°0

9°0

L°0

6°0

0°1

1°1

I0}0€.J UOT1D2I1I0D ‘3



Fringe Order
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Figure32. I'ringe

Time

order of leading edge of stress wave, in

comparison to trigonometric form,
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Figure33, " heoretical strain gage signal vs. experimentzl

strain gage signal,




