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ABSTRACT

Uéing linearized theory a close approximation to the opti-
mum camber and twist distribution of a Delta wing of zero thickness
with sonic leading edges has been obtained.

The optimum wing has a camber line that is negative over
the front quarter of the total planform area and is positive over the
remaining area. A certain amount of washout is exhibited.

Compared to the flat plate a saving in induced drag of
slightly over 7 percent is shown. The leading edges are ;;elieved
of a considerable portion of the total lﬁt. It is shown that this lift

has been re-distributed over the central part of the wing.
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EXPLANATION OF SYMBOLS

CL . = wing lift coefficient
CD | = w11:12g drag coefficient
L =L
_ CD :
a(x, y) = angle of attack distribution {slope in x-direction of

mean camber line)

L = lift
D' = drag
1i D'
D = normalized drag = IS
P = local static pressure
Py = static pressure at infinity

Ap'(x,y) = local lift distribution = 2(p-pw)

Ap = normalized local lift distribution = %
B = basic angle of attack distribution

Pn(u) = nth Legendre polynomial

o(x, V) = perturbation velocity potential

X,y,u,v = rectilinear coordinates

E,m,p,2¥ = dummy rectilinear coordinates

.9’634)53; = Vari_ables

w-0 0
Lo, p = J" sin (2m+1)—2-Pp (cos 6} de
ki)
1P 3
monpq” ¥ J' sin (2n+1) 3 P (cos B) L (9) 4O
ki)
bybgsbyl
= constants
c3,c4,d4

n (%, V) = camber and twist distribution
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Subscripts identify particular wings. Subscript opt stands for
optimum (min. drag) configuration of the four ortho-

gonal wings considered.



1. INTRODUCTION

It is well known that in supersonic flow using linearized
theory it is permissible to consider drag due to lift and drag due
to thickness separately and obtain the total pressure drag by super-
position. _ The drag due to lift is computed from the zero thiék-
ness mean camber wing at angle of attack and the wave drag is
found by considering the symmetric thickness wing at z.ero.angle
of attack. This thesis is concerned with the problem of minimiz-
ing the drag due to lift of a wing of a specific planform.

In 1952 E. W. Graham (Ref, 1) developed a methqd of drag
reduction using superposition of "orthogonal" loadings. Since this
is the method used in this thesis a very brief description of the
theory is given below,

Consider a free stream Mach numberM> 1 and a wing
planform of zero thickness with a certain angle of attack distri-
bution. For this wing it is then possible to calculate pressure,
lift, drag, moment, etc. If another wing of the same planform,
but with a different kind of angle of attack distribution in a stream
‘of the same Mach number is superimposed on the first wing, a
new wing is obtained which has angle of attack distribution, pres-
sure and lift equal to the sum of the two angle of attack distribu-
tions, pressures and lifts. The drags, however, d;) not add up
in this manner. Since the resulting drag is the integral over the
planform area of the product of the sum of the two pressures and

the sum of the two angle of attack distributions, cross product
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terms (interference.drag) appear. For some special loadings
these cross product terms will disappear. By definition such
loadings.are called orthogonal. If the convention is made only
to consider superpbosition of mutually orthogonal loadings it now

becomes possible to maximize the non-dimensional parameter

which is a characteristic of the type of angle of attack distribu-
tion of the wing. If the first wing is defined by the subscript 1,
the second wing by the subscript 2, and so on it can be shbwn that
by superimposing several of these orthogonal wings in a manner
so as to obtain minimum drag for a given lift, the resulting op-

timum wing has a parameter A as follows:
J,Opt=ll tdy v Ly v

Furthermore Rodriguez, Lagerstrom and Graham in

1954 (Ref. 2) showed that for the wing thus obtained

C o L
L k
a = Z —_
opt £ opt k=1 Dk dk
C 0 I,
. L 7 k
and Ap' = — —— Ap 1
opt zopt k=1 Dk k

where ¢ and Ap' are defined as respectively the angle of attack

and pressure distribution over the planform.
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II. STATEMENT OF THE PROBLEM

The problem discussed in this thesis may be stated as follows:
Given a Delta wing of zero thickness and sonic leading edges at a cer-~
tain 1lift coefficient, find the camber and twist distribution for mini-
mum drag. For convenience the Mach number has been choéen equal
to Y2 . In order to have sonic leading edges the leading edge sweep-
back is 45°, By the Prandtl-Glauert rule the results ca;n be applied
to any sweepback angle or Mach number as long as the leading edges
are sonic, To obtain the optimum angle of attack distribution it
would be necessary to superimpose an inﬁnite. number of orthogonal
loadings. Since it is not possible to find the sum of the serigs. of
orthogonal loadings used due to the somewhat complex expression
of each loading, a true optimum cannot be obtained. It was decided
 to employ only four orthogonal loadings, this being a compromise
between the amount of labor invelved and the desirability 6f obtain-
ing a large drag reduction. The camber and twist distribution
found is therefore not a true optimum. It would be cc;rre-ct, how-
ever, to call-it a restricted optimum since it represents the best
‘possible combination of only four orthogonal loadings selected from
an infinite number of orthogonal loadings.

Knowing the angle of attack distribution of a particular plan-
form the pressures, lift, drag, moment, etc. can iﬁ theory be cal-
culated using linearized supersonic wing theory. However, in prac-
tical application it is often very difficult to perform the required

integrations analytically.
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For the planform discussed in the present report the analyti-
cal work is comparatively simple. A complete set of basic angle-
of -attack distributions may be found, using Legendre polynomials,
such that lift, drag and interference drag may be calculated in closed
form. This method is due to A. M. Rodriguez,
These basic distributions will be discussed in the following

section.



III. BASIC DISTRIBUTION

The coordinates x,y and u,v (and the corresponding dummy
variables of integration §,w and W ) are shown in Fig. 1. Let

the basic angle of attack distribution be defined as

B =% [Pm(u)Pn(v) +P_(u) Pm(v)]
From supersonic wing theory the perturbation velocity po-
tential (¢) corresponding to the flow of free stream veloqity U over

this wing is (from Ref. 4)

_dtd
¢(x,y)—-—“ il for M =)Z
)/(x E) -(y- n)

" where R = region of the forward Mach cone from the point (x, y).
Also from linearized theory (Ref. 4)

o = - _i
p-poo pU 3

‘Let the local 1ift, that is the differential pressure between top and
bottom surface of the wing (positive in the positive lift direction),

be written as

, 2 9 dgd"ﬂ
APpp = 2P-P,) = -n' -9—- 5
/ x-£)%-(y-m)

Since from Fig. I:

X = {(utv)

y {(u-v)

VZ
1
Y2
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it can be easily verified that

ﬁmn(,,L,'l/ )d/ud'l/
-1 Yu-,u._ VG-U

-_.pU (8 . @
Apr'nn(u,v) T (8u + av)
: -1

A new set of variables (0,0 and ¢, ) for ease of integration is now

introduced:
u = cos 0 J-= cos ¢
v =cos ® Y =cos ¢

The following expression is then obtained

ap' (0,0) = - &2 (=i 8,1 ‘aéf B, Sindsingdédd
mn ™ sin®@ 90 ' sing 9 ycoso-cos¢)’gos-o-_cos$

%0

The Legendre polynomials may be expressed as

¢ 0
cos(2n+l)=d6
p,(cosd) = vz S 2

o 0 Y cos$-cos@

T

which when substituted into Ap ylelds

-~

. [cos(zn+1)—sm(2m+1)— cos(2m+l)%sin(2n+l)%

7Rl + Zmtl

sin @

D |
AP n(® 0 = ¢

.0 . 0 0
1 sin(2n+1 }-g—COSZ(m'H. )—g- 51n(2m+1)'g—008(2n+1)7‘
* sSing 2m+1 * 2n+l

The above expression has been normalized by dividing by 4pU2 (or

4qS since S = 2). This Ap is now the normalized pressure
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distribution of a wing with angle of attack distribution ﬁmn . In
Appendix I the four chosen basic loadings and their pressure dis-
tributions are given. It may be noted that ‘691 and ﬁlO are not
used since they give zero lift and are hence useless for drag re-
duction. -

Since the cross product terms previously mentioned must
be set equal to zero to satisfy the condition of orthogonality, it is
advantageous to obtain a general expression for the pressure dis-
tribution of one loading acting on the angle of attack distribﬁtion
of another loading. lL.et the interference drag between the angle of
attack distribution /gmn and ’qu be denoted by D'(m,n;p,q). This

quantity is then evaluated as:

D'(HIP;PH): | 'jAplinn ﬁpq dS = 4¢S D(m, n;p, q)
3 ;

where S = total planform area. Note that when m = p and' n = q,

D(m,n;m,n) is the normalized drag of the B Vloa,ding. Then

mn
o 0w [Cos(2n+l)_g_sin(2m+1)% ,Co<s(2m+1)-g-sin(2.n+l)—g-
D(m,n;p, q) = 7= j ZBF] — “Zm+l

w o™

x [Pp(cosG)Pq(cos‘o')+Pq(cosO)Pp(cos§)] s;nﬁdedﬁ

Performing the integration the following expression is obtained:

D(m,n;p, q) = 1 iZn-ﬁ-l [Km,n+1,p, q + Km,n+1, q,p + Km, -n,p,q

N 1

* Km, -n,p,q + Km, -n,q,p‘. + 2m+1 [Kn, m+l, p, q‘+ Kn,m+1, q,p

+ K

+ K ] }
n,-m,p,q n, -m, q’P
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where by definition

0
L | sin(znt1) 2P (cos®) 1 (B)aT
m,n,p,q T 27 q cos m,p()
™

and 5

— . 0
Im’p(O) = sin(2m+1) > Pp(cosO)fIO

e

The recurrence formulas for the K's and I's are:

2q-1 q-1
K =—-§— ‘ -
m,n,p,q q [Km, n+l,p, g-1 + Km,n—l,p,q-l] q Km,n,p, q-2

= _ 2p-1 p-1 '
Im,P(O) - ZP [Im-f-l,p—-l + Im—l,P‘]] - P Im’p_z

it is seen that if the first few K's are found by regular integration
the rest can be obtained from the recurrence formula. A 'dic-
tionary'" of the values of the K's required to solve for the cross
product drags of the four orthogonal loadings considered here is

‘found in Table I.
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IV. ORTHOGONALIZATION

So far no orthogonal loadings have been considered. It may
be mentioned that the concept of orthogonality is not at all neéessary
for drag reduction caiculations. For the special case of conical
a-distributions S. H, Tsien (Ref. 3) has minimized the drag of a
Delta wing with sonic L.E. without using orthogonal loadinvgs. It
is, however, believed that by using orthogonality the work involved
in obtaining drag reduction is considerably lowered.

The general theory of orthogonality has been amply described
by E. W. Graham (Ref. 1) and will not»be repeated here.

Now from the basic angle of attack distribution it is desired

to construct orthogonal loadings. Let by definition
a; = Byg
oz = Boo t P21 oy =Foo * PyPr1tesProtds Py
a3 = Byo + 4Py + 3 Fag |
where the a's are the orthogonal loadings and the constants b2, b3,
b4, C3s Cy and d4 are to be determined from the condition that each
a distribution must be orthogonal to any other a distribution.

Having defined the angle of attack distributions as shown

above it immediately follows that:

Ap; = APgg

APy = APgg * Pp4Py

Apj = Apgyg + b3Ap;y * C34AP;,

1

Ap, = Apg + byAPy) + cy8P,, +d AP,
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where Ap, is the pressure distribution of the wing with angle of
attack distribution a;; AP, is due to a,, etc.

As an illustration of how the constants above are determined
considér the superposition of the first two loadings (0.1 and az). The
resulting angle of attack aﬁd pressure distributions are respectively
(0,1 +‘o.2) and (Ap1 + Aplz). Then the drag of the combination is

f(Ap1+Ap2)(a +a2)ds = jAplalds +jAp2a2ds +_[Aplu.2ds+pr2alds

S S S S S
where it is understood that the products as before are integrated over
the planform area. The last two terms on the right-hand side repre-
sent the interference drag which must be set -equal to zero. This

means that

‘!APOO‘( Poo*bz Pyylds + ~£(“P00'”f’zAl"l1)ﬁoo‘is’'= 0
or .collecting terms:

[D(0, 0:1,1)4D(1, 150, 0)] b, = -2D(0, 050, 0)

Hence b, is determined.
Similarly b3 and cg are determined from the following two

linear equations:
1) [D(0, 0;1,1)+D(2, 150, o)] by + [D(o, 0;2, 0)+D(2, 0;0, o)] c3=-2D(0, 0;00)

2) [D(0, 051, 1) + D(1,1;0,0) + 2b, D(1,1;0,0)] by
{+ D(0, 052,0) + D(2,0;0,0) + b, [p(1,1;2,0)
+D(2, 031, 1)]{ ¢, = -2D(0, 050, 0)-b, [D(o.0;1,1)

+D(1, 1;0, 0)]
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For the determination of b4, Cy and d4 the equations below must

be solved.

1) [D(0, 051, 1) + D(1,150, 0)] b, +[D(0,0;2,0) +D(2,0:0,0)] «c,

+[D(0, 052, 1) + D(2,1;0, 0)] d, = -2D(0, 0;0,0)

2) [D(0, 051, 1) +D(1,1;0,0)+2b, D(1,1;1,1)] b,
+{D(0,0;2,0) +D(2,0;0,0) +b, [D(1,1;2,0)
+D(2,0;1,1)]} cy +{D(0,0;2,1) + D(2, 150, 0)
b, [D(1,152,1) +D(2,_1;1,1)]}d4 = -2D(0, 0;0, 0)

-b, [D(0,0;51,1) +D(1,1;0,0)]
3){1:)(0, 051, 1)+D(1, 1;0, 0)+2b, D(1,1;1,1)

+c, [D(1, 152, 04D(2, 031, 1)]]134 + {D(O, 0;2, 0)

+D(2, 0;0, 0)+b, (1, 1:2, 0)4p(2, 0;1, 1))

+2c4 D(2, 032, o)} cy +1D(0,0;2,1) +D(2, 1;0,0)

+by [D(1,1;2,1)4D(2,1;1,1)] *cy [D(z, 0;2,1)

+D(2, 1;2, 0)] d, = -2D(0,0;0,0) -b, [D(0,0:1,1)

+D(1,150,0)] -c, [D(0, 052, 0)+D(2, 050, 0)]
With the aid of the general expression for D{m, n;p, q) and Table I,
Table 2 has been prepared. Using Table 2 it is now easy to show

that the above system of equations become

—10bz = ~240
-10b3 + 15c3 = -240
470b3 + 87c3 =0
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—
: -IOb4 + 15c3-+ 19d4 = -240
4 470b, + 87c3 - 1%9d4 =0
417c, - 74d4 =0
~
which upon solution give these results:
b2=24 b3=29/11 b4=-3.62385
cy = -470/33 cy = -2.26300
d4 = -12.75229

The first four mutually orthogonal loadings are now completely de-

termined, i.e.:

a1 = Pyo

a = Boo + 248y,

4:1.3=BOO-I-2.9/11F311 -470/33520 |

ay = Pgg - 3.62385P,, - 2.2638, - 12.752298,,
From these the corresponding pressure differences across the wings
are determined:

Ap; = APgp

Ap2 = APOO + 24Ap11

Aps = Apgy, + 29/11 Ap;, - 470/33 Ap,,

Ap, = Apy, - 3.62385 Ap | - 2.263 Ap,, - 12.75229 Ap,,

Using Table 2 it is then just a simple calculation to obtain
lift and drag of the orthogonal wings. Note that since BOO =1,

D{m,n; 0, 0) = lift of the m,n loading. Thus
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L L

= L, = 4qS

1 2 3

i

Ly, 495 S Ap4ds = D(0, 0;0,0)-12.75229 D(2, 0;0,0) = (.14985)4qS
S
Similarly

D} = D(0, 050, 0) = 445

D} = D, 4qS = D(0, 0;0, 0)+24)%D(1,1;1,1)+24 D(1,1;0, 0)

+D(0,0;1,1) = (47) 4gS

o
"

24 (448)

‘?
il

1. 78448 (4qS)
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V. RESULTS

Percent Drag Reduction

The four orthogonal loadings are now combined so as to give
the minimum drag using the non-dimensional parameter L as defined
on page 2. Since

2 - (4g8)° 00,050,001 _,

1 g5 4q3 D(0, 0;00)
12 = 4/47 = . 08511
I3 =4/24 = .16667
L =
, = 05035

the parameter for the wing of minimum drag is
Lot =l +4, +4; +4, = 4.30213

This means that the percentage reduction in drag from the

flat plate (al) drag is
J

| 4 - o
1-%t_1- T 0213_7.023 /o

Since 13 is larger than 12 and [ 4 the a, loé,ding gives

the most drag reduction.

Optimum camber and twist distribution

The optimum angle of attack distribution is given by

LS Ah G g
opt  Lont k=1 Pk Topt 1=1 D K
c

_ L
= 4130213 (a1+1/47 a2+1/24a3+.084 0.4)

which in terms of %,y coordinates become

a
2B = 35765 +.088x - .09007x" . 18311y°-. 132 +. 132xy
L

2
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and is found plotted for various spanwise stations in Fig. 2.
AThe expressions for a;s ay and a; are given in Appendix 2,
In order to obtain the camber and twist distribution of the optimum
wing the angle of attack distribution was integrated with respect to
the x variable. Let 7 {x,y) be the camber and twist distribﬁtion.
Then

X
n(xy) = - S agpt 8% £ ()
0

where f(y) is a constant of integration that has been determined (=0)
by requiring the wing trailing edge to lie in the plane z = 0 (z being

the axis perpendicular to x,y). The above integration results in

’l_é___Xs Y) - _x(.35765 + .044x - .03002 x> - .18311 y°
L .
- .033%> +.066xy%)

which is found plotted in Fig. 3 for several constant values of y.
It is noted that the wing has washout which is in accordance with
the usual aerodynamic practice. The wing has S camber over the

. center section.

Optimum pressure distribution

Similarly the optimum pressure distribution is given by

AP :-E]:il.s__ - flj. AP
Pt Lot ka1tk K

C
-3.—3%:21-3 (Apl +1/47 Ap, + 1/24 Ap; + . 084 Ap4)
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which can be written as

AP:: t '4uo'pt 8C1
.qE =—g— = 730213 (AP +1/47 Ap,+1/24 Ap,+.084 Ap )
or
Yopt CL

v = 215107 (Apl +1/47 Ap2+1 /24 Ap3 + .084 Ap4)

In the u,v coordinates this becomes

C:u
_]-4 opt _ 0077481 { i:; (21.60304 - 6.34892 u
o U

+14.07988v + 2, 04256 uv - 12.7969u” - 11.12586 v°

14+u

N 2 2.,
21.4162u”v ~ 12.8497Tuwv) +\/ 1=

(21.60304

-6.34892v + 14.07988u + 2. 04256uv - 12. 7969v>

~11.12586u” - 21.4162uv’ - 12.8497u’v)

where

-y

7z

u= (x+y) and =L (x-y)
3 o

N

Fig. fi‘ishows the distri‘bution of local lift along the wing
_trailing edge compared with the flat plate dist‘ributién and the dis-
tribution obtained by S. H. Tsien (Ref. 3) by the conical flow
theory. | |

In Fig. 5 the distribution of local lift along the root chord
has been flotted. The flat plate lift distributién over the root

chord is also shown.
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VIII. CONCLUDING REMARKS

.It has been shown that a reduction of induced drag of 7.023
percent can be obtained by suitably cambering and twisting the flat
Delta wing. The procedure used can be continued to obtain even
higher drag reduction by taking additional basic loading into ac-
count. For conical distribution S. H, Tsien (Ref. 3) obtained a
drag reduction of 8%/o. By combining this loading with the non-
conical loading of this report it should be possible to find an ap-
preciable drag reduction. Due to lack of time, this has.not been
done here. However, the present report contains all the basic
material needed and only some numerical work is required.

In Figs. 2 to 5 the angle of attack,local lift and the cémber
and twist distribution of the optimum wing are shown. The wing
has washout and has negative camber over approximately the front
quarter wing area, while the rest carries positive camber. The
leading edge droops down and reaches a maximum di‘oop at a
point about 65 percent along the half span from the root chord.

Compared to the flat plate the optimum wmg carries a
higher lift distribution over the center section and less along the

leading edges.
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APPENDIX 1

300

‘811 = cos@cosf

1}

1

,320 = Zlf [_3coszg+3cosz'5-2]

1 2 = . 2= =
ﬁZl = ZBCOS 6cosB+3¢cosBcos O —cosO-cosQ]

cos —sin—g- sin—-q cos—g-
A _ l 2 2 + 2 2
Poo = 7 sin 0 "
sin _
cos3 -—5- sin3—g- sin3—9- cos3 -9-
A _ 1 2 2 + 2 2
P11 37 sin0 _
sin O
e . .90 9 . 8
A 1 5c:os-2- sinb > + cosb > sin >
P20 ~ Tow 5in0
. 9 1] . [} 0
. sin > cos5 > + 5sinb > cos 5
_ sin@ _
e . 4] e . 4]
. 1 50033-2 sinb > + 3cos5 5 sin3 5
P21 ~ 30w )
sin@

3sin3-g— cosb % + 5sinb —g- cos3 %

sin@

+
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APPENDIX II

=1

1+ 24uv = 1 + 12(x%-v%)

2

8.1212 - 9.3636x> - 12y

8.1212 + 2. 6364 uv - 10. 6818(u’ +v2)

= 2.1315 - 3.62385uv - 1. 69725 (u+v?)

9.56422 uv (utv) + 3.18807(u+v)
= 2.1315 + 4. 50857x - 3.00918x%

¥ 6.76286xy" - 6.76286x"

- 0. 38532y

2
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TABLE I
.. = 0 except as stated below
m,n,p,q
K | - (_1-)m when m-n
m,n,0,0 Zm+
O )i mn
Zm-l-i
_ (™ i
Km,n,1,0 7 " 2{Zm-1 when m-n
= - (”1)m m-n
2m+3
__(-n™
=3 T min
__(-y™
= X[Zmi3 m+in
_3(-1)™
m,n,2,0  8(2m-3 when m-n
__(-n™ men
4(2m+
= 3(_1)m m-n
8(2m+hH
. 3-n™ min
) 8‘1 2m-3)
___n™
= >t min
= - 3(-1)7 m+n
8(2m+5)
__(-n™
K, n,0,1 " Z(Zmdl when m-n
_ -(-n™
= 22m+1

m+in
min

-2



m,n, 2,1

m,n,0, 2

m,n,1,1 "

i

= T6[Zm+

_(-1’)“‘[ 1,1
7] Zmi3  Zm-1
e\ s

4 (2m-1)

3(-1)™
1 m-3 +

el
3(-1)7

3(-1)™
16(2m+5)

__ =3(-1)™
T 16{(2m-3

(-n™

8(2m+1

(-
2m+

3(-1)™

T B(2m¥I) T T8(Zm=-3)

-3(-1)"

~ T6(2m+53)

3(-1)™

- 16(2m+5)
3(-1)™
m+1

-n™
4(2m+1)

(1™
2m+1

when

when

m-n = -2

m+n = -1
m+n =1

m+n = -3
m-n = 3

m-n=1

m-n = ~1
m-n = -3
min = -2
m+n = 0
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TABLE 11

D(m,n;p, q)

1
-1/12
1/8
11/120
0
'1/12
1/24
-23/840
0
-1/60'
1/8
-1/84
1/15
-13/420
-5/168

7/240
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FIG. 1| — WING PLANFORM AND AXIS SYSTEM
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