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ABSTRACT

The hydrodynamic forces and moment on submerged
bodies of prolate ellipsoidal shape are investigated
for two dimensional motirn. The specific motion consisted
of constant relative linear velocity of the fluid and
body and small angular oscillation of the body about
its geometric center, The average position of the long
axis of the body was in the direction of constant linear
motion. The components of the lateral force and 6f the
moment proportional to angular position, velocity, and
acceleraticn are measured for motion in water. These
reactions are compared with the reactions derived from
perfect fluid theory. It is concluded that the force
proportional to angular position is the principal real
fluid reaction not predicted by the perfect filuid theory.
The deviations of the other components from the theoret-

ical values are small.
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I. INTRODUCTION

For the motion of a rigld body in an infinite volume
of Incompressible frictionless fluid, the hydrodynemic
forces and moments exerted on the body are known at least
in principle. Exact analytic solutions are feasible, and
often quite easy to ecquire, for bodles of simple mathe-
matical shape.

For motion in a reel fluid, particularly one whose
viscosity 1s small, it is often possible to use the
simpler perfect fluild solution. The accuracy of this
approach 1s evaluated for the lateral force and the
moment reactlons on a body of prolate elllipsoidal shape.

The perfect fluld reactions are derived for the
general two dimensionsal motion of the ellipsoid in an
infinite fluld. The solutlon includes the case of motion
of the fluld at a large dlstance from the body and 1is
therefore applicable to motion of a test body in &
water tunnel.

The experimental procedure and the lnstrumentation
equipment for measurement of the fluld reactions are
described. The moment quantities are secured by measure-
ment of the response of the body and fluld system to a
simisoidal torque applied to the body through & spring.
The lateral forces are measured directly with a spring

balance located in the center portion of the test bodye.



This force variles sinuscidally with time and is related
to the sinusdidal motion of the body.

The experimental results are presented for tests
on a series of three prolate ellipscidal shapes. The
tests were made in the High Speed Water Tunnel in the
Hydrodynamics Laboratory at the California Institute of
Technology..



IT, MOTION OF A BODY IN A FRICTIONLESS FLUID

Equations specifying the hydrodynamic force and moment
exerted on a rigid body as it moves in an infinite volume
of frictionless incompressible fluid are desired. They
shall include the forces and moments caused by any motion
that the body and fluid or the fluid alone may have.
Specifically, they will apply to the motion of a body in
a water tunnel in which the fluid has motion itdependent
of the motion of the body.

The several definitions necessary to specify the
problem precisely and the appropriate equations of motion
of a rigid body in free space will be set forth first.
Next the case of motion in large volume of fluid whose
motion at an infinite distance from the body is zero
will be considered. Finally the motion of a body in a
volume of fluid whose motion at a large distance is a
non-zero, time-dependent value, will be examined in detail
for bodies of a prolate ellipsoidal shape. This last
type of fluid motion, constant fluid velocity at a dis-
tance, is the one usually assumed in experimental work
in a water tunnel in which the tunnel diameter is many

times larger than the body diameter,

General Remarks

The two dimensional motion of a prolate ellipsoidal

body in a perfect fluid is to be considered in detail,
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Some‘of the derivation will apply to the broader problem
of three dimensionsl motion of an arbitrarily shaped body;
thls generality, however, will be dropped whenever its
continuance would not provide any real information but

- would only lengthen or complicate the desired derivation.
In most instances the extension to 1nclude the general
case 1s straightforward.

The rigid body is assumed to be a slmply connected
volume; Its exterior surface 1s a2 smooth lmpenetrable
boundary upon which the surrounding fluld may exert
pressure. The resulting force and moment will be shown
to be a function of the shape of the body and of the
motion of the body and fluild or of the motion of the
fluid alone. Experimentally the body wlll be forced
to execute a particular motion and the external force
and moment required will give an experimental functionsl
dependence. This dependence will be compared with the
perfect fluid dependence to be derlved.

The motion takes place in en inertlal coordinate
system Xy Yo in which all forces and torgues are measured.
Angular motion tekes place in this plane about an axis
normal to it. A second set of axes, x, y, 1s fixed in
the body with origin at the center of mass of the body;
These are referred to as body axes. They provide a ref-
erence line in the body for the measurement of angular
position and define instantaneous directions in the

inertial frame along which forces and veloclities will



be resolved.

In the experimental work the forces will be measured
along body axes and equations for these forces in terms
of body motion are desired. These are derived in Appendix

I and summarized here,

Fx = M (u - ve)

Fy = M (v + ue) (1)

N = I

b e

Note that although the direction of action of the

F_and F_ forces is a function of ©, the magnitude of

y
these forces is measured in the x5, ¥y, coordinate system

and not in the moving body axes coordinate system.

Motion in a Fluid at Rest at Infinity

This is the classical problem of motion of a body
through a fluid. The solution to be given here is from
the text of Milne-Thomson.(l) It is given in Appendix
II. The several important facts tc be observed for this
case of motlon are given in the following paragraphs.

The motion of the fluid and body may be considered
to have started from a state of rest. Thils defines the
inertial system for the subsequent motion. If the body
is brought to rest, the fluid motion ceases and all
fluid forces and moments become zero.

For finlte velocity of the body, the fluid pressure
on it is finite and the kinetic energy of the fluid is

finite. There is no mechanism for energy loss in the



motion in a perfect fluid. The fluid motion at infinity
is zero.,

The solution to the problem is a set of parameters
that are functions of the shape of the body. They are
the coefficients of the velocity terms in the equation
of the kinetic energy of the fluid. For a completely
unsymmetrical body they are twenty cne in number, one
for each of the possible quadratic products of the six
linear and angular velocities. For a given motion of
the body and fluid, the fluid reactions may now be
computed from the ordinary F = Ma and T = I < equations
using the velocities and accelerations of the body.

The solution for the two dimensional motion of a
prolate ellipsoid is given in Appendix II. The final
equations are
F = (M+A)u = (M+B) ve ,

X
Fy-(M+B)w'r+(M+A)ué, (2)
N = (I, +R)6 + (B-A) uv .

These equations give the external force and torque
on the body required to move it through the fluid with
the velocities and accelerations given. The terms
containing A, B8, and R are the forces and torque that
the body exerts on the fluid. Their values for prolate

ellipsoids are calculable and will be given in the

next part of this section.
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Two- Dimensional Motion of a Prolate Ellipsoid in a Fluid

in Motion at Infinity

For the motion of a body in a water tunnel, a usual
assumption of the fluid flow is a constant fluid velocity
up and down stream and along the tunnel walls. For the
purpose of theoretical analysis the entire space outside
this cylindrical working section may be considered to be
filled with the fluid moving with this constant tunnel
velocity.

In the preceding section the solution for a body
moving in a fluid at rest at infinity was formulated.

Of particular interest now is the solution for the same
relative motion of the body and fluid but with a different
absolute flow pattern. Intuitively some of the forces

will be the same; they will depend on the relative velocity
of the body and fluid only. Perhaps the most obvious

one is the static moment represented in Eq. (2) by the

term (B - A)uv. On the other hand the behavior of

others is not at all obvious. It will be recalled that

in the preceding section the problem of motion of a body

in a fluid at rest at infinity was sclved using that
condition explicltly; for example, the kinetic energy

in the fluid was finite which required the fluid veloecity
at infinity to be zero. That part of the soclution describ-
ing the inertial reactions of the rigid body itself is
directly applicable. Particle mass, and therefore
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rigid body mass, 1s an invariant scalar property; the
Lagréngian férm of the equations of motion contains all
of the necessary information. The inertial reactions
of the fluid, however, are not of this simple nature
unless the motion of each particle of fluid is consider-
ed, For the boundary conditions of the preceding section,
the integrated effect of the fluld pressures was seen
to be representable by inertia type quantities. For
the motion of the present section a similar functional
dependence on the motion of the body is expected; how-
ever, the quantitative measure may be different.

The solution for this general case of motion will
be accomplished by integrating the appropriate component
of the pressure over the surface of the body. For
irrotational motion of a perfect fluid in the absence of

an external force field, the pressure equation is

P o 3¢
-+ 3T - — = o) (3)
e ot

The velocity peotential ¢ is most easily expressed
in terms of the body position and velocity. 1In this
form it moves in space with the body. Its negative
gradient correctly expresses the velocity of the fluid
in the fixed coordinate system at a given instant of
time and may be used to evaluate the E term at any
point in the fluid. The term gg' is required to be

the time rate of change of ¢> regarding the point fixed
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in space. DNow ¢> moves in space with the velocity of the
body, qp. If Pp(t), the potential at a point P fixzed
in space, is equal to 95(1:) at t = tg,

b+ 8t
Polt, + 8t) = P(x) -f (V) g at , W
t
o
and
iﬁéﬁ,.ii-;b(ﬁgb) . (5)

3t ot

The pressure equation may now be wrltten as:

P - o -
-— 32'- qr2 - -? - -]2-'- qbz = C(t) ’ (6)
P at
where _
Eg' = a - % _ ™

and qS is now the potential referred to the body location
in space. |

The problem 1is now reduced to securing this veloecity
potential for the desired motion of the body, computing
the several terms in the equatioh, and integrating the
proper component of the pressure over the surface of the
body.

For the two dimensional motion of a prolate ellipsoid

the solution is given in Appendix III, The final equa-

tions are:
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£ = -_Mo[(xi-ﬁ)kl-ﬁ-(v-v) k2é+Vél
g, = (G-DNE-T+ -1k 6-18] (8)
n o= =I K8 - M (k-k)u-=U)(v-T)
The definitions of the terms are given in the following
1ist. |
o fy, n fluid forces and torque cn the
ellipsoid at and about its
geometric center
u, v velocities of the ellipsocid
along body axes
é angular veloclity of the body
U, Vv velocities of the fluid at in-
finity resolved along body
axes
Leg) kz, k' virtual inertia coefficients
for a prolate ellipsoid
from Appendix III
My mass of the displaced fluid
I moment of inertia of the dis-
placed fluid
The gquantitles kq, k2, and k' are directly related
to the A4, B, and R quantities in the preceding section.
For U= V = O, these equations reduce to those of that

section.
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Examination of the above equations shows that the
inertial reactions of the fluid depend only on the
relative motion of the fluid and body for the case of
constant fluid velocity at infinity. Thus, if U, and
V, are the components of the constant fluid velocity at
a large distance from the body,

U = Uocose - Vosine ’

V= -U siné + V cos8 , (9)
U - Ve =0
V+U8 =0 .

If the effects of the finite size of the water
tunnel are dilsregarded, it is seen that, for the same
relative velocity of the fluid and body, the perfect
fluid forces on a body moving in an infinitely extend-
ing volume of fluid at rest at a large distance and
the forces on the body moving in a constant velocity
water tunnel are identical.

These equations for the fluid forces are now combined
with the equations of motion of the rigid body. The
complete equations of motion for an ellipsoidal body
whose center of mass is at its geometric center are:

Fp = (U+Mi) u-M (g +1) U= (M+Mk) vo
+M(k, +1) Ve

Fy = (M+Mok2) v-Mo(k2+1) V+ (M+M°k1) uée

-M(k +1) U8 |,



]2
N = (1b+10k-) o+l (k- k)-Vr=-1) .

(10)

In these equations Fy, Fy, and N are external reactions

on the body and fluld system.
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ITI. EXPERIMENTAL PROGRAM

Measurements were made to determine the hydrodynamic
lateral force and moment on a family of prolate ellip-
scidal bodies. The work was done in the High Speed
Water Tunnel in the Hydrodynamics Laboratory at the
Califorhia Institute of Technology.

The scope of the experimental work is discussed
first. The experimental method, often referred to as
steady state forced oscillation, is described next.

The discussion of the calibration and operation of

the equipment 1s divided into several sections. The
measurement of the angular motion and moment is gilven
first. After a section describing the construction and
general operation of the side force balance, the measure-
ments of the amplitude and phase of the force are dis-

cussed separately.

Scope of the Experimental Program

Experimental tests were made to determine the fluid
damping and dynamic forces and moment on a series of
prolate ellipsoidal bodies for small angle of attack,
constant forward velocity motion. In this motion, one
point of the body, conveniently taken as the geometrical
center for ellipsoids, moves with constant linear veloci-

ty. The body is oriented such that its long axis, in
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this case the x body axis, is at a small angle from the
direction of'the constant linear motion. This angle
varies with time., The components of the lateral force
and moment that depend on the magnitude of this angle
are the usual static 1ift and moment. Other components
proportional to the angular velocity and acceleration
exlst. They are described in the next paragraphs.

In the x,, y, coordinate system, the kinematic

description of the motion is given by the equations:

u, = v = constant,

Vg % 0 = constant,

) = 9(t) ,

u = u cos e,

v = -u ein8. ) (11)

Equations (8) for the reaction of the fluid on the body

become
fk = - Mo k1 - Mo k2 v e
= Mo(kl-kz)uoesine,
fy e -Hokzv +M°k1u9
- M, (kz-kl) uoecose s (12)
n = ")

-Iok'O - Mo(k2- 1)uv

ST k'8 4+ M (k- 1)u°2c:osesin9 .

For the magnitude of © small, these reduce to

o= Myl -k)u 89 ,
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£,00 MG -k) u e, (13)

n '-Iok‘e +M°(k2-k1)9 .

These equations represent perfect fluid reactions
only. For this particular moticn of the ellipsoid the
latefal or 1ift force 1s proportional to angular veloclty;
neither a static nor an acceleration 1lift force exists.
The moment equation exhibits torgues proportional to
angular position and acceleration, but none to angular
velocity. For small angle, the fx force 1s of second
order compared with the fy force.

For moticn in a real fluid additional fluid reactions
are to be expected; for example, a static 1ift force.

No assumptions about the mechanism of these fluid forces
are made here. For this motion it is assumed that the
lateral force and moment reactions of a real fluid on the
body are linear functions of the angular position,
velocity, and acceleration of the body. These assumptions
are analytically defined by the equations:
fy--m'é+bé+.ee, n=-I,8-B8-K0 . (1)
The component of the lateral force represented by the
b 6 term is often called the damping force due to angular
velocity. The B © term in the moment equation is called
the damping moment due to angular velocity. The six

quantities, m, b, ¢, I,y B, and K are expected to be
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functions of the dimensions of the body, the density
of the fluid, and the constant linear velocity of the
motion. They are to be determined experimentally.
Comparison with their perfect fluid counterparts will
glve a measure of the effect of the viscosity of the

real fluid.

Experimental Method

For the small angle of attack, constant forward
velocity motion defined in the preceding section, the
measurements of the fluid reactions may be carried out
in a water tunnel. The constant forward linear velocity,
u,, of the body is replaced with a constant velocity,

Us = -uy, of the fluid at a distance from the body.

The geometric center of the ellipsoid is now fixed in
space 1n the water tunnel. The perfect fluid reactions

on the body are not altered by this change in the absolute
flow pattern.

For the angular motion it is desirable to choose
a steady state, small amplitude, sinusoidal angular
oscillation. Although the resulting torque and force
have this same sinusoidal time varying character, their
measurement can be readily accomplished. An important
feature of this steady state type of motion is 1ts aver-
aging property. The motion of a perfect fluld is com-
pletely definable from pcint to point in space and in
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time., Real fluid motion does not possess this exact
_descfiption.l Superimposed on any motion 1s a greater or
lesser amount of "noise" or turbulent motion. The inte-
grating property of the steady state method allows the
slowly changing components of the fluid reaction to be
measured in the presence of more rapidly varying tran-
sient effects that would make instantaneous measurement
virtually impossible to interpret.

The equations for the total external force and
moment on the body may now be written. In the tunnel
the geometric center of the ellipsoidal body is fixed
in space; its only motion is rotation about this point.
This rotation is described by the equation:

9=8 sineot , @=a 8 cosat . ' (15)
The center of mass of the ellipsoldal test body is assumed
to be located at its geometric center. In the experi-
mental program this was verified; the side force on the
bodies when oscillated in air was negligible compared
with this force in water. The equations of motion for
the rigid body alone reduce to

F, = 0,

N =Ib.9.--Ibm29°sinwt . (16)
The fluid reactions are combined with these to give

the total external force and moment on the body and

fluid system. The resulting equations are
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Fy-o-fy- me -b9 -¢80 , (17)

N = Ib"d - n = (Ib'+1f)b' + B9 + KO .

These are the external reactions supplied by the
supporting structure and measured in the experimental

work.

Measurement of Moment

Pictures of the balance installed in the High
Speed Water Tunnel are given on pages 89 to 91. A
schematic diagram of its operation is given in Fig. 1.
The model is secured to a spindle carried in ball bear=-
ings in the balance structure. The balance is fastened
to the water tunnel underneath the working section.

An ac series motor drives an auxiliary shaft at
a constant speed. Velocity feedback speed control is
used; the output of a dec tachometer generator, not
shown in the schematlic diagram, is amplified and excites
the controel winding of_a saturable reactor. This aux-
iliary shaft also carries a flywheel, the main drive
cam, a cam for controlling the time of flashing of a
stroboscopic lamp, and an ac tachometer generator.

The drive cam and its follower convert the constant
speed rotational motion of the auxiliary shaft into
constant frequency, constant amplitude oscillatory

motion at the drive platform. This motion 1is
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transferred through a torsion drive spring to the spindle
and then to ﬁhe model. The diameter of a short section
of the upper part of the spindle is small enough so

that it acts like a second torsion spring.

In Eq. (17) the body and fluid are shown to be
_equivaient to a moment of inertia, an angular damping
rate;and an angular spring rate. The equivalent mechani-
cal diagram for the angular motion is given in Fig. 2.
The several quantities are defined in the following list.

I, By and X moment of inertia, angular damp-
ing rate, and angular spring
rate for the body and fluid
system

Kl’ K, main drive spring rate, upper
spring rate

I moment of inertia of spindle

Bg angular damping rate of seal

€y, 61, 6, motion of model, spindle, drive
platform

The seal between the spindle and the wall of the
water tunnel consists of a thin cylindrical space of
approximately .00l inch radial clearance on a .875
inch diameter and of one inch length. For the tunnel
pressures used, the rate of water leaskage was about
ten gallons per hour; this water was collected by a

vacuum system before it reached the spindle bearings
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and was discarded. The damping rate of this seal is
smaller than can be measured in the operation of the
balance. The moment of inertia of the spindle is small
but not negligible at all times., These two items are
discussed in Appendix IV.
The solution for steady state oscillatory motion

is now formulated. The damping rate of_the seal is
not included.

92 = A, sin (0 t - 0‘2) drive motion

9 = A sin (o t -0<1) spindle motion (18)

8 = A sin (w ¢ - o<°) model motion
The angles e 4 =<, , and x , are angles of lag in the
time sense. The differential equations of motion of
the system are

K (8, -0) - K, (8 =8) = I '51 ,

K2(91-9)'IQ+B9+KG . (19)
In the complex variable form used in steady state alter-

nating current problems, the steady state sclution is

given in the following equations.

- (20)
K

-1
2 : 2
K+K2- Iow *jooB ) K2+Kl-:[sm
K

2

=

ot
>

N

5

{cos (0\2 -OSl) - j sin (t>'<2 - ‘xl)}



A I w2 : (21)
-2 {cos'_ (o<2 - o<o). + j sin (0(2 - xo)} -
4y Ky

K, + K

2 l_A_l. {cos (o<2 - o(l) + j sin (o<2 - dl)}' _yl

Examination of these equations shows that the data
necessary to compute the I, B, and K quantities for the
model and fluid system are the frequency of oscillation
and the amplitude ratio and relative phase angle of the
drive ﬁlatform and spiﬁdle motions. Measurements must
be taken at twc or more frequencies to separate the
I and X terms.,

The oscillation frequency was continuously moni-
tored with an electronic counter® that measured the
period of the output voltage cf the ac tachometer
generator. An extremely constant frequency was desired
to facilitate the measurement of side fofce to be describ-
ed in the next section. Speed stability of better than
.05 percent was achieved over the range of four to ten
cps with the saturable reactor equipment. At two cps,
the lowest frequency used, the stability was about
.1 percent.

The amplitude ratio and phase relztionship was
measured stroboscopically. Electrical contacts, actu-

ated by a cam on the auxiliary shaft, were mounted on a

# Hewlett-Packard Co., Palo Alto, Calif., Model 522B



circular carriage concentric with this shaft. The angu-
lar iocation bf these contacts determined the time in
the cycle of motion of the flashing of a General Elec-
tric type FT-110 flash tube. The short duration flash
of light was passed through a slit and directed at
mirror and lens combinations mounted on the drive plat-
form and the spindle. Each of these mirror and lens
units reflected and focused the light on a curved screen
about six feet away. The cam had two actuating surfaces
spaced 180 degrees apart. For each revolution two
flashes of light occurred. These were spaced 180 de-
grees apart in the cycle of the oscillatory motion;
for example at zero and 180 degrees. For the same
position of the contact carriage, a second set of two
flashes, located at relative positions of 90 and 270
degrees, was available,

In typical operation, twenty four point wave forms
of the steady state drive motion and response motion
are taken. This is done by moving the contact carriage
in 15 degree increments. The amplitude and phase angle
of the fundamental component of each motion is then
determined by Fourier analysis. In an alternate method
the contact carriage is rotated until the two flashes
of light occurring for each revolution coincide on the
scale. This is the mid-point of the oscillatory motion

and can be taken as a measure of the phase angle. The
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amplitude of the motion 1s then measured by selecting
the cther set of two flashes that are spaced 90 degrees
.from these. The former method was used in all cases for
the measurement of the response moticn. In the presence
of transients it was easier and more accurate to read
the average position of a single recurring light flash
than to try tc estimate the degree of coincidence of
two alternatingly recurring flashes. The drive motion
contained less than 1 percent total harmonilc distortion
most of which was second harmonic. For the water tunnel
velocities and oscillation frequencies used, the harmonic
content of the respdnse rotion was less than 2 percent.
A picture of the control rack for the angular
measurement egquipment is given on page 92. The black
box on top of the rack contains the saturable reactor
and control equipment for the main drive. The bottom
panel unit in the rack is the dc amplifier in the feed-
back loop of the speed control system. The tcp panel
contains the controls for moving the contact carriage
and selecting the contact combinations. The larger
panel directly below this contains the hydrogen
thyratron modulator unit for flashing the lamp. Behind
and slightly to the left of the top box, the scale can .
be seen. The grey box with the air hose connection
contains the lamp. Both the scale and the lamp box

are rigidly fastened to the tunnel structure. The view
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is downstream.

The measﬁrement of the amplitude ratio and the
relative phase angle for the wave form analysis method
is accurate to the order of .5 percent. This figure
applies to the capability of the instrumentation method
and equipment. The accuracy of measurement of the
hydrodynamic reactions is discussed in the next part
in which the numerical results of the experimental
work are given., The smallest division on the scale and
the width of the light image was equal to about .Cl ,
degree of rotation at the spindle. All of the measure-
ments were made at frequencies well below the natural
frequency of the system; the half amplitude of the drive
motion was 2 degrees, and the maximum half amplitude
of the model motion was less than 3 degrees. The accu-
racies of the 15 degree increments of contact carriage
rotation, the 180 degree spacing of the flats on the
cam, and the 90 degree spacing of the two sets of light
flashes are all better than .1 degree. This is equiva-
ient to less than .1 percent error in amplitude. These
accuracies were determined by stroboscopic techniques.
The primary standard of angular measure was a set of
marks on the perimeter of the 18 inch diameter flywheel;
these marks had been located with a precision dividing

head.
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Measurement of Lateral Force

.The lateral force on the body was measured by a
spring balance structure located inside the center
portion of the body. Figure 3 is a diagram of the
essential features. This balance section was used for
the three models; the aluminum ellipsoidal shells
fitted over it.

The outer shell of the balance structure proper
was fastened to the spindle by means of a parallelogram
flexure linkage. The moment reaction was transmitted
as tension and compression in the parallel links. The
lateral force between the bedy and spindle was carried
in a stiff open-coil spring. The small cross section
of the flexure links permitted moticn in the lateral
direction. The natural frequency of this degree of
freedom, based on 3000 1b per in spring constant and
less than one 1b mass, 1s greater than 160 cps., For
oscillation frequencies of 10 cps or less, the lateral
motion is spring controlled; and the instantaneous
lateral deflection is a measure of the lateral force
at that instant. For the maximum force of 3 1b this
deflection is about .00l inchj; the fluid reaction of
this motion is negligibly small compared toc that of
the angular motion.

The electrical connection to the pickup unit was

made through the spindle. The interior of the balance



section was filled with air and pressurized to about
2 psi above the dynamic fluid pressure of the water
tunnel. This differential was maintained by an ordinary
pressure regulatcr., - By using the dynamic tunnel pressure
for the reference or pilot pressure of the regulator,
the pressure level of the tunnel could be changed with-
out producing an excessive pressure difference across
the thin rubber diaphragm between the spindle and the
shell of the balance. Dried air was used. While data
was not actually being taken, air was passed through
a relief valve into the tunnel to keep the interior of
the balance free from any moisture.

The assumed functional form of the side force for
motion in a real fluid was presented in Eq. (17). In
the complex notation for steady state sinusoidal motion

this equation becocmes

= - (22)
= . (mw2+8+jmb)Aosin(wt-o<o) ,
and 23
s . _ ‘@?Fi (23)
nw +£f{+job=a- {cos(d-xi)-jsin(d-o() .
Ao o o i

The determination of m, b, and ¢ requires the measure-

ment of the magnitude and phase angle of the sinusoidally

varylng side force.
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A linear differential transformer* was used as the
transducer element. The electrical oﬁtput of this
device is proportional to the relative linear position
of its center iron slug and the concentric winding
structure. It was mounted in the center section as shown
in Fig. 3. A carrier frequency of 1000 cps was used.
The output voltage was an amplitude modulated wave.

The center position of the slug was set far enough from
the electrical null of the pickup so that the degree of
modulation was less than 100 percent for the maximum
side force experienced.

A block diagram of the electronic equipment is
given in Fig. 4. The peak output of the pickup unit is
on the order of millivolts for the typical force on the
body. It is first amplified 40 db in a conventional
féedback amplifier., It is passed through an L-C filter,
whose narrow pass band is centered at the 1000 cps
carrier frequency, to remove unwanted noise components.,
After another 4O db amplification, it is demodulated in
a bridge crystal rectifier unit to recover the modulat-
ing signal. A low pass filter femoves the undesirable
2000 cps rectified carrier signal. The output of the
filter appears across a load resistor. It is a sin-
usoidal voltage of the frequency of the motion of the

model. Its magnitude is proportional to the magnitude

#* Schaevitz Engineering, Camden, New Jersey, Type OOS5M



of the side forcej; its phase is the phase of the side
forcé plus thé frequency dependent phase shift of the
several intermediate circuits.

The actual measurement of the voltage is accom-
plished by a null method. The output of the ac
tachometer generator is a voltage of the same frequency
as the model motion. After isolation by a cathode
follower, it is added to the voltage to be measured.
The magnitude of the generator voltage is adjustable by
attenuators and its phase 1s adjustable by rotating
the frame of the generator itself. The sum of the
voltages 1is passed through a twin-T feedback, narrow
pass, amplifier to remove the last remnants of noise
voltages and is then presented on the vertical axis of
an oscilloscope. When the horizontal axis is driven
sinusoidally with one of the voltages, the type and
direction of the difference between the voltages is
interpretable from the orientation and shape of the
elliptical pattern on the oscilloscope. The amplitude
data appears in the form of an attenuator setting and
the phase data is given by the reading of a mechanical
counter geared to the motion of the generator frame.

& picture of the control rack is given on page 93.
The top unit is the electronic counter for the measure-
ment of the frequency of motion; the oscilloscope is

next., The counter and control for the angular motion
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of the frame of the generator are located on the left
side.of the first black panel. The attenuators for the
amplitude measurement are on the right side. The second
black panel unit is the two stage twin-T amplifier.

The next panel contains the first 40 db amplifier and
the 1000 cps filter on the left and the demodulator

and 2000 cps filter on the right. The last three units
are the second 40 db amplifier, a dc¢ power supply, and
the 1000 cps oscillator.

It will be recognized that for the most part the
individual electronic circuits and items of equipment
are conventional. The application of the twin-T feed-
back amplifier and the phase shift considerations of the
L-C filters are the only items conslidered to be suffi-
ciently unusual to require further description. The
latter will be done in the section describing the meas-
urement of the phase of the lateral force.

The twin-T rejection amplifier consisted of two
identical single stage amplifiers. Negative feedback
was applied around each stage through an adjustable
stop frequency, twin-T resistor-capacitor network. At
the rejection frequency of the network, the gain was
about 20 db per stage. It dropped rapidly to about
O db for frequencies beyond one octave above and below
this frequency. The two stages in cascade gave about

40 db rejecticn. The desired pass frequency was



adjustable from one to fifteen cps by means of the three
gang.helipot'in the twin-T network. The narrowness of
the pass band and the rapid phase shift through it made
extreme speed stability necessary if the rejection prop-
erty of the amplifier was to be useful in obtaining the
null balance. Because the electrical signals to be
balanced were already added togéther before reaching

this unit, its absolute gain or phase shift did not affect
the measurement. But the interpretation of the type of
unbalance from the pattern on the oscilloscope can be
accomplished easily for phase shifts of zero or multiples
of 90 degrees only. In this case the phase shift was

360 degrees. The tilt or angle of the horizontal axis

of the elliptical pattern was a measure of the amplitude
unbalance, and the vertical opening or eccentricity of
the ellipse was a measure of the phase difference cf

the two voltages.

1. Amplitude Measurement

It will be convenient to discuss the measurement of
the amplitude and phase of the lateral force separately.

The calibration and operation of the amplitude
measurement portion of the equipment is carried out on
a basis of relative measurements. It 1s not necessary

to determine the value of any electrical quantity in the
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absolute sensej; precision type dec milliammeters are used
not for their‘quantitative accuracy but for their line-
arity and the preciseness of their readings.

The 1000 cps carrier voltage input to the pickup
unit was measured with a bridge type instrument rectifier
and a dc milliammeter. These were permanently connected
to the oscillator. Only a relative measure of the
voltage was necessary. The slow drift after a short
warm up time never exceeded a few percent in a day.

The reading of the milliammeter was recorded as an item
of data for each measurement of force.

A second precision dec milliammeter was used for
calibration of the pickup unit and the amplifiers,
filters, and demodulator equipment. It could be plugged
into the load resistor circuit. The plugglng-in action
removed a portion of the load resistor equal to the
resistance of the meter. The inductive reactance of the
meter coil produced a measurable phase shift; the meter
was removed from the circuit during the actual measurement
of dynamic forces.,

The amplitude equation is now formulated.

All quantities are dc or rms values.
f cps frequency
Fy 1p force

Vs volt oscillator voltage
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-‘ -
s  ma volt 1b~"

P volt ma'l

Vp volt

v volt cps'l

h
Ag

The null condition is rep

increment in dc current in
load resistor for static
force

gain setting of resistor
divider between ampli-
fiers

gain factor of amplifiers

sensitivity, ma in load
resistor per input
volt per 1b for 8= 1

ratio of voltage across
load resistor with milli-
ammeter out to dc ma
with meter in

voltage across load resistor

ac tachometer generator rate
constant

helipot setting

attenuator setting

resented by the equations:

1
F,sg g, V,p = V, = vfh— , (24L)
Ay
vll h f
Fi " - — . (25)

Psg, g V, A,
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The static force equation is

F, s g &, Vo'_'-i . (26)
The five quantities, h, f, 81 Vb, and At’ were taken as
data for each measurement of dynamic force.

The measurement of the amplifier gain, g,, was
accomplished by connecting a fraction of the oscillator
voltage into the first amplifier and measuring the dc
current in the load resistor. Four audio output trans-
formers connected in cascade provided the necessary
constant fractional reduction in voltage. Since the tests
were always made at the same values of g1 and Vb, the
quantity g, may be represented by the equation:

g, " ig . (27)
The constant cg will be cancelled out in later equations.
The gain as measured by the current ig was observed
from time to time during each day. It would vary slowly
over a range of a few percent; usually a set of several
runs would have the same value of gain. At the same
time as these readings were taken, the linearity of the
demodulating equipment was observed by changing the
fractional gain 8y The linearity was as good as the
meter* which has a linearity of .2 percent.

The sensitivity constant, s, was determined by

static dead weight tests on the model. 8tatic horizontal

*  General Electric Co., Schenectady, N. Y., Type DP-2
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forces were applied to the model by wire and pulley
arrangements using the force of gravity on mass welghts.
Five equal increments of force were appiied in one direc-
tion and then in the o#her. By this procedure the
incremental change in current in the load resistor per
unit of force was determined. It will be recalled that
this is a carrier system, and that it is the change in
rectified carrier output that is a measure of the modu-
lating signal. The procedure is expressed analytically
in the following equations. The FS and is are the
ineremental changes in force and current. The quantity

i _,is the measure of the amplifier gain, o 9 at the

g'
time of the measurements.
Fs s g &, Vo = i (28)
1 is 1l is
s = - = (29)
Fs &1 vc> € Fs &1 Vo cg ig'

Twenty two sets of measurements were made at more or less
regular intervals during the experimental program. Each
set represented the average of the values of incremental
current for several cycles of increments of forée.
When the appropriate values of the other quantities are
supplied, the following value of the product (s cg) is
arrived at:

(s cg) « 40O # 1 percent. (30)

The quantities v and p are constants of the equipment.

It was not necessary to determine their individual values.
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Their ratio was measured by using the constant amplitude
motidn of the drive platform of the moment balance., A
second differential transformer picked up this motion,
and the resulting electrical signal was measured. By
rotating the auxliliary shaft by hand, the static or de
maximum and minimum values of the current in the load
resistor were determined. These corresponded to the
maximum and minimum positions of the drive platform.
The equivalent rms value of current for this case of
zero frequency motion was computed. The balance was
then run at a series of frequencies and the usual
amplitude data were taken. Since the amplitude of the
motion is constant, these two cases of motion may be

equated. Equations (24) and (26) are used.

1
ip=7V,=v£fh— _ (31)
Ay

The average value of the f h At"l product in per second
units over a range of four to ten cps was 1l.64 * ,0l.

1

The resulting value of v p ~ in ma per cps is .0225 2

.0001.

When the numerical values presented in the preceding
parapraphs are collected, the final equation for the
amplitude of the lateral force 1s given. Since the
value of g; was constant in all of the actual runs, its

value of one third is put into the equation.



F, o= w0225 _1 3 1 fh
00 1 VA,
1 fh
= ,169 (32)
1, v, A

2. Phase Measurement

The measurement of the phase of the lateral force
relative to the motion of the body requlred the tracing
of an electrical phase from the pickup unit through
the electronic equipment to a mechanical position of the
frame of the ac tachometer generator, across a mechanical
gap to the location of the contacts for flashing the
stroboscopic lamp, and finally to the phase of the angular
motion of the bhody.

The angular location of the contact carriage is a
reference for the phase of the angular motion of the
body. Its position was measured by a mechanical counter
geared to it through a worm and spring-loaded worm wheel
and a selsyn repeater circuit. The counter reading for
the zero phase of the drive motion is determined from
the Fourier analysis of the drive motion wave form.

The phase difference between the drive motion and the
model motion is calculated by Eq. (21).



The angular location of the ac tachometer generator
frame was also measured with a mechanical counter. The
phase difference of the drive motion and the voltage
generated by tachometer was determined with an oscillo-
scope. The sine wave voltage was displayed on one axis.,
The square pulses generated each half cycle by the
closing of the contacts were displayed on the other.

The frame of the generator was rotated until the leading
edges of the tWo pluses coincided. The generated voltage
and the action of the contacts were now considered to be
in phase; the readings of the two counters were the data
that provided a connection between angular motion phase
and side force phase measuring equipment.

Between the differential transformer pickup unit
and the demodulator the signal information is carried
in the side bands of the modulated wave. The effect of
phase shift at the carrier and side band frequencies on
the modulating signal is discussed in Appendix V. It
is shown that for the steady state condition the signal
wave form is not distorted, and its phase shift is a
delay proportional to the signal frequency.

The phase shift in the electronic equipment from the
side force pickup unit to the load resistor was calibrated
with the second pickup using the drive platform motion.
This phase data was taken at the same time as the ampli-

tude data for determining the ratioc of the quantities v
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and p. The measured value of rate of phase shift was
2.17 degrees ﬁer cps. The measured value of the rate of
phase shift for the 1000 cps L-C filter alone was
2.12 & .06 degrees per cps. See Appendix V for an
analysis of the phase shift through this filter.

The equation for the total phase shift from pickup

to drive motion is

«i.- ?w = <><Ti - (MT- O%). (33)
cxi phase of force
=, phase of drive motion
>, generator frame counter reading
i
X counter constant, connection between force

and angular measurement equipment
@ rate of phase shift for force measurement
electronic equipment
The equipment was capable of measuring angles of
.1 degree. The percentage equivalent of this figure is
less than the 1 percent accuracy of the amplitude measure-

ment for phase angles greater than 10 degrees.



-39

IV. EXPERIMENTAL RESULTS

Test Conditions

Experimental tests were made with three prolate
ellipsoidal shapes. All of the test bodies were two
inches in diameter. The lengths were six, ten, and
fourteen inches which represent aspect ratios of 3:1,
5:1, and 7:1. These shells were made of aluminum; the
wall sections were made as thin as structurally possible
in order to further minimize their moment of inertia.
The external surface was polished to about a five micro-
inch finish. Dimensional tolerances were held to the
order of .00l inch.

The water tunnel velocities ranged from zero to
25 ft per sec in five ft per sec increments. These were
nominal values. The velocity was measured for each run,
and this value was used to reduce the data of that run,

Frequencies of oscillation of two, four, six, eight,
and nine or ten cps were used., The drive platform ampli-
tude for all tests was two degrees. The amplitude of
oscillation of the test bodies was a function of the
tunnel velocity and the frequency. Its maximum value
was less than three degrees for all tests.

The tunnel pressure at the working section was held
between five and ten psi gauge. Variations in pressure

did not produce any measurable changes in the fluid
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reaction on the body. These pressures were high enough
to sﬁppress cé#itation at all tunnel velocities.

The upper limits of the tunnel velocity and oscilla-
tion rate were set by the structure of the internal force
balance and the unsteadiness of the motion., The amount
of torque that could be transmitted in the flexure links
was the limiting factor for the force balance. The second
limit, the unsteadiness of the motion, is inherent in
motion of a real fluid. There was some transient re-
action on the body at the lower tunnel velocities, but
there was no difficulty in estimating the average value
of a reading. Two observers taking the twenty four point
wave form data independently would obtain angular amplitude
and phase values that agreed to better than one percent,
At 25 ft per sec tunnel velocity the transient disturb-
ances were about 15 to 20 percent of the amplitude of

the fundamental frequency.

Data Reduction

The reduction of the data to intermediate curves is
presented in this section. The final numerical results
are given in the next section.

1. Angular Quantities

The real and imaginary parts of Eq. (20) are

separated.



Real Part: = - (34)

This quantity is plotted versus the gquare of frequency,
f, in Fig. 5, 6, and 7 for the three bodies. The curves
are approximately straight lines for each tunnel velocity.
From the intercept and slope of each line a value of K

and I is calculated.

Imaginary Part = (35)

® B
K
The value for B for a perfect fluid is zero. The experi-
mental value for real fluids is small. For each tunnel
velocity an upper limit of its value is determined.
Sample calculations for a typical run are given in
Appendix VI.

2. Lateral or Side Quantities

The rms value of the side force and the phase angle
between it and the drive motion are computed from data
using Eq. (32) and (33). The phase angle and amplitude
ratio of the angular motions of the drive platform and
body are computed from data using Eq. (21).

Equation (23) containing the side force constants
m, b, and ¢ is now separated into its real and imaginary

parts. The real part is equal to ( mo@«ta )» In the
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same manner as for the angular quantities, this term is
plotted versuslthe square of frequency. These curves are
presented in Fig. 8, 9, and 10. They are not the straight
lines that the assumption of components of side force
prbportional to angle of attack and to angular accelera-
tion predict. The zero frequency intercept is taken as
the measure of the static 1ift force. The slope of the
straight portion of the curves is taken as a measure of
the side force proportional to angular acceleration.
Both of these reactions are zero for perfect fluid
motion.

The imaginary part of Eq. (23) is equal to « b.
This quantity is plotted versus frequency in Fig. 11,
12, and 13. This fluid reaction exists in a perfect
fluid and is proportional to the frequency of oscillation
and the velocity of the tunnel for this motion of the
body. The experimental curves are straight lines as
predicted by the theory.

Sample calculations for a typical run are given in

Appendix VI.
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Experimental Results

1. Hydrddynamic Moment on Prolate Ellipsoidal Body
Equation (14) gives the real fluid hydrodynamic

moment on the body in terms of three quantities, If,
B, and K. The experimental values of these are now
given. The corresponding values for perfect fluid
motioh from Eq. (13) are also presented.

a. Static Moment

The dimensionless quantity (k2 - kl) is a
measure of the static moment rate. Experimental and
perfect fluld values are given in Fig. 14. The perfect
fluid value 1s calculated from equations in Appendix III.
The quantity K is equal to U, Uy® (k, -k;) where M_ is
the mass of the displaced fluid and Ub is the constant
relative linear velocity.

b. Moment due to Angular Velocity

The dimensionless quantity € is called the
damping moment rate. For perfect fluid motion it is
zero. For real fluid motion in the range of the experi-
mental tests it is small. Experimental values represent-
ing its estimated maximum are given in Fig. 15 for
Reynolds number based on the length of the body. The
basis of dimensionality is the equation:

P 2
B = ¢ Z U, 4 (2a)¢ . (36)
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The quantity A 1s the area of the circular cross section
of the prolate.ellipsoid and (2a) is the length.

¢. Virtual Moment of Inertia of Fluid

The dimensionless quantity k' is the coeffi-
cilent of virtual moment of inertia of the fluid. The
experimental and perfect fluid values are given in
Fig. 16. The perfect fluid value is calculated from
the equation in Appendix III. The quantity If is equal
to k' I, where I, is the moment of inertia of the dis-
placed fluid.

2. Hydrodynamic Lateral Force on Prolate Ellipscidal
Body
Equation (14) gives the real fluid lateral force

on the body in terms of the quantities m, b, and ¢.
The experimental values are now given,

a. Static Lift

The dimensionless quantity ¢ is a measure of
the lateral force proportional to angle of attack.
This force is zero for perfect fluids; however, it has
ponderable magnitude for real fluids. Experimental
values are given in Fig., 17 for Reynolds number based
on the length of the body. Included on the figure is
the experimental value for a wind tunnel test of the
airship "Shenandoah"(z). The basis of dimensionality

is the equation:
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z-cg—ua. (37)

The quantity A is the area of the circular cross section
of the ellipsoidal body.

b. Damping Force due to Angular Velocity

The dimensionless quantity (k2 - kl) is a
measure of the lateral force due to angular velocity.
Experimental and perfect fluid values are given in

Fig. 18. The basis of dimensionality is the equation:

b= (k- k) MU . ¢38)

c. Lateral Force due to Angular Acceleration

A dinmensionless quantity Cy is defined as a
measure of the lateral force due to angular acceleration.
This quantity is zero for perfect fluids. The experi-
mentally measured values are given in Fig. 19. The

basis of dimensionality is the equation:

m o= c, g A (2&)2 . (39)
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Conclusions

The combarisons of the measured hydrodynamic reactions
with the perfect fluid reacticns are now given.

The static 1ift force is the principal real fluid
force attributabie entirely to the viscosity of the
fluid., Its coefficient is plotted versus Reynolds
number in Fig. 17. The magnitude agrees with other
experimental data.(z) These coefficlents were based
on the intefcept at zero frequency of oscillation in
the data reduction curves of Fig. 8, 9, and 10. The
curvature of these lines at the low frequencies of oscilla-
tion suggests a dynamic effect may be present; that is,
the 1ift force proportional to instantaneous angle of
attack is not completely independent of the angular
velocity or angular acceleration.

The lateral force due to angular velocity is a
perfect fluid force that depends on the difference of the
virtual inertia coefficlents of the body shape. In
Fig. 18 it is seen that all of the experimentally de-
termined values are higher than the perfect fluid values.
The experimental values may be reduced about three per-
cent by the addition of a correction for the effect of
the spindle shield. The magnitude of the correction was
estimated by placing a second shield in the tunnel on

the other side of the model. It was assumed that the
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effects of the two shields are additive, and the correctiocn
was éstimated on this basis. This correction was not
applied to the curves because it did not exceed the
scatter of the experimental points; however, it is in
the direction that decreases the difference between the
measured real and perfect fluid forces. It is concluded
that the real fluid force is less than five percent
higher than the perfect fluid force on the basis of

the measurements on the 7:1 and 3:1 aspect ratio bodies.
The difference is about eight percent for the 5:1 aspect
ratio.

The lateral force due to angular acceleration is a
real fluid effect. From Fig. 19 it is seen that its
dimensionless coefficlient is roughly proporticnal to
Reynolds number over the experimental range of tunnel
velocities. Its magnitude 1s small at the low frequen-
cles compared with the static 1lift force; at 10 cps it is
comparable to the 1lift force.

The measurement of the angular quantities is made
difficult by the large negative or destablizing static
moment rate and low damping moment rate. The balance
had to be operated at frequencies well below tha natural
frequency of the system and the amplitude ratios of the
drive and model motion changed from unity to about 1.4
over the frequency range of two to ten cps. The sep-

aration of the components of moment thus required the
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differences of nearly equal quantities in many instances.
The experimental static moment rate as shown in Fig. 14
agrees well with the perfect fluid values particularly
at the higher fluid velocities where this reaction is
large.

The experimental value of the coefficient of virtual
moment of inertia exhibits a definite decrease with in-
creasing tunnel veloeity. The measurements of the
3:1 aspect ratio body should be disregarded completely;
the magnitude of the moment of inertia of the body itself
1s large compared with the additional moment of inertis
of the fluid. The decreasing value with increasing tunnel
velocity is to be expected; it represents loss in the
kinetic energy of moticn in a real fluid due to its
viscosity.

The damping moment or moment due to angular velocity
is small compared with the static moment and moment of
inertia reaction over the range of the experimental
tests, Its perfect fluid value is zero. The real fluid
value was so small that only an estimate of its maximum

value could be determined.
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APPENDIX I
Notation

All quantities are in foot-pound-second units. (pound force)
X, ¥, inertial coordinates
X,y body axes, fixed in body, origin at center of

gravity or at geometric center for ellipsoids

8 angle of x axis from X, axis
u , v velocity of body in inertial frame
U, Vv velocity of body in inertial frame resolved

along body axes

M mass of body
Ib moment of inertia of body
T kinetic energy of motion of body

fx s T hydrodynamic forces exerted on body in inertial
frame resolved along body axes

F_, F total external forces on body in space or on body
and fluid system resolved along body axes

n hydrodynamic moment exerted on body

K total external moment on body in space or on
body and fluid system

The other quantities are defined in the text as they appear;

several of these are collected here,

a,b semi-axes of prolate ellipsoid, a greater than b
MO mass of displaced fluld
I0 moment of inertia of displaced fluid about origin

of body axes
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virtual inertia coefficients of a prolate
ellipsoid from Appendix IIIT

pressure in fluid

density of fluid

velocity of point in fluid

velocity of point on surface of body

relative velocity of fluid and body at a
point on surface of body

coefficients of real fluid reaction on body
defined in Eq. (14)

frequency of angular oscillation of medel

amplitude of oscillation of model, spindle,
drive platform

phase angle of model, spindle, drive motion

rms value of the lateral force on body

phase angle of lateral force on body -

torsion spring rate of drive spring and upper
spindle spring

moment of inertia of spindle

angular damping rate of spindle seal
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Equations of Motion of a Rigid Body in Space

Yo ¥ x

'\e

Kinematics of two dimensional motion:s
u = uo cos & + vo gin ©
vy = --u0 sin@®@ <+ v _cos ®

F = F cos @ + F sin ©

x X, Yo
F = --Fx sine®e + F cos 8
¥ (e} I

The equations of motion may be written from Lagrange's equation

or for this simple case from Newton's law.

F, = Mw , F_ = Mv , N = I8

F, = M(u-v8 , F = M(v+ud)

y

These last two equations can be derived from the first two by
using the kinematic relationships. They may also be arrived at
directly by using Kirchhoff's form of Lagrange's equation which is

applicable to this case of moving axes.
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Kirchhoff's equations for two dimensional motion are

d ar . aT
Fx W e —— - g »
db 3u ov
d aT , T
F, = ——w— & § — R
y dt av du
d aT oT oT
N =2 = « v — + yq — .
dt 298 du ov

The kinetic energy, T , is a function of u, v, and 9. for this
case., These equations may be derived by application of the kinematic
conditions to lagrange's equation. The forces and moment are still
measured in the Xy 5 ¥ inertial system; they are resolved along

the instantaneous directions defined by the angle 9.



APPENDIX 1II

Equations of Motion of a Rigid Body in an Infinite Volume of

Frictionless Fluid at Rest at Infinity

In chapter XVII of the text of Milne-Thomson (1), the equations
of motion are derived from the rate of change of the impulse of the
system. The following presentation is taken from section 17.60 in
which the same equations are arrived at in a heuristic manner,

Consider the motion of a system of rigid bodies moving in a
frictionless fluid that is contained in a fixed envelope E. Describe
the configuration of the bodies by the generalized coordinates
( Qs Aoy eoe qn). The solids form a holonomic system, Let the

position vector to a point of a solid body be T.

T =T (o eee q) (1)

?-?-Zi—iéiagio?idi (2)
aqi

av ar

_— = - (3)

aqi qu

D
Consider a virtual motion described by the velocity ;Ei- » Let

g‘z be the rate of doing work. Let F*mr be the total force on P.
Dr ar in
i )
Dt aqi Dt
- SF i $.,F 5)
— — . F ——— -——-— = 2 Q
Dt PF Dt P,i 8,1
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The Qs’ 4 are the components of the generalized force,

ar :_-_al‘

Qs,i- ZPF-a-;;-- ZPmr'a';;
d _'.3; = d ar

P P
dt aqi dt.aqi

The kinetic energy of the solids is given by:

1 -
Tsa -é-ZPmrr .

Equation ( 6 ) now becomes:
G

s,1 dt a4, g,

This 1s Lagrange's equation for the solids,

The fluid is not a holonomic system; that is each particle

(6)

(7)

(8)

of fluid is not defined by an explicit equation. The fluid motion

is assumed to be due entirely to the motion of the solids and would

cease if the solids were brought to rest. The fluid motion thus

satisfies the conditions:

vt
o¢

on

3¢
- — = Vn = normal component of velocity at the
on

9, Ve -T¢

0 at the envelope E,

boundaries of the solids.

But Vn is a linear function of q . Thersfore,

p= 5 P,

9

(10)

(11)

(12)

where ¢i is a function of the generalized coordinates but not of
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the generalized velocities; and

- 2 - .V’ z2 - X -._;i- q s (13)
?S i or
av 3 ¢,
— .., (k)
aqi or
The kinetic energy of the fluid is given by:
= ‘L - e
T 5 [ p vV aT (15)
) _av _23
-Ti = |pv——dt = - [pvV _¢i dt (16)
aqi aqi ar

The equation of motion for a fluid particle is

F = pv . (17)
For the same virtual motion defined for the solids, the

virtual velocity of the fluid is given by:

Ve-Tf =- zié_-_ﬁ-——i- . (18)
ar Dt
Since %{ and %’E are independent operators, Eq. (13) and (18)
give - -
av Dv
—_—= — (19)
dt 111

The generalized force and rate of doihg work are given by:

oW - _3¢. D D
—= [FVd-r= ZifF ¢1_q.i.d.,. Z, Q o, (20)

Dt ar Dt Lyi py
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- i - i
N = «|F —= dt = = |pv—=dv . (21)
& f ar / ar

L 3. D aT, D
[vad‘c= Zi[pv ¢i-21—d1-2—-&l.(22)

Nows

ar Dt i aq, Dt

Differentiate this with respect to time.

2 _= d aT, D aT, Dq
[vad1‘+ vadfc-Zi——:-I:—ql+ zi__L_q_iL-(Z.'i)
dtaqiDt aqiDt

_ _Dv D _ D
/vad«:*- pv=—dr == [lovvdr -—1
Dt pt /2 Dt

= bz, Rt (21)
aqi Dt aqi Dt
When Eq. (18), (21), (23), and (24) are combinsd, the result
is
D -3¢, D .
QLi.-E.i..- pv_i—ii-d = /pquor
O | or Dt
d 3T, D 3T, Dq _ -
= zi———lé—ii-+ Zi#—ﬁ- pvVde
dt aqi Dt aqi Dt
d 9T, D aT Dqg
dt 3q, Dt 3q, Dt
and
d 9 0o D
Zi i - —_.i 4.-—&"- ...-q_i- = 0 , (26)
’ dt aqi qu Dt
Dqy
Since the —= are independent, Eq. (26) reduces to Lagrange's
Dt

equation which is seen to hold for the liquid also.
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Now the only forces on the system that can contribute to the

virtuai power in a virtual motion are external forces and forces
on the envelope E, These latter can not contribute since the
envelope does not move. Thus the total external force on the fluid
and body system is given .by Lagrange's equation when the total
kinetic energy of the body and fluid sysyem is used.

The arbitrarily located envelope E may now be taken as large
as desired. When it is allowed to go to infinity, no condition of
the solution is viclated. The kinetic energy in the fluid is finite
and is given by a homogeneous gquadratic form in the linear and angu-
lar velocities of the solids.

For the two dimensional motion of a single symmetrically shaped
body such as a prolate ellipsoid moving with its long axis in the

plane of motion, the kinetic ensrgies are

ZTS-Hu2+Mv2+Ibm2, 27)
2TL=Au2+Bv24-R o . (28)

Since the kinetic energies are independent of x, and Vs

Kirchhoff's form of Lagrange's equation may be used. See Appendix

I.
d a(T_+T T T
et e e
= M+A)u - (M+B)voe (29)
F, = M+B)v + (M+A)uae (30)
N = (I, +R)a+ (B-A)uv (31)

These equations give the external force and moment on the body
required to move it through the fluid. The terms containing A, B,

and B are the reactions of the body on the surrcunding fluid.
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APPENDIX III

Two Dimensional Motien of a Prolate Ellipsoid in a Frictionless Fluid
Prolate Ellipsoidal Coordinates:

X=¢cnE,y=rcosl,z=rsin%,

r°=c? 1-8%) m?-1) .

The boundary of the prolate ellipsoid represented by the equation

2 2 2
X Y Z
- - | 1
a2 2 bZ

is defined by the single ellipsoidal coordinate

n o= =2, & - -

L ]

Let the geometric center, x =y = z = 0 , be the origin of
body axes. Motion takes place in the X, s ¥, coordinate system.
The motion is described as follows:

u, v components of body velocity resolved along
body axes,

w angular velocity of body,

v,V

components of the velocity of the fluid at a

large distance from the body resolved
along body axes.
The velocity potential, ¢ , for this motion is

¢ = cup P(E)QM + cva, P%(E) Q}_(n) cos %
+ € w Aq P%(E) Q;‘(n) cos %
- e hom + nm| nE

- o7 (Lo « Am)| HE et .



a o —— 1, o
dQ, ) 4 or(m )
Ql no P?l:(no) ql(no
dn dn
P.(m.)
i ;(%1( )
d Q,(n
P%(no);—-g—ﬁ-
n

The P and Q functions are Legendre's polynominals,

Define:
Q, (n,) Qi(‘no)
- ’ k, = ’
E P, (n,) " 2 M) K
4 1
9
kt = ) QZ(TIO) A3 .

20y’ =1 Byn)

Choose 1 = Ny » & = 1 as a reference point on the surface of

the body. The pressure equation derived for moving axes in the text

on page 9 is
o
E*%%z-;?'-%%z'cm’
where
Eb velocity of body,
q1=-9 ¢ " velocity of fluid,
Er - E - E,o relative velocity.
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The values of the quantities in the pressure equation are

now given.

A i
qbz_ = u2+v2-2 cum(l-sz)z(noz-l)zcost

+ 2 cvan°£+ 02 w2 {noz €2+ (no2_1)(1_€2)} *

2

cos %
2 = w4 (v+cy m)2
g=1 2 2
2 . Do a-e) ( 4-1)2 (u u)2
9 2 - &) ky

£ %
+ °2 3 + sin® ¥ (k2+1)2(v- V)2
(n, - &)
2.3, 2 1
21, E(1-&)2Mm ~ ~-1)*
(noz-‘*zz)

(g +1) (ky + 1) °

(U=u) (v=-1V)cos ¥

( 2 -1 2 2
. |2 - );'0 [(znoz -1 - 22%) Kk - 1] cos® %
(m, = &)

2
+ 'q02 &22 [(21102 -1) k' + 1] sin® K} ? of

2 2 > 2.%
my, (m, -1*=Q-&9)* 2 N
- (21 -1)(1-2E)k'-1]'
2 2 o
(n, - &) [

(k1+1)(U-u)cmcosZ +
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2
=2n, & (n, -1

) 2 2 2
(noz _ E2) [(2110 - 1)(1 - 2E ) k! - 1] cos” %

+27n,& [(21’;02 -1) k' + 1] s.’m2 Z}

(k2+1) (v-V)cow

2
qr2 - {(kZ + 1) (v=-V)+ un [(21102 -~ 1) k' + 1] c m}

A 1
uklg'qo + cvk2 (n°2_1)2,(1_€2)2. cos ¥

#
o

3t
+c ok (2n°2-1)(1102-1)1(1-52)2n°£cosz
- eU (g * 1) &
. 1 L
- eVl +1) (7 - 1P A=) cos ¥
) . .
;—; = cukn - cU(k.1+1)'q°
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?j-cos(*'l?sinz
4

31

% normal to paper,
upward

|

The element of surface area, 45 , is given by

iy i
s = & o - M- .

The force and moment exerted on the body by the fluid are now

given,

_ +H oz
£, = -pcoseds'[ f-pcz(noz-l)sdz 14
= (o]

S
= % pc3n° (noz-l) {(I}-ﬁ)kl*ﬁ*‘(v-v)kgw-vw}

+y
"
wier

g::c31'10 ('qoz—l) {(6-§)k2+\;-(u-U)k1w+Um}



~B2=

n -f {-ydfx +xdfy}
S

- b ol mP-nenl?-n v

-4 e ()] - Dy - k- DE -

When the values of ¢ and n, are replaced by a and b and the
mass, Ko s ‘and moment of inertia, Io s of the displaced fluid are

calculated, these equations become
£.o= M {(U-u)kl-*u'r (v-V)kzw-V(e} ’

i‘y = M {(W;-w;)kz'r&-(u-ll)klw'bl!w} R

n = «I kKo - Mo(kz-kl)(n-U)(v-V)

O
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APPENDIX IV
Moment of Inertia 61‘ Spindle_ and Angular Damping Rate of Seal

The spindle was made of steel. The dimensions were 8.25 inches
of .875 inch diameter and.2.75 inches of 1.0625 inch diameter. The

moment of inertia of these sections is

I =2 b

- -5
%3 mr a 5.9 x 10

1 £t sec2 .

Viscous laminar shear was assumed to take place in the small
clearance between the spindle and tunnel wall., The equation for the

damping rate is
Fr /.1(2’7Tra) (o r) r 2'7r,ur33
B = - . = .
5 t ® t

For r = 4375 inch, a = 1 inch, t = ,001 inch, and M = 1,15 x 1077

5

ib sec in.z, B, = .63 x 10 ° 1b ft sec.

The steady state solution for the complete system of Fig, 2

for osclillation at frequency o is
~1

{K+K2 I ij} K +K I« 3B o K

+

. B 05

I
At the highest frequency used, 10 cps , the quantity -2 w2 was

K

equal to .00l . For most runs this was negligible compared with the
other terms. It was used whenever it was necessary.

The ratio of the Bs term to the Is term was equal to .009 at 2
cps and to ,002 at 10 cps. The Bs term was negligible at all times.
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APENDIX 7V
Phase Shift in an Amplitude Modulated Wave

Since the maximum band width between the upper and lower side
band frequencies is approximately two percent of the center carrier
frequency, it will be assumed that any change in phase shift with
fre_quency in the electronic equipment is proportional to frequency
over this small range. Thls assumption is verified for the narrow
pass band L-C filter in the second part of this appendix.

E sin mct original carrier signal
e sinow st’ original modulating signal

g = Ko + k (0 - (nc) phase shift (lag)

{E + e sin wst} sin mct
original modulated signal
{E + e sin (mst - msk)} sin(coct - Zo)
modulated signal after
assumed phase shift
For steady state signals the phase of the carrier is delayed
by the amount 2;0. The phase of the envelope or modulating signal
is delayed an amount proportional to the rate of change of phase

shift. The wave form of the signal is not distorted.

Characteristics of 1000 cps 1=-C Filter

A single section band pass filter was used to remove noise pickup

voltages from the modulated signal. It was a single section, T type
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unite FEach of the two series arms was a series L= circuit consisting
of an inductor of 7.9 h and a capacitor of .0032 ufd; the shunt
arm was a parallel L-C circuit consisting of an inductor of .06 h
and a capacitor of .lj22 ufd. These values were accurate to about
two percent. The calculated band width, .center frequency, and load
resistor were 123cps, 1000cps, and 6100 ohms.

The characteristics of the circuit were investigated analytically.
When the filter is terminated in the design load resistor, the transfer

constant may be expressed in the equation

e 1
L
& l-2d°+j2q(-q)
where
£, £ £, }
qQq = Z" - - = ’
f fo f
fo = center frequency, Af = Dband width.
Now:

dy L 180
—  eme e = 1,863 degrees per cps at £ = £,
af JAY 4 /8
e
Tan @ = 18.30 degrees and '-—9-‘= 1,0028 at £ = fo + 10 cps.
eyl
It is seen that the departure from linearity of the phase shift
with frequency and the change in gain is negligibly small for the
ten cps maximum oscillation frequency used.
The performance was checked experimentally. Measured band
width was 134 cps and center frequency was 954 cps. The insertion

loss was about two db. The measured rate of phase shift was
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2.12 * ,06 degrees per cps. This measurement was made with un-
modulated signals. The final calibration value for the entire
circuit from pickup to load resistor was 2,17 degrees per cps.
This measurement was made with the pickup unit connected to the
constant amplitude drive platform motion. There was no detectable

nonlinearity,.

APPENDIX VI
Sample Calculations

Angular Measurement
Balance constantss
K = 108 1b ft per radian,
K, = 185 1b ft per radian,

5

I = 5.9 x 102 1b ft sec® .

8
Datad
Run 41 , 5 : 1 aspect ratio , 15 fps tunnel

velocity , 6 cps oscillation frequency ,

4

= = 941 , =Xy - K, < 0° 18" (estimated).

!

The phase angle between the drive motion and the spindle
motion could not be measured with any degree of precision for an
individual run. The estimated maximum value is based on an average
slope for all of the runs at a given tunnel velocity.

For these small phase angles, sin ( < o = °<1) = (°<2 - °<l),
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and the solution to Eq. (20) becomes

(wg_wz}'&”a Rk Lo
K, K K, KA K

-2
0 Bk o fbrE Ba Lo\
K,  Khy C VK KA K
For Run Ll:
2
K+K2_1m VR

K X
which is plotted in Fig. 5 . The average slope of the phase angle

was 2.6 minutes per cps oscillation frequency for the 15 fps tumnel

velocity runs, This quantity was used to determine the dimensionless
coefficient corresponding to the B term.

Lateral Force Measurement
Data: Run 41 , Vo-.Sos, h=.549 4 A, =3, £= 6,
X . - o - 90
lg .99 ’ O<° - D«i 650'4 ) AO 27,
Equation (23) is now used.

me? + 2= 197 , @b= .31
These values appear on Fig. 9 and 12,
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