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Phonon density of states in vanadium

V.F. Sears, E.C. Svensson, and B.M. Powell

Abstract: The normalized phonon density of states g(v) of vanadium is accurately determined at room
temperature (294 K) from the analysis of neutron inelastic-scattering data obtained using a triple-axis
crystal spectrometer with a constant momentum transfer @ = 6.5 A1, (1 A =10"19 m) a constant
scattered-neutron energy of 8.0 THz, and a variable incident-neutron energy. The energy transfer in the
experiment varies from —1.9 to 10.0 THz, and the energy resolution (FWHM) is 0.35 THz at the elastic
position. Necessary corrections are made for background scattering, multiple scattering, multiphonon
scattering, absorption and self-shielding, and for the spatial inhomogeneity of the incident beam. The
resulting g(v) distribution has an average statistical precision of about 3% and is characterized by peaks
at 4.9 and 6.9 THz, which we attribute to transverse and longitudinal phonons, respectively, and by a
cutoff at about 8.1 THz. The peaks in our g(v) distribution are much more clearly resolved than in

any previous work on vanadium. We also see a small shoulder in g(v) in the region 2-3 THz, but it is
far less pronounced than in some of the earlier experiments on vanadium. Below 2 THz we find that
g(v) = av?, and the observed value of g leads.to a Debye temperature that is in excellent agreement
with that obtained from the measured elastic cosntants of vanadium at room temperature. A theoretical
g(v) distribution calculated by Clark on the basis of a nearest- and next-nearest-neighbor central force
model is in generally good agreement with our results although it differs in some details. In particular,
Clark’s theory predicts that the transverse peak should be slightly more intense than the longitudinal peak,
whereas our experimental results indicate the opposite.

Résumé : La densité normalisée g(v) des états de phonons du vanadium est calculée avec précision a
température ambiante (294 K), a partir de ’analyse des données de diffusion élastique des neutrons
obtenues en utilisant un spectrometre 3 axe triple avec un transfert d’impulsion constant @ = 6,5 A1

(1 A = 10~1° m), une valeur constante 8,0 THz de 1'énergie des neutrons diffusés et une énergie variable
des neutrons incidents. Dans 1’expérience, le transfert d’énergie varie de —1,9 & 10,0 THz, et la résolution
en énergie (FWHM) est 0,36 THz a la position élastique. Les corrections nécessaires sont effectuées pour
la diffusion de fond, la diffusion multiple, la diffusion multiphonon, 1’absorption et ’effet auto-écran, ainsi
que pour I’hétérogéneité du faisceau incident. La distribution g(v) résultante a une précision statistique
moyenne d’environ 3% et est caractérisée par des pics, & 4,9 et 6,9 THz, que nous attribuons & des
phonons transversaux et longitudinaux, respectivement, et par une coupure a environ 8,1 THz. Les pics
dans notre distribution g(v) sont beaucoup plus clairement résolus que dans tous les travaux précédents
sur le vanadium. On voit aussi, dans la région 2 & 3 THz de la courbe de g(v), un petit épaulement qui
est cependant beaucoup moins prononcé que dans certaines expériences antérieures sur le vanadium. Au-
dessous de 2 THz nous trouvons que g(v) = av?. La valeur observée pour a donne une température de
Debye qui est en excellent accord avec celle qu’on obtient a partir des valeurs mesurées des constantes
élastiques du vanadium a température ambiante. Une distribution g(v) théorique calculée par Clark sur

la base d’'un modele de forces centrales entre premier et second voisins est généralement en bon accord
avec nos résultats tout en étant différente pour certains détails. En particulier, la théorie de Clark prédit
que le pic transversal devrait &ire 1égérement plus intense que le pic longitudinal, alors que nos résultats
expérimentaux indiquent le contraire.

[Traduit par la rédaction]

1. Introduction elastic neutron scattering. The first such experiment was car-
It was originally shown by Placzek and Van Hove [1] in 1954 ried out on vanadium the following year by Brockhouse [2]
that the phonon density of states g(v) of a crystal could, in using an early version of the triple-axis crystal spectrometer,
principle, be determined directly by means of incoherent in- and was one of the many pioneering experiments for which
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Professor Brockhouse was recently awarded the Nobel Prize
in physics.

Vanadium is the ideal material for this kind of experiment
because o

(¥) it is an almost totally (99.6%) incoherent scatterer and

(ii) the atoms occupy the sites of a cubic Bravais lattice

(the bee structure) so that, to the extent that multiphonon
scattering is negligible, the observed inelastic scattering is
directly proportional to the phonon density of states [1].
In all other incoherently scattering materials, the effective
density of states obtained from such experiments is weighted
by the phonon polarization vectors. In practice, however,
vanadium does not provide an easy experiment because, if
one wishes to measure g(v) with high resolution, it is nec-
essary to use a relatively small momentum transfer Q for
which the inelastic scattering is very weak, and extremely
long counting times are then required to achieve high statis-
tical precision.

Nevertheless, many neutron-scattering experiments [3—14]
were performed on vanadium in the period 1956-1967 to de-
termine the phonon density of states, but apparently only one
[15] in more recent years. With the exception of the present
work, which was done using a modern triple-axis crystal
spectrometer, all these other experiments were performed
using time-of-flight spectrometers, mostly with a beryllium-
filtered incident beam. Although most of these experiments
yielded roughly similar g(v) results, with reasonably well-
resolved transverse and longitudinal peaks, they differed con-
siderably in their detailed shapes owing to differences in en-
ergy resolution and statistical precision, and in the way the
authors corrected for effects such as multiphonon scattering
and multiple scattering.

In the past 5 years, we have collaborated with a number
of groups in many neutron inelastic-scattering experiments
at the NRU reactor at Chalk River to determine the phonon
density of states in various hydrogenous materials [16-23].

“The initial motivation for the present experiment on vana-
dium was simply to obtain a benchmark for this work, and
to test the method used for making multiphonon corrections.
However, it soon became apparent that, if we were going to
repeat this classic experiment, we should try to determine
g(v) with much higher resolution and statistical precision
than had been achieved in any of the earlier experiments
mentioned above in order to resolve some of the discrepan-
cies that exist in that work and to provide a more accurate test
of available theoretical calculations [24]. We have also been
able to shed some light on a long-standing discrepancy be-
tween the Debye temperatures of vanadium determined from
specific heat and from elastic-constant measurements [25].

2. Experiment

The experiment was performed using the N5 triple-axis
crystal spectrometer at NRU with a Si (331) monochromator
and a Ge (113) analyzer. The scattered-neutron distributions
were obtained by varying the incident-neutron energy with
a constant momentum transfer Q = 6.5 A~! and a constant
scattered-neutron energy of 8.0 THz. The resulting energy
transfer v varied from —1.9 to 10.0 THz in steps of 0.1 THz
and, in the region of the transverse and longitudinal peaks
(4.1 to 8.3 THz), additional scans were taken with a smaller
step size of 0.05 THz. The energy resolution (FWHM) was
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0.35 THz at the elastic position. It was necessary to accumu-
late data over a total period of about two months to obtain
sufficient intensity in the inelastic region (typically 700 to
1300 counts) to enable us to determine g(v) with an average
statistical precision of 3%. The corresponding background, as
determined from measurements in the absence of the sample,
was about 150 counts.

The nominally pure vanadium sample was in the form of a
plane slab 0.457 cm thick, and was masked to give an effec-
tive height of 8.84 cm and an effective width of 5.04 cm. For
a neutron beam of energy 8.0 THz that is normally incident
on the sample, we estimate that 14% of the incident neutrons
are scattered, 12% are absorbed, and the remaining 74% are
transmitted. For the scattered neutrons, 83% are scattered
once, 15% are scattered twice, and 2% are scattered three
or more times. The experiment was performed in symmetric
transmission geometry with the sample at room temperature
(about 294 K).

3. Analysis

" At each point in the experimental scans, we recorded the total

number of detector counts that were obtained in the time re-

quired to accumulate a prescribed number of monitor counts.

The total number of such detector counts can be expressed
as

C=C+GC 3.1

where C; is the contribution from scattering by the sample
and G, is the background observed in the absence of the
sample. Figure 1 shows the values of C; (dots) and C,
(crosses) obtained in the present experiment. (The data in
this figure have been compounded from a large number of
scans that were taken with various monitor settings, and are
normalized to 4.2 x 107 monitor counts.) The corresponding
values of C; are shown by the dots in Fig. 2.

The net scattering by the sample is the sum of two terms

Cs = Css + Cys (3.2)

where Cg is the contribution from single scattering and Cyys
that from multiple scattering. The former can be expressed
as

Cis = NABS(Q, v) : (3.3)

where N is the normalization factor, A is the correction for
absorption and self-shielding, and B is the correction for the
lateral inhomogeneity in the incident beam, which we shall
call the beam profile correction. Finally, S(Q,v) is the Van
Hove incoherent scattering function in which 7 Q and hv are
the momentum and energy transferred from a neutron to the
sample in a collision. Strictly speaking, in expression (3.3)
the function S(Q,v) should be folded with the instrumental
resolution function. However, we need not show this explic-
itly.

Since the experiment was performed with a fixed scattered-
neutron energy and variable incident energy, the normaliza-
tion factor N in (3.3) is constant across the scan. The correc-
tion factor A was calculated as described in ref. 26, and B
was determined experimentally by measuring the scattering
from a thin polyethylene rod that was scanned across the
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Fig. 1. Total counts C; (dots) and background counts Ci,
(crosses) observed in a vanadium sample at T = 294 K with
a momentum transfer O = 6.5 A-1. At the elastic position
Cy = 52.990.
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Fig. 2. Net counts Cs (dots). The broken line is the estimated
multiphonon scattering, calculated as described in Appendix.
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Fig. 3. Calculated correction factor for absorption and self-
shielding A, measured correction factor for the inhomogeneity
of the incident beam B, and the product AB.
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beam at the posmon of the sample for a series of 1nc1dent-
neutron energies. The correction factors A and B are shown
as a function of v in Fig. 3 together with the product AB.
It will be noted that the decrease in B with increasing v is
partly compensated by the increase in A, so that the product
AB increases by only 9% in the region 0-8 THz.

The multiphonon expansion of the incoherent scattering
function is discussed in Appendix A, and can be expressed
in the form

S(@, v) =W [a(v) +(%) % ol Ga

in which the first term represents the elastic scattering, the
second term the one-phonon scattering, and the dots the
multiphonon scattering. Here, e 2% is the Debye-Waller
factor, in which 2W = (Qu)? and u is the root-mean-square
(rms) displacement of an atom in the direction of Q. Also,
hv; is the recoil emergy, which is defined by the relation
hv; = (£ Q)?/2M in which M is the atomic mass, and hvy =
kgT, where T is the temperature. In particular, vop = 6.13
THz in our experiments, where T = 294 K. Finally, g(v) is
the phonon density of states, which is taken to be an even
function of v and is normalized such that

/0 g(v)dv =1 \ (3.5)

The multiphonon contribution to Cs, was calculated self-

~ consistently from our experimentally determined g(v) dis-

tribution, as described in Appendix A, and is shown by
the broken line in Fig. 2. This contribution varies by only
10% over the frequency range 0-8 THz. It is reasonable
to assume that the multiple inelastic-scattering contribution
to Cps in (3.2) is also approximately constant in this re-
gion. For example, the double one-phonon scattering and the
two-phonon single scattering are determined by similar in-
tegrals and, hence, can be expected to have roughly similar
shapes. (A more. detailed discussion of the multiphonon and
multiple scattering is given in Appendices A and B.) The
observed scattering between 8.5 and 10.0 THz, which has
an average value of 270 counts, represents the sum of the
multiphonon single scattering and the multiple inelastic scat-
tering, and this average value was then used to separate the
one-phonon scattering from the observed net scattering Cs
in Fig. 2 and, hence, to obtain the phonon density of states
g(v) with the help of (3.4). The resolution-broadened elastic
peak was fitted to a Gaussian function to separate it from
the inelastic scattering, and the full width at half maximum
(FWHM) of the elastic peak was found to be 0.353(3) THz.
This enabled us to obtain meaningful values of g(v) for fre-
quencies down to about 0.8 THz.

Figure 4 shows the phonon density of states g(v) that has
been determined in this way. The distribution was put on an
absolute scale with the help of the normalization condition
(3.5), and is characterized by peaks at about 4.9 and 6.9 THz,
which we attribute to transverse and longitudinal phonons,
respectively, and by a cutoff at about 8.1 THz.

In a three-dimensional crystal, the phonon den51ty of states
has the characteristic property [27]

g(v) — av? as v—0 o (3.6)
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Fig. 4. The phonon demnsity of states g(v) for room-
temperature vanadium determined in the present work from
neutron inelastic scaitering measurements at @ = 6.5 AL,
The broken-line curve is the inferred low-frequency limit of
this function.
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Fig. 5. The quantity g(v)/v? for room-temperature vana-
dium determined in the present work from neutron inelastic
scattering measurements at Q = 6.5 A1,
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Figure 5 shows that, apart from fluctuations due to counting

statistics, the quantity g(v)/v? determined in the present work

is, indeed, constant at low frequency. Taking the average of

the 13 points in the range 0.8 < v < 2.0 THz, we find that

a = 0.00564(21) ps®. This asymptotic limit is indicated by
" the short broken lines in Figs. 4 and 5.

4. Discussion

4.1. Phonon density of states

During the past 40 years, many neutron-scattering experi-
ments [2—15] have been performed on vanadium to determine
the phonon density of states, and the results are summarized
in Table 1 where we list the various values that have been
obtained for the frequencies of the transverse peak (vr), the
longitudinal peak (vp), and the cutoff (vma). The cutoff is
not determined very precisely in most of these experiments,
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Table 1. Frequencies of the transverse peak (v;), the longitudinal
peak (vp), and the cutoff (v,,) in the phonon density of states
2(v) of room-temperature vanadium determined from various
neutron inelastic-scattering experiments.

Vr Vi Vinax

(THz) (THz) (THz) Authors (Year) Ref.

73 Brockhouse (1955) 2
6.4 10.6 Carter et al. (1956) 3
4.8 6.5 8.5 Stewart and Brockhouse (1958) 4
5.0 6.9 9.0 Eisenhauer et al. (1958) 5
4.8 6.5 9.0 Turberfield and Egelstaff (1962) 7
52 6.9 10.1 Chernoplekov et al. (1963) 8
4.8 6.5 9.0  Haasetal (1963) 10
4.9 6.5 8.7 Mozer et al. (1965) 12
52 6.6 8.8 Gléser et al. (1965) 13
4.8 6.9 8.0 Page (1967) 14
53 7.4 8.6 Kamal et al. (1978) 15
4.9 6.9 8.1 Present work

and the values that we have assigned for vy, in Table 1 are
simply intended as rough estimates. With the exception of the
original Brockhouse experiment [2] and the present work,
both of which were done with triple-axis crystal spectro-
meters, all the other experiments were performed using time-
of-flight spectrometers, mostly with a beryllium-filtered inci-
dent beam. All previous work was done with lower resolution
and (or) lower statistical precision than in the present study.
In particular, the peaks in our g (v) distribution are much more
clearly resolved than in any of the previous work mentioned
above. Nevertheless, our resolution and statistical precision
are still not adequate to resolve the Van Hove singularities
in g(v), which arise from the existence of saddle points on the
phonon dispersion surface [28]. The instrumental resolution
will, or course, affect the positions of the peaks, and this
probably accounts for most of the discrepancies in Table 1.

In most of the previous work on vanadium [4, 5, 7-14],
there is a small shoulder in g(v), or a corresponding small
peak in g(v)/v?, in the region 2-3 THz that has sometimes
been interpreted in terms of the Kohn effect [11, 13]. Al-
though such a feature is also discernible in our results (see
Figs. 4 and 5), it is far less pronounced than in some of the
earlier experiments [7, 11, 14].

Figure 6 shows a comparison of our results (continuous
line) with the early results of Stewart and Brockhouse [4]
(filled circles), and with the most recent work of Kamal et al.
[15] (open circles). The g(v) distribution obtained by Stewart
and Brockhouse is largely consistent with ours when one
allows for the difference in resolution, but the two peaks
in the results of Kamal et al. occur at higher frequencies
than in either our results or those of any earlier authors (see
Table 1).

4.2. Clark’s model

Many years ago Clark [24] carried out a general investigation
of the phonon density of states in a body-centered cubic (bec)
structure on the basis of the Born — von Kdrmén theory of
lattice vibrations. For a model with nearest- and next-nearest-
neighbor central forces, he showed that the shape of g(v) is



730

Fig. 6. Phonon density of states g(v) for room-temperature
vanadium determined by various neutron inelastic scattering
measurements. The continuous line shows our present results,
the filled circles are those of Stewart and Brockhouse {4], and
the open circles are those of Kamal et al. [15].
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Fig. 7. Comparison of the phonon density of states g(v)

for room-temperature vanadium determined in the present
experiment (dots) with the theoretical distribution calculated
by Clark [24] and scaled as described in the text (continuous
line).
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uniquely determined by a single parameter, the ratio of the
two force constants o and o, and that this parameter is itself
determined by the elastic constants, i.e.,

(V) Ci1 —¢
p= 2 =712 4.1)

[04] 3C44

He then calculated g(v) for 100 equally spaced frequency
intervals in the range 0 < v < vm, and for 18 representative
values of the ratio B, including the value § = 0.82 that he
obtained from the measured elastic constants of vanadium at
4.2 K [25]. However, the individual values of o; and o, for
vanadium were unknown so that he was unable to determine
Vmax itself.

Figure 7 shows a comparison of the phonon density of
states g(v) for room-temperature vanadium determined in
the present experiment (dots) with the theoretical distribu-

Can. J. Phys. Vol. 73, 1995

Table 2. Comparison of the mean-square displacements u* calcu-
lated at various temperatures T using the phonon density of states
g(v) determined by Kamal et al. [15] and the present work. The
last column lists the values of #* at two temperatures that were
obtained from measured X-ray Debye—Waller factors [29].

w(A?)
T(K) Ref. 15 Present work Ref. 29
4.2 0.0020 0.001 95 0.001 93(8)
10.0 0.0020 0.001 95
20.0 0.0020 0.001 98
40.0 0.0021 0.002 07
100.0 0.0028 0.00274
150.0 0.0036 0.003 55
296.0 0.0062 0.006 29 0.006 56(13)

tion calculated by Clark for § = 0.82 (continuous line). In
plotting Clark’s results, we put vmax = 7.9 THz, which is
the value that best fits our experimental phonon density of
states at large v, and relation (3.5) was used to obtain an
absolute normalization of the distribution. We then find that
in Clark’s distribution v = 4.85 THz and v, = 7.19 THz,
which are close to the values 4.9 and 6.9 THz that we ob-
tained from our neutron measurements (see Table 1). The
theoretical g(v)/v? curve for v < 2.0 THz has an essentially
constant value given by a = 0.0049 ps3, which is slightly less
than our experimentally determined value of 0.0056(2) ps’.

Apart from the effects of instrumental resolution, Clark’s
theoretical distribution in Fig. 7 is in general qualitative
agreement with our experimental g(v) results. The main dis-
crepancy lies in the fact that the theory predicts that the trans-
verse peak should be slightly more intense than the longitu-
dinal peak, whereas our results indicate the opposite. Clark’s
model is certainly oversimplified in its assumption of only
nearest- and next-nearest-neighbor central forces. In the Born
— von Kdrmén analysis of the measured phonon dispersion
curves for similar bee metals (e.g., niobium and tantalum), it
is necessary to include the seventh to tenth nearest-neighbor
interactions to obtain detailed quantitative agreement wih ex-
periment. Thus, the fact that Clark’s g(v) results are in only
qualitative agreement with our experimental distribution is
not too surprising. .

4.3. Debye-Waller factor
Having determined the phonon density of states g(v), we
can now calculate the Debye~Waller factor as described in
Appendix A. Thus, we find from (A7) that at T = 294 K the
quantity yo = 0.628 ps, and from (A13) that at Q = 6.5 A~
the recoil energy is v, = 0.419 THz. Hence, from (A12), we
get 2W = 0.263 and e 2% = 0.769. The corresponding rms
displacement of an atom is then found to be u = 0.0789 A.
In a first approximation, g(v) can be assumed to be inde-
pendent of temperature so that the variation of u and 2W with
T is simply due to the change in the Bose—Einstein population
of the phonons in the crystal. Table 2 shows a comparison of
the mean-square displacements x2 calculated by Kamal et al.
[15] at various temperatures with the corresponding values
that we have calculated from our results. The good agreement
between the two sets of values is remarkable when one con-
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Table 3. Values of the Debye temperature @, that characterizes the v behavior of
the phonon density of states g(v) at small v as determined by various methods for

vanadium at two temperatures 7.

Method Op(K) Authors (Year) Ref.
T=42K T=294K
Specific heat 273 Worley et al. (1955) 30
338(5) Corak et al. (1956) 31
315 Cheng et al. (1962) 32
Elastic constants 399.3 388 Alers (1960) 25

Neutron scattering 389(5) Present work

siders the rather large discrepancies in the underlying g(v)
distributions shown in Fig. 6. This would seem to indicate
that the value of u is not very sensitive to the detailed shape
of the phonon density-of-states curve. The right-hand column
in Table 2 lists the values of u? at two temperatures that were
obtained directly from the Debye—Waller factors determined
from X-ray diffraction measurements on a powder sample of
vanadium [29]. The agreement is very good at 4.2 K but the
X-ray value is 6% larger than our value at room temperature.

4.4. Debye temperature

Vanadium is a superconductor with a transition temperature
T, = 5.03 K. At temperatures just above T, the observed
specific heat [30-32] has the usual form for a normal metal,

1274R 1 T \? .
Cy=1T+ % (@> 42)

in which the first term is the contribution from the free elec-
trons and the second term that from the lattice vibrations.
The T3 behavior of the lattice specific heat is a direct conse-
quence of the asymptotic relation (3.6) and the fact that only
the low-frequency modes of vibration are thermally popu-
lated at low temperatures.

The Debye temperature ©p is determined from the pro-
portionality constant a in (3.6) by means of the relations
a = 3vp?® and Avp = kg®Op, in which vp is the Debye fre-
quency. Using the value a = 0.00564(21) ps®, which we
obtained in Sect. 3 from the analysis of our present neu-
tron data, we find that vp = 8.10(10) THz and, hence, that

©p = 389(5) K. The fact that this value of vp is the same

as we found for the cutoff frequency vmax (see Table 1) is
clearly accidental since the 73 behavior of the lattice specific
heat at low temperatures does not require that g(v) = av? for
all v < vpax. In other words, it is not based on the Debye
model.

Table 3 shows a comparison of the values of ©p for vana-
dium that have been determined by three different methods at
two temperatures 7. The value ©p = 388 K obtained by Alers
[25] from the measured elastic constants of room-temperature
vanadium is in excellent agreement with our value, 389 +
5 K, but both are considerably larger than the values obtained
from low-temperature specific-heat measurements [30-32].
This large discrepancy is very surprising since, for all other
cubic metals that have been examined [33], the values of
©p obtained from specific-heat measurements are in good

agreement with those obtained from elastic-constant mea-
surements. Alers also measured the elastic constants of vana-
dium at the temperature of liquid helium, where the specific-
heat measurements were performed, and found a small in-
crease in the value of ®p, which makes the discrepancy with
the specific-heat results even larger (see Table 3). Such an
increase in Op is expected from anharmonic effects that lead
to thermal expansion and an accompanying softening of the
lattice vibrations at the higher temperature.

5. Summary and conclusions

The normalized phonon density of states g(v) of vanadium
has been accurately determined at room temperature from the
analysis of neutron inelastic-scattering data obtained using a
triple-axis crystal spectrometer with a constant momentum .
transfer Q = 6.5 A~! and a constant scattered-neutron
energy of 8.0 THz. The energy transfer in the experiments
was varied from —1.9 to 10.0 THz, and the energy resolution
(FWHM) was 0.35 THz at the elastic position. Necessary cor-
rections were made for background scattering, multiple scat-
tering, multiphonon scattering, absorption and self-shielding,
and for the spatial inhomogeneity of the incident beam.

The resulting g(v) distribution has an average statistical
precision of about 3% and is characterized by peaks at 4.9
and 6.9 THz, which we attribute to transverse and longitu-
dinal phonons, respectively, and by a cutoff at about 8.1 THz.
The peaks in our g(v) distribution are much more clearly re-
solved than in any previous work on vanadium [2-15]. We
also see a small shoulder in g(v) in the region 2 to 3 THz, but
it is far less pronounced than in some of the earlier experi-
ments on vanadium. Below 2 THz we find that g(v) = av2,
and the observed value of a leads to a Debye temperature that
is in good agreement with that obtained from the measured
elastic constants of vanadium at room temperatute [25]. The
mean-square displacements #2, calculated at various temper-
atures from our g(v) distribution, agree well with similar cal-
culations by Kamal et al. from their neutron results [15]. Our
calculated values of u? also agree with those from available
X-ray Debye—Waller factor measurements [29].

The theoretical g(v) distribution calculated by Clark [24]
on the basis of a nearest- and next-nearest-neighbor central
force model is in general qualitative agreement with our re-
sults although it differs in some details. In particular, Clark’s
theory predicts that the transverse peak should be slightly
more intense than the longitudinal peak, whereas our exper-
imental results indicate the opposite.
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Appendix A: Multiphonon scattering

The expression (3.4) for the incoherent scattering function
S(Q,v) is originally due to Placzek and Van Hove [1] and
is derived in most textbooks on thermal neutron scattering.
However, the multiphonon terms are usually either ignored
[34] or treated in an approximate fashion [35]. In fact, ali the
terms in the general multiphonon expansion of the incoherent
scattering function of a harmonic crystal can be calculated
exactly and expressed in the form of a recursion relation [36,
37], a form that is ideally suited to numerical calculations.
In this appendix we review this expansion in the context of
the present experiments on vanadium.
The general multiphonon expansion is of the form

S@,v)=>" S/Q, V) (A1)

n=0
where #n labels the contribution from n-phonon processes and
Sn(@, v) = Sn(@)An(V) (A2)
In particular, for elastic scattering,
Ag(v) = 3(v) (A3)

for one-phonon scattering,

_ gv)
A = ST = exp(—v/voll (Aad)

and for multiphonon scattering,

v

An(v) = /_ T AV VA (), a2 (A5)

The quantity g(v) in (A4) is the phonon density of states,
which is taken to be an even function of v and is normalized
such that

fo Fewydv=1 Y

Also, hvg = kgT, in which T is the temperature, and

yO=/O coth(zo)g(v")d ' (A7)

Strictly speaking, the quantity g(v) in (A4) is the velocity
spectrum, i.e., the Fourier transform of the velocity autocor-
relation function of an atom in the crystal, and this quantity
depends on both the frequencies and polarization vectors of
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Fig. 8. The integrated intensities S,(@) of the terms in the
multiphonon expansion of the incoherent scattering function
S(Q,v) for vanadium at 294 K calculated using the rms
displacement 1 = 0.0789 A determined in the present work.
The dot indicates the one-phonon intensity at the momentum
transfer @ = 6.5 A~! used in ouf experiments.

Vanadium -
T =294 K 7

S(Q ‘

0_4__ . Present
Experiment

0.2 -

O‘OIV

Q (A

the phonons. It is only for a cubic Bravais lattice, such as the
bce structure of vanadium, that the polarization dependence
vanishes and g(v) is simply equal to the phonon density of
states.

The frequency-dependent factors A,(v) have the property
00
/ Aydv=1, n>0 (A8)
—00

so that S,(Q) is the integrated intensity of the nth term:

(o 0]
S@= [ 5:@ vy (A9)
—C0
These quantities satisfy the sum rule
3 5.0) = [ s@va=1 (A10)
n=0
In general,
2W
5@ =20 (Al1)
in which e=2¥ is the Debye—Waller factor, whose exponent
is given by
2W = viyo = (Qu) (A12)

Here, hv; is the recoil energy, which is defined by the relation

QY
Ve = 2M -

(A13)

in which M is the atomic mass, and « is the root-mean-square
(rms) displacement of an atom in the direction of Q.

Figure 8 shows the integrated intensities S,,(Q) as a func-
tion of O for vanadium at 294 K calculated using the rms
displacement u = 0.0789 A determined in Sect. 4. The dot
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Table 4. Values of the integrated intensities
S.(@) of the terms in the multiphonon expansion
of the incoherent scattering function S(@, v) of
vanadium at 294 K calculated at 0 = 6.5 A™
using the rms displacement u = 0.0789 A
determined in the present work.

n 50
0 0.7686
1 0.2023
2 0.0266
3 0.0023
4 0.0002
Total 1.0000

Fig. 9. The reconstructed incoherent scattering function
S(Q,v) for room-temperature vanadium calculated at Q = 6.5
A~' from the phonon density of states g(v) obtained in

the present work. The numbers indicate the values of the
multiphonon index # that dominate in various regions.

10' e g
100;_ . Vanadium |

0 T =294 K

10" 1

3 Q=65A

a g }

.2_ _
= 10
] - ]
@ 107° - -
104 L =
10-5—....|,...|....|....|....I...A|. '
-15 -10 -5 0 5 10 15 20

Frequency (THz)

indicates the one-phonon intensity at the momentum transfer
Q = 6.5 A1 used in our experiments. The numerical values
of S,(Q) at this value of Q are listed in Table 4. This value
of O was chosen so that we could measure the neutron scat-
tering over the required energy range (—2 to 10 THz) at rea-
sonably high resolution. The integrated one-phonon intensity
is a maximum when 2W =1, that is, when O = u~! =12.7

~1. However, if we had used this larger value of Q in
our experiment, our resolution would have been consider-
ably worse and the multiphonon scattering would have been
very much larger than at 6.5 A~!

Once one has determined the phonon density of states
g(v) from a neutron inelastic scattering experiment with
0 € v < vpax and some specified values of Q and 7, the
entire incoherent scattering function S(Q,v) can be recon-
structed for —co < v < oo and any values of Q and T.
Figure 9 shows such a reconstruction for the same values
of Q and T that were used in our piesent experiment. The
numbers indicate the values of the multiphonon index n that
dominate in various regions. Thus, the (resolution-broadened)
elastic scattering (n = 0) dominates at v ~ 0, the one-phonon
scattering (n = 1) then dominates up to about v = 8.1 THz,
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the two-phonon scattering (r = 2) up to about v = 16.2 THz,
and so on. The broken line in Fig. 9 indicates the total mul-
tiphonon contribution to S(@,v). This is the estimate of the
multiphonon scattering that was used earlier in Fig. 2.

Appendix B: Multiple scattering

The multiple-scattering term Cps in (3.2) is a sum of con-
tributions from double, triple, and higher order scattering
processes [26]. Each term in this expansion is given by an
integral over.a product of S(@,v)’s (one for each collision)
and includes an additional factor that depends on the size,
shape, and orientation of the sample relative to the inci-
dent beam. The integral is taken over all intermediate-neutron
wave vectors. When the general multiphonon expansion (A1)
for S(Q,v) is substituted into these multiple-scattering inte-
grals, one finds that the resulting expression for Cps has a
form similar to (3.4). In particular, the first term is propor-
tional to 8(v) and represents the contribution from multiple
elastic scattering. The second term is proportional to A{(v)
(and, hence, to the phonon density of states g(v)) and rep-
resents the contribution from processes in which the neutron
is inelastically scattered by the emission or absorption of
a single phonon in one of the collisions and is elastically
scattered in all the other collisions. The remaining terms all
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arise from collision sequences that involve multiple inelastic
and (or) multiphonon processes. Unlike in (3.4), the coeffi-
cients of &(v) and A;(v) in the multiple-scattering expansion
of Cps do not-depend only on @ but also on v. However,
an inspection of the integrals involved indicates that these
coefficients vary slowly and smoothly with v, much like the
related quantity A in Fig. 3.

The above discussion suggests that little error is incurred
by ignoring multiple scattering in the analysis of the neutron
inelastic-scattering data to obtain the phonon density of states
g(v). The main effect of the multiple scattering is simply to
alter the relative intensities of the elastic and one-phonon
terms and to add an additional slowly varying background
term. Thus, for example, if we ignore the effect of multiple
scattering, and use (3.4) to obtain the Debye—Waller factor
from the relative integrated intensity of the observed elastic
peak, we find a value 2% = 0.822 that is 7% larger than
the value 0.769 that we calculated from the experimentally
determined g(v) distribution. The latter value is expected to
be the more accurate of the two. Similar discrepancies in the
values of the Debye-Waller factors obtained by these two
different methods were reported earlier by Page [14] and
Kamal et al. [15].



