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Abstract

The main subject of this thesis is the study of the N = 4 supergravity
theories. Superspace geometry is used to search for all N = 4 supergravities
with at least SO(4) global symmetry. It is found that the general solution to the
unconstrained Bianchi Identities, with the field content of N = 4 supergravity,
are equivalent to the known SO0(4) and SU(4) supergravities up to field
redefinitions. Therefore the field content determines uniquely the N = 4

theories and further constraints are not necessary.

The SO(4) supergravity is gauged with two coupling constants and a new
theory with positive cosmological constant and spontaneous breaking of the four
supersymmetries is found. The presence of scalar fields in the kinetic term of
the vectors is seen to make the values of the physical gauge coupling constants

depend on the choice of vacuurmn.
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Chapter]. Introduction and Outline

Supergravity theories [1] are extensions of Einstein's theory of gravitation.
The graviton, the particle that carries the gravitational force, is related to parti-
cles of lower spin by supersymmetry transformations [2]. By haﬁng the gravi-
ton and the spin three halfs, spin one, spin one half and spin zero particles in
the same multiplet (the so called gravitational supermultiplet), extended super-

gravity theories are candidates for truly unified theories of all interactions.

In Grand Unified Theories [3], the gauge bosons, the matter, and the Higgs
particles are in different multipléts of the gauge group. In constrast to this, in
extended supergravities one does not only have gauge bosons, matter, and Higgs
particles in the same supermuitiplet, but gravity, which is left out in Grand

Unified Theories, is alseo included.

Perhaps the greatest advantage of supergravity theories is the cancellation
of some of the ultraviolet divergences that appear in Einstein's gravity coupled
to matter. Pure gravity is known to be finite at the one loop level but may be
infinite at two loops. Gravity coupled t_t: matter, however, shows infinities at the
one loop level. Pure supergravity theories are known to be free of ultraviolet
divergences at the one loop and two loops level. Infinities, however, may also
appear at the three loop level. Supergravity coupled to supermatter seems to
be as divergent as ordinary gravity coupled to ordinary matter. Even if super-
gravity theories turn out to be infinite, they could still be viewed as low energy
effective field theories that are the limit of possibly finite superstring theories
(4]

The supergravity theories are labelled by the integer N running from one to
eight that indicates the number of local supersymmetry transformations under

which the theory is invariant. The integer N also indicates the number of real
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(Majorana) gravitinos and the global internal symmetry group SO(N) of the
theory. The N = 1 supergravity theory contains the graviton and a gravitino. N
= 2 supergravity has the graviton, two gravitinos and a photon. It is a unified
theory of gravity and electromagnetism. N = 3 supergravity is the first super-
gravity with matter; it has the graviton, three gravitinos, three vectors and one
spinor. The N = 4 supergravity is the first supergravity that has all possible spin
fields: a graviton, four gravitinos, six vectors, four spinors and two scalars. The
largest supergravity theory is the N = 8 theory, and it contains a graviton, eight
gravitinos, twenty-eight vectors, fifty-six spinors and seventy scalars. The N =8
theory (or its superstring extension), is probably at this time, the best candi-

date for a unified theory of all interactions.

The internal global SO(N) symmetry of the supergravity theories (N = 2)
can be made local since the supergravitational multiplet contains precisely the
required number of vector fields to do this. This leads to theories with two cou-
pling constants, the gravitational coupling constant x and the internal coupling
constant g. The idea is that this gauged SO(N) symmetry is somehow related to

the gauge symmetries that describe the strong and electroweak interactions.

Supergravity theories were discovered and formulated as field theories in
ordinary four dimensional spacetime. Later on, it was found that certain
aspects of these theories could be formulated in a more transparent way in
superspace [5]. In addition to the four ordinary bosonic coordinates, super-
space has 4N anticommuting Grassmann coordinates. The main advantage of
superspace formulations is that it makeé supersymmetry manifest. So far no
physical meaning has been attached to fermionic coordinates, and superspace is

only a mathematical tool for analysis of theories with supersymmetry.

The main subject of this thesis is the study of the N = 4 supergravity

theories. There are several reasons for studying the N = 4 supergravities. They
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are the simplest pure supergravity theories with scalar fields. The presence of
scalar fields introduces some complications in the formulation of supergravity
theories, thus N = 4 supergravity is the theory in which these complications can
be studied with least difficulty. N = 4 supergravity is also very special. There
are two versions of this theory, the SO(4) model and the SU(4) model. It is the
largest supergravity that can be coupled to supermatter (multiplets with spins
that do not exceed one). N = 4 is the largest possible value for conformal super-
gravity. Finally, the N = 4 supergravity is closely related to the type I super-
string theory.

The gauged N = 4 supergravities are special too. Since the group SO(4) is
not simple, in fact SO(4) = SU(2) ® SU(2), the N = 4 supergravities can be
gauged with two coupling constants, in contrast to all other supergravities,
which are gauged with one coupling constant. The scalar potentials that appear
as a consequence of the gauging are unbounded from below and the critical
points are relative maxima. For larger supergravity thecries, these features of

the scalar potential persist.

In Chapter II of this dissertation basic tools necessary for the superspace
formulation. of extended supergravity theories are explained. These include a
formalism based on the supercovariant derivative and the system of Bianchi
identities. The use of these tools is illustrated with N = 3 supergravity. It is
shown in detail how to solve the Bianchi identities for this theory. The N =3
theory is a nontrivial example in which the superspace techniques can be
explained easily. This is not the case for N = 4 supergravity, where the amount

of calculation required increases by at least an order of magnitude.

Chapier 111 deals with the ungauged N = 4 supergravities. The system of
Bianchi identities is studied in detail. It is shown how the N = 4 supergravities

follow uniquely from their known field representations and the system of Bianchi
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identities with no further constraints.

Chapter IV deals with the gauged N = 4 supergravities and their superspace
formulation. The SO(4) supergravity is gauged with two coupling constants and a
new theory with positive cosmological constant and spontaneous supersymmetry
breaking is found. Effects due to the presence of scalar fields in the kinetic

term for the vectors are studied for the N = 4 and N = 5 supergravities.

Chapter II covers some material that is now standard. The particular for-
malism based on the supercovariant derivative that we will use is due to S. J.
Gates, Jr. The section on N = 3 supergravity is based on unpublished work of the
author. Chapter IIl and part of Chapter IV are based on published work coau-
thored with S. J. Gates Jr., and the rest of Chapter IV is based on published work

of the author.
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Chapter II. Superspace Techniques

1. Introduction

Superspace is a very convenient tool for the study of theories with super-
symmetry. Since the algebra of supersymmetry theories is an extension of the
ordinary space-time algebras, it is natural to extend the usual space in which
fields are defined to a superspace with additional Grassmann coordinates.
Supergravity theories written in superspace have a geometrical interpretation
in terms of the torsions and curvatures of the superspace, analogous to the

usual interpretation of Einstein's gravity as the theory of curved spacetime.

Superspace methods offer some calculational advantages. The consistency
of a superspace formulation implies that the supersymmetry algebra closes.l
Equations of moticn and supersymmetry transformations also follow quite natur-
ally. Finally, supergraph techniques appear to simplify quantum calculations in

supersymmetric theories.

In this chapter a brief description of superspace methods relevant to the
construction of extended supergravities is given. More comprehensive reviews,
with references to the original works, are available in the literature [1,2]. In
Section 2 the basic notions of superspace are explained; these include the idea
of vielbeins and of the tangent space. In Section 3 a formalism for connecting
superspace and component formulations based on the supercovariant derivative
[3] is explained. The analogy with usual gauge theories, also based on the con-
struction of covariant derivatives, is emphasized. Section 4 shows how to derive
the set of Bianchi identities and how extended supergravities can be naturally

described by a field strength superfield. In Section 5 the complete superspace

geometry that describes the N = 3 supergravity theory is constructed as an



-7 -

example of the use of Bianchi identities and field strength superfields.



2. Superspace

Superspace is a manifold that has four bosbnic coordinates ™ with
m =0,1,2,3 and 4N Grassmann coordinates, where N refers to the N-extended
supergravity theory. These fermionic coordinates are represented by anticom-
muting complex parameters o, 5;“' where i runs from 1 to N, and i and ;;, are
spinor indices which can take the values 1 or 2 (using two component spinor
notation). The parameters 8 and & are related by conjugation (see Appendix A

for superspace conjugation), namely:
9’“‘:9 , 9”,":"9‘1-,;. (21)

In ordinary Einstein gravity it is convenient to distinguish between curved
vector indices and flat vector indices. The vierbein (or tetrad frame) is used to
convert between these two types of indices. Letting m ,n,p... stand for curved
vector indices and a,b,c... stand for flat vector indices, the vierbein e,,% and

the inverse vierbein e, are defined to satisfy:
en%e” =07, e,Me,® =68, (2.2)
and convert the type of indices as follows:

An mem® Al A =™ An (2.3)

where flat indices are raised and lowered with the Minkowski metric 7g, (+---)
and curved indices are raised and lowered with the riemannian metric
Imn = €m® €n’ Nas .

In superspace curved indices will be denoted by ¥ = (u,;l,m), where u and
;;. are curved spinorial indices and m is a curved vector index. Flat indices are
denoted by 4 = (a,a,a) where a and a are flat spinor indices and @ is a flat

vector index. The geometric object that converts between these indices is the
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vielbein Ey*. The vielbein is invertible, and the inverse E ¥ is called the

inverse vielbein. Relations analogous to (2.2) hold:
Ey BN = 64V, EMEy® =5,5 (2.4)
where:
su¥ = (65,65, 6%) . 847 = (8£.6%.6). (25)

The vielbein EA” is a superfield, that is, depends on both bosonic and fermionic
coordinates in the sup‘erspace manifold. Superfields are usually thought of as a
finite power series expansion in the anticommuting & parameters. The physical
fields, which depend only on the bosonic coordinates, are the coefficients of this

expansion.

The raising and lowering of spinor indices is done with the Lorentz invariant

antisymmetric tensor Cpg = —Cpg,, and its conjugate Cyj:

Aa=APCy,, A% =CF 4,

ag=afch, Ao=cay (2.6)
1t follows from equation (2.6) that:

CeCy=08, CFoip=of (2.7)

A tensor can be antisymmetric in at most two spinor indices, since spinor
indices only run over two values. In this case, the tensor is proportional to the

Cog symbol:
Aaﬁ - Aﬁa = apA77 , (28)

as can be checked contracting with another C®F.
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In the two component notation that will be used it is often convenient to
represent vector indices using spinor indices. As representations of the Lorentz
group, a vector Ag~( -;-,-;—) is constructed by taking the direct product of a left
handed spinor xg ~ (%,0) with a right handed spinor xq ~ (0,2). Therefore, a
vector 4; can be represented as an object 4,4 having one dotted and one undot-
ted spinor index. One uses the Pauli matrices 0%,4 (see Appendix A) to

transform a vector index into a pair of spinor indices and vice versa,

Aai=4a®ai . Ao = =30  Aai. (2:9)
where
0% aiOa” = 2676}, Oaopo® ¥ = -8 (2.10)

One can define sigma matrices (g )ag. and (@ )ag out of the Pauli matrices

01250 L = —iChy (5 )38 —1C35 (0% )ay . (2.11)
satisfying
(0% )ag (0an )7 = =4 6%04) - (2.12)
Any antisymmetric tensor FHg = —Hpq can be represented by two tensors F,g
and Rgap
Rab = % Raglow)™ + £ Rajloa)™ (2.13)
where

Rap= 2(0®)apRas . Rip= 5 ()i Ras - (2.14)

It should be noted that Rog and Rgp are conjugates of each other only if Kgp is

real.
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At every point in the superspace manifold one has a tangent space on which
superfields are defined. The Lorentz group acts on the tangent spaée reducibly.
- Vectors rotate into vectors, and spinors rotate into spinors. In general
superﬁelds transform according to the matrix representation appropriate for
the Lorentz index they carry. Denoting the Lorentz generators by M., we use

the following representations for the action on vectors and spinors:

[Mbr;vva} = Nac Vb — Nab I/; )
[Mpc,Va] = -2 (obc )’ Vg . (R.15)
2

It is sometimes simpler to use a two component Lorentz generator M,g defined

as:
Maﬁ = %(ch )aﬁMbc . (2.16)

Since the tangent space is built with a local Lorentz invariance the descrip-
tion of superspace requires a Lorentz connection. One therefore introduces the

Lorentz connection superfield &%

where the index M is a curved superspace
index. In the approach we shall take, this superconnection is an auxiliary field.
Therefore, one can find an expression for it in terms of the vielbein E’HA. The
$,, be superfield, for example, will just be the ordinary spin connection of super-

gravity wm"c plus other fields at higher order in the & expansion.

One can implement other symmetries in the tangent space, for example, an
internal SO(N) invariance that rotates the N gravitinos of N-extended supergrav-
ity into each other. To this end, one would just introduce SO(N) generators
ty=—tz (1. =1..N ) and gauge connection superfields ®4¥. In our discus-
sion we will identify the Amij vector fields of the supergravity theory with the &

independent part of the @mij superfield.
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Even fake symmetries can be put into the tangent space. For example, in
the N = B supergravity there are 70 physiéal scalar fields. It is convenient, how-
ever, to work with 133 scalars that parametrize an element of the group £ 5. In
this case the theory can be formulated with a local SU(B) invariance in the
tangent space. This local SU(8) symmetry compensates for the extra 63 degrees

of freedom that have been introduced.
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3. The Supercovariant Derivative

In this section a superspace formalism based on the supercovariant deriva-
tive is explained [3].k This kformalism connects the superspace and ordinary
space approaches [4] and can be used to derive supersymmetry transformations
for the component fields of the theory. The way the supercovariant derivative
enters in the construction of supergravity theories is very analogous to the way
the ordinary covariant derivative enters in the formulation of gauge theories. It
is therefore convenient to review a few basic facts about gauge theories in a

notation that will be useful later.

In gauge theories one can parametrize gauge transformations by an ele-
ment iK = iK* T*, where the K* are parameters and T* are hermitian genera-
tors of the gauge group. Under a gauge transformation a matter field <I>J- would

transform as:
6&; = [iK,$;] = iK' [T*,9;] = iK*(T*);* & . (3.1)

where (T")J-’c is the appropriate matrix representation for the T generator.

One defines a covariant derivative:
D = 0 +igAL T, (3.2)

by using gauge fields A,‘,, This covariant derivative is thought of as acting

according to:

szam"'ig[Am»]» (3.3)

where 4, = A% T°. The requirement that (D,,®) transforms under a gauge

transformation the same way as ¢ does, implies that one needs:

6Dy, = [1K,Dp] . (3.4)
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Using equations (3.2) and (3.4) one finds the usual transformations law of the

gauge fields

8, K

64 = - - oy K7 4F, (3.5)

where [T*,77] = ¢y T*.

One defines torsions and field strengths by commutation of two covariant

derivatives
[Dm.Dp] = Tn? Dy +igF ppp, (3.6)

where Fp, = Fi, T*. Using equation {(3.2), one finds that the torsion

vanishesT;,, P = 0, and the field strength takes its well-known value:
Fin = O8m AL — 0p 45, — g Cyji Alp A% (8.7)
Under a gauge transformation
0Fmn = 1K, Fran ] (3.8)
one finds
6Fn = —Cij K From . (3.9)
Finally, one can consider the Jacobi identity for the covariant derivative
(D[ D, D1l + [Dn.[Dp D11+ [Dp.[ D . D11 = 0, (3.10)
using equation (3.6), the above equation implies that
D Frp + Dy Fyy + DpFppp, =0, (3.11)

where the derivatives are understood in the sense of equation (3.3). Equation

(3.11) is satisfied by the choice of field strength in equation (3.7). Indeed, (3.11)
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can be rewritten as Dmf mp = 0, where the tilde indicates space-time duality,
and is then recognized as the usual form of the Bianchi identity.

Let us now turn to the supercovariant derivative Dy = (Dgi,D4;,0,) (we

follow reference [3] ). It will be taken to have the form:
Dy=EMay + 9, Mr, (3.12)

where 0y = (6,‘,6,;,6,,.,) are coordinate derivatives and the superfield (pAP is a
gauge field for the tangent space generator Mp. This generator can be a Lorentz
generator, a central charge generator, an SO(N) generator, among others (say,
the generators of local symmetries in the coset space formulations of the scalar
sector in N = 4 supergravities). Super-gauge transformations are parametrized

by an operator 1K :
iK=K¥38y + K" Mp, (3.13)

which satisfies the reality condition iK' = 1K. Both the supercovariant deriva-
tive and the operator iK have a @-expansion (we omit isospin indices for brev-

ity):
Da=aa+vg+§évg§+eﬁ\7§p+ S (3.14)
iK=K°+0°K} + §&K'5,1 + 9“@51{3;,
+6%6F K3g -‘5‘9"1?3; + (3.15)

where K;,"ﬁ =K E& , so that the reality condition is satisfied, and the operators
V' are made of ordinary fields times the 8y and M generators. That is, they
have the form indicated in equation (3.12) but with the vielbein and connection

superfields replaced by ordinary fields.
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The gauge invariance represented by iK is enormous and one uses it to

gauge away some fields appearing in the supercovariant derivative. Using:
6D4 = [iK,D4], (3.16)

one finds that the above supercovariant derivative can be put in the form:

Do =g +18°Vi; + 6992 + 0(67) (3.17)
where:
Via=Vii. VZ =V, (3.18)

making use of all the terms in 1K except for K°. Equation (3.17) is an expression
for the supercovariant derivative in the so called 'Wess- Zumino' (WZ) gauge.
The remaining transformations, parametriied with X° and preserving the form

of the WZ gauge, are general coordinate transformations
Ky (§) = £™(2) O (3.19)
internal transformations
KN = Ao(z) [Mr + (M) f0%05 + (M) a0 + ], (3.20)
and supersymmetry transformations

iKg(e) = €20, + E 04 + 1 (898 + 5Pe?) Vag

+0%:PV2 — B V2 + 0(6%) . (3.21)

In the usual way, one defines torsions and curvatures by graded commuta-

tion:

[D4,Dg} = T5€ Do + Rup™ My, (3.22)
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where [..} means anticommutation if 4 and B are both fermionic and ordinary

commutation otherwise.

Our goal is to derive an expression for the supersymmetry generator given
in equation (3.21). Using equation (3.17) and its conjugate expression (see

Appendix A for conjugation) one finds:
2V3 = {Da,Dg} + 0(8) ,
2iVap = (Da. D} + 0(6) . (3.23)

Using the above equations together with equation (3.17) one finds that the super-

symmetry generator becomes:
iKg(e) = e2Dg + £ D + (6°¢" + 5%62)(D,.Dp}
+6%F{D,,Dg} + B¢ (D3, Dp) + 0(67) . (3.24)

Now consider the vectorial derivative I);. To lowest order in 8, we put the

ordinary gauge fields:

Dy =Yy + 0(8), Vo =eg™0m + Y0, + Ve + ¢l Mr, (3.25)
where e,™ is the inverse vierbein, ¥4 is the gravitino, and ¢},‘ represents the

Lorentz connection or any other gauge connection, if present. It is now straight-
forward to derive forms for the supersymmetry transformations of the gauge

fields. From:
(5QD° = [?:KQ,D‘;] , (3.26)
one finds, using (3.25):

5QD¢ = "'(Daep)Dﬁ - (Dazé)pﬁ +&%[Dg, D, ]
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+z [ Da] - W’n + '¢’a %) iDa»Dp;

— ¥2eP {Da.Dg} — Vot (Da. D3} + 0(6) . (3.27)

The supersymmetries follow:
m - [na d —ﬁ . d __ a—é =B a «d
bey —[C Taﬂ + ¢ pr ('%e + Y€ )Taﬁ

— P8P Tog® — Vo ® Topt leg™ , (3.28)

oYl = —(Dpe®) + e% (T + Top*¥f)
+E(Tabp+Tabd'¢ ) ('W -E +'¢bea)(Taﬁ#+Taﬁd'¢ )

—Ygef(Togt + Tog v — %f (Tag* + Ta®vl) . (3.29)

6pl = eM(Tap®¥s + RapD) + & (Tao9d + RapD)

— et + o) (Tugol + Rogd)

— VEeF(Tag? 0a” + Rag) = U (Tai ek + R3h) . (3.30)

The above expressions are extremely useful. Once the superspace
geometry has been worked out, one just has to substitute into the above expres-
sions in order to get the supersymmetry transformations of the gauge fields.
Conversely, if the supersymmetries are known one can read off the expressions
for the superspace tensors. We shall use these equations in both ways in

Chapter IIL.

For nongauge fields, such as scalars and spinors, or for any other covariant
quantity, the component supersymmetry transformation is found by using the

basic expression in equation (3.21). For a superfield ¥ one has:
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8o W = [iKq. W] = e D W + 8 DWW, (3.31)

where the limit & = O should be taken. Equation (3.31) shows that superfields
contain at power g™*! the supersymmetry transformation of the field that lies
at 8™. Spinorial derivatives are used, instead of explicit & expansions, in order
to find supersymmetries.

Another result, obtained by manipulating equations (3.17) and (3.25), that is
quite useful in connecting component and superspace approaches, is the follow-
ing:

- . —5

Ta® Dg + Rap My = [Va, %] + 2095 Vo e Vb

y 8 5 8 7 8

+ (19[‘;105] T]g_° - ‘PE; Vo) (MI‘)Q") Dg

y-a ., & _ oy Y

+ (10[@%] ng - ¢{a'¢'b](MI‘)z )Dg

4 =7 y 58 o
+ V[ [DyDy)] + + Yo [D3.007] + Y V51 Ryd” Hr

3
b

+yZvy8 1D, Dyl + +¥2%; (D3, Dy} + 0(6) , (3.32)

where and underlined spinor index (a) denotes combined spinor and isospin
indices {ai) for extended supersymmetry. Equation (3.32) can be used, for
example, to find the expressién for the spin connection including torsion terms.
Taking &7 My = -é—wa“ M, one finds by equating the coefficient of V, in the

expa.nsién of both sides of equation (3.32) with Tap® = Tt = 0, that:
Wape ~ uabc(e) + %(Tabc + chu + chb)
; =8 s k8 k7S .
- 7’(’#’{:#/6]& Ocyb + wﬂ: vb]k Uay&"/’ﬁ: wa]k ab'yé) ' (3.33)
where

Wabc (e) = —_l (Cabe + Copa + Ceas) » (3.34)
2
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and Cope = O[a€s]™ €mc- Equation (3.32) can also be used to show that Tabé is
the supercovariant gravitino field strength. and in general, it is used to relate

supercovariant field strengths to ordinary field strengths.
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4. Bianchi Identities and Field Strength Superfields

In this section we shall show how to derive the set of Bianchi identities for
the supercovariant derivative. The Bianchi identities are the basic tool for the

construction of the superspace geometry.

In extended supergravities without auxiliary fields one can put the non-
gauge fields and the field strengths of the theory into a field strenth superfield
[5]. We will give the specific forms for the vector, gravitino, and graviton field
strengths, and show how they fit into the field strength superfield. The super-
space tensors have to be found in terms of this superfield using the Bianchi iden-
tities.

- The Bianchi identities are nothing else than the Jacobi identities for the
supercovariant derivative. Due to the presence of fermionic derivatives the
Jacobi identities are formed both with commutators and with anticommutators.
Consider forming the triple commutator with Ug,Dg, and D, To this end one
introduces three constant fermionic parameters eg,ng,fz and the ordinary tri-

ple commutator:
[62D,,[nfDg. 82 Dg]] + [nfDg.[¢2D5,62D, 1) + [€D4.[e2DmfDgl1 = 0. (21)

Expanding out, using the anticommutation property of the parameters and can-

celling them out one obtains:
[(Dq.Dg}.Ds] + [(Dg.Dg}.Dal + [(Dg.Da}. Dyl = 0. (4.2)
Consider the following supercovariant derivative and graded commutator:
Dy=EMoy + %?’A“ My + %fﬁ’f" Zji , (4.3)

[D4.Dg} = Tug€ D¢ + %RAB“’ My + %Fmv‘ Z; (4.4)
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where we have introduced the central charge generators‘Z,-j =—4j , Which are

required to commute with all other generators:
[Zi.D4] = (25, Mp] = [245.20] = 0 . (4.5)

Substituting equation (4.4) into equation (4.2) one finds five Bianchi identities
from the requirement that the coefficients of Ds,ﬁg,Dc,My and Zpy, vanish.

These are respectively:

Tag” Tyt — Do Tag' + Tag’ Tey" + Rage® 6™ + P(ai B »6l) =0, (46)

Tog? Tyt + Tagl Tss — Dy Tagt + Plai +8j +61) = 0, (47)
Tag't Coe + Tgs's Car + Tsa's Cae = 0, (4.8)

Tog? Ry + Tagt Rgz™ — Dy Rag™ + Pla+B+8) =0, (£.9)
Tof Fay™ + Togl Fg5™ — DgFog™ + Pla+§-8) =0,  (410)

where P indicates that to the previous terms two more with the indices cycli-

cally permuted should be added.

Denoting by I ABCD the Bianchi identity that follows from equating to zero
the coefficient of the D generator in the expansion of [Dy,[Dg,Dc3} .we have
that the above identities are respectively: 7/, gés,lg ﬁé,lgggc g géI‘ and
Iqgs™". From each triple commutator five identities follow. There are five
additional triple commutators beyond the one given in equation (4.2); these are:
[[Dg,Dg3.D3] [[Dg.Dg}Da). [[Dg. D3} Da] [[DaDs1.Dg] and [[D5,051.0:1
We therefore have thirty Bianchi identities ( this number depends on the

number of symmetries that are put into the tangent space).

\Let us consider the dimensionality of the various objects. In units of mass,

a vector derivative [D.] has dimension 1, and a spinorial derivative has
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dimension 1/2, [D,] = [Dg] = -21- since spinor derivatives anticommute to give a
vectorial derivative. Lorentz generators have dimension zero [Mp] =0. In
_ superspace it is natural to take bosons to have dimension zero (their canonical
dimension is 1) and fermions to have dimension 1/2 ( their canonical dimension
is 372). In this way no explicit ¥ appears in the formulation. The graviton, how-
ever, is left at dimension 1. It then follows from {D;, Dy} = - - + %F@ij Zi
where Fgy Y is a vector field strength, that central charges have dimension one
[Z;]1=1

From the above considerations it follows that a torsion T, ABC has dimension

[4] + [B] - [C]. for example, Ty z has dimension
[a]+[6]-[7]= -;— +1- -é- =1. A curvature R 5" has dimension [4] + [B],
and a field strength F ™" has dimension [A] + [B] — 1. Similarly Bianchi
identities are classified by their dimensionality. An IABCD identity has dimen-
sionality [4] + [B] + [C] —[D]. The lowest dimension tensors are of dimen-
sion zero {(F a E"‘",T a é‘ ,..). The highest dimension tensor is the dimension two

¢d  The lowest dimension Bianchi identities are of dimension one-

curvature Fg,
half ( I46.7ags™ - - ). and the highest-dimension identity is the I T iden-
tity of dimension three. Bianchi identities are conveniently solved in order of
increasing dimensionality. It should be emphasized that the expression 'solving
a Bianchi identity' is not a misleading one. Bianchi identitites are identities if
the field strengths are expressed in terms of the connections. This is precisely
what one does not do. The field strengths have to be expressed in terms of a

field strength superfield (that describes the multiplet of fields) and have to

satisfy the Bianchi identities. This is a nontrivial problem.

Let us now turn to a discussion of the field strength superfield. Take the
case of N = 4 supergravity, which is a theory that contains fields of all spins less

than and equal to two. The N = 4 field strength superfield is a complex scalar
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superfield # of dimension zero. The non-gauge fields appear directly in the
superfield W. Since W is complex it cﬁn have the scalar and pseudoscalar A
and B at the lowest position of the superfield W = 4 + 1B +0(8). The spinors
also appear explicitly in the W superfield; they are located in the O(8) term. In
N = 4 we have four Majorana spinors that can be represented by A,;, where « is
the spinor index and © runs from 1 to 4. At order &, we could have terms such
as O% A, + §&i)‘<‘;i, where A and x are independent, since there is no reality
condition on the superfield. This would mean that there are eight spinors rather
than four. We therefore have to impose another condition: the superfield W
should contain @'s only and no 8's. This is called a chirality condition, which
analytically reads EéW = 0, and halves the number of degrees of freedom for

the terms at order @ and higher.

Consider now the vector fields of N = 4, there are six real vectors
AE” 1,7 = 1,..4. For these vectors one has the real field strengths F}E] and,
according to the discussion of equations (2.13) and (2.14), they can be
represented by the tensor f aﬂij v afij 1s its conjugate and carries no new infor-
mation). The tensor f apij is symmetric in the a,f pair and is complex. Thus it
contains six numbers, just as the antisymmetric i,V pair does. It is a dimension
one object and fits into the 6% term of the W superfield in the form
gaigﬁjfapif'

In the same way as the vector fields only enter through their strengths, the
gravitino itself ¥, ,‘;i does not appear in the superspace tensors. Consider the

gravitinoe field strength

Vb3 =8 Vo3t ~ Va3 - (4.11)

Translating into two component notation and expanding into irreducible pieces,

one finds:
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Vaaphri = 0% aa 0 gjVab 7
= Cag (Elagy + Cas ¥ + CisVa) + CapVleapry (+.12)

The original field strength represents twelve complex degrees of freedom
(without counting the i index). In the above decomposition, we have Z(34,) with
four complex degrees of freedom, —‘ﬁp with two complex degrees of freedom and
V(ap)y With six complex degrees of freedom. In the superspace formulation only
the 2&;&;,) piece, called the 'gravitino Weyl strength,’ appears. This piece of the
gravitino field strength does not get determined by the equation of motion of the
gravitino. Only a Bianchi identity determines it. The Weyl strength has dimen-
sion 3/2 and it appears at the power 63 in the W superfield in the form
6% eFigTE I P LR,

Consider now the graviton. Its natural field strength is the Riemann curva-
ture. The Riemann tensor Rg,.q of general relativity has the following sym-

metries:
Rapea = —FRoaca = —Fapac (4.13)

Rabcd = Rcda.b . (4.14)

If the cyclic identity is also satisfied (which requires that the T, torsion be

zero) one has:
R%q + R% g + R%gc = 0. (4.15)

These three algebraic restrictions imply that there are only 20 independent
components for the Riemann tensor. The decomposition of Riemann into two

component tensors was first given by Penrose [6]. We have:

Raapiyysl = 0%a3 0° g3 0° 5 0% 83 Rabed
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= 2 [Cap(8®)ap + Cab(0™ )ag) [Cpa(0™ )34 + C3b(0°* Ve Rabca - (4:16)
Expanding and using the reality of K one finds:
Raapgsyysd = CagCyd Xapys + CapCos Xapyd
+ CogCrs Papyd + CopCsd Pagys - (4.17)

Consider first Xqge. it is symmetric in the (af) and (76) pairs., and in the
exchange of both. It therefore represents 6 complex degrees of freedom. It can

be expanded as:

Xapys = Viagys) ¥+ (CayCps + CasCpy)A . (4.18)

where V(ap.,g) being totally symmetric represents 5 compilex degrees of freedom;
it is just the 10 component real Weyl curvature of general relativity. 4 is a com-

plex scalar.

Consider now the g,g,4 piece. A priori, it represents 9 complex degrees of
freedom, but there is a reality condition m = ¢ysaf Thus we only have nine
real degrees of freedom; it is just the traceless Ricci tensor of general relativity.
The scalar curvature, found contracting the Riemann tensor completely, equals

A + A. Itis areal function, as one would expect.

So far we have reduced the number of degrees of freedom to 21. Using the
constraint {4.15), one obtains one further condition. Following [6], equation

(4.15) is equivalent to:
Sd,cb =0, (4.19)
where:

Sabcd = Eap¥ €gpca - (4.20)
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Translating into two-component notation, using equation (A.20), and substituting
the results in equation (4.17) and (4.18), one finds that the constraint (4.19)

requires that 4 be real.

The Weyl curvature V(gg,s) has dimension two and is suitable for the g4
term in the W superfield as 6% 8f g7 g% C¥™ v o 0\ The Weyl curvature is
not determined by the equation of motion of the graviton, which just fixes the
Ricei curvature. Only the Bianchi identities determine the Weyl curvature. In
tact one can think of the Bianchi identities as field equations for the Weyl tensor
giving the part of the curvature at a point that depends on the matter distribu-

tion elsewhere [7].

In summary, the W superfield contains the nongauge fields and the field
strengths for N = 4 supergravity. At successive orders in € we have:
A+ 1B, Ay ,fapij ,Eih and Vgg,s For N = 3 supergravity one needs a W, spi-
nor superfield, for N=2, a W(ap) superfield, and forN=1a W(ah) superfield.

In the case of the maximally extended N = 8 supergravity the analog of the
W superfield of N = 4 supergravity is a scalar superfield Wik where 1, j.k and !
are antisymmetric SO(B) indices. At lowest order in & this superfield would
describe 70 scalars plus 70 pseudoscalars. Therefore a duality condition is
required to halve this number of degrees of freédom ant;'l to obtain the 35 scalars

plus 35 pseudoscalars of N = B supergravity.
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5. The N = 3 Supergravity

The major technical obstacle in formulating extended supergravities in
superspace consists in solving the Bianchi identities. In this section we want to
show in detail how to solve these identities in the case of N = 3 supergravity. All
of the techniques we will describe here are useful for the case of N = 4 super-
gravity. This latter case is, of course, more complicated, esséntia.lly due to the
presence of scalar fields. This section is intended as a pedagogical example on

how to analyze Bianchi identities.

The spectrum of the N = 3 theory is given by one graviton, three gravitinos,
three vector fields and one spinor. The appropriate field strength superfield is a
spinor W, contAining at 8° the physical spinor A,, at order 8 the field strength
for the vectors fqg;. at order 6% the Weyl gravitino field strength Ef,ﬂ., and at
order 83 the Weyl curvature Vagys Let us also recall what are the available ten-
sors. We have the SO(3) invariant tensors 67 , €4 + and the Lorentz tensors Cpg.
0% o (o Jag: Tab: €abca (not all independent). All the superspace tensors have

to be formed out of the fields in W, and the above tensors.

Let us begin with the dimension zero objects. These tensors have to be con-
structed without any fields, since the lowest-dimension field available is the
dimension 1/2 spinor A,. One easily convinces oneself that it is not possible to
construct the dimension zero F' a,;aj ™" and Tu; ;¢ objects out of the above ten-

sors. One is therefore forced to set:
Fazéjm =O, Tazﬁjc =O- (5.1)

Now consider the Fg;g;" " field strength. It is symmetric in the exchange of the
pair of indices (ai) and (8j) and antisymmetric in the pair (mn). We can
therefore try to construct the combinations [af][ij][mn] or (aB) (ij) [mn].

It is not possible to create the (af) term with the requirement of zero
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dimensionality. The first combination, however, can be easily constructed and

we set:
Fa-,;pjm = Capﬁ.,!md?] . (5.2)

There is one more dimension zero object, it is the Tm-g’ ¢ torsion. It is con-

structed as: : J
Taif © = 2i6{0°45, (5.3)

where the coefficient of 2 has been chosen for convenience. One can also fix the
dimension one half torsion T43°. It could only be proportional to a spinor.
Since it appears in the supersymmetry of the graviton (see equation (3.28)) and
we want to have the standard supersymmetry transformation

(6Vau = —1KTYqV¥y). we have to require:
Tabc = O . (54)

Let us now start considering the Bianchi identities. We start with the
dimension one-half identities, and the first one we choose is | a h‘ :

Taipit Coe + Tpjoi Cac + Tsiai's Coe =0, : (5.5)
where only the dimension one half torsion Tg; 5,-7, appears. The (af) (ij ) piece
of the torsion is set to zero by equation (5.5). Thus one can only have a [af][%7]
piece. Equation (5.5), however, requires that the torsion be antisymmetric in
the three isospin indices 2,7 and {. It is now easy to write an expression for the

torsion; it can only be:

Tai ﬂj7k = Caﬁeijk X’ . (5.6)

Next equation to consider is /g g™ ", which reads:



Tagl Fs;™ + Tgs? Fay™™ + Tgal Fg, ™" = 0. (5.7)

The field strength is already known from equatioxi (5.2). The most general
expression one can write for the torsion is Tg;p;j7% ~ Cag€ije A7. Using this
expression, equation (5.7) leads to an inconsistency, so one is forced to set this

torsion to zero:
Tai pj’k =0. (5.8)
Consider now the /4 Qé‘ identity. Using equations (5.4) and {5.8) one only has:

6ﬁ Taiégﬁj + 68 Tﬁj hpi =0. (5.9)

The only possible expression for this torsion is Taq &ﬂj = dspeaj Ay but the
above equation rules it out. We are then forced to put:

Taz'élﬁj =0. (5.10)

We now turn to the last dimension one-half identity: / af §”"‘. 1t reads:

Toi ,,—"’" Foey™ + 216y Fag,,j"f" + 210, Fghoi™ =0 (5.11)
Using equations (5.2) and (5.6) one readily finds:
Faigi™ = -;-c,, gimn gy (5.12)
This completes the solution of the dimension one half Bianchi identities.

Consider now the dimension one Bianchi identities. We start with / ggés,
which, given the results we have found so far, reads:

DsTagm + DaTgsm + DgToam=0. (5.13)

Using equation (5.6), one finds:
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<t ¢
which in turn implies:
—E

Dy A =0, (5.15)

a chirality condition on the spinor of the theory. Next consider the /4 gél‘ iden-
tity:

Reaigi6:0" + Rpjo1ac: 01" + Rt aipe 07" = 0, (5.16)
which has the unique seclution:
Raigiee=0. (5.17)
Take now the / a gdc identity. After some rearrangement it reads:
CocRaigjis + 2iCe Tghaizj + RiCar Tsdpgjzi = 0. (5.18)

Both the curvature and the torsion are of dimension one. Therefore, to con-
struct them one needs either two spinors or the vector field strength. Only the

latter works. Setting:
Raigizh = 2 Caglujic [ ik (5.19)

the torsion Tylqiz; can only be proportional to Cgq &y fidx. and equation

(5.18) fixes the constant of proportionality:
Tebaitj = = Coa€ijic J 2dk - (5.20)
Consider now the J5p é‘t' identity. It reads:
~ Dy Taipji™ + Roipjdi 0 + 218y Tadgys™ + 218 Tphast™ = 0.  (5.21)

Using equations (5.6), {5.19) and (5.20), one finds:
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Dy A = 27’;;1 . (5.22)
The next identity to consider is Iq5q™" :
Ri0; Fagei™ + To2gi™ Fopai™ + T:Em;k Fiepi™
+ Djj Friai™ +va- Fepi™ =0. (5.23)
This equation determines the field strength Fgq ﬂ;,""‘ :
Faigi™ = % (CapFipp + Cibf app) pmn - (5.24)
We now turn to the J;g¢™" identity, which after some simplification reads:

e
- Taiﬁj7 F:E'}kmn + Tu‘:ai?k F-ykﬂjmn + Tt;:ﬁj-’k F‘ylc m_mn =0. (5~25)

Here the unknown is the torsion T,;ai"k, which has to be made of two spinors,
and since spinors carry no isospin index, there must be a Kronecker delta. We

take Tpiaig” = Lezagdi and find that:
tetag = -Z-A,K; Cog + 2 Cea Mg ;. (5.26)

where a is a number that can take any value. It is convenient to choose

@ = —i/ 4. One then finds:
Teiaig = =% CeahgBiti (527)
We now consider the /4 gf identity:
Toi p,-:’k T3ed's™ + 216! Tadps o™ + 216} Tpiai c™

+ Rai§'pe 0" + Rgjd a6 =0, (5.28)

With the previous values for the torsions, one immediately finds that the curva-

ture vanishes:
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Ray alﬁ: =0. (5.29)

This is a consequence of the choice made for the number @ in equation (5.26).

The I,34° identity allows one to find the Ty, torsion, which in turn is

necessary to find the spin connection wg, (see equation (3.33)):
26121' Taﬁdsci - 4(:&; Tedai g = 4C,, T&éﬁj;:i =0. (5.30)

Using equation (5.27) the above gives:

Taaps = 1[ 68857 Aghs — 83647 AaRy] . (5.31)
This concludes the solution of the dimension one Bianchi identities. The infor-
mation found so far enables one to construct all the supersymmetry transforma-
tions of the theory (using equations (3.28) to (8.31)). This will be done in the

next chapter for the N = 4 theory.

We want to show here how to find all the superspace tensors, so we will con-
tinue with the analysis of the higher dimensional (and more complicated) identi-
ties. In solving these higher dimensional Bianchi identities we essentially obtain
the equations of motion of all the fields in the theory. In getting the remaining
information out of superspace, due to the enormous rédundancy in the Bianchi
identities, some shortcuts are possible. Consider, for example, evaluating a

commutator on the spinor:

{Dai, DgjiA: = 2Dg; f pe; + 2 Dgi f aei

= Taipi® Dahy + %R E[Mg A, (5.32)

aifiy

where we have used equations (4.4) and (5.22). Using equation (5.8), (5.15) and

(5.17) one arrives at:
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Doaifpej + Dgjfari =0, (5.33)
which is solved by:

Doi f gej = —€ijk Zagek » (5.34)

where the Zuﬂ,k tensor is symmetric in (aB¢). This tensor corresponds to the

Weyl gravitino field strength.

In order to determine the dimension 3/2 curvatures one considers the

Iag Z,P identity. For [ = sé one has:
—D3Raipiss + 286{ Rojpisi + 216} Rgdaisp = 0, (5.35)
from which one finds:
Raighys = —1CagZgrdi - (5.36)

For I' = g¢, the identity reads:

Taiﬂj?-'k Ridiee + 210y Radgjee + 2105 Rgdaie = 0, (5.37)
and yields:
Roi gfys = 1Capf o1 Bg - (5.38)
The /4 d*; identity reads: .

k . e
— D43 Tai ;"™ = Taigi” Tebye + Tadai™ Torpi

+ Toég_,-"k T‘yk m;tm + DBJ Tgsaiem + Dtxi T&&ﬂjam =0. (539)
After using the values we have for the above tensors, this equation becomes:

-Caﬁeijm Ddéﬁé = 1Csqa Eimp Dﬁj f&':p - ic&ﬁ €imp Do féép =0. (5.40)
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The [$£] antisymmetric part of the above equation leads to:
§_

which is the equation of motion for the spin one half piece. The (8¢) symmetric

piece leads to:
Dg f3zj = %du Ds3 Ay . (5.42)
The dimension 3/2 torsion gets determined from the Iy, g"' identity:
—49Cse Taappit — Dot Taapper — RChe Rétaage — RCp: Rt aape
+RCa: Rs1gfar + RCac Ro1ggaz =0, (5.43)
which after a small calculation yields:
Taigis = =% CitTap) + 5 Caph T is® . (5.44)

This is the highest dimension torsion and it can be used to derive the gravitino

field equation (Chapter III, Section 2).

Evaluating {Dg;,Dg; 3 f yéx one finds:
it Dai Spytp + Eatp Dpj Zaptn = — % Cap i & Diyihs) (5.45)
and using equation {A.13), one finds:
Dai Spyi = 6§ [Vagys + %c,,@p,; Ad)ﬁi] : (5.46)

where the symmetrization is over 8,7 and 6 with no extra factors (six terms),

and the totally symmetric Weyl curvature tensor V,g.4 has been introduced.

The I, oF identity with I" = £€ reads:

Toi ﬁj7k Rystit — DsdRoigiit + Tobai™ Rowpji + Tobp; ™ Ropkeaish
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~ Dgj Rai 832 — Dai Rgjess; =0, (5.47)
after simplification one gets
—2Captiji Dat f it — 1CasDpj ks — 1Cps D Thit; = 0 . (5.48)
This equation yields two pieces of information. Using equation (A.15) one finds
Ds Fazi = 0, (5.49)
which is the equation of motion for the vector fields, and

B . — i .
D 23761' = -'58,;)‘3 D(pafﬁk . (5.50)
We can now turn to the highest dimension tensor, the dimension two curva-

ture Fgaqgp.¢ which appears in the I, édr identity
; - . Yep. . . -
Ri0y; Rogsiee + Tebai” Fokgice — Dpj Raisdee — Doi Rpjsbeg = 0.  (551)

The only unknown in this equation is the desired curvature. After some calcula-

tion, one finds
| . o
Raigizs = =5 Cab[ Vaprt = § ColaDpihn ]
+ %Caﬂ[zf-ydm Fapm + ';'D(ﬂ&AG)K&)] - (5.52)

With this curvature, we have finished the calculation of the superspace tensors.
The superspace geometry, however, is complete only if we also know how to take
spinorial derivatives on all the covariant tensors since these determine their
supersymmetry transformations (see equation (3.31)). We already know how to
take D,; or Dg; on Ag, f agi. Zapyi. but not yet onthe V,g,4tensor. Thisinfor-
mation is found from the dimension 5/2 I, ,_,P identity and the result is given

below.
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It is convenient for further reference to list all the superspace tensors

together:

A) SO(3) Central Charge Field Strength Fp™"

af™ = Cagb{™6}!, Fay™ =0,
Fod mn — %Caﬁcjrrmxfx ,

1
Fa&ﬁ&m = 'z'(capfaép + C&ﬁfaﬁp)epmn . (5'53)

B) Torsion T,5°€

Tag =0, Tag"" =1i28{6785 ., Tap3" =0,
Tag’ = Capeyeh’, Tag? =0, Tog? =0,

- . - 6 -
Ta&g = _T'Caﬁejkp F&"p ) Ta&g’ = "% aﬁAGK&(Sjk ’
Taaps’ =1[6865" AgRs — 83657 ARz,

1 1 -
Taaps? = -3 CagZag™ + 3 Cag N T ag® . (5.54)

C) Curvatures R p.s. R4p3 :

Ragys =0, Rapy=2Cagtyx F3de . Rapp=0,
Rappys =1Capfyei Mg, Rappst = —iCaplinsi

Raapiye = -'é' Caﬁ[ Vagrs — 'g' C(‘yl(aD#)::Ad)Kt]
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+ %Caﬁ[zf-rdm fagm + %D(y(&Aa)K&)]. (5.55)
D) Constituency Equations

D&iAﬂzov DaiAﬁ:‘ zfaﬂi '

Di fer; = %5}1’@&% + Dai f gy = ~Eiji Lagyk -
D Zpd = =5 % i S *
Doi Zpysj = 6ij [Vaprs + ‘;‘Ca(pDﬁAc)K;] ,
D3 Vaysr = 1—12[i(DU,(; + %A(pﬁa) o) + €7 f o Fae sl

Dy Vﬁ'}ét = _1_12' Ca(ﬂ[ipyé(fdt)i Kt) - %f‘r&i Ac)KEKc] . (5.56)

This completes our discussion of the N = 3 superspace geometry. The above
results can be reproduced by taking the appropriate truncation of the N = 4
superspace geometry, and are therefore a good check on the N = 4 expressions.
It is quite easy to truncate the N = 3 superspace geometry to obtain the N =2
superspace geometry. One just puts the spinors to zero and lets f afi f af

and &;;; - &5 throughout.
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Chapter Ill. Ungauged N = 4 Supergravities

1. Introduction and Summary

The first construction of the full nonlinear N = 4 supergravity was quite
difficult [1]. The main complication with respect to N < 4 supergravities was due
to the presence of scalar fields which appear nonpolynomially and eliminate the

possibility of a step by step construction of the action and transformation laws.

The SO(4) supergravity was constructed requiring U(4) invariance for f.he
equations of motion, parity conservation, and minimal coupling of the scalars to
gravity [2]. It is in principle possible that relaxation of the above requirements
could lead to other forms of N = 4 supergravity. It is important to understand
how restrictive the requirement of local supersymmetry is. One would also like
to understand what is the principle that determines the functional form in which
the scalars enter into N = 4 supergravity, and whether other forms are possible.
When dimensionless coupling constants are introduced into the known forms of
N = 4 supergravity, the specific functional forms in which the scalars appear
lead to unbounded and inverted potentials [3,4,5]. The same pathology exists in
the N > 4 gauged supergravities, simply because they contain the N = 4 theory
as a truncation. Although some of the critical points 'in these potentials have
been shown to lead to completely stable background solutions [6,7], investigat-
ing how much freedom there is in the functional forms involving the scalars

would allow one to determine whether or not other potentials are possible.

Superspace methods provide a convenient framework for dealing with this
problem. The most general N = 4 supergravity theory corresponds to the gen-
eral solution of the superspace Bianchi identities, since these identities are
eqm:valent to the requirement of a consistent local version of the super-Poincare

algebra. Moreover, the only assumptions in the superspace construction lie in
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the choice of constraints and the choice of global symmetry. The rest follows
rigorously from the system of Bianchi identities in which every unknown tensor
is decomposed into irreducible parts compatible with the available field
representations and covariance. By relaxing the constraints one can search for
more N = 4 supergravities. With superspace methods one looks for a consistent
local algebra or a set of supersymmetry transformations on fields, and for equa-
tions of motion.' The existence of an action is a separate problem that can be
dealt with later, in contrast with component formulations, in which action and

transformation laws are generally worked out simultaneously .

The search for other forms of N = 4 supergravity is the main subject of this
chapter. We find that the SO{4) and SU(4) supergravities are essentially unique
and that all the constraints that have been imposed on the superspace formula-
tion are not necessary. Constraints are just a convenience for N = 4 supergrav-
ity, and correspond to a gauge choice. That is, N = 4 supergravity theories fol-
low from their known field representations and the unconstrained Bianchi iden-
tities. So far, in working with N = 4 supergravity in superspace [B], the idea has
been to postulate some constraints in order te reproduce the component formu-
lation and then to use the Bianchi identities. We now show that it is not neces-
sary to postulate or guess constraints. If one solves the Bianchi identities
without constraints, the resulting theory, although far more complicated look-
ing, would siill be equivalent to the known theories up to some field
redefinitions. It is likely that the same will be true for all the extended super-

gravities including the N = B theory.

Theories that are equivalent up to field redefinitions at the ungauged level
could in principle become inequivalent or distinct when the internal symmetry
group is gauged. This does not happen with field redefinitions involving Weyl res-

caling of thé graviton, rescaling of the Fermi fields, mixing of the Fermi fields,
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and scalar manifold redefinitions. Internal duality transformations on the vec-
tor fields, however, are transformations that can affect the gauged theories, and
they are discussed in Chapter IV. It follows from the above considerations that
we are unable to generate new scalar potentials beyond those known now [3,4,5]
by a study of the ungauged theories. It is possible, however, that different ways

of gauging could lead to new scalar potentials.

In Section 2 the superspace geometries that accommodate the S0(4) and
SU(4) supergravities are constructed [8,9]. This is done by postulating some
constraints in order to reproduce the component formulation and using the
Bianchi identities. It is emphasized that the only essential difference between
the two known N = 4 supergravity theories lies in the central-charge field-

strength sector of superspace.

In Section 3 we start relaxing the constraints on the superspace formula-
tion. The two functions U and V that determine the central charge field
strength tensor gg”m are left unspecified. It is shown that the Bianchi identi-
ties force them to take their known values for the SO(4) and SU(4) supergravi-
ties up to some field redefinitions. For the case of the SO(4) supergravity, scalar
field inversions and internal space duality transformations on the vector fields

are necessary.

In Section 4 contact is made with the component formulation. The full non-
linear supersymmetry transformations are obtained from the superspace
geometry for U and V functions slightly more general than those of the known
theories. For the known values of U and V, they reduce to the expressions

given betfore [1,10].

In Section 5 we proceed step by step to relax all the constraints that had
been imposed on the superspace geometry. This allows us to complete the proof

that the N = 4 theories follow uniquely from their field content and the Bianchi
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identities with no further constraints. It is shown that constraints only amount
to field redefinitions, iricluding Weyl rescaling of the graviton. That is, in the
uncénstrained forms the scalars are coupled nonminimally to gravity. A partic-
ular choice for the Weyl rescaling function allows us to write the SU(4) super-

gravity in a form in which the scalar fields appear polynomially in the action.

Finally in section 8, we conclude by discussing some possibilities that

remain open for attempting to construct a new N = 4 supergravity theory.
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2. On-Shell N = 4 Superspace Supergravity

The superspace formulation of the N = 4 supergravity theories was first
given in Reference [B]. These geometries were later reformulated [9] in a way
that made the relation between the two known N = 4 theories more transparent.

In this section we review the superspace construction of these theories.

The SO(4) supergravity was discovered first [1]. Its spectrum consists of a
graviton e, 4 real gravitinos ‘% withi = 1,2..4, 6 vectors A" 4 real spinors x*,
a scalar A and a pseudoscalar B. The lagrangian is SO(4) invariant. The equa-
tions of motion, however, have a larger symmetry, namely SU(4) ® SU(1,1). The
scalar fields appear in the lagrangian and transformation laws in a very compli-
cated nonpolynomial fashion, and the theory is only defined in the range
|A|2+ |Bi2< 1.

The SU(4) supergravity was found later [10]. Its spectrum consists of a
graviton e}, 4 real gravitinos ¥, 3 vectors A, 3 axial vectors B, 4 real spi-
nors x°, a scalar ¢ and a pseudoscalar B. The lagrangian is SU(4) invariant, and
the equations of motion are SU({4) @ SU(1,1) invariant. The scalar nonpolynomi-
ality is simpler than in the SO(4) theory, since @ appears nonpolynomially only
through exponentials e®®?. The pseudoscalar B enters only through its space-

time derivative.

For the S0(4) theory the supercovariant derivative is taken to be of the

form [B]:

3__

Dy=E %3y + E‘PA EMg7 + SHY + 50492y, (2.1)

+ 1
2

l\)lr—*

where EA”. Pays: Pays and ¢4¥ are the inverse vielbein, the Lorentz connec-
tions and the central-charge connection superfields. The central-charge genera-
tor Z;; = —Z;; = Z;; annihilates all superfields. Torsion, curvatures and field

strengths are defined by graded commutation:
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]

[D4,Dp} = TABCDC + -I-RAB-,‘M,;" + %PAB'; ﬁ—lj""' %Fwij Zji - (2.2)

2

For the SU(4) theory a complex central-charge generator is used [8]:

Di=Edoy+ oMo+ Lo’ B + Lo 25 + Lo 2. 29)

8M37

[D4.Dp} = Typ® De + —RAB-, Mg+ 5 RAB'y

+ 261 Zjs + L Gapy 7Y . (2.4)

Here both the central-charge generator Zij and the central-charge connection
superfield r,aAij are complex objects. The central charge field strengths G and
5 are a priori independent. It would therefore appear that one has 12 vector
fields. We shall see, however, that this number is reduced to 8 by a duality con-
dition.

Let us proceed to the construction of the superspace geometry. For the

same reasons as in our discussion of the N = 3 supergravity we set:
Fag™ =0, Tag" =0,

Tap" = 216067857, Taps” =0, (2.5)

In the same way as we fixed the number a in N = 3 (equation (5.26)), here it

is convenient to require:

Reiffys = '% arler B (2.6)

where Ay; is the spinor of the theory, which first appears in the superspace tor-

sion Ty ﬂj7,, (see equation (5.8) of Chapter II). We take the expression for this

torsion as the definition for the spinor:
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Finally, we turn to the central-charge field strength F a g"‘“. It is a function
of the scalars only and it determines the way the vectors rotate under super-
symmetry into the gravitinos (equation (3.30) of Chapter 1I). One can therefore

read off the value for this tensor from the component formulation [1]:

Fog™ = Cogl Us[msP1 + V G;m™ ], (2.8)

where:

1 w .
U-_-'—-—'_:, V—':——-—::, W==A+1iB + 0(09) . 2.9
V1i-WW Vi - WW ©) (29)

For the SU(4) supergravity [10] we read off the following values (the

detailed connection with component results is given in Section 4):

g™ = Caﬁygz[méjnl, 5ggmn = Cag V Gijmn » (2.10)
where:
U=V=—>l w=Ll(-e%-2iB). (2.11)
Vi-W-VW 2

The above relations fix the starting point for the construction of the super-
space formulation. All other tensors follow from the solution of the Bianchi iden-

tities. In the following we list the results.

(A.1) SO(4) Central-Charge Field Strength F,g™"

Fag™ = CoglU8ImM4V G;™ ], Fag™ =0,

Faig™ = =i 3 Cal VAP I+ U RS ™ ],



Faigi™ = 3 Cafl UT g™ + 2 VI s O™
+ 2 CalUSog™ + 3 VS ag? G™],

. 1 W
W=-4+15, U=z ———, Ve —mM}— . .12
Vi-|Ww|? Vi-|W|? (212)

Introducing a matrix E; ™" defined by
1
E;™ = 5 [Usimsf+V ™), (2.13)
it can be seen that the internal space SU(4) symmetry breaking in the SO(4)

theory occurs only via the presence of E;;™".

(A.2) SU(4) Central-Charge Field Strength Strengths G,5™" and G 45 mn

Gag™ = CagU 8™, Gag™ =0,

~ mn
_.0,

Gagmn = CapV Cijmn. Gag™ =

Gaa g™ = — % CagVRsIm6P],

0D
)
inn-
e
g
it
Nl
‘<
®
)

E
+
VI s
<
’p
o
‘2-

(1—e~2#—i2B), U=V= —Li— (2.14)
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The equality of U and V is very important since it implies that

Capy = 5 Cijmn Gug™" - (.15)
This duality relation between the two a priori independent field strengths

implies that there are only six spin-one fields present in the theory.

Note that without taking index position inte account, we find the relation
Fgg™ = Gpg™ + G 4Bmn- In an SO(4) theory the position of an isospin index
is immaterial. This allows one to construct a hybrid version of SO(4) type solu-
tion of the Bianchi identities, denoted as the SO(4)' solution. One choses the
field strength as in (2.12), but takes U and V asin (2.14). An SO{4)' solution is a
useful formal tool to deal with an SU(4) type solution within the framework of an
S0O(4) solution, as we shall show in Section 3. An SO(4)' solution, however, cannot
be realized in terms of component fields, since it would require an unacceptable

internal space duality condition on the spin-one flelds of the theory.

The superspace torsions, curvatures and constituency equations for both
the SO(4) and SU(4) theories are the same in terms of U, V and # and we can
list them together. In order to do so, we introduce the auxiliary variables @, Qq;

and a4 defined by

a= '[jlzr Qaizz%Aai (216)
and
Qus =iIm(L &Y poaw) . | (2.17)

U adw

For the SO(4) theory using equation (2.12) we have:

WDaaW
SO(): Q= B lhai. Qui= 5 1w (218)

and for the SU(4) theory using equation (2.14) we have:
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SU(): Qui = 3hai. Qui= ~L e%D,iB . (2.19)

It is also convenient to define an operator 4,4 by the equation:

Bo5 = Dag + 3 Qaq » (2.20)

where D,  acts to the right and @,; acts by simple multiplication. We can now
list the torsions, curvatures and constituency equations for the two theories. In

the following results, one should use the appropriate U, V and W values for
each theory.

(B) Torsion 7,5°

Tag =0, Tapg” =126{6265",

. . .
Tags” =0, Tag = Caglyuh” .
Tag = Qa080; + Qgb20f .
7= g Yo ip FY
af = ‘Qgéﬁ 0% Taa,g = 'T'Caﬂfa Jk o
Tadgi” = 116704 Ag A —6265 K ahpi] ,
= Quabfof + 2 Caph’mBst*s;™1,

Ta‘;'pﬁz = - :11- a2 Zap™ +1 % a"‘d&,(Dp):,W)K"‘]

+ L G [CH NF i+ DTGV (221)
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(C) Curvature Rgp.4, Rap3}

Ragy=0. Ragst=2Capfdar. PRopgmn =- 'é‘ athen Ay
Raghps =1 % CapCia Ay f 6* - % 2™ Caphey (DgaW) |
Rqppys = —t Caplpsdi + '112' @™ Cai5( Doty W)A®; Cap— %a'lcﬁ(%(D(ané)W)Ami :
Roaphys = — % apl Vagys — % C(y](a(Ap)EAw)j)K;'j + -};a-zca(,c‘,)p(pcgr/)(p‘sm]

+ %— Caplf 7 Fapij + % (A (ads); )Ké} - %0'2(0(7(57)(06)5)"’)]- (2.22)

(D) Constituency Equations
DgtW =0 DuW=aly,
DithAg; =1i26}a™DpaW + 385 Ag;
Dailg; = Gy S o™ — 3Qailgj
Dife/* =2Q5if g + -é: CHFmm (467, (Bgalym )+ A5 Agm An ]
Dasf 7% = 8VTapt) = 2 Quif 41 L 6 Caa(DpaW)E*),

Di'Zed = Qi = 5 Bt o=t  Ca™ (D )he oy
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+ §'[0@5+2 Q(éﬂf O
DasZpd = 61Vapss — Quipsd - 3 83072(D g 3W)(Dyy) #)Ciya
- -f; 53.(A(ﬁ|3Al7lk)C6)aK& +1 %(Aw&Alvu)Ca)aKsj ,
Dit Vayse = 75 [i(Dipat Qupati & Aphd" ) y0
~(Camn B3 f @™ +122 D (ga WA ) f 5e) +A5 A Eo6e)° 1 »

Doy Vﬁ'y&t = - "1% a(ﬁ[(Dyé—Q‘yé)("' % CilmnKtlf dz)mn—a-lAdiDz)tW)

+(d CumnBil £ 5™ = L a7 (D, )A AR 2.29)

To conclude this section let us show how the fermionic equations of motion
can be derived from the superspace geometry. The fermionic equations of
motion were found to be very useful in the construction of the S0(4) supergrav-
ity Lagrangian, because they can always be written iq terms of supercovariant
derivatives [1]. Since our formalism is based on a supercovariant derivative, the
derivation of the equations of motion is quite straightforward. In solving for
Dif p,j" we find that it is necessary to set AgﬁAcp = 0. Explicitly, for the SU(4)

theory this implies
(Dog = 3 ie™DgpBIN, = 0. (2.24)

This equation is readily translated to four-component notation (Appendix A) and

after numerical rescaling (discussed in Section 4), we get:
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i 7D - S ke D By =0 (2.25)

which is precisely the equation of motion for the spin one-half field given in [10].
For the gravitino we remark that the & independent part of the superspace tor-
sion T X(T a&,ﬂ,}z) is by definition the supercovariant gravitino field strength
Yarl. Its value is given in equation (2.21). To get the gravitino field equation,

cd ab

we only have to evaluate & Ys7d Td,". As expected, the totally symmetric

Weyl gravitino field strength Eap.,i drops out of the equation and we obtain:

e ysyaVan® — ———zi',‘é e Cho®y N

+ é—x(ﬁd¢+i 758 2“”&;3)7‘7‘1\" =0. (2.26)

After rescaling (Section 4), this equation agrees precisely with the one given in

[10].
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3. Search for more N = 4 Supergravity Theories

Let us examine the constraints that were imposed on the superspace for-

mulation in order to reproduce the known SO{4) supergravity. From Section 2

we have:

Fag™ = CoplUsI™21 + Vg,;m ],

Fag™ =0, Tag =0,

Tap"" = 2i676706), Tapp” =0,

Rasfs = = Caghon B 32)

where the spinor K7l entering the above curvature is defined by:

";'fl _ 1 ..
A" = 5 C* C* Toipi e (3.2)
and U and V are specific functions of the on-shell chiral field strength #:

1 W
Uz =, V= . (3.3)
V1 -WW Vi-WwW

An obvious question arises from this: Why must these particular functions
be chosen ? One answer to this question has been given by Cremmer and Julia
[12]. These authors have asserted that U and V are determined by an algebraic

principle which assumes that these functions can be used to define a matrix V:

<
=

V= (8.4)

and this matrix is an element of the group SU(1,1) in its two dimensional

representation (det V= |U|2 = |V|?2=1). The elements U and V of the V
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matrix take the values given in (3.3) in the symmetric gauge, that is when only
the physical scalars A and B are present. The scalars in N = 4 supergravity are
described by an element of SU(1,1) in its two dimeﬁsional, representation. This
element represents three scalars out of which only two are physical due to a
local U(1) invariance. Since Vis an element of SU(1,1) it follows that (D,V)V™!

is invariant under global SU(1,1) transformations. An explicit calculation yields:

l20. o |
(D; V)V = A 20 (3.5)

1 RQaa a1 D W
(DgaV) V1= (3.6)
aa a1 Da;: W -2 Qa&

where @Qg; and @,4 were defined in equations (2.16) and (2.17). According to the
general discussion of reference [12] @qq is a gauge field for the local U(1). The
presence of this U(1) group is implicit in many of the results of section 2. For

example, defining a new supercovariant derivative D A. given by:
Da=Ds+ @7, (3.7)

where Y is a generator of U(1) (chirality) transformations, allows for some
simplification in the superspace torsions listed in equation (2.21). Note that we
have formulated the superspace geometry without a local U(1) symmetry in the
tangent space. The local groups observed in N 2 4 supergravities are used for

convenience and the supergeometries can be constructed without them.

The SU(4) theory, however, does not fit simply in the elegant construction

of Cremmer and Julia. When the functions U and V are chosen as in equation
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(2.14) the matrix Vis singular. This suggests the need for a more general struc-
ture for the construction of N = 4 supergravity. Superspace itself is such a

structure.

Starting from equations (3.1) and (3.2), and the spectrum of states for the
N = 4 supergravity without auxiliary fields, we look for a more general solution
to the Bianchi identities. This well defined problem amounts to finding solutions
to a set of differential equations in superspace. We do not assume equations
(3.3), instead U and V are now completely arbitrary functions of the on-shell

chiral field strength W:

U=UWW), V=VWW). (3.8)

The strategy at this point is to search for differential equations, arising
from the Bianchi identities, which force a specific functional dependence on U
and V. 1t is already known that at least two such solutions exist, namely the
SO(4) theory with U and V given in equation (3.3) and the SU(4) theory with
U=V=Vi-¥w-T.

It is important to note that, although the constraints in equations (3.1)
((3.2) is only a definition) cbrrespond to SO(4) type theories, we are searching
for more general SU(4) theories within the same formalism simultaneously.
This is because when U equals V the solution we have is actually an SO(4)' type
solution (see below equation (2.15)), from which the SU(4) theory can be easily
found by splitting the central-charge field-strength tensors Fup™" into Gyg™"

and &AEmn-

In this section we do not attempt to find the most general superspace solu-
tion (this is postponed to section 5). We keep the constraints given in equations
(3.1), and furthermore, we do not write the most general expression for the

Ty g’ torsion; instead we assume:
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Tag® = wa 0F6F + wg626F . | (3.9)

That is, this torsion keeps the form it has for the known theories (equation

(2.21)). The spinor Wq, however, is not assumed to be equal to the spinor @,.

Analyzing the superspace Bianchi identities up to dimension one, we find

the following values for field strengths, torsions and curvatures:

A) Field Strength F g™ :

ag™" = CaglUS[™}) + VG, ;™ ] ,‘ g™ =0,

Faig™ = —% Cal VEI™ 871 + UR ;™1

Faigi™ = % Cag (UF ™ + £ VF iy V™)

+ 5 Cap(Uf g™ + 3V g G™) . @10)
B) Torsion T,5°:
Tof7 =0, To37 =2i6/635],
Tagi” =0, Tag' = Cop Gu " }
Tag’ = wa0F8) + wgd20k,

Tag” = —©3026F . Taagy = —Cagfays -
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Taig" = & 0§68 Tlai + £ Cagh®y AslksF1,
Taaps” =1 630105 Agi — 6267 A5 Agi ] - (3.11)

C) Curvature RAB'ﬁv RAB';%:

Rogp =0, Rapgyh =2Casf5di .

Rajys = "jgl' atr Moy Y - (3.12)

In the above solution we have introduced the auxiliary variable 1,4 = IT,4;*

where:
Maii? = Des 3 = Dif o + 20D’ = FAuils? . (3.13)

As usual in solving Bianchi identities, there are a number of constituency equa-

tions. Up to dimension one-half, we find:
D9U=2Umg, DgV=27c.Jg, (3.14a)
D,,U:—ZU:.;E+A9V, DaV=-2Vwg + A U, (3.14b)

and at dimension one we get:

DgRg =3wahs + {53, (3.15a)

Dshy = —8B3A5 + C9PI Fapoe (3.15b)

where the auxiliary variable S ap entering the supersymmetry transformation
law for the spin one half fields has been introduced. Finally, there are a few con-

sistency equations that determine S ap and that may place restrictions on the
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possible values of U and V:

Dgawg + Dgwg = CagCiipg AT 857 =0, (3.162)
Magi = %Gfﬂa&. (3.16b)

DU + -%VS,,& - 'fi Ull,z=0, (3.16¢)
DV + -;-UE,,,;— %VII,,;:O. (3.164)

We now have to investigate if the above system of equations admits solutions
with values of U and V different from those for the known theories. It is con-
venient to begin with equations (3.14). The spinorial derivatives and spinorial
objects can be eliminated in order to give the usual type of differential equa-
tions. To this end, one uses the fact that W is a chiral superfield :

DaW = DgW =0, and therefore the derivative of any function (W, W) is:

Dah(W,W) = g%pgw. (3.17)

Furthermore, since spinorial objects have to be related to the first spinor

derivative of #, one can define scalar functions w and A by:

Wa=wDa W, Ag=ADg W . (3.18)

Using equations (3.17) and (3.18), one finds that equations (3.14) reduce to:

U _ vV - o

W Rul, 3% _RwV, (3.19)
al av :
—_— = - —_— = - + . .
3w RUw+ AV, 3% 2Vw+ AU (3.20)

It should be noted that equations (3.19) and (3.20) define the scalar functions
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and A and place constraints on U and V. From equations (3.19) one obtains:
Bl P g » Z-
aWln[ U] =0 7= F(m. (3.21)

That is, the ratio of ¥V and U should be a function of W only. From equations
{3.19) and (3.20) one derives:

LU= 1VI)=0 > [U[2=-|V[?= 40,70 (3.22)

where ¢, is a real number. Equations (3.21) and (3.22) are the only require-
ments on U and V in order to have a consistent determination of the scalar
functions w and A. The case |U|% — |V|? = 2c,? leads to the SO(4) supergrav-
ity theory and the case |U|® — |V|%®= 0 leads to the SU(4) supergravity. In
each case they do so up to some field redefinitions. We shall now consider the

two cases separately.
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8.1 The |U|%2~ | V|®= #c,? Case

It is straightforward to use equations (3.21) and (3.22) to obtain:

If UR-|VIE=c2 v=-—2"_ p=ju, 3.1.1

c, e*?

If |[UIR=|V|%2= =% U= 2—r
f U= V2= o

, V=fU, (3.1.2)
where we have introduced the real phase ¢(W,W). One can now determine the
scalar functions w and A from equations (3.18), {3.20) and the values of I/ and V

given above. For both cases one obtains:

1 fwf A=f,ye’2"9'
41-fF° 1-f7

where we have defined fy = 3f/0W.

W =

1 8¢
5 aW+ (3.1.3)

One should now check whether or not the remaining equations in (3.15) and
(3.18) restrict further the solution for U, V,w and A that has been found. This

does not happen. Let us show briefly how one verifies this.

Consider first equation (3.15a). Using equations (3.18) one derives:

o p

55 Dai WD W+ A{Doi, DFiW =3wADs WDF W + 6{ 543, (3.1.4)

expanding the commutator and considering the two irreducible pieces of this

equation one finds:

8A _ ‘
W = 4wk, (3.1.5)

which is trivially satisfied by our choice of w and A in equation (3.1.3), and the

determination of the 5,3 tensor:
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Sap =R1ADW . (3.1.8)

Equation (3.15b) can be decomposed into four irreducible parts. The (af)[j]
part acts as a definition of f 4jpe. and the (af)(ij) piece is trivially satisfied.
The [af][1j] piece is trivially satisfied, and the [af8](ij ) piece defines the value
of [Dy;,D7;]W. Equation (3.16a) is readily seen to be just {Dg,Dg}InU = 0, and
expanding the commutator one obtains an identity. Equation (3.16b), upon use

of equations (3.18) becomes:

AA=0, (3.1.7)

+
Q@
S
|
-

@ |
SR

which is again trivially satisfied by the functions w and A given in equation
(3.1.3). Finally, equations (3.18¢) and (3.18d) give the same determination of

S a4 as in equation (3.1.6) and no further constraints.

As we have seen, none of the relations derived from dimension-one Bianchi
identities did restrict further the values of U, V,w, and A deriveci fr;om dimen-
sion one-half Bianchi identities. One could proceed to analyze all higher dimen-
sion identities to see if restrictions arise. Nevertheless, it is more convenient at
this stage not to do so. Since dimension one superspace tensors determine
completely the supersymmetry transformation laws of all component fields, it is
possible now to compare the new expressions with the ones corresponding to the
known theories. If they happen to be related by field redefinitions, no further
constraints could arise, since, the known theories satisfy all the Bianchi identi-
ties. In the event that no field redefinition could be found, an analysis of the
higher dimension Bianchi identities would be very important. We recall that for
the known theories we have Form A:

ve—L _ p=_TF
V1 - WW Vi-WwW#
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41-WW 1—-WW ( )

One would like to see if there are field redefinitions that transform the
values given in equations (3.1.1) and (3.1.3) into those in equation (3.1.8). These
field redefinitions would transform the supergravities that follow from (3.1.1)
and (3.1.3) into the known SO(4) supergravity. As a first step we make a scalar
field redefinition in relations (3.1.1) and (3.1.3). Letting W' = f (W), and recal-
ling equation (3.18) we find:

L LI A
Vi-ww' '
,_ 1 0 1 W' . _ e )
=2+ 42 F oA=& 3.1.9
28W  41-WW 1 - WH (8.2.8)

where the phase x(W',W') = ¢(W,W) has been introduced. The redefinition
W' = f(W) corresponds to a coordinate transformation in the manifold of

scalar fields.

We shall now show that there is a set of field redefinitions that will take us
from equation (3.1.9) to equation (3.1.8). For this purpose we use the set of Weyl
redefinitions of the supercovariant derivative [13,14]. The way one uses these
redefinitions and the necessary relationships are given in Appendix B. Letting
D'y and D4 be the supercovariant derivatives associated with the tensors in

(3.1.9) and (3.1.8), respectively. Equation (B.B) determines el:

T
3X
el =~/c,e?" . (3.1.10)

Preservation of 74 4° in equation (B.3) requires that:

M=, . (3.1.11)

Consideration of the T, 47 torsion in (B.4) and the T, 4? torsion in (B.5) shows
ag ag
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that &' and A’ do redefine into w and A Using equations (B.10), (B.13) and

(B.15) we find the associated component field redefinitions:

i A
i 1 "575X , . —?'hx
“‘l — .___;e 'wy"' , A" - VCO e A! . (3-1-12)

e'g¥=coe,™, Y
The existence of these redefinitions proves the equivalence between the theory
that follows from equation (3.1.1) and the known SO(4) theory ( Form 4 in equa-

tion (3.1.8)).

Performing field redefinitions completely analogous to the ones performed
above, one shows that the functions given in equations (3.1.2) and (3.1.3) can be

redefined into Form B:

v —L . p=_F

N =1 N

1 W 1 '
CTaT—ww 1= WW (3.1.18)

One can see that this theory is defined for | W §2> 1, that is, in the outside of
the unit disc, in contrast with form 4 (the known S0O(4)), that works in the inside
of the unit disc |W|%2<1. Let us find the relationship between these two
theories. It is not just analytic continuation. This can be seen by examining
equations (3.1.1) and (3.1.3). In order to continue U and V into the outside
region we let (1 — ff)% >i(ff - 1)% and this implies that ¢ 2 ¢ — % On the
other hand, A does not change under continuation (it is well defined in the out-
side region), but in order to have a consistent solution it should change sign due

to the above change in ¢.

The known SO(4) theory (form A) goes into form B under a scalar inver-
sion, followed by a scalar-field-dependent chiral rotation of the Fermi fields and
an internal space duality transformation on the spin one fields. Let us see thisin

detail.
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Stariing from theory A in equation (3.1.8) and letting W = 1/ W' we find:

U = J,_.L V= [_ZV_'}% ______1____
VW'W,_I W' \/W:‘Wl__l ’
1 1 W' 1
W= = , A= ——— 3.1.14
S WA= W) W I- W (8114
Now a super Weyl rescaling is performed:
1
D"m’ - [%: 4Dlai , D”u - Dla , (3115)

implying (using again Appendix B) that the values given in equation (3.1.14)

become:
UN = W' Vu - 1
VIW'W -1 VIWW -1
1 W 1
w'= = —, N'= ———— 3.1.16
41w 1-WW (8.1.18)
under the following component redefinitions:
3. 1.
=1y , =156 .
A"=e? 5GAl-', 1{1#"’:24 * Y (3.1.17)

where e*® = W'/ W' . At this stage we have almost complete agreement
between the expressions given in equation (3.1.186) and those for form B. The
only difference lies in the values of U and V, which have been interchanged.
Inspection of equations (3.10) shows that what we need is an internal-space dual-

ity transformation of the central-charge field-strength tensor Fp™":
3] - 1 1"
Fap¥new = "z'ci.quF 8™ . (3.1.18)

This transformation is seen to exchange U and V in all the tensors given in
equation {3.10). At the component level, choosing the indices 4 and B in equa-

tion (3.1.18) to be spacetime indices we have:
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A.j .. -
F:wnﬁw = 'é' cuR F“:nlz , (3.1.19)

where the hat denotes supercovariant fleld strength (any superspace field
strength is always supercovariant in our formalism). Given that the supersym-
metry transformation law for the vectors A‘fj depends only on the field
strengths in equation (3.1.18) it follows that 8 A%, = -é—c*"f"‘ 64" B . There-
fore the redefinition in equation (3.1.19) applies to the ordinary field strengths
F Wij = BD,A,,]ij and to the gauge fields themselves, as long as we are dealing
with an ungauged theory. Theories with values of U and V exchanged via an
internal-space duality transformation can become inequivalent once the internal
symmetry is gauged. The possibility of exchanging U and V could have been
noticed earlier in equations (3.19) and (3.20), as these equations do not change

under this replacement.

Given that internal-space dualities on the vector fields are transformations
that affect the gauged theories, it is helpful to define the A* form as the dual of
the A form, and the B* form as the dual of the B form. We summarize below

the U and V values for each:

1 77 W
Form 4: U= ————, V= ———— .
V1i-WW V1i-WW
Form A% U=J———, V=————1—-——-.
Vi-WwW Vi-WwWw
Form B: U= 1 , V= L4
VIWW -1 VI -1
Form B*: I A A S— (3.1.20)
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In these four cases:

7 | 1 |

i
=, A= —m— . 3.1.21
4T W T~ W (3.1.21)

The A and A* forms are defined in the inside of the unit disc, and the B and
B* forms are defined in the outside of the unit disc. A and B*, or A* and B are
related by scalar inversion and chiral rotation of the Fermi fields. 4 and & or
A* and B* are related by scalar inversion, chiral rotation of the Fermi fields and
internal-space dualities. Once gauged, 4 and B* remain physically equivalent,
and the same is true for A* and B. Nevertheless, A becomes inequivalent to 4*

(or B) and B becomes inequivalent to B* (or 4) as explained in [10].
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3.2 The |U]? - |V|2=0 Case

As we have seen in Section 2, the SU(4) supergravity is characterized by
having U equal to V. It is not therefore too surprising to see that the case when
|U|%2 = |V|? will lead to SU(4) supergravities that can be redefined back into
the known SU(4) supergravity. It should be emphasized that when U = V the
solution to the Bianchi identities, as given in equation (3.10), cannot be imple-
mented, because in this case one cannot solve for f aﬁij in terms of the vector
field strength Faq p;;ij . This precludes the construction of supersymmetries, as
one can see in equation (3.15b), in which the above relation is necessary to find
the supersymmetry transformation law for the spinors A*. In this subsection it
should be understood that the central-charge field-strength tensor is split into

its G43™" and G45™ pieces, as was done in equation (2.14).

Let us now find the most general solution for U, V,w and A Equations

{3.19) can be used to show that .
V=e2%yp, (3.2.1)

where &, has to be a real constant. Equations (3.20) determine the values of w
and A in terms of U and V without imposing any further constraint on U and V.
It would therefore appear that the choice of functions U and V is totally unres-
tricted. Nevertheless the remaining constraints, that were trivial in the case of
the SO(4) theory, are not trivial now. Equation (3.15a) gives a determination of

saﬁ:
Sap = RIADEW , (3.22)

and the constraint:

GA _ 4wA. (3.2.3)

aw
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Using equations (3.19) and (3.20), one can show that the above constraint is

satisfied only if

2 1 :
U= S eon (32.4)

where g (W) is an arbitrary function of #. We therefore have the following solu-

tion:
U= ei" , V= 2i6, ,
Yaansam o ¢
o= —%-é%,m[ﬁ(g(m + ()], A= -_g E%In[g(W) +§(M)]. (325)

It can be checked, in the same way as was done in Section 3.1, that the remain-
ing constraints (equations (3.15b) and (3.18)) are identically satisfied by the

solution given in equation (3.2.5).

We recall that for the known SU(4) supergravity one has

i -
Uz —————, V=U,
Vi-W-W
1 1 1
W=E = —, A ———— . 3.2.6
41-W-W 1-wW-W ( )

Although the expressions in equation (3.2.5) appear to be more general than
the ones given above for the known SU(4) theory, they would lead to theories
equivalent to the known one. One can show that this is the case by giving the
field redefinitions that turn one set of expressions into the other one. As a first
step one needs the scalar field redefinition g(¥) = % — W' that transforms

equations (3.2.5) into:

vr= V"_E;——’W" V=e2byp,
1-W -W




) e-z;(x;e,)
d1-w-w' " T 1-w-w"

W=

Ox
3 + (3.2.7)

e

where (W', W') = ¢(W,W). As a second step, we perform a chiral rotation in
order to eliminate the phase x from the above expressions and to reshuffle the

phaée 26, between U’ and V":

1
-"(x + 9-,)
Digi=e ? D'gi, D"s=DYg. (3.2.8)

This chiral rotation implies the following component redefinitions (Appendix B):

3. 1
Sirsx + 6;) : 575(x + 6,) :
A”i =e 2°7/5 A"i , ,w";' - e 2758 ’IV;; , (329)

and transforms the expressions in (3.2.7) into:

v = e-‘iG, 7= ei9,
Vi-w-w"' Vi-w -
1 1 1
T s AN —/——— 3.2.10
“CTarowow T T (.20

At this stage, we have almost complete agreement with equation (3.2.6).
The only difference lies in the phases e % and ¢*% present in the U” and V"
functions respectively. Actually, the expressions given in equation (3.2.10) lead
to supersymmetry transformation formulas identical to those that follow from
equation (3.2.6), as we will see in Section 4. There is therefore no necessity to

redefine the expressions in (3.2.10). It can be done, however, by letting:
. ‘en . _ _ _.6 _
P hnew = e’ 75 & Phijnew = € e Paij » (3.2.11)

where :p? and @4;; are the central-charge connection superfields that appear in
the definition of the supercovariant derivative for the SU(4) supergravity in
equation (2.3). Nevertheless, equations (3.2.11) in terms of the real gauge fields

AL and Bp are not redefinitions at all. If the relation between the central-
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charge connection ¢ and the gauge fields A} and B} is set up consistently

(Section 4), one has A% ey = AL and Bpnew = BL.

In summary, the analysis of this section has shown that the relaxation of
the constraint that the U and V functions be restricted to their known expres-
sions has led in the case of the SO(4) supergravity to forms that are defined out-
side the unit disc and to forms related by internal-space dualities on the vector
fields. In the case of the SU(4) supergravities we have seen that trivial field

. redefinitions reduce the more general forms into the known ones.



- 71 -

4. Supersymmetry Transformations

In this section we study at the component level the implications of the
superspace solutions given in Section 3. Since the analysis of the Bianchi identi-
ties has been carried out up to quantities of dimension one, we are now in a posi-
tion to dérive the full nonlinear supersymmetry transformations that the solu-
tions imply. We will obtain general forms for the supersymmetries applicable for
the most general values of U and V found in Section 3. In particular they are
applicable for the forms A, A*, B and B* given in equation (3.1.20). These
forms are of interest because, depending on the way they are gauged they can
lead to different theories. In the case of form 4 (that is, the "known" theory),
we reproduce precisely the results given by Cremmer and Scherk [1]. For the
case of SU(4) supergravities, we also give the complete supersymmetries. Again,
for the particular values of U and V corresponding to the known theory, we

reproduce precisely the results of Cremmer, Scherk and Ferrara [10].

The relation between superspace geometry and component formulations
has been known for some time [15]. This relation has also been worked out for a
formalism based on the supercovariant derivative in reference [16]. This formal-
ism was explained in Section 3 of Chapter II. For our choice of constraints in
Section 3 (748" = T'q4° = 0, among others), the results of Chapter II, giving the
supersymmetry transformation of the component fields in terms of the super-
space tensors, can be written as (@, b,c ... are flat vector indices and u,v,p ...

are curved vector indices):

sef= Byl + G T, et (4.1)

6YE = ~D,ye® — 8T 8 — 2P 7,50
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+ (el + e%ﬁ) Tog® + Pyl Tg 2 + 9L T332 (¢.2)

for the graviton and the gravitinos respectively. For the vector fields qa" of the
SO(4) type theories entering in the supercovariant derivative as shown in equa-

tion (2.1), the results of Chapter Il imply that.:

bofi =~ FLgt — 88 F 4 + 2yl P, g + 2 gL Py g (4.3)

.
E

For the vector fields of the SU(4) type theories the situation is somewhat
more delicate. One should first notice that the duality condition in equation
(2.15) has to be modified because U no longer equals V. Instead, we now have

V=% U, therefore the appropriate duality condition reads:

Cijmn Gag™ . (4.4)

l\)l'-*

G ABij =

This duality condition constrains the way the gauge connectlions cpij and @;; are
defined in terms of the vector flelds A} and Bj. Since Gy, Y is the field

strength for ¢" and G.wij is the field strength for §,;. it is consistent to take:

vl = \/— (o} AL — 183 Bz)e—w" , (4.5)

Puij = \/_. (aff AL + 183 B")e , (4.8)

where a;} and g7 with n = 1,2,..4 are the 4X4 antisymmetric matrices of
reference [9] . One also has to be careful with conjugation. Conjugation of the
G tensor gives the G tensor and vice versa. For example, from equation (R.4) it
follows that :

I‘DQ'DE; =--- 4+ 'I'Gggv ZJ‘L +

> Gapii 27 (4.7)

1
2



{Dg.Dg}= - + adiy 27 . (4.8)

Since equation (4.8) follows from equation (4.7) by conjugation one has:

Ga4? = ~Cagy = Cag . (£9)
Gagis = —Gag” = Ggjgyj - (4.10)

Using equation (4.4) and the above results, one sees that complex conjugation
involves the antisymmetric tensor Cijm,. Equations analogous to (4.8) and
(4.10) hold for the conjugation of G tensors with both spinorial and vectorial
indices.

Taking into account the above remarks the general results in Chapter Il can

be used to derive the following transformation laws:

Spl = ~c2 G — 22T ,5Y + 2 yh Gop¥ + t‘l"ﬁ Gag? . (4.11)
_ ~ _a g —a_@ \
0Puij = —€% Guaij — T Gugij + € VuGagsj + & VaCajy - (4.19)

One can use either equation (4.11) or'(4.12) together with equations (4.5) or
(4.8) to find the supersymmetries for the vector fields A7 and By . Both give the

same result.

Finally, for the scalars and the spinors (non-gauge fields), the supersym-

metry transformation are found using:
6Y =e®D,Y + 8 D;Y, (4.13)

where Y denotes any of these fields, together with the constituency equations
(3.14) and (3.15) that give the spinorial derivatives for the scalars and the spi-

nors, respectively.
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In the following our results are in four-component notation and follow the
conventions of References [1] and [10]. "i‘he transcription from two-component
to four-component notation makes use of the translation table given in Appendix
A

We first consider the supersymmetries for the SO(4) type theories. Some
numerical rescaling of fields and parameters is needed in order to obtain full
agreement with the known S0(4) theory when the functions U and V assume
their standard values. We let A* = —2A% Vo> =Y/ V2 . B »E/VE
q:}? = —Af{'/ 2 and 7, ¥ —y, Using equations (4.1), (4.13) and the relation
Agi = ADgy; W, we derive the supersymmetries for the graviton and the scalar
fields:

6V, = =1 fcé"y,,ﬁ,

2

D G ST NV - =t (1 Liad :
6A“\/§€iIAHAv 0B \/—2-875111\1!1\, (4.14)

where the ||..|| notation is defined by ||f || = Re(f) + iy5/m(f). The transfor-

mation law for the vectors follows from equations (4.3) and (3.10):

544 = _\/% (C [ Dlly,A° + 8| Vi, A7)

+ eV Uy, 0 - = k| Tyt . (£.15)

In order to obtain the supersymmetry transformation for the spinors, we first
have to express the faﬁp‘q tensor appearing in equation (3.15b) in terms of the

spin one field strength Fag g™ *- Using equation (3.10) one readily obtains:

~i(0%) g Fap™ = = Fag? [USI™6P + VO™ ] . (4.16)

1
2

Solving for f apij and rearranging somewhat the result one finds:
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Fag? = —5(0*)ag[F + A, (417)

where the field strength H}{u is given by the same expression as in the known

S0(4) theory, namely:
HY, = 9:Ff, = goF 5 — 9oF 8 — 9.7, (+.18)

but with the following values for the functions g;:

. + f2 . 21
91“@4:1—_}%—. 93"‘92=——1—:13.£f—§, (4.19)

where f = V/ U. Use of equations (3.15), (3.1.8), (4.13) and (4.17) leads to the

supersymmetry transformation of the spin one-half fields:

oK = TFE S NAID (A+i7sB)P + —= [F"‘+H*]” 9| S5 ll0%#
2?’}:1 75/l 22 49 N Ry (4.20)

We now turn to the gravitinos. In order to use equation (4.2) we only need to
simplify somewhat the expression for [l 4 given in equation (3.13). Equation

(3.18), (3.19) and (3.1.7) can be used to show that:

[Tga = 8Im

13U
5o Dad W]. (2.21)

With this expression, and the expressions for the other torsions in equation

(3.11) one finds:

o%; = -'1; £'D, +ity5Im[

@l
%!C:

L 80 5,1~ £ [F+AlGe 0% L)

+ 094(1) + 694(2) (4.22)

where 61_0}‘( 1) contains spinor-spinor terms:
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(1) = EF 1 N e y5yu7a + KN E 170 — Bysr* N vs7u70] | (4.29)

and 6’%’;(2) contains the spinor-gravitino terms:

SFi@) = ~ 5= [Wirsl 2N T s~ 75l SN Tios

+ 2 C% (e y AP —e* ysy i R 75)] . (4.24)

The value of the spin connection, which appears in the supersymmetry transfor-
mation of the gravitino, can be determined using equation (3.33) of Chapter II.

We find:

SR A A .
Pusb = Yuan(e) + 25 FLnVa+Tv¥a+¥7a¥)

2 — .
- 54" GZC¢@CA‘757°A' . (4.25)

It is a simple matter to verify that the supersymmetries given above reduce
to the ones given before [1] when U and V take their known values. For the four
cases considered in equation (3.1.20), namely the A,4* B and B* cases, the full
supersymmetries are obtained immediately by substituting the appropriate
values of U and V, and the values of @ and A into the above equations. Since we
have given in the previous section the field redefinitions that turn any of the four
cases into one another, the supersymmetries could have been found, in a much
more involved way, by direct redefinition. The above expressions are a check of
the known case and can be used for values of U, V,w and A of the form given in

equations (3.1.1), (3.1.2) and (3.1.3).
We now turn to the SU(4) theories. Here too, numerical rescaling is neces-

sary to obtain full agreement with the known SU(4) supersymmetries. We put

A* - 2N, YL > —yi/V2 T ¥ /V2 and 7, —7. The supersymmetry
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transformations for the graviton and the scalars are:

6Vap = —LKE Ya ¥}

= L g2epgi)lyp = 2 gy qlng
ey eli5liat, 6B \/éwsllAilA. (4.26)

In order to find the supersymmetry transformations for the vectors A;: and
the axial vectors B}, we use equations (4.5) or (4.8) and (4.11) or (4.12), where
the G and G tensors are read off from equations (3.10), performing the splitting
discussed in Section 2. We find:

64% = = o[ U] + L UM,

05% = Jo BAIEwIUINE + J5 Evand VN, (4.27)
where we have introduced the variable U’ defined as:
i6 i
U=eU=(UV)%. (4.28)
For the spinors one finds:

o6& = - e~ &R (§“¢+i75e 2“5“3)7"‘ + % & C Ha“ﬂ

\/é aﬁi UI
2\/— el 52 20 2N E s, (4.29)
and for the gravitino:
¥i=LeD, +ittpiml 5 A 5 )+ i 5 Cliomel L
BTk TUU oW ap T
+ 09,(1) — 89,(2) (4.80)

where 694(1) and 61—{/;(2) were given in equations (4.23) and (4.24) respectively.
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The spin connection is the same as for the SO(4) type theories, namely the one
given in equation (4.25). Again, the above expressions reduce to the known dnes
when U = V = e®. They are valid for U and V functions of the type given in
equation (3.2.5). Once gauged, these forms do not lead to physically ine-
quivalent theories, because, as shown in Section 3, trivial field redefinitions turn

them into the known SU(4) supergravity theory.



-79 -

5. Relaxmg the Constraints

The search for the most general solution of the system of Bianchi identities
is a formidable problem. Fortunately, it can be studied systematically. One
first writes the known theory in superspace, imposing some constraints on the
geometry. The known theory defines a consistent solution to the Bianchi identi-
ties. Then one proceeds to a step by step relaxation of the previously imposed
constraints in a way compatible with the known field content of the theory. At
each step the Bianchi identities are studied to find the most general solution
compatible with the remaining constraints. One must also use the set of Weyl
redefinitions of the supercovariant derivative {Appendix B) to see whether or not

the solutions are trivially related to the known solutions.

There are only two possible outcomes in this step by step relaxation of con-
straints. Either one finds new theories (or theories that relate back nontrivially
so that they become inequivalent once gauged), or one shows that all the con-
straints were actually irrelevant to the construction of the theory. In Section 3
we relaxed the constraint that fixed U and V to have their known values. We
found that the more general solutions could be trivially related to the known
solution for the case of SU(4) supergravities. For the case of SO(4) type solu-
tions, internal-space dualities and scalar field inversions were necessary, leading

us to consider the 4,4* B and B* solutions.

In this Section we show that the relaxation of the remaining constraints
does not lead to anything new beyond the results of Section 3. We therefore
conclude that constraints are not necessary for the construction of N = 4 super-
gravities. The well-known field representations of N = 4 supergravity (one gravi-
ton, four gravitinos, sﬁ( vectors, four spinors and two scalars), together with the
Bianchi identities is all one needs to know to consiruct the theories, and the

theories follow uniquely from this knowledge. A particular set of constraints



- 80 -

corresponds to a choice of super Weyl gauge. It should be emphasized that the
above comments do not apply for extended supergravities with auxiliary fields,
because in this case the field representations are ﬁot known in general and con-
straints have the role of determining which representations may or may not

enter into the theory.

As we remarked in Section 3, the solutions found there do not correspond
to the most general solutions to the Bianchi identities with the constraints given
in equations (3.1). They were not so because equation {3.9) is not the most gen-
eral possibility for the T a 57 torsion. Let us now consider the complete decom-

position of this torsion into irreducible pieces:

Taigi™ = 0ai OF6F + wg; 076k + [y;045k + T 675%
+ 9a(i)*0F + 986" 6% + Gaii 1 0F — 911 62

+ hi ()0} + hi(ag)’5F + Z(@pyu)™* - (5.1)

where any contraction of a lower index with an upper index in the functions g ,h
and 2 gives zero. Nevertheless, it is not possible to construct the dimension
one-half tensors ga(ij)",h.i(aﬁﬂ and z(aﬂ)(,»j)""’ out of the available fields, and
therefore they have to be set to zero. Again, field representations and dimen-
sionality force one to set g u[,-j]" = Gap C;jkp , Where g,5 is a dimension one-half
spinor and Cij, is the totally antisymmetric tensor. Evaluation of the J afy "

Bianchi identity, however, requires that g, = 0. One is therefore left with:
Taipj7k = wgdg'd}‘ + 05635{‘ + Fajdzéf + Fﬁ 5;’(5’-‘ , (5.2)

as the most general expression for the torsion.
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Let us call theories I the theories that follow from constraints (3.1) and
(3.9), and theories II the theories that follow from constraint (3.1) only (equation
(5.2) should not be thought of as a constraint since it is the most general
expression one can write). Before solving the Bianchi identities again, it is con-
venient to find out first under what conditions theories II could be related trivi-
ally to theories 1. In the notation of Appendix B we take theories II to be
described by the unprimed tensors, and we want to redefine them into the
primed tensors, that refer to theories I. Preservation of the value of Tg; i€

requires ({B.3)):
M=L+1L, (5.3)
and preservation of 744° = 0 requires ((B.8)):

(DaiM) 6& - 21;03&.7:131: + faiac =0. (5-4>

The elimination of the last two terms in equation (5.2), in order that the T a gz

torsion takes the form it has in theories I, requires that ((B.5)):
fair? =T(ZDaiW6f = DyWd), (5.5)

where I'y; = 'D,; W, Substituting the result in equation (5.5) into equation

(5.4) (with f m--;o = 0), one determines:

Fofs = —i—l"aa“qu,-W , (5.6)

oM

1
Y] 21" . (5.7)

The value of f ud can be found by requiring that the constraint on the curva-

ture Rgj.s be preserved.
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Equations (5.3) and (5.7) imply that I is the derivative with respect to W of

areal function of # and ¥, that is:

. (5.8)

.—j

n
mlm
Tl

where H = H(W,W) is a real function. The above analysis implies that if the

function I' introduced in equation (5.2) satisfies the constraint (5.8), then

theories Il can be redefined trivially {via super Weyl rescalings) into theories I.
One can solve again the Bianchi identities using equations (3.1) and (5.2).

Up to dimension one-half level, we find the following constituency equations:
Do U = (Rug + Ifg) U, DaV=QRug+Tg) V. (5.9)
D9U=—-2ng+AgV, DaV=-Re, V+AU. (5.10)
A little calculation, using the scalar functions A, w and I, gives:

=9 ‘U2 = 1Vi®

for |U}%2 — | V|2 # 0, that is for SO(4)-type theories. Equation (5.11) indicates
that the constraint in equation (5.8) is satisfied. Therefore all SO(4)-type
theories relate trivially to the known solutions. For the case of SU(4) supergravi-
ties, |U|? = |V|?, and equations (5.9) and (5.10) do not imply that T is the
derivative of a real function. One has to go beyond the analysis of dimension
one-half identities. Among the constraints that one finds analyzing the

dimension-one Bianchi identities one has:

DoRy = (3wg + T)As + 6545, (5.12)

(Da‘i + “’a?;) Ty + (D + Dﬁjwo& =0, (5.13)
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where the hat on the isospin indices indicates that the trace has been removed:
f?j = fiJ - %6,’ fp?. From the traceless part of equation (5.12), and equa-
tion (5.9), one finds:

=_8 ., A
= ann 7 (5.14)
From equation (5.13) one finds:
ar _ ol
_BW ——a . (5.18)

Equations (5.14) and (5.15) imply that I' can be written as the derivative with
respect to W of a real function. We therefore conclude that SU(4)-type theories

can also be related trivially to the type I forms.

At this point we have already succeeded in relaxing most of the constraints
and it will take little effort to consider the remaining ones. One should first real-
ize that it is not possible to alter the superspace field strengths F gg”‘" and
Fag™ or the Ty Qﬁ torsion with the available field representations for N = ¢
supergravity. This is not the case for the remaining torsions and the curvature

in equation (3.1). It is possible to relax the constraints that fix those tensors.

The most general expressions one can write are:
Toi7 = 2ieH 5i576]
Tap® = NO§ D W + P(ab':)apoW ,
Reaifys = Q Caiylen g (5.16)

where H,N,P and @ are arbitrary functions of the scalar flelds. Hermiticity of
the supercovariant derivative, however, requires that A be a real function. Let
us call type 1II theories, the theories that follow from the above expressions. It

is not possible to write a more general expression for an N = 4 supergravity
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without auxiliary fields. We shall now show that Weyl rescalings transform trivi-
ally type Il theories into the type 11 theories considered earlier. Since type II
theories are equivalent to the theories considered in Section 3 we conclude that

- relaxation of the constraints does not lead to new theories.

As a first step we do the following redefinition:
D'g =Dy + %fw.-“Ma‘ , (5.17)

which is just a redefinition of the spin connection. One can show that, under this

redefinition
R'aiéi'ré = Raiﬁi'yé - &if afys - (5.18)

Therefore, choosing f afys appropriately, one can restore the value for the trace
of this curvature given in equation (3.1). None of the remaining superspace ten-

sors considered in equation (3.1) is affected by this redefinition.

We now need a further Weyl rescaling to eliminate the functions H,N and P
from equation {(5.16). Letting the unprimed derivatives of Appendix B refer to
type 11 theories, we take M = H and L = 0. This sets Ty T back to the stan-
dard value. Using equation (B.8), one finds that it is possible to set Tgbc equal

to zero by choosing:

fais = [-2iP +2(N + g—g) ] (%Dm-Wd.f ~ D, Wed),

5 Ao .- 0H N
Fay =0, Ffi=-ie B W+ ZDW o, (5.19)
Even though the torsion Tg EI is modified, it remains of the general form giiren in
equation (5.2). Therefore the redefinition of type IIl theories into type II
theories is complete, and the most general superspace solutions can be

redefined into the known theories.
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We have thus arrived at the conclusion that the SO(4) and SU(4) supergravi-
ties are unique. They can be rewritten in different ways, all of them physically
_equivalent, by a choice of a Weyl gauge, which corresponds to the freedom to

perform super Weyl field redefinitions.

It is interesting to note that both theories II and III discussed above, if
implemented at the component level, would show the graviton coupled non-
minimally to the scalars. This occurs because the transformation that relates
those theories to the known supergravities, which have the scalars coupled
minimally, involve scalar-flield dependent Weyl rescalings of the graviton. This
nonminimal coupling happens in type II theories despite the constraints
Tgp® =0 and T mi ¢ =2i¢/ 0°op that insure that the graviton has the stan-
dard supersymmetry transformation into the gravitino. One can trace the origin
of the nonminimal coupling of the scalars to the I terms in equation (5.2). This
term has been seen to produce supersymmetry transformations that require a
term of the type T(O'WD#’;(/,, to be present in the lagrangian, and this term in turn

requires that scalars appear in front of the Einstein part of the action.

It has been emphasized in the literature that the scalar fields enter nonpo-
lynomially in the N = 4 supergravity theories. It is also known that the nonpo-
lynomiality of the SU(4) model is much simpler that the one present in the S0(4)
model. One can show that in the case of the SU(4) supergravity the scalar non-
polynomiality can be avoided altogether in the lagrangian if one allows non-
minimal coupling of the scalars to gravitation, that is, if one allows the presence

of a function f (¢) in front of the scalar curvature.

The polynomial form for the lagrangian is found by first rescaling some
fields by powers of e and then redefining the scalar field ¢ itself in order to
eliminate the exponentials. These steps are given in Appendix C where the poly-

nomial form of the lagrangian and the supersymmetry transformation laws are
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given. It should be noted, however, that the supersymmetry transfofmations
have nonpolynormniality in expressions such as (lcga)f'l, 1t does not appear to be
possible to eliminate the nonpolynomiality from boﬁh the supersymmetries and
the lagrangian. There is no difficulty in writing a polynomial form for the gauged
SU(2) ® SU(2) model [4]. In this case the scalar potential is of the form (—¢%).
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8. Conclusions

We have searched fpr the most general N = 4 supergravity without auxiliary
fields. Our results indicate that the SO(4) and SU(4) supergravities are unique.
The different forms that one can obtain for these theories are always redefinable
back into the known forms. In the case of the SO(4) supergravities the
redefinitions include internal-space duality transformations on the vector fields,

and can lead to inequivalence when the theories are gauged .

It has been shown that N = 4 supergravity theories follow from the Bianchi
identities and the known field representations. In particular, further constraints
on torsions, curvatures or fleld strengths are not necessary. They are just a
convenience in order to reproduce the particular forms of the component for-

mulations.

Our search for more N = 4 supergravities assumed that there is at least a
global SO(4) symmetry. The SU(4) supergravity was obtained as a particular
solution of the superspace equations, which could have more symmetry than
S0(4). We have also assumed that the gravitational constant & does not appear
explicitly in the superspace tensors if bosons are taken to have dimension zero
and fermions dimension one-half. Without this requirement the dimensionality
of the fields could be easily altered to any value by inserting appropriate factors
of ¥, and the ‘expansion of any superspace tensor could have an infinite nurﬁber
of terms. Although it may be possible to relax the above assumptions it appears

unlikely that this will lead to new forms of N = 4 supergravity.
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Chapter IV. Gauged N = 4 Supergravities

1. Introduction and Summary

It is well known that extended supefgravity theories with N local Supersym—
metries have a global SO(N) invariance which can be made local using the spin-
one fields of the theory as gauge fields. In this way, supergravity theories have a
Yang-Mills-type gauge invariance which might be related in some way to the

Yang-Mills-type theories that describe the electroweak and strong interactions.

The gauged supergravities, however, seem to have some problematic
features. Nof even the largest group, namely SO(B), contains the standard SU(3)
x SU(R) x U(1) of phenomenology as a subgroup [1]. A cosmological constant
A~ —g?/k® where g is the SO(N) gauge coupling constant and k is Newton's
constant, is present in the theory. For a typical value of g {(~ 0.1} A is an unac-

ceptably large negative number.

Despite the above and other difficulties, encouraging progress has been
made recently. The inverted scalar potentials of the gauged SO(N = 4) ‘theories
are now known to have at least one stable ground state [2,3]. For N = 5 it was
also observed that the scalar potential can break both supersymmetry and the
Yang-Mills symmetry spontaneously [2,3,4]. This is an attractive possibility
since the scalars that trigger the Higgs and super-Higgs éffects are the ones

present in the original supermultiplet.

The case of N = 4 supergravity ié quite special. As we have seen in Chapter
III there are two versions of this theory, namely the SO(4) [5] and the SU(4) (6]
models. Moreover, the so(4) algebra is not simple. In fact so(4) = su(2) @ su(2),
and therefore gauged N = 4 supergravities should have two independent coupling
consiants, each associated with an su(2) subalgebra. This was known to be the

case for the gauged SU(4) model [7] but not for the gauging of the SO(4) model
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[8]. We have derived the gauged SO(4) model with two coupling constants [9],
and it shows some surprising features. For the first time a positive c;:smological
constant is obtained in gauged extended supergravity. The positive cosmologi-
cal'const_ant or de-Sitter background (the background of inflationary universe
scenarios) breaks the four supersymmetries spontaneously. The super Higgs
effect takes place and the four gravitinos become massive by eating the four
spin one half fields. The gauge group, however, remains unbroken, since the
scalars in N = 4 supergravity do not transform under SO(4). That is, the Higgs
effect does not take place, the vacuum does not break SO(4), and the six vectors

remain massless.

The cosmological constant in the gauged SO{4) model with two parameters
g1 and g, is proportional to the product of these two parameters
A~ ~g.95/ k2. One could conclude that the cosmological constant is adju-
stable. This conclusion would be incorrect, the cosmological constant cannot be
adjusted. 1t is shown here that the g, and g, constants introduced into the
S0O(4) model cannot be readily identified with gauge coupling constants because
of the presence of scalar fields in front of the kinetic term for the vector fields.
If at the critical point of the potential the scalar fields acquire some vacuum
expectation value, the canonical normalization for the vector fields can be lost.
It is then necessary to rescale the vector fields to recover the standard normali-
zation, and the rescaling of the gauge fields implies a rescaling of the gauge cou-
pling constant. This is precisely what happens in the gauged SO(4) model, as will
be shown here. For g; and g, of the same sign but different magnitude, the
scalar field acquires a vacuumn expectation value. If the vector fields are then
rescaled to the standard normalization, one finds the effective coupling con-
stants to be Gierr = Goery = Vg 192 that is, the theory becomes a one cou-

pling constant theory with negative cosmological constant A ~ ~gZ /&% 1f g,
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and gz have different signs and mag‘nitudes.’ one finds
G1esf = —92efs = V=g 192 that is, a one coupling constant theory with posi-
tive cosmological constant A ~ gff 1/ k2. The case ﬁhen either g4 or g3 is zero
is inequivalent to the above two cases and is a particular case of the gauged
SU(R) @ SU(R) model[7].

The presence of scalars in the kinetic terms for the vectors has implica-
tions for the gauged SU(2) ® SU(2) model [7] and for the gauged N = 5 super-
gravity and they are discussed here too. The case of N = B supergravity and the
case of dimensionally-reduced theories of gravity, in which the scalar fields

appear as an internal metric for the vector fields, will not be discussed.

In the second section of this Chapter, the gauged N = 4 supergravities are
formulated in superspace. It is shown that in order to obtain the gauged
theories it is sufficient to replace the central charge (commuting) generators of
the ungauged theories by generators of SO(4) rotations. The methods described
in this section are used to derive the gauged SO(4) model with two parameters
and to rederive the gauged SU(2) @ SU(2) model. They are explained here in

some detail, for they could be useful for other problems.

In Section 3 the scalar potentials are obtained from the superspace
geometry in two different ways. As was conjectured in ref. [10], the scalar
potentials are seen to be quadratic expressions in terms of the U and V func-
tions that determine the superspace central charge field strength F’ ggij (a
dimension zero tensor that specifies the way scalars appear in the term that
~ rotates the vectors into the gravitinos under supersymmetry). Prpperties of the

potentials, such as critical points and global limits, are examined.
In Section 4 the class of potentials of the gauged SO(4) model with two cou-

pling ‘constants are shown to fall into the three inequivalent cases mentioned

above. The role of internal-space duality transformations is clarified. It is
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shown that if one performs an internal duality transformation on the vector
fields of the known ungauged SO(4) theory (obtaining the form A* of reference
[11]). and then gauges the theory with g1 = g one obtains the positive cosmo-

logical constant model. Scalar inversions are also discussed.

In Section 5 the gauged N = 5 supergravity is examined in thelvector and
scalar sectors. The functions of the scalars that appear in the kinetic term for
the vectors are obtained explicitly and are seen to be necessary to find the mass
parameters for the vectors in the broken phase. The remaining SO(3) symmetry,
however, turns out to be gauged with the same coupling constant as the original
SO(5) symmetry.

Finally, some comments are made on issued concerning the stability of the

potentials, charge renormalization, and gauging of subgroups.
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2. Superspace Formulation of the Gauged N = 4 Supergravity Theories

In this section the superspace geométries necessary to describe the gauged
N = 4 supergravities are derived. It is found that their description in superspace
requires very few changes in the torsions, curvatures and constituency equa-
tions of the globally symmetric theories. In fact, the constraints for the gauged
and ungauged theories are ezactly the same. Furthermore, the changes in the
superspace geometry are of the same type for gauging of the SO(4) and SU(4)
models when expressed in terms of the .functions U and V entering the central

charge field strength Fg g¥ .

Both in the SO(4) model and {n the SU(4) model, the SO(4) global symmetry
can be gauged. At the global level the SO(4) group has the direct product group
SU(2) x SU(R) as covering group; in fact SO(4) is isomorphic to SU(2) x
SU(R)/Z5. At the level of the algebras, the so(4) algebra is the direct sum of two
su(R)’s, so(4) = su(2) ® su(), this implies that the two su(2) subalgebras can be
gauged with different coupling constants. Throughout this paper the gauged
theories will be referred to as the gauged SO(4) or gauged SU(4) models imply-
ing that they have a local SO(4) invariance implemented with two coupling con-

stants.

We discuss the gauging of the SO(4) model first. In the superspace formula-
tion of the ungauged SO(4) theory (Chapter III) a set of real central charges Z;;
together with their associated gauge connection superfields ¢4¥ were intro-

duced in the supercovariant derivative and in the graded commutator:

Dyi=Efoy+ Lo+ Lo B Y eai zn, @)
R S y
[D4.Dp} = Tas®Dc + L Rap,? Me? + L Rupy MY + SFus¥ 25, (22)

In order to make contact with the component formulation, one adopts a Wess-

Zumino gauge in which the above supercovariant derivative takes the form:
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Dai =8q; + 0(8), D3t =35t + 0(9),

IR S~
D, =e,™ a,,,+-2-¢, SMy7 + -é—ga My
+ 'Wa“iay.i + 'Eaﬂi aﬁi é %a Z]z + 0(9). (2.3)

As it can be seen in equation (2.3), the vector fields ;aaij appear in the superco-
variant derivative. Nevertheless, the theory is ungauged because the central
charge generators are defined to annihilate any superfield. No field transforms
under a central-charge transformation except the vector fields themselves.

Indeed, under a central-charge transformation parametrized by K = -é— e¥ i

1 ..
e = [K.Dg] = — ‘éaasuzji,
Spa¥ = — 8,69 (). (2.4)
Therefore the Z;; are seen to be six generators for the [U(l)]6 group associated

with the gauge invariance of the spin-one fields of the theory.

In order to generate the gauged theories one replaces the central charge
generators Z;; by generators f;; of the group that is to be gauged. This replace-
ment is done both in the supercovariant derivative and in the graded commuta-

tion:
047 Zji > 94, Fap¥ > Fup¥ty. (2.5)

Suppose the £;'s generate SO(N), namely they satisfy [{;,tnq] =
Oiply — 0ty —(k ©l). The defining or vector representation of SO(N) is:
jk“d ke U5

(t) = 0i(i0;)1- Thus, in order to have the N gravitinos transforming under

this representation, one has to impose:

(t 15> Do ] =gK~ 6):[15;}1171:!»
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[t;.Dgk] = gx'lég{i5j]z Dt
[tijrpa] =0. (2.6)

In equation (2.6) g is a dimensionless coupling constant and « is the gravita-
tional constant, which is needed to give the ¢;; generators a dimension of mass
(equal to that of the Z;; generators). Equations (2.3) and (2.6) imply that the
gravitinos trahsform under the desired representation, that the graviton is a
singlet, and that the vectors transform according to the adjoint representation
of SO(N).

Equations (2.6) are applicable for all extended supergravities. For S0(4)
supergravity, however, they are only a particular case, since they lead to gauged
theories with one coupling constant. In the case of N = 4, it is necessary to
untangle the two SU(2) subalgebras. Let Xt and Ypwith [’ = 1,2,3 be antihermi-
tian generators of SU(2) ® SU(R). In terms of the SO{4) generators they are

given by:

Xl'-=

ermalra + fre

Yl" = ETTIA tm - tI’4’ (2.7)

D= o)

where £pqy is the totally antisymmetric Levi-Civita tensor with €353 = 1. Equa-
tion (2.7) implies that the ag- and ﬁ}; matrices of ref. [6] are 4 x 4 real antisym-
metric matrices representing the generators Xp and Yp respectively. Inverting

equation (2.7) one finds:
t; = &~ af; Xp + B Y7 (2.8)

where x has been inserted for dimensional reasons, and a normalization for the
t;; generators has been chosen. Equation (2.8) is the desired expression for the

SO(4) generators. Now the action of the X' and Y generators .on the
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supercovariant derivative has to be given:
[X".Dui] = g1 0 Daj. [X'.Da] =g;ad; De?,
[Y'.\Das] = 92 B Daj. [Y5.Du] =g285D4,
[XI.D,] =[Y D] = 0. (2.9)
[XTx1] = —2g, eTTAXA [YT, Y] = —2g, eTTAYA,
[XI‘,Yﬂ] =0, (2.10)

where g; and g» are the dimensionless coupling constants associated with the
two SU(2)'s. (Rigorously speaking, the X and XT generators in equations (2.8)

to (2.10) have been rescaled.) From equations (2.8) and (2.9) one derives:
(2. Dax ] = € g 46051 + 9 -Cijer 1Dt
[t Da¥1 = kg 46kfi8iu + 9-Cijia 10"
[ti,D.] = 0. (2.11)

where g, = g; £ g2 Equation (2.6) for N = 4 is a particular case of equation
(2.11), namely the case in which g; = g2 Using equations (2.8) and (2.10), one

derives the following commutator for the SO(4) generators:

Q

[ty bl = 5= (Bitu —Outn — (kol))+ %i (Ojetid — Ot —(kol)), (R1R)

|

where ¢} = -é— Girtir-
Substituting equation {2.2) into the commutators given in equation (2.9),

one derives the way component fields rotate under the two SU(2)'s:

6ys = [Ar’airj +ATBTIWI
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ox* = [ATayT + AT, T,
Sy T = gplM Arga“n,
¢’ E = 2eTMAT 1, (2.13)
where rpﬂr and rp'#r are linear combinations of the gauge vectors A,fj :

g

$u= 2\/— atJPAﬂ. ’ V' = 2\/- ﬁuI‘A v (2'14)

The above transformations under the two SU(R)'s are just
¢, Xt~ (2,2), A,}j ~ (3,1) + (1,3) and the graviton and scalars are singlets.
The superspace geometry that ﬁescribes the ungauged theories has to be
modified in order to accommodate the gauged theories. Once the Z;; genera-
tors are replaced by the {;; generators, the Bianchi identities are modified. If
we denote by IABCD the Bianchi identity obtained by equating to zero the
coeflicient of Dp in the expansion of [[Di4,Dp},D¢)}. then only the Lipc? identi-
ties, where D is a spinorial index, are changed. Explicitly, these identities are

changed from their ungauged values by an amount Ag.mg.i I ABCD where:

MoaugeIunc® = ¥ L Fup¥ (£5)cP, (2.15)
(4Bcy

and (tij)c‘D denotes the appropriate matrix representation of the generators #;;
which can be obtained from equation (2.11). Since F ag” =0, and (tv) ¢’ van-
ishes unless C and D are spinor indices of the same type, the only identities
that are modified are Iggzé. Iggié. Im;gzé, Ia‘;ézé and Im;ﬂhg. The modified
Bianchi identities have to be solved in order to obtain the superspace geometry
for the gauged SO(4) theory. This requires considerably less work than that
‘necessary to solve the Bianchi identities for the ungauged theory. One only

‘needs to find the modifications of the previously derived results.



- 100 -

Since the Bianchi identities are solved in order of increasing dimensional-

ity, and the lowest dimension identities which change are of dimenéion one, all

dimension zerc and one-half results remain unchanged. In particular, none of

the field strengths of dimension less than one can be modified. An explicit cal-

culation shows that the dimension one fileld strength Fubij also remains

unchanged. Therefore, the field strength sector of the theories is not explicitly

altered by the gauging. At the component level, this implies that neither the

supersymmetry transformation of the vector fields nor the way the Fermi fields

rotate into the vectors is altered.

Only two of the superspace torsions are changed from their ungauged

values given in Chapter IIl. A calculation gives:

Bgauge T ac'xgz = “;‘ k! UCqp 5&‘; 835,
Doauge Toagbs = 15 &'V CaCraben.
where we have defined for the SO(4) model:
S0(4): U=Ug, + Vg_,
V=Vy,+ Ug_.
The U and ¥ functions determine the Fgg™" tensor:

Fog™ = caﬂ[uagma;tl + Vg,;™1,

and their standard values in terms of the chiral superfield ¥ are:

1 w .
Uz — L ——, P=———, W=-4+iB.
V1- WW V1= WH

The changes in the curvature supertensor are found to be:

Agauge Ragys = —£7'UCaCap by

(2.16)

(2.17)

(2.18)

(2.19)
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veg o V- .ok
Bgauge Rophzh = g &7 VCapChRayi,
Avouge Radpips = -1-15 K 2CapCaly,Cap(3|U|2 = V1), (2.20)

while no other curvature gets modified. The constituency equations are also
modified by the gauging. The constituency equations determine the supersym-
metry transformation laws for covariant quantities. They are necessary to find
the supersymmetries for the scalars and for the spinors, since these are not
gauge fields appearing in the supercovariant derivative. The extra terms with

respect to the ungauged values are:
Agauga DgAg =KV Cﬂﬁ 61;1"

Agouge Do f g/ = £ K7V Caghylis¥] + 2 71U G7# Coatyy,

O =

Agauge Dalipys = '11—2 €7V Cagaf 7 Ceu? + ‘é‘ k710 Caef oy’
Bgauge Dg Veyee = 'é' kU Ca(ﬁzyét)i- (RR1)

Equations (2.16) to (2.21) indicate all the changes in the superspace necessary
to describe the gauged SO(4) model. It is straightforward to find the changes in
the supersymmetry transformation laws for the component fields. For the spi-

nors one has (see equation {3.31) of Chapter II):

6'Ag; = €% Agguge Dail\gj- (2.22)

Using the first equation in (2.16) and translating into four-component notation

(using the rescalings of Chapter III, Section 4):

i

'—i -— E
% = NP v, (2.23)

where, as before the [|..|| notation is defined by {|f|| = Re (f) + iy5/m(f). For
the gravitino, using equation (3.29) of Chapter II, one has:
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6"¢Fﬂt - % -—7" Aga:ug T 3-k i (2_24)

Making use of the first equation in (2.18), one finds:

¢ W# = — € 7;.;”U“ (R.25)

The expressions for the supersythetry transformation laws given in egs. (2.23)
and (2.25) are quite general since they do not assume the standard values for U
and V. The present expressions will be used to study the effect of internal space
dualities of the vector fields on the scalar potential. They will also enable us to
study the gauging of the SO(4) theory working in the exterior of the unit disc
[W|%=<1.

The explicit expression for the supercovariant derivative acting on the

Fermi fields is found using eqs. (2.3), (2.5), (2.8} and (2.9):

1

Dk =8,++ 2

Cpap 02) Y + (gL AN + g AXE) y L, (2.26)

where A% = -é— e¥P? AT Analogous expressions hold for Byxi and 5#ci.
The Yang-Mills field strength is defined from the commutator of two spacetime

derivatives:
[D,,D,] = % Fa¥ ty + (more terms). (2.27)
From this one derives:
Fi, =0, A0 -0, 4 — 2918y . Bux 3) —292B; @ux?.).  (228)
or using equation (2.12)
Fi = 8,47 - 0,47 + g, AL AP + 9 _Gmn ATPAT™ . (2.29)

One can also define field strengths for the ;o# and rp ﬁelds From equation
(R.14) one has:



- 103 -
¢}:y = p‘ﬁg - av‘P}: - 2\/59 1(¢px¢u)r‘ ’

‘P'r =09y — avqa 2\/592(¢'px¢"v)r . ‘ (2.30)

In order to preserve the local supersymmetry invariance of the SO(4) model

the following terms have to be added to the Lagrangian:

= 23,0 om|[U] - ;/—_"’g; ¥y VX
+ 255 (BIUIE - [Vi3), (2.31)

where e = det(e,,). Again, equation (2.31) is quite general. The last term is

the scalar potential. Its properties will be discussed in the next section.

The gauging of the SU(4) model {[7] can be done in superspace in complete
analogy to the gauging of the SO(4) model. For the SU(4) theory the following
replacements have to be made in the supercovariant derivative and in the

graded commutator of Chapter III:
Pa9 2y + Buii 27 > Tty + Pyt
Gap Zj; + Gapj 77 ~» Gup¥it'j; + Gy T7. (2.32)
Here, p,¥ and ¢ 's; are defined to be:

¢aij = '2_1\7—— ij AE'"iﬁterg]'

ty = x"{a,, X+ gL Y*'] (2.33)
where Al and B! are the three vectors and the three axial vectors of the SU(4)

model, and the XT and YT generators were defined in equation (2.9). The objects

Paqj and f'Y are just complex conjugates of ¥ and t'y.

Using equations (2.9) and (2.33) one derives:
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[t'5.Da] = k7 [A 616 + AC;'™ 1D
[t'ij»b3l =« 5;'[: 6mli + A Gam 1Ds™,
[t'5.D4a] = 0, (2.34)

where A = g; + igp. It also follows that the action of £ 'sj on the supercovariant

derivative can be found by interchanging A and X in the above equations.

Exactly the same Bianchi identities that were modified in the SO(4) case

now get modified in the SU(4) theory, but now one finds:

' [
D _ 1 7 /4 D 1 -~ T D
dgauge LaBc” = (Ec)lg Gag” (¢'i)c” + 5 Gapi(E7)c”|. (2.35)
In this expression the representation matrices ¢';; and f'Y can be obtained

from the results in equation (2.34) and their conjugate equations.

As a consequence of the above changes the superspace tensors that
describe the SU(4) theory are modified. These changes are essentially the same
as in the SO(4) case with a slight change in the definition of the U and V func-

tions:
SU(4): U=2AU = 2xe*?,
V=2AV=2Xe*? (2.36)

With these definitions, equations (2.16), (2.20) and (2.21) give the superspace
tensors for the gauging of SO(4) in the SU(4) model. Furthermore, with the
values of U and V given in equation (2.36), equations (2.23) and (2.25) give the
extra terms in the supersymmetry transformations of the Fermi fields, and
equation (2.31) gives the extra terms needed in the Lagrangian. These results
are in complete agreement with the ones given by Freedman and Schwarz {7]
after a numerical rescaling of the gauge coupling constants

(A= 55 (ea +ieg)).
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3. The Scalar Potentials

3.1 Scalar Potentials from Superspace

In the previous section the superspace formulation was used to derive the
extra terms in the supersymmetry transformations of the Fermi fields. Then,
the Noether procedure was used to find the extra terms needed in the Lagran-
gian, in particular the scalar potential. In the gauging of the SO(8) supergravity
in superspace [13], superspace was also used to derive the supersymmetries,
but not the scalar potential. In this section two ways of obtaining the scalar

potential from the superspace formulation are discussed.

The first way to find the scalar potential out of the superspace formulation

is to get it from Agguge Fagphqe

Bgauge Fadpiye = "% £% C4p CatyCayg P(W. W),
P(W,W) = - - (3]U12 - |V]?). (3.1.1)
8kt

P(W,W) is the scalar potential, and the reason for this can be easily under-
stood. It is known from the component formulation that, in order to maintain
the supersymmetry of the gauged theories, it is necessary to add a scalar poten-
tial to the action of the ungauged theories. The variation of this action with
respect to ¥, produces the equation of motion of the gra?iton Ry - %6@ k=
2 Ty, where Ry is the Ricci tensor and Ty, is the eriergy-momentum tensor.
Since the superspace formulation is on-shell, the calcuigtion of the superspace
torsions and curvatures implicitly uses the equations of motion for all the com-
ponent fields. In particular, by contracting the x-space supex?covaria.nt Riéman.n
cuﬁétme Raa gf~6. one can reconstruct the energy-momentum tensor 7, e and

form the equation of motion for the graviton. Thus, the addition of the scalar
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potential to the action is manifest in superspace by the addition of the potential
to Kaapprs In other words, in a superspace formulation the scalar potential
can be read off from Aggyuge Fadgpys- Let us show explicitly that P(W,#) is the
potential for the scalars that appears in the component Lagrangian. From equa-

tion (3.1), we derive:
Bywuge Fab = bgauge Fasa® = = 262 P(W, Fna. (3.12)
Therefore, the equation of motion of the graviton reads:
Gap = Ry — -é—nab}? = 26°P(W,W)na + (more terms), (3.1.3)

and this equation of motion follows from the Lagrangian:

L=- -E;zji —eP(W,W) + (more terms), (3.1.4)

in which P(#,W) is seen to enter as a potential for the scalars.

The method of deriving the potential discussed above involves carrying out
the analysis of the modified Bianchi identities up to dimension two, that is, the
dimension of the x-space curvature F,q4 gy This involves a fair amount of
work, since the dimension 3/2 identities are somewhat complicated. It is possi-
ble, however, to obtain some partial information about the potential for the
scalars at an earlier stage of the calculation. Once the dimension one identities
have been worked out one can produce some of the terms in the equation of
motion for the scalars. In analogy to the case in ordinary field theory, where the
equation of motion for a scalar field derived from the Lagrangian density
= % updte — Vip) isap + gi_;i(gg_)_ = 0, one is able to determine the poten-
tial V(¢) from the equation of motion up to an integration constant. Let us show

the details of the calculation.
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From the third constituency equation in equation (2.23) of Chapter 1II one
has:

8ia~Dgs W = a7 D5t Ag; — 3a™1Q5% Ag; . (3.1.5)

Applying another spacetime derivative to this expression and keeping only

terms that can contribute to the potential, one finds:
8i 22D Dpa W = a1 [ D Dgi]Ag:i +...
= g-17P%;i 7k Doihg; +... (3.1.8)

Both T* A7 and Dy Ag; are altered by the gauging. Therefore, using the

modifications indicated in equations (2.16) and (2.21), one obtains:

LoD = 1 S V4. (3.17)

Note that it is necessary to keep the factor a2 in the left-hand side of eq.
(3.1.7) because this factor appears in front of the kinetic term for the scalars in
the ungauged Lagrangian. This is also apparent in the way the scalars enter into
Raaphs in equation (2.22) of Chapter III. Equation (3.1.7) is the desired result.
In its right-hand side there is a term containing only scalars. This term is just

(—-g—%), where P is the potential for the scalars. For the gauging of the S0(4)

model with:
1 e W ;
Uz ————, V= —, (3.1.8)
Vi-|W|? Vi-|W|?
one obtains:
_aP_(i+g®) _w g.g-(1+ WW) ' (3.19)
ow 4t (1-WW)? at(1-wW)R’ -

which upon integration becomes:
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P(W.W) = -§x1_4 (g2 +gE)(?1:+%’;) +29.9- %’% + (const.)|.(3.1.10)

The potential given in eq. {3.1.10) agrees precisely with the one obta.ihed in
equation (3.1.1), once we set the constant equal to 49% (The potential P(W,%)
determined from superspace agrees with the one given in eq. (2.31), once cou-
pling constants are rescaled. This is a consequence of the rescalings necessary
to go from the superspace formulation to the component formulation. For

details see Chapter III, Section 4 ).

For the SU(4) theory

U=V=—Lt  w=2Ll(-e2r-2p), (3.1.11)
Vi-W-W 2
and one finds
2
P(WW = - 1Al 1 — + (constant)|, 3.1.12
(W) = - 2 ) (3.1.12)

which is just the potential obtained by Freedman and Schwarz [7] in their gaug-
ing of the SU(4) model. It should be remarked that the two methods discussed
above to find the scalar potential from the superspace formulation require some
modification in case there is a conformal factor in front of Einstein's term in the

component Lagrangian.
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3.2 Properties of the Scalar Potentials

Let us now discuss the properties of the scalar potentials of the gauged N =
4 supergravities. The gauged S0(4) model with two equal coupling constants [8],

and the gauged SU(4) model {7] have the following scalar potentials:

_ 2 S— | W 2 .
e,2+e

Bk

Both potentials are inverted and unbounded from below, as can be seen in
figures 1 and 2. The SO(4) potential has a critical point for W = 0. This critical
point defines a stable background state [2, 3]. The potential for the gauged
SU(4) model does not have a critical point. Stability in this theory is achieved
by giving some vacuum expectation value to the spin-one states of the theory
[14].

Let us now turn to the gauged SO(4) model with two coupling constants;
whose superspace formulation was given in Section 2. It will be shown in the
next section that the class of potentials for this theory reduces to three ine-
quivalent models. It is convenient, however, to display the form with the two
parameters g, and g, for several reasons. It is a single expression applicable
for the three inequivalent models. Its properties afe necessary in order to
motivate the transformations required to prove the equivalence of some of the
theories. Finally, it is conceivable that once the SO(4) supergravity will be cou-
pled to extra matter multiplets the situation could change completely. In what
follows, the properties of the SO(4) model with two coupling constants are dis-

cussed.

The meodified supersymmetry transformation laws and the extra terms

-1
required in the action are obtained using U=(1—WW¥) & and V= WU in
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A p(a,B=0)

KA

Figure 1. Scalar Potential for the gauged SO(4) supergravity with g, = g2 = 8/2.
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Figure 2. Scalar Potential for the SU(4) supergravity with local SU( 2)8SU(2).
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equations (2.23), (2.25), and (2.31):

P i [9++x(-A+i7sB)g-}

5t = b gy , (3.2.3)
foad (1-|W[2)F
i & [x(4-iysBlg. —g-]
6,x1,= [ . (324)
L's —& —Jio® (g, — k(4 +ivsB)g ¥}
xk(1—|W|?)?
+ e V.7 [K(4 +i75B)g. —g 1%
Vek(1-|W|?)*
[ w2 2
e | of3—1wi?)_ o[1-3/wi?] _ 49.9-(c4)
28| 9 1—1w32] g‘[l—}mz] L= |W]? 029

For the special case of g; = go = g/ 2, the scalar potential, given in the
last term of equation (3.2.5) agrees with the one given in equation (3.2.1). The
critical point of the potential and its associated cosmological constant A depend

on the values of the parameters g, and gz The critical points are found to be:

For g,92>0:
_ 9- — - .2 - _8
kA=2= B=0, A=k*P(Wert) = ~—5 9192 - (3.2.8)
g+ . K<~
For g192<0:
_ 9+ _ _ .2 _ 2
KA =g B =0, A=k*P(Werit) = —=5 9192 (3.2.7)
- . K

If the two coupling constants have the same sign, the cosmological constant
is negative. If they have opposite signs, the cosmological constant is positive.
The cosmological constant, hbwever. cannot be zero. For the case g, = £g_-
which would at first éépear to give zero cosmological constant, the scalar poten-

tial reduces to:
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Py = 9% [(L=KaR + (6B

e T2 55| (3.2.8)

ForkA=1and B =0, P(W) =0, but this point is not a critical point of
the potential, therefore the above values do not satisfy the equation of motion of
the scalars and it does not make sense to associate with this point a cosmologi-

cal constant.

For negative cosmological constant the background state defined by:
Yo=x'=0, 47 =0, kA==, B=0, (3.2.9)

is invariant under the global supersymmetry of OSp(4,4). The bosonic fields are
clearly invariant because the fermionic fields are initially zero. The spinors X*
are invariant as one can see by inspection of equation (3.14b). Finally the gravi-

tinos are invariant if:
6;¢-Jli= -'-];‘Ei D“ + ;:_z‘-éi'fp\/§—1g_2 =0, (3.2.10)

that is, if there exist four linearly-independent covariantly-constant spinors
£*(z), called Killing spinors, satisfying equation (S.Z.iﬂ). Such solutions are
well-known to exist [15,2]. Being invariant under global supersymmetry, it fol-
lows [2,3] that the negative-cosmological constant backgrounds are stable to all

orders against fluctuaticns.

The supersymmetric background, given in equation (3.2.9), can be used to
derive the rigid superalgebra for the gauged SO(4) theories. The superspace for-
mulation for the theory, that was obtained by solving the Bianchi identities, is
nothing else than a consistent local supersymmetry algebra. The commutators
that define the local algebra are just the commutators of supercovariant deriva-

tives:

(3.2.11)

by ’
[D4.Dg} = TupCDp + %RAB.,‘MJ + %RAB; My + %FAB‘J ts .
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In order to construct the global limit, one identifies the spinorial derivative Dai
with the generator of supersymmetry @a; and the vectorial der'wati{re Dgg with
the ﬁranslation generator Pgg. Furthermore, one has to take the global limit of
the torsions, curvatures and field strengths appearing in the right hand side of
equation (3.2.11), using the values given in equation (3.2.9). Consider the
{Dai,Dg;} commutator. Tqg° is zero by constraint, Tg EI and Tq4 gi are propor-
tional to the spinors (see Chapter III), and therefore vanish in the background,
Rqg44 is proportional to the spin one field strength (Chapter III), and it vanishes
too. One is left with:

{Qui, Qps} = "'%Ruipjydmé + %Fuiﬁjm tam

=T -I%Udij Mag + %Caﬂ(Uél[mé?] +V T Vinm (3.2.12)

where use has been made of equations (2.18), (2.19) and (2.20). Use of equations

(2.8), (2.17) and (3.2.9) finally gives:

C g $
{Qai. Qg = -%Vgxgzdij Map — 'f‘e [5‘:’] oz XT +

1
g—l]aﬁ}} Y| . (3.2.13)
g2

The remaining commutators of the superalgebra are found in a completely

analogous way. They are:

{Qai @} =2i6{Pap (3.2.14)
[@ai Pggl = —%Vgxgz Cag Qpi » (3.2.15)

. p.1 - 3192 Tes .
[paa»Pﬂﬂ] = ?—(CaﬂMaﬂ + CaﬁMaﬁ) , (3.2.18)
{MaﬁvQ‘ﬁ] = C'y(n Qﬂ)‘i ’ [Map»P'r'y] = C'y(app)-; ) (3.2.17)

together with relations (2.9) and (2.10). All the Jacobi identities for this

superalgebra have been explicitly verified. The fact that the background values
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in equation (3.2.9) led to a consistent superalgebra is a verification of the super-
symmetry invariance of the background vconﬁguration. 1t should be noted that
the above algebra is consistent only if g;92>0, that is, when the cosmological
constant is negative. In the case of positive cosmological constant the back-

ground state that satisfies the equations of motion is
,w;';:xi: , AE:O’ kA==—, BE=0. (3218)

It is seen from equation (3.2.4) that under supersymmetry none of the four spi-
nors xi is left invariant at zero value. This indicates that the above background
breaks the four supersymmetries spontaneously. Since the scalar potential has
only one critical point, it follows that for the positive co#mological constant
potentials there is no scalar-gravitational background with unbroken supersym-
metry. Indeed, it is not possible to obtain a consistent global algebra starting
from the consistent local algebra that describes the positive cosmological con-
stant N = 4 supergravity (global limits of spontaneously broken theories have
been considered in [16]). Trying to construct this global algebra one finds
U =0, implying that the commutator of two supersymmetry charges is
{Q.Q% x aX + BY. The absence of a term with a Lorentz generator such as in

equation (3.2.13) leads to the failure of the (@Q&) Jacobi identity.

The theorem of Ferrara [17] requiring negative cosmological constant in
gauged extended supergravity was based on the impossibility of constructing a
global graded deSitter algebra. As it has been shown there is no such global
superalgebra, but there 15 a consistent local superalgebra leading to a con-
sistent supergravity theory with positive cosmological constant. In conclusion,
absence of global limits do not forbid the existence of spontaneously broken
realizations. Since the Bianchi identities only imply the existence of a local

algebra realized on fields, they can be used to study spontaneously broken -
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theories.
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4. The Inequivalent Models

4.1 Reduction from the Gauged SO(4) Theory

In this section a better understanding of the unusual properties of the
gauged SO(4) model is pursued. It will be shown that the class of theories that is
generated by introducing two parameters into the ungauged S0(4) theory con-
sists of only three inequivalent models. That is, one can find field redefinitions
that map the continuum of theories with two parameters into three discrete
cases. This unusual circumstance takes place because of the presence of scalar

fields in the kinetic Lterm for the vectlor fields.

Suppose at the critical point of the scalar potential the scalar fields acquire
a vacuum expectation value g, such that the kinetic term for the vectors reads

(schematically):

~L 15 (0 12 PP, | (+1.1)

where F, is a gauge covariant field strength:
Fi, = 0,45 — 8,44 + gog ALAL (4.1.2)

Cijx are the structure constants of the gauge group and g is the gauge coupling
constant. If f (¢,) is not equal to *1, then the kinetic term for the vectors does
not have the canonical normalization, and the gauge field Af‘ has to be rescaled.

Letting:

AL = —EL 4 (4.1.3)

- [f (o)l

one finds that the kinetic term in equation (4.1.1) recovers the standard normal-

ization —-}i (F' )2, with:
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F';i, = 6“A'3 - a,,A'}; + Gerr Ciij"{Alf ' (4.1.4)
where:
- +1
1t = e ? #19

The g;ff is the real gauge coupling constant for the perturbation theory
based on the vacuum ¢ = ¢,. The g introduced in equation (4.1.2) is only a
parameter, which equals the gauge coupling constant if the vector fields have
the canonical normalization. Scalar fields appear in the Kinetic term for the
vectors for N 2 4 supergravity theories. In the SO(4) supergravity the kinetic

term for the vectors takes the following form [5]:

L'= -2 Fl, [g\Fl — goFi™ — gsF 3 — g F 1], (4.1.6)
8

where the star denotes internal duality transformation and the tilde denotes
spacetime duality transformation. The g; functions (not to be confused with the
coupling constants) are given by:

1 +W?

—2iW
1 - wR'’

g1 =194 = g3 —1gs = ek W=«(-A +1iB) . (4.1.7)
For the critical point of the SO(4) scalar potential given in equation (3.2.1),

W = 0. Therefore g; =1, 92 = g3 = g4 = 0, and the vectors in equation (4.1.8)
have canonical normalization. For the critical points of the potential in the
gauged SO(4) model, given in equations (3.2.6) and (3.2.7), g1 # 1. and g3
acquires a vacuum expectation value. The vectors then lose the canonical nor-
malization. In order to see this clearly, it is convenient to exhibit a different
rewriting of the kinetic term of the vectors. Instead of using the Af{ vectors, it

is better to use the géuge fields for the two SU(2) subgroups, namely the ga}: and

gp'ﬂ defined in equation (2.14). In terms of these fields, the kinetic term for the
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vectors takes the form:
e [ ~. ‘ ‘ ~I
L= ~3 [Ri(ef)? + ha(e )P + hapfe™ + hay ™1, (4.1.8)
where the scalar functions hy,hs,hgand b, are defined by:

T 1 _1-Ww
hatihs = e = 1 (4.1.9)

The scalar functions h; are useful in order to get a simple expression for the

scalar potential. From equations (3.2.5) and (4.1.9) one finds:

1|92 93
P(g1g2W) =-S5~ + 3=+ 491g2} : (4.1.10)
K 1 2

In this expression the square of each coupling constant is divided by the
scalar function that appears in the kinetic term of the respective gauge field.
Equation (4.1.10) can be used to relate the physical coupling constants to the
cosmological term A. At the critical point ¥,, the scalar functions attain the
vacuum expectation values h§ and h$ where h%h3 = 1 (using equation (4.1.9)
with W, real). Therefore equations (4.1.1) and (4.1.5) imply that the cosmologi-
cal constant, that is, the vacuum expectation value of the potential P, can be

written as:

A= 2P(W,) = -L[g Zert ¥ 9Bers 24910779257 ] - (4.1.11)
K? ,

Neither vacuum expectation values of scalars nor the parameters g; and gz
appear in this expression, only the effective coupling constants do. Equation
(4.1.10) also shows that the exchange of g; and gz is a symmetry of the poten-
tial, if at the same time one lets W-»—W (see eqﬁation (4.1.9)). Therefﬁre the
excﬁange of g, and go leads to a physically equivalent potential, and thus the

two SU(R)'s are physically equivalent. The inequivalent potentials arise because
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h, and hy, in spite of being related by reflection (W -»—W), are different func-
tions, and because of the presence of the term 4g,g 2, which alters the value of

the cosmological constant.

Consider first the negative cosmological constant theories (g g, > 0), as

defined in equations (3.2.3) to (3.2.6). Here, at the critical point one finds:

h:-—, hy= =, 4.1.13
! gz 2 g1 ( )
implying that we have:

Fiefs = 92eff = VG192, (4.1.14)

after rescaling the gauge fields with +\/h—1 and +V/hy, respectively. It there-
fore appears that about the critical point the theory behaves as a single cou-
pling constant theory. It can be shown, however, that the full theory with
parameters g, and g can be shown to be equivalent to the gauged S0(4) model
with one coupling constant g = \/g92. As a first step, a redefinition of the
scalar field ¥ is required. This redefinition should leave the form of the scalar
kinetic term invariant and should recast the potential in equation (4.1.10) into

the known SO(4) potential of equation {3.2.1). The required transformation is:

g+ g
W=——— (4.1.15)
-g-W+g,
In terms of the new scalar field W', the scalar potential reads:
29192 |3 — | W'|?
P(W)=- , 4.1.16

and the functions h; become:

Ry(W) + ho(W) = ZL (R (W) + tho(H)

ho(W) + thy(W) = g—f (ho( W) + (W) . (4.1.17)
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A rescaling of the gauge fields is now necessary in order to preserve the form of

the kinetic term for the vectors (equatiori {4.1.8)), letting:

1
g2\ ,
¢;->[_E or ¢

1

F] n
= , 4.1.18
Py ®'h ( )

one finds that the gauge covariant field strengths become:

epl(g1) =

i i
%—?]Wﬁ»«(% 92) . ¢'nlge) @ [-Z—;]asa’}:u(\/gxgz) . (4.1.19)

In order to complete the redefinition of the whole theory, it is convenient to use

superspace techniques. At the level of superfields, equation (4.1.1B) reads

gs)t g1)2
vl - [;j—] v}, ¢} [——‘] o3, (4.1.20)

and equations {2.1), (2.2), (2.8) and (2.14) then imply that:

1 : 1
v+ v L wem, U—T/—»[ggla(u—ff), (4.1.21)
g2 g1
or, simplifying:
1 N T 1 ‘ :
U —— (g .U +g.V), V2—me—ee (g, V+g. U). (4.1.22)
RVE192 g+ 2Vggz
Using the values for U and V given in equation (2.19), and equation (4.1.15), one
finds:
U-git/2 i , V__,ew/z________W', , (4.1.23)
Vi-¥w L= W
with:

git = 9=V *gs

, . (4.1.24)
-g-W+g,

We see that the functions U and V get replaced by their standard values in

terms of the redefined scalar field #’, apart from a phase factor. This phase is
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eliminated by performing a Weyl rescaling of the supercovariant derivative (the
way to do this is explained in Appendix B). The above rescaling implies the fol-
lowing redefinition of the Fermi fields:

_10% _3iey
Yive * YL, xi2e * xi, (4.1.25)
and that finally we get:
UWR)Y-> UW. T, VW(WH)-> VW W). (4.1.26)

It is possible to verify now that letting g = 2/g,92 with the above
redefinitions, the general g;9,> 0 theories of Section 2 become the standard

gauged SO{4) model [8], described by the following equations:

FH, = 8,47 — 0,47 + g AP A, (4.1.27)
Dy, =@, + -é—w,mbo""’)wff +g AR L, (4.1.28)

55 = g k(A = iysB)

X = T (4.1.29)
VR (1 - (w3
— y 4 1
6YL = 2Ly, ——g (4.1.30)
2 T w iy
L'= ___EE_.I@;;awwj + g TV 7K(A +iysB) Xt
k(1 - |W|?)? Vek(1 - | W |?)®
eg |3—|W|?
254 — \W}z] . (4.1.31)

Consider now the positive-cosmological-constant theories (g9 < 0 ). as
defined in equations (3.2.3) to (3.2.5), and (3.2.7). Let us briefly discuss how

these theories afe all equivalent to the positive-cosmological-constant theory
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given by g1 = —g2. Again, the key point is that at the critical point of the poten-
tial the vector fields do not have the standard normalization. Now we introduce
the following redefinition of the scalar fields:

g-¥W -g.

W=
-g.W +g_

(4.1.32)

As a consequence of this redefinition, the h; functions rescale and one has to
redefine the gauge fields in order to preserve the form of the kinetic term for
the vectors:

1 1
o LA NS S R EY R (4.1.33)
gl 32

The gauge-covariant field strengths are then redefined as follows:

2

1
2
g = [—-g—l eplsgn(g1)V-g192] .

1
eifgz) = {— %ﬂ ? @' Llsgn(g2)V—g192] . (4.1.34)

where the sgn function gives the sign of the argument. As before this

redefinition implies that:
g:)% ~ {g.]% _
U+T/—>[—§i} (U—V),U—V*[-g—i] (U+V). (4.1.35)
1

Using the values for U and V given in equation (2.19), and equation (4.1.32), one

finds
U eiorz _SIEY) o, pies2 SIRGIW (4.1.36)
Vi-ww Vi-ww
.wh,ere:
. —g W 4+g_
gio = 97 T 9- (4.1.37)

- —g. W +g_ .
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Again, in order to eliminate the phases from the U and V functions, one
requires a rescaling of the Fermi fields. These are precisely the ones given in
equation (4.1.25), but with the value of e*® given in equation (4.1.37). One then
has U(W) - sgn(g,) U(W') and V(W) - sgn(g,) V(¥#'). as in equation
(4.1.28).

The above redefinitions turn the g;g9; <0 theories into the positive-
cosmological-constant theory with g, = —gp Letting g = 2v/—g,gs one

obtains:

Fi, = 8,49 — 8,44 + gCaAlPal | (4.1.38)
D yk=(3,+ %w#@o”)wﬁ +g Ayl (4.1.39)
&%t = -4 z & T, (4.1.40)
VR (1w
— g s K(—A +1ivysB)
6L = —2}358"7# ( >, (4.1.41)
* (1= W3
L'=———29 __JioMg(4 +iy;B) ¥}
k(1= |W|?)? '
: . . 2 - 2
- e R ey 1 =3 le } : (4.1.42)
VEK(1 - | W [2)* 21— W

The above equations indicate the gauge covariant objects, and the extra
terms in the supersymmetry transformation formulas ies and in the lagrangian
for the gauged SO(4) theory with positive cosmological constant. The scalar

potential is shown in figure 3.

Finally, let us consider the ‘third inequivalent theory. It is the theory in

which one of the two coupling constants is set equal to zero. Take g = O (the
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Figure 3. Scalar Potential for the gauged SO(4) supergravity with g; = =92 = g/2
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case where g; = 0 can be shown to be redefinable into the above case), or

equivalently, g, = g_ =g . The relations for this model are then

Ol = 0,9l — Bupl — 2V2 (B.xB)" (4.1.43)
©o =007 -89 L, (4.1.44)
Duvk = (9 + Souao™) vk + VEgaR of v, (2.1.45)
6% = A5 e ~i758) T ay (4.1.46)
* (1- w3t
—_ ; X + k(-4 +1
57 = L 5 [1+k(~A +1iy5B)] ’ (4.1.47)
B2 2%
(1= |W[%
L= —L—— L1 — k(A +iysB)] ¥
k(1 — |W[?)?
; — - 2((1 _2)2 2
+—20 _ Folea+ipB)-t]x + S| QoA A BE) () g
Vak(1 - | W |32 k* | 1 —k%(4% + B)

This theory, whose potential is shown in figure 4, is actually the Freedman -
Schwarz SU(R) ® SU(R) model with eg = 0. In both theories the potential has
no critical points. One can check that the redefinitions of the scalars, gravitinos
and spinors given in reference [6] turn the above expressions into the ones given
for the SU(2) ® SU(R) theory [7]. The SU(4) supergravity has three vectors A7
and three axial vectors B;. The vectors A}, are obtained by ordinary field
redefinitions from the vectors of the SO(4) model, namely A7 = g (see equa-
tion (2.14)). The B} fields are obtained using duality transformations. These
dualities cannot be ‘implemented once the theories are gauged, but since eg is

zero the Bﬁ fields remain abelian and the dualities can still be performed.



- 127 -

=

P(A,B=0)

<A

—— o ———— — —— — — — — —— —— ] o—— — — —

Figure 4. Scalar Potential for the gauged SO(4) supergravity with g, = g.92= 0.
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In the SU(2) @ SU(2) theory [7]. the kinetic term for the vectors takes the

form:
— Ve @ (4,2 + B, B (4.1.49)

Therefore, according to the discussion about gauge coupling constants, one sees

that the e4, and ep are parameters and the physical coupling constants are

kP, KPy

gye and ege °, where g, is the background value for the scalar fleld ¢.
The scalar potential, however, has no critical points. As ¢ goes to —», dV/dy
goes to zero and the cosmological constant goes to zero, but at the same time
the physical coupling constants go to zero ! Indeed, the vacuum expectation
value of the scalar potential corresponds to a cosmological constant of value
A -(efgff + eg.,,)/:cz. It therefore does not appear to be possible to

obtain reasonable gauge coupling constants and a small cosmological term in

this theory.
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4.2 Dualities and Inversions

It is interesting to clarify the role of internal-space dualities on the vector
fields. As is well known, x-space duality transformations on the vector field
strengths are nonlocal field redefinitions on the gauge fields and lead to theories
with inequivalent potentials, once the internal symmetry is gauged [7]. Then the
x-space dualities cannot be implemented any more. Something analogous hap-

pens with internal-space dualities.

If in the ungauged SO(4) theory one lets:
.. 1 s ‘
Fﬁu,mw = -2' ct ley ) (4.2.1)

this transformation can be implemented (in contrast with x-space dualities) as a
local transformation of the vector potentials, namely:

1 ikl 445 — 4%

3 cY A = A7 . (4.2.2)

Nevertheless, once the two SU(2)'s are gauged, from equation {1.22) one has:
F'Hv = apAy - avAB - % (91 aij -(apqxars) +923ij'(ﬁpqxz§rs )] Aftq AT , (42.3)

and using the self-duality of the a’'s and the antiself-duality of the §'s, one sees
that the transformation (4.2.1) cannot be implemented any more as a transfor-

mation of the gauge fields, since the sign of g» cannot be changed.
Consider the gauging of the SO(4) model with U and V¥ functions given in
equation (2.19), that is, the standard SO(4) theory, or form’ A, as defined in
Chapter Ill. Take g3 = g2 =9/2 (94+ =g, g~ = O0) and denote the scalar poten-
tial by P4(g,g). Using equation (2.31), one finds that it is given by

2|3~

. (4.2.4)
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This is the well-known potential of the SO(4) theory with negative cosmological
constant and unbroken superéymrnetry. Performing an internal duality
transformation at the ungauged level implies exchanging the two functions U
and V as was shown in Chapter Il. The dual form was called A*. Gauging the
form A* with g, = g, = g/ 2, and using the éeneral result in equation (2.31)
with the interchanged values of U and V one finds:

A
Pu(g.9) = ‘5%‘3‘ Ul2-|V|?3) = éq’?[_;{___:%] . (4.2.5)

This is the positive cosmological constant potential, clearly inequivalent to the
one given in equation (4.2.4). Thus the gauging of the form A* leads to the spon-

taneously broken model.

In general, it can be seen from equations (2.17) that the exchange of U and
V (duality) is just equivalent to the exchange of g, and g_, which in turn implies
that g,*g; and g,>—g,. One therefore concludes that if a theory leads to a
potential P(g;,g2), the dual theory leads to a potential P(g,,—g2). If the origi-
nal theory once gauged is unbroken (g; and g, have the same sign) then the
dual theory once gauged is broken (g; and —g, have opposite signs) and vice
versa. Internal dualities at the ungauged level can therefore lead to inequivalent

gauged theories.

Gauging the standard SO(4) theory (form 4) with g, = g, (that is using the
prescription in equation (2.6)) leads to the unbroken theory, but gauging it with
g1 = —g2 leads to the broken one. Gauging the SO(4) theory with U and V
interchanged (form A*) with g, = g, (using equation (2.6)) leads to the broken
theory, while gauging with g, = —g, leads to the unbroken one. This could have
also been seen in Section 4.1, when the g,95 < O models were discussed. There
‘it was shown that the positive cosmological constant forms could be redefined

into a theory with the standard values for the U and V functions and two
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opposite sign coupling constants. Had one redefined the vectors in equation

(4.1.33) as:

) i

gz i g 3
81 gz

then the gauge covariant objects would have turned into:

1
vi(g1) = {—Q]zwﬁu[sgn (g1)V-9192] .

g9
g1 3
' R(g2) = - {_EZ ¢'l-sgn(g2)V-g.192] . (4.2.7)

where the effective coupling constants have the same sign. One would find at the
end of the redefinition process that U(W) = V(W') and V(W) = U(W"), indi-
cating, in accordance with the above discussion, that a g;92 < 0 theory can be
redefined into a theory with two equal coupling constants if the functions U and

V are interchanged.

Consider now the theories defined outside the unit disc |# {°<1. As was
shown in Chapter III, it is not possible to continue the interior solution into the
exterior. The theories defined on the exterior have been shown to be related by
scalar field inversion plus other redefinitions possibly including dualities. If only
a scalar field inversion is performed, the gauged exterior theory has a scalar
potential which is just a copy of the scalar potential of the inside disc and the

two theories are equivalent. Consider, however, form B in equation {3.1.20) of

Chapter III:
1 v [
U= ———, V= —————. (4.2.8)
VHW -1 VWKW -1

This theory was shown to be related to the standard inside theory by an inver-

sion, a chiral rotation of the Fermi fields, and an internal duality on the spin one
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states. The above discussion on internal dualities implies that if the inside
theory works in the unbroken phase, the exterior theory works in £he broken
supersymmetric phase. Indeed it follows from equations (4.2.8) and (2.31) that
gauging with g, = gz = g/ 2 the analytic expression for the potential in the

exterior region is just:

Pp(g.9) = 2 F—:ﬂ . (4.2.9)

24 |1 - WW

For the form B* the U and V functions of equation (4.2.B) are interchanged,
and therefore one has:

2 -
Ppg9.9) = —E%Ill—_—g—%] : (4.2.10)

Sketches of the potentials are shown in figure 5.

It has been seen that once gauged A and A* are inequivalent, the same is
true for B and F* as can be seen from equations (4.2.5) and {4.2.10). 4 and B*
or A* and B remain physically equivalent once gauged. Their scalar potentials

are just related by inversion and their Fermi fields by a chiral rotation.

As we have seen, it is possible to construct physically inequivalent theories
on the inside unit disc and on the outside. It would be interesting to understand
whether or not these two theéries could be thought of as a single theory defined
throughout the W plane.
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Figure 5. Scalar Potentials for the gauged SO{4) supergravity in the inside and outside
of the anit disc [# 2= 1,
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5. Higgs Problem in Gauged SO(5) Supergravity

As has been shown in the previous section, the presence of scalar fields in

| the kinetic term of the vectors can affect the values of the physical coupling
constants in N = 4 supergravities. The case of N = 5 supergravity can be studied
without great difficulty. The gauged N = 5 theory [18] has a potential with two
possible vacua. In the first one neither supersymmetry nor the gauge symmetry
is broken; and in the dther one the five supersymmetries are spontaneously bro-
ken and the gauge group is broken from SO(5) down to SO(3). In the unbroken
vacuum the vector fields have the canonical normalization, and therefore the
gauge coupling constant equals the g parameter. It is not a priori clear that the
same should hold for the broi(en vacuum, because the nonzero vacuum expecta-
tion values for the scalars could alter the normalization for the vectors. This
does not happen. As will be shown here, the remaining SO(3) symmetry is
gauged with gauge coupling constant g . The function of the scalars appearing
in the vector kinetic term, however, is necessary in order to read correctly the

mass parameters for the vector fields in the broken vacuum.

Consider first the scalar sector of the gauged N = 5 theory. The scalar

potential takes the following form [18]:

Vig) = —g2(2 + 4e? — Zef[lol* = (2.)2(¢)?]), (5.1)

|-

. -1
where ¢; = 4 +1B; with 1 = 1,2, -- -5, ¢* = (g;)*, and e, = (1 - |p|?) 2

The scalar kinetic term is:

L° = —-—é— Vg"”af‘ 2, (5.2)

where:

al = ~V2e, (6} — exp'y;) 8up’ | (5.3)
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and ez = (1 —ey)/ |p|?
One can find that the potential has a seven dimensional extremal surface

described by:

lol?= 2. (p)?=0. (5.4)

Choosing the vacuum value for ¢; to be:

<g> =~/200.0,0,1,4), (5.5)

one can see that SO(5) is spontaneously broken to SO(3) [2,3], and seven out of
the ten scalars of the theory can be gauged away. Choosing the following

parametrization for the three surviving scalars:

$1=p2=¢3=0,

- 24P n £
#a \/;“@"\/—m”x/‘ro'

=4 C4, 0 .M . _&
¢5—z'\/-§+z\/5_o zm+m, (5.6)

one finds that the kinetic term for the scalars in equation {5.2) becomes:
—V((E'JMp)2 + (6“7;)2 + (6“5)2)+(higfwr order) , (5.7)
while the scalar potential turns into:
-g2V (14 — 400% + 8n° + BE?) + (higher order) . (5.8)

It follows from equations (5.7), (5.B), and the results of reference [2] that the
‘mass eigenvalue parameters for the surviving scalars are (_§_7Q ) %7-2- , -17??—) (the
first of these values differs from the one quoted in [2]). Since none of these

values exceeds the critical value of 9/4, this background is recognized to be at
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least perturbatively stable [2].

Consider now the vector sector of the theory. The kinetic term for the vec-

tor fields is given by [18]:
—é V[ (259K — sk gi) Fl . F*™y + he.], (5.9)

where F ¥V is a self dual field strehgth. and SY# i a nonpolynomial function

for the scalars defined to satisfy the following equation:
(68 — Sk yskmn = 54 (5.10)
where S is given by:
Skl = —%e""""" @m - (5.11)

Surprisingly enough it is possible to solve equation (5.10) explicitly for S, which
turns out to be only slightly more complicated than in the N = 4 theory:

SYHE = 1—__—(1;—)5(515 — RepPm b)) — %Cijup @) - (5.12)
P

where following the conventions of [18], antisymmetrization is with unit
1

strength: 64 = 5

(6467 — 6}67). Truncating the above result to the N = 4 theory

one gets
Skl = -1 04 - 1 i W), 5.13

where W = k(—A + iB). This form for S together with equation (5.9) leads to
the well known g; functions of N = 4 supergravity (see equations (4.1.6) and

(4.1.7)).

For the critical point given in equation (5.5), the kinetic term for the vec-

tors reduces to ;
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~Ly[(F? + (Fral 4 (F)? + (Foo?
+ SLFWP + (Fa)? + (Fa? 1+ 21 (F1o) + (Fas)? + (F)? ]

+ 4\/§[F12F35"' F13F25 + Fst15] + (higher order) , (5.14)

where the contraction of spacetime indices is not shown, and the F. f terms have
been dropped, since to this order of approximation they are pure divergences.
The vectors that gauge the surviving SO(3) symmetry, namely 415 , 413 and Ags,
have the standard normalization, but are coupled to the Agss, A5 and 4,5 vec-

tors. This is somewhat unusual. Letting:

. 5
Ap =42 - 2\/%!‘135-
. 2
ap=ag+a/Zaz,

A23=A'za-2\/§x415, (5.14)

one finds that the A'jp, A'j3 and A'p3 vectors have the standard normalization
and are uncoupled. Therefore, they gauge SO(3) with coupling constant g, the
same as the coupling constant in the unbroken vacuum. Further rescaling is
necessary for the other vectors. One lets 4; = V5 A'y; for the
(i7) = 14,24,34,15,25,35 vectors, 445 = A'y5. and finally the vector kinetic term
reads -—%V(F 'ij)z . The vector mass terms are found from the gauge covariant
derivatives in the kinetic term for the scalars. Taking into account the above

rescalings one gets:

—10g2V[(4'14)3+ (42 + (A'30)? +(4'15)% +(A'25)° + (4'35)% + 2(4'4)?]. (5.15)
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In summary, we have seen that in N = § supergravity the remaining gauge
symmetry in the broken vacuum is gauged with the same coupling constant as’
the original theory in the unbroken vacuum, and for the massive vectors we get

two mass parameters. It would be interesting to see what the situation is for the

extrema [4] of the gauged N = B supergravity theory.
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8. Discussion and Open Questions

The existence of a gauged SO(4) supergravity with positive cosmological
constant raises a few questions. One of them is the issue of stability. It would be
interesting to know whether the positive cosmological constant inverted poten-
tial admits a stable background state. The methods developed by Breitenlohner
and Freedman [2] are not applicable in this case because the background state
is deSitter rather than anti-deSitter. DeSitter spacetime has an event horizon
enclosing a finite volume. Therefore the key element of the stability proof of
reference [2] for anti-deSitter spacetimes, namely, the fact that a scalar
fluctuation ¢(z) of finite energy should vanish at spatial infinity, cannot be used
here. The stability argument of Gibbons, Hull and Warner [3] is not applicable
either. This is because in the deSitter background all the supersymmetries are
broken. Even in case these potentials turn out to be unstable, a more compli-
cated background state such as an electro-vac solution could be stable. Electro-
vac solutions appear to provide a stable background state for the gauged SU(4)

model [14].

Consider now the issue of charge renormalization. With positive cosmologi-
cal constant the four supersymmetries are spontaneously broken. It would be
interesting to know whether or not the charge renormalization is still related to

the corrections to the cosmological constant [19].

A question that remains open is that of gauging subgroups. ‘The N=4
theory is the only extended supergravity theory in which this has been shown so
far to be possible. Nevertheless the two SU(2) groups in N = 4 are commuting
and it remains to be seen whether or not something less trivial such as
SU(2)xU(1) or U(1)XU(1) could be gauged without explicit breakdown of super-
S);mmetry. The methods developed in this chapter might be helpful in resolving
this problem.
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Appendix A. Notation and Identities

In this appendix conventions are presented together with some useful identities
and a few relations that allow direct transcription from two-component to four-

component formalism.

We use the Lorentz metric g, = diag (+———) with signature -2. The Lorentz

generators My, act according to the following commutators:
[(Moe Vo]l =Nac Vo ~Map Ve (A1)
[Myc Vgl = —i % (00c)8° Vs - (A.2)
The two-component Lorentz generator M,7 is defined by:
My = 2 (0%)7Hy. . (43)

We raise and lower indices with the invariant antisymmetric tensor Cyg:

A%Chg=Ag, C%Php=4A° (A4)
TR
Cap=Cap= - =% = L 0] . (A.5)

An underlined spinor index (o) denotes combined spinor and isospin indices. A pair

.
of spinor indices (aa) corresponds to a vector index:

9 .
Vac'x = Vaoam; Va - 'é UaaaVa&

vy, = - % A (A.8)
For an antisymmetric tensor Ky = —FRp, We use
Ry = %Rap(aab)“ﬁ + %E&ﬁ(f’w)aﬁ (A7)

Rop= % (0®)agRas . Fip= 2 (@™)isFas (A8)
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Roagp = 08:083Ray = ~2(CapRapt+CapRag) - (A.9)

Note that for the Lorentz generator M,” in (A.3), we use a factor of 1/2 rather than

the 1/4 givenin (A.B).

The following identities are used extensively in calculations in two-component

notation:

c ﬁc'/ﬂ = 6%,
0 250a 7 = —26765

Uaaﬁab‘yﬁ = =N 0 = ""(aub)a.7
ol®30bLs = i Coy(0™)3 — 3 C3i(0™ )y
(O’ab )aﬁ(oab)'ﬂ = -4 6(&!65

(0% Jaf0ca)” = =4[ 5 812681 + £ £ 4]

(0™ )ap = £ 6%0a(0")ag - (4.10)

Here 18 = 1.

In dealing with symmetrization in various indices the following identities are use-

ful:
CapA.,:C.’pAa" 7a‘4ﬁr (A.ll)
CapAy = %[Ca(aAy) ~ Cpady]. (A12)
Cag Ay = %[Ca(pAvc) — Coadpm ] (A.13)
CopAropy = £ Corgdogy — < Caydias) — = Cas A (A.14)
apAre) = 5 Caedys) ~ 5 Cprde) — 5 Cpedan - :

Using equation (A.14) for a symmetric tensor Sg,, one can derive:
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1

Superspace conjugation is defined as follows:
6°=6 , O,=-06;. (A.18)

For more complicated tensors one replaces the tensor by a string of 's and conju-

gates those. For example, for a tensor Va;,f one takes:
8,050, = —85656,6 . (A.17)

One therefore concludes that V3,5 = ~Vagy -

In order to translate from two-component notation to four-component notation

and vice versa, we first choose a representation for the y-matrices:

01

7:
°[1o

1 0 , 0 —ot
Y= (A.18)

75—[ —o“' 0

0 -1
where the 6%, % = 1, 2, 3 are the ordinary Pauli matrices which we identify with ai ap
or U};p. 02§ is defined to be a unit two by two matrix. Next consider a four-

component Majorana spinor 4:

a

¥ = (A19)
Va
here % = (¥®)* and ¥g = —(¥,)* with a,& = 1,2. We also have
T=cetyy = (—eF) . (A.20)
Then one finds:
Y = e, + T ¥a
TYsY = €% —F ¥

£V = 0 Y rey)
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257°¥ = 0% (T - V)
E0w¥ = = % (00 )i T + (0w Jape V) (a21)
with:
0w = L [ram). (122)

Relations (A.19), (A.20) and (A.21) are sufficient to translate expressions from two-
component to four-component notation and vice versa. More complicated relations

involving products of several y-matrices can be worked out by repeated use of (A.19)

to (A.21).
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Appendix B. Weyl Redefinitions

In this appendix we study the subject of field redefinitions. Suppose we
have two sets of superspace tensors, the unprimed set and the primed set. Each
of these two sets leads to a different set of supersymmetry transformation laws.
The problem is to find, if possible, a set of field redefinitions that turns one set of
supersymmetries into the other. If there is one, the two sets of superspace ten-

sors describe theories that are equivalent up to field redefinitions.

Consider the following set of redefinitions of the supercovariant derivative:

Dg=el[Dy + %fmlbcMcb] ,

Dit=el[Df + 2T M),

D'u = eM {Da + faaiDai + faaiD&i + %fachdc ] . (B~1)

These redefinitions have been considered some time ago [1,2] in order to under-
stand the various types of constraints that can be imposed on the superspace
geometry. Using relations [B.1] and the definition of torsions, curvatures and
field strength by graded commutation (equation (2.2) of Chapter III} one can

relate the primed and unprimed superspace tensors. Assuming T ﬁjc = 0 one

finds [1]:
T'aipi® =0, ' (BR)
T'aipi® = el T ¥ Ty i, (B.3)
T'a pj‘;k =e?-I T, p;';k ' (B.4)

T'aiﬁj7k = BL [Ta‘i pJ’}k + Da.‘L(SZGJk + DpJL(SZ(S-,k + fﬁ, ‘,75# + faip‘yd]k] , (BS)

T'aia® = el [Taa® + (DagM)8E = Fo” Toipi® + faia®l, (B.6)
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and for the field strengths one has:

Flai mmn - 3L+EFai§;"m . (B.7)

F'm;ﬁjm = GZLFm‘pjmn . ' (B.B)

The superspace tensors listed above are the only ones needed to study field
redefinitions in N = 4 supergravity since all the other tensors follow uniquely
from these and the Bianchi identities. If a set of redefinitions works for the
above tensors, it will work for all the superspace tensors. Given two sets of
superspace tensors one uses equations (B.2) to (B.B) to determine L, M,f 5; ¢
and f,%*. We shall not determine fo.%. Its value can be obtained requiring
that the constraint imposed on Rgj,.s (equation (8.1) of Chapter III) be

preserved. Its value, however, is not necessary in the following discussion.

The redefinitions of the supercovariant derivative imply some redefinitions
for the component fields of the supergravity theory. We now derive the com-
ponent field redefinitions that follow from equations (B.1). In a Wess - Zumino

gauge we have:
Doy =84 + 0(6), Dg* =05 +0(9),

Da"eaa +'¢z‘1aay.1.+'¢a 161

+-é—;aa.,‘M,, + 5%73513 + Zcp iZ; + 0(8), (B.9)

where eJ* is the vierbein, '\0{,"’ are the gravitinos, :p”" is the spin connection, and
:pij are the spin one fields. For the primed supercovariant derivatives, relations
analogous to (B.9) hold. We take d,, = &',, since coordinate trénsformations
should not have any role in the redefinitions, but 8,,; #8'y; because of equations

(B.1) and (B.9). We therefofe have:
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e',"m=elle™, (B.10)
for the redefined vierbein. For the gravitinos:

Vo = e¥E(y, ™ + £o%), (B.11)
using curved indices one has:
VS =eTh (Y + 1), (B.12)
and finally translating to four component notation:
Vi = e vt + 14 (B.13)

where the ||..|| notation is defined by ||f|| = Re(f) + 1¥5/m(f). It should be
noted that in equation (B.13) curved indices refer to the respective vierbeins. In
order to find the redefinition of the spin one-half fields, we consider the torsion

T.g% in which they appear (see equation (2.21) of Chapter III). Using equation

(B.4), we find:

A% = g2L-LE% (B.14)
and translating to four component notation:

Ay =le? LA, . (B.15)

Consider now the vector flelds, from equations (B.1), (B.9) and (B.10) one

derives:
el =Y (B.16)

The redefinition of the scalar fields cannot be derived from the relations given
“above. The explicit forms of the Fgag™" tensors entering equation (B.8) is

necessary for this purpose.



- 149 -

Equations (B.10), (B.13), (B.15) and (B.16) are the desired relations, They
give the field redefinitions that turn the primed theory into the unprimed
theory. We have not given the redefinition of the spin connection, because it is
not needed for our discussion. We should also remark that the above set of
redefinitions turn the supersymmetry transformation formulas of one theory
into those of the other one, up to a Lorentz rotation, whose parameter is propor-

tional to the f 4; € tensor appearing in equation (B.1).
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Appendix C. Polynomial Form

To obtain a form of the SU(4) supergravity in which the scalars appear poly-

nomially, we first rescale the following fields:

Vou 2 €™V, '!D;i, i e-“/z'l";i‘ )
xt > e 2yt B -oeR¥p (C.1)

Once these substitutions are made in the lagrangian of the SU(4) model [3], one
obtains a lagrangian in which the_ only nonpolynomial appearance of the field ¢
occurs through a factor e ~2cp multiplying all the terms in the lagrangian. Inthe
supersymmetry transformations, however, the scalar fields appear entirely poly-

nomially.

We now redefine the scalar field ¢:
e ™ = xyp, {C.2)
and finally obtain:
L =k?¢? L,
where L, is:

L, = —%22)- - -é—e"“”"iivs?,ﬂuw}; + -;-inv“ﬁ,‘x"

~Lyan, anw s g, prey 4 L VMV(_P___a_"ﬁ.,.ﬁ BD,B)
4 fd §0 B

~SkB(Anman, + BPBT, ) + s LVALCH + T~ ¥ Tl + cewil

— ~ . . ~ . R
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Ovp
+i75D,B] 77 C.3
\/—v’y[ Ky 75 1 7 ‘)‘"X ( )
where we have defined:
b.B=8,B+ gf . (C.4)
For the above lagrangian the supersymmetry transformation laws are:
oVg=—1 7a¢p + '\/‘55 X V
= —— Tyt L V2
oy \/.ércqaex , 0B = 75 75)( + V2kBEX
6A" = _]‘_an [E” J + ..l_‘é't'ypr]
L R LT /3 ’
- 4 gt 7
6Bn \/-— ﬁzj [ 75#’; + '\/_581757;)(]_} ’
. y 5 ¢ . ] 1 s~
gio= L [ZaY & Y, g8
ox \fé[ o +1iysD B + zeJCaﬁo
K i '—»i__f-ﬂ_c_-' P
SsEEXX 2vs 1 X 75
9. = Leip, - Lei[-22 4 105 B]+ gl By 08
BT B o P Stp o3 af/p
“‘2‘5\/3[5‘7'75)67. Virs —EX YLl + \/E e [eFyixt - Fysvixtvs]
+ X T revde + XK Fre - XX Frsrae] . (€5)

The spin connection is the one obtained solving its nonpropagating field
equation from the lagrangian:
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Wyab = Wuad (e) + 1,_%_2_ (@yf)’b'&ba + @b?p’!"a + Eb'fa#’;f)

: 3,9 i ; -
- —€[guts)’ i -'f'e;‘i Eabca X V572X - (C.8)

The lagrangian given in equation (C.3) is polynomial in both the scalar fields ¢
and B, but the supersymmetry transformations, as given in equation (C.5), are

nonpolynomial in ¢.
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