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Abstract

In Part I the determination of the structure of oxygen fluoride
by the method of electron diffraction is described.

In Part II the calculation of complex atomic scattsring amplitudes
and their use in electron diffraction is discussed. Section A
provides an outline of the theory and a summary of the calculations
which have been made. In Section B some experimental work, the
failure of the Born approximation, and the early calculations are
described. In Section C the calculation of complex atomic scatiering
amplitudes from the partial waves scattering theory and the WKB method
is described in detail.

In Part III the calculations of atomic form factors for a few
selected atoms from Hartree-Fock and Hartree radial wave functions
are described.

In Part IV some structural studies by x-ray diffraction are
described. In particular, a determination of the unit cell and
space group of tetrapyridinecopper (II) fluoborate is described.

A determination of the structure of potassium fluotitanate is
presented. Finally, the work to date on the structure of monoclinic
ceric iodate is presented. Included in this presentation is a
detailed discussion of the various I. B. M. procedures used in the

reduction of the large number of intensity data.
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The Structure of Oxygen Fluoride
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THE STRUCTURE OF OXYGEN FLUORIDE

By James A. IBERs! AND VERNER SCHOMAKER

Coniribulion No. 1774 from the Gates and Crellin Labor%to?:fes of Chemistry, California Institute of Technology, Pasadena,
! alifornig
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A bond angle of 103.8 = 1.5° and a bond length of 1.413 + 0.019 A. have been found for oxygen fluoride by the method of
electron diffraction. Combining our data with the spectroscopic rotational constant reported by Bernstein and Powling,?

we arrive at a bond angle of 103.2° and a bond length of 1.418 A. as most probable values. Special attention was given the
problem of weighting the measured ring diameters, and a simple adjustment was finally adopted which may prove useful

in other electron diffraction work of this kind.

The bond length and bond angle in oxygen fluo-
ride (OF,) are of interest, especially in relation to
the values for other simple compounds of the elec-
tronegative elements, but they have not been pre-
cisely determined. The best previous values are
dependent on early electron diffraction results and
on a single spectroscopically determined molecular
constant.

For the present electron diffraction reinvestiga-
tion Professor L. Reed Brantley of Occidental Col-
lege kindly gave us a one-to-one OF;-0, mixture
prepared by the usual method.? After nearly all the
oxygen had been pumped off at liquid-nitrogen tem-
perature,* the sample was fractionally distilled at

(1) National Science Foundation Predoctoral Fellow, 1852-1953.

(2) H. J. Bernstein and J. Powling, J. Chem. Phys., 18, 685 (1950),

(3) P. Lebeau and A. Damiens, Compt. rend., 188, 1253 (1829);
0. Ruff and W. Menzel, Z. anorg. u. aligem. Chem., 190, 2567 (1630); G.
H. Cady, J. Am. Chem. Soc., 57, 248 (1935).

(4) The fact that OF: can be obtained in about 95% purity by pump-
ing off the oxygen at liquid-nitrogen temperature has been confirmed

by the recent work of J. G. Schnizlein. J. L. Sheard. R. C. Toole and
T. D O'Brien. Tuis Jourvasr. 56, 283 (1952).

about —160° through a 65-cm. vacuum-jacketed
column; iodometric analyses of the product
ranged from 98.5 to 99.4 mole %, OF, Photo-
graphs were made and interpreted in the usual
way,’ except that in view of the simplicity of the
problem the visual and radial distribution curves
were not drawn. The camera distance and elee-
tron wave length were 10.91 c¢m. and 0.06056 A.,
respectively.

Intensity curves were calculated for rigid, sym-
metrical OF; models with O—F, = 142 A. and
F ... F ranging from 2.10 t0 2.32 A, for various ad-
mixtures of Q2. Figure 1 shows three of the curves
for pure OF; with critical marks® to indicate im-
portant comparisons with the photographs. The
more sensitive features, important for the angle
determination, are marked on curves A and C, and
the less sensitive features on curve B. Finally,
the measured ring positions were compared with

(6) K. Hedberg and A, J. Stosick, J. Am, Chem. Soc., 74, 854 (1952).
(6) W. F. Sheehan. Jr., and V, S8chomaker, ibid., 74, 4468 (1952).
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Fig. 1.—Theoretical intensity curves for rigid, symmetrical

models of OF; with the O—TF distance 1.42 A. and the indi-
cated bond angles: A, 102.8°; B, 103.8°; C, 104.8°,
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Fig. 2—DBond length and bond angle values for OF;,
text-and Table II,

See

the positions read from curves A, B and C, with the
results shown on curve m of Fig. 2. The details of
the comparison are given for curve B by Table 1.

In regard to Table 1, some special remarks are in order.
We give the unbiased estimate s = { Zwi(z; — £)3/(n — 1)}/
of the standard deviation of & (geato. /gobs. )i = % value of unit
weight, as well as the Weighteg average deviation Zw; |z —
%|/Zw;, which, although quoted in our previous papers,
seems to have no simple statistical meaning if the weights
are not all equal.

Two related points confirm the belief, commonly held in
this work, that truly random errors in the measurements of
ring diameters are unimportant: the estimated standard
deviation of the weighted mean s/(Zw;)*/11is about £0.0015,
considerably less than would correspond to the limit of error
=+1.09% which, in aceordance with our experience, had to be
assigned to the scale factor; and even the deviations (z; —
%) appear to represent mainly systematic error, since the
four to thirteen individual measurements per ring by each
observer lead to estimates of the standard deviations of the
«i-that amount typically to only about a third of the values

.which correspond to s and the w; as given in Table I.
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TasLE 1
Erecrron DirrracrioN Data ror OF,;

Min, Max, Qobs. aB/qobs. Wt. (wi)
1 8.43 1.001 0
1 11.71 1.016 0
2 14.79 0.960 0
2 18.85 0.987 2
3 24.67 0.997 5
3 30.09 1.017 0
4 33.32 1.035 0
4 36.59 1.017 0
5 41.30 0.964 0
5 46.44 0.997 10
6 52.23 0.998 10
6 58.12 1.007 0
7 59.65 1.018 0
7 62.20 1.013 0
8 67.94 0.999 10
8 74.73 0.989 10
9 81.43 0.980 1
9 89.51 0.993 1
10 96.59 0.990 2

Weighted mean: 0.9949

Estimated standard deviation of value of unit
weight (s):
Weighted average deviation:

0.012
0.004

The weights were first assigned in about the usual way,
i.e., a smooth function of ¢ rising from zero for the inner
rings and falling toward zero again for the outermost rings
was modified by factors of a half or a quarter for minor or
for highly unsymmetrical features. The distribution of the
resulting’ quantities wi(a; — %)? with respeet to ¢ and to
classes of features—maximsa »s. minima, the symmetrical
vs. the unsymmetrical, etc.,—was satisfactory except that
the weights for the unsymmetrical features (max. 1, 3, 4,
6, 7; min. 1, 2, 4, 5, 7) needed to be reduced by a factor of
about one-tenth in order to equalize the estimates s to be
obtained separately from them and from the symmetrical
features. 'The final weights (Table I) were placed on a
scale of ten and so vanish for all unsymmetrical features.
This is satisfactory for the caleulation of the average, but is
hardly satisfactory for the estimation of the standard de-
viation. With this reservation, however, zero weights are
indicated in most cases, as in reference 10, where fractional
weights have been used for complex features. The above
argument applies to the averaging of measurements by
J.I.and V. g., but we have used only the simple averages.

We would emphasize that these remarks, despite their
stress on other details are not intended to detract from the
usual scrutiny of the (geale./qobs.) values for possible trends
or for undue sensitivity of the average to reasonable varia-
tions of the weights. In this regard, the present average
is somewhat more sensitive than usual.

The results from this and from previous electron
diffraction investigations are given in the first
three lines of Table II. The fourth entry repre-
sents Bernstein and Powling’s adjustment of
Boerseh’s result to the region between the dashed

TasLe 11
TaE STRUCTURE oF OF,

O—F, A. £ F-0O-F, degrees
1.36 +£0.1 1056 =£5  Button and Brockway?
1.41 £0.05 100 =+£3 Boersch®
1,413 £0.019 103.8 & 1.5 Present work
1.38 +=0.03 101.5 % 1.5 Bernstein and Powling?®
1.418 103.2 Best value

(7). L. E. Sutton and L. O. Brockway, J Am. Chem. Soc., 57, 473
(1935).
(8). H. Boersch, Monatsh., 65, 311 (1935)
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lines in Fig. 2 defined for a rigid model by their
value 1.60) = 0.02 em. ! for the rotational constant
A" — B, and the last entry represents our related
adjustment of the present result.

Our adjustment (see Fig. 2) differs from Bernstein and
Powling’s in that we take the point P lying on the line 1 de-
fined by A” — B” = 1.60 em. ! which seems most probable
on the basis of the electron diffraction work. For this pur-
pose we have assumed a probable error function which de-
pends upon a sum of the squares of the errors in bond angle
and in the scale factor, with coefficients such that the limit-
ing errors in bond angle (#1.5°) and in the scale factor
(£1.09) correspond to the same probability. Plotted
as a function of bond angle and bon(f length with the help
of the linear relation between assumed bond angle and re-
sultant bond length which is approximated at B by curve
m, the corresponding ellipse takes the form shown; the in-
dicated construction for P follows. (It is appropriate to
place P exactly on 1, since the indicated relative weights of
the spectroseopic and diffraction data for the location of P
along the line BX are about 20:1.) For their adjustment,
on the other hand, Bernstein and Powling essentially used

TaE STRUCTURE OF OXYGEN FLUORIDE
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their result to reduce Boersch’s limits of error and quoted
only rounded values for a point symmetrically located with
respect to the reduced limits.

It is notable that in OF, the bond angle is greater
than in NF; (102°9/° 102.5° 19), whereas in H;0
(105°3’ V) it is less than in NH; (106°47/11),
Nevertheless, the bond angle in OF; is somewhat
less than in H,O, in agreement with a discussion
previously given for N¥; and NH;.® The new
O—TF bond length, being appreciably greater than
Bernstein and Powling’s value, is again in good
agreement with the radius values and interpolation
formula given previously.!?

(9) J. Sheridan and W. Gordy, Phys. Rev., 79, 513 (1950).

(10) V. Bchomaker and C. 8. Lu, J. Am. Chem. Soc., 72, 1182 (1950),

(11) G. Herzberg, “Infrared and Raman Spectra of Polyatomic
Molecules,” 1. Van Nostrand Co., Inc., New York, N. Y., 1845, pp.
489, 430.

(12) V. Schomaker and D. P. Stevenson, J. Am. Chem. Soc., 63, 37
(1941).



Part TII

The Failure of the Born Approximation --- The Calculation of

Complex Atomic Scattering Amplitudes for Electren Diffraction



A,

If it is assumed that the molecular scattering amplitude is
simply a superposition of atomic scattering amplitudes, the
intensity of coherent scattering of a beam of electrons at angle

‘9 by randomly oriented molecules is

Srij

1(s) o i’Zj .Iii(o)| 'fj(G)l cos(My (@) - M@ T2EH (1)

where ¢ is a constant, i3 is the distance between atoms 1
and j in the molecule, fj(G) = Ifj(g)l AM30) is the conplex
scattering amnlitude for electrons of the jth atom, and s is
LAY sin{6/2). The complex electron scattering amplitude £(8)
is evaluated by solving the problem of the elastic scattering of
electrons by a central potential V(r)*, where V(r) is the
potential energy of the incident electron in the atomic field.

This amounts to seeking solutions of the Schr8dinger equation®¥
VY + @ - U(r)) Y = 0 (2)
where |
k = 27 /2,  U(r) = (-2k« /Ze?) V(r), o= -Zel/fv

The wave function y9 rst at large distances from the nucleus

% For a general reference, see (1).
## For simplicity, the non-relativistic equation is written.



represent both the incident plane wave and a scattered svherical

waves
W~eikz + eikr r"l £(9) (3)

with © measured relative to the z axis. A general solution of

equation (2) having axial symmetry is

-]
Y - E Ay By (cos ©) T,(r) (L)
f=o0
where the Al are arbitrary constants and Tl is any solution of

- - (0 ) = ‘
%fg; r2 %E)+(k2 U(r) ___5,3’_11__) T = 0. (3)

The wave function (¥ must be everywhere finite; therefore, T,
must be chosen to be that solution of equation (5) which is finite
- at the origin. The particular solution which is finite at the

crigin can be shown to have the form
¢ rl sin(kr - 74/2 + &)

vwhere C is an arbitrary constant and the phase 6} is a constant
which depends on k and on U(r). To fix G, T (r) is defined
as the bounded solution of equation (5) which has the asymptotic

form

T, (r) ~ (ol sin(er - #/2+§,). (6)



The A g are chosen so that equation (L) will have the asymptotic

form required by equation (3), and it is found that
8 = (244) it 18,

Equaticn (L) which describes the incident and scatiered waves

then becomes

}0 = Z(eﬁ-n—l) i Ao T, (r) B (cos 6),
f=0

and the asymptotic form of the scattered wave is elkr »~1 £(g)

with

£(0) = (2ix)™t Z(zh 1) (ezig! - 1) B/ (cos ©). (7

{=o

Eqﬁation (7) is generally called the partial waves solution for
£(e).

The phases 81 may be obtained by numerical integration of
equation (5). Other ways of determining the phases may be more

convenient. If 51 is small, the formula

@
0
y = 25 ) v e v ar (8)

o

is useful. Also, the term (eZiS’ - 1) in equation (7) may be

replaced by (21§, ); substitution of equation (8) for &, then



yields the Born formula for £(0)*;

@
B 2k sin sr .2 3
£°(a V(r ¢ dr. (9)
@ = ) " =

(4

The Born forrmla was originally obtained in the following way (2):

Tt can be shown that equation (2) leads to

W’\' oikz

gikr

j U(rt) e~ik Boz' (g aT  (10)

where n 1is a unit vector in the direction of p. If it is
assumed that the wave is not much diffracted by the scattering
center, the perturbed wave ¥ (r'!') in equation (10) may be
replaced by the unperturbed wave e+X%', Use of equation (3) then
vields f£5(0) (equation (9)).

If §, is not small, the WKB method may be used to obtain
2 5
§ = { - U(x) - (“z {;c ﬂ*? } ar (11)

where Ty, Tp »0 are the zeros of the respective integrands.*™

# Use iz made of the formila

sin st _ Z (24+1) J (kr) B, (cos Q).
7=0

5T

2
#¢ In equation (11), (/)(4+1) has been replaced by ( /+3)
in accordance with the work of Langer (3).
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The use of fB(Q) or even of Z¥ in the intensity formula
proved adequate for meny years. Some anomalous results for heavy-
atom molecules were obtained, however. Uranium hexafluoride, for
example, was found by Braune and Pinnow (L) in 1937 to be asym-
metric with two short (1.78 R), two intermediate (1.99 R), and two
long (2.17 8) U-F distances. At that time there was little
physical evidence to suggest that this structure was incorrect.
Subsequently, dipole moment measurements and spectroscopic
results strongly indicated that uranium hexafluoride was octa-
hedral. Yet, Bauer's (5) wartime electron diffraction rein-
vestigation indicated that uranium hexafluoride was asymmetric,
with three short (1.87 %) and three long (2.17 8) U-F distances.

Sore workers (6) in the field of electron diffraction
believed that such anomalous structures were indeed asymmetric
and that the other physical measurements which pointed toward
symmetric structures needed reinterrnretation or redetermination.
This faith in the theory, in the Born approximation, may be

understood when it is remembered that for fifteen years electron

# The Born amplitude f£B5(@) is related to the atomic number 2
by the formula

£8(0) = (2ke? Mivs2) (Z - F(0)) (12)

vwhere F(®) is the x-ray form factor. Only limited relative
intensity data and no absoclute intensity data are obtained from
the visual interpretation of electron diffraction photographs
(the visual method). Thus, £8(0) in equation (1) is usually
replaced by Z with no effect on the final results.



diffraction dafa on gases had, in the hands of careful investigators,
led to structures, except for those few anomalous ones, which wers
reasonable structurally and which wers in essential sgreement with
the available data from other physical methods, Other workers
- suspected the Born approximation, but did not understand how a
failure of the approximation would result in asymmetric structures.
Recently, Schomaker and Glauber (7,8) pointed out that if the
Born épproximation failed, thus if the scattering amplitudes were
complex, the term cos(q&(g) -145(9)) = cosévgj(e) would be
introduced into equation (1) and the anomalous structures could
be explained. If the amplitudes are real, a pair of split distances

rij @ Ty = Ar and riy =T, +Ar contribute to equation (1) as

. . i . .
£,(8) fj(g) {s:m STi3 + sin Sr“}a& f;(8) fj(e) cos(sar) M (13)

sr

sr. . sr}
ij ij o

for Ar/r, small, and this is just the result one obtains with

~complex amplitudes and a symmetric structure (rij =rl; =1), if

J
Zxﬁgj is proporticnal to s. The electron diffraction pattern
which with the Born approximation leads to an asymmetric structure

may thus be expected to lead with complex amplitudes to a symmetric

structure. Schomaker and Glauber carried out a treatment eguivalent

#*

to the second Born approximation,™ and with the assumptions that

# The second Born approximation may be thought of as the substitution
of the result WB of the first Born approximation for ¥(r') in
equation (10).
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the potential is screened-coulomb ( V{(r) = -(Ze2/r) e-T/z ) and
that |f(9')l is given by 1B(@), they obtained 7//& as a function

of { = as, where 2 is the screening radius defined by the relation®
a = ag/7/3 (1h)

From the arguments </ of the ccmplex scattering amnlitudes Schomaker
and Glauber calculated the splits in the absence of any actual
distance splits and found remarkable agreement with the distance
splits which had been obtained from observed diffraction patterns
using the Born apcroximation. The arguments increase with increasing
Z. The term Af;3 is larger therefore for a heavy-atom light-atom
interaction and is more likely t0 take on the critical value 7{2*¥
within the observed s range. This explains why anomalous results
were obtained only for those molecﬁies which contained both a
heavy atom and light atoms.

A short time later, Dr. Glauber (9) proposed a more refined

treatment of the scatiering problem which gives the argument and the

% In the work of Schomaker and Glauber and in the work described
in Section B the factor 0,885 which usually appears in the
numerator of the right-hand side of equation (1L4) is omitted.
This omission, of course, does not affect the final results or
the conclusions.

## The intensity is highly sensitive to the term A7 ; only when
Mhy = (2n+1) 7/2. The intensity is relatively insensitive to
the lack of proportionality of Aﬁij to s at other angles,
and to the deviation of [£(8)| from fB(8). These latter two
effects could easily remain umnoticed, since accurate intensity
measurements are not usually obtained in gas diffraction work.
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nagnitude of the scattered wave. Dr. Glauber obtains

£2(0) = (k/1) f Jo(2kp sin(6/2)) (e%(P) - 1) p ap (13)

-]

X(p) = -(1/%v) /V(\/ y2+p2 ) dp. (16)

—@®

where

{MoliZre (10) obtains from equation (7) a form very similar to

equation (15) by use of the Euler summation formula and the relation

| 2
P/ (cos ) ~(0/sin 0)% J, {(1)«-%)9} )
If the screened-coulomb field is assumed in equation (16), equation

(15) becomes

£(0)/ka2 = -1 [ Jo( £x)(e~2%ikKo(x) _ 1) x ax. Qarn)

[}

The quantities 417(9) and If(@)‘ were obtained as functions of X
and of { = as by numerical integration* of equation (17).

From equation (1) it can be seen that if the amplitudes are
real, the intensity is a simple function of the wavelength, a change
in wavelength merely results in a change in scaley if the amplitudes
are complex, the intensity is a more complicated function of the
wavelength., To test Dr. Glauber's treatment of the scattering
problem and also to test Schomeker and Glauber's second Born

calculation, it was therefore desirable to obtain reliable

# This numerical integration was done in collaboration with
Mr. Gary Felsenfeld.
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kexperimental data‘ on the same compound at two different voltages.
Electron diffraction photograrhs of uranium hexafluoride were
obtained at 11 kev as well as at the usual LO kev. Besides the
change in scale, the patterns showed marked differences. This is
the first direct experimental evidence for the failure of the
Born arproximation in electron diffraction.

A symmetric model was assumed for uranium hexafluoride, and
the intensity was computed from equation (1). The arguments /77
of the second Born approximation led to a LO kev intensity which
was in satisfactory agreement with the photogravhs, but to an 11 kev
intensity which was in serious disagreement with the photographs.
The magnitudes and arguments of Dr. Glauber's treatment led to an
intensity at either voltage which was in disagreement with the
nhotographs,

The procedures used to obtain the uranium hexafluoride rhote-
graphs, to test the seccnd Born calcﬁlation, to evaluate numerically
the necessary integral (equation (17)), and to test Dr. Glauber’s
treatment are described fully in Section B,

At this point there was no treatment which adequately explained
the exnerimental facts. But finally, a more exact calculation
was made in collaboration) with Dr. Jean Hoerni. The partial waves
solution was used (equation (7)), the phases were determined from

the WKB method (equation (11)); the Thomas-Fermi potential was



_adoptéd for urahium, the Hartree-Fock potential for fluorine. On
the assumntion that ursnium hexafluoride is symmetric, excellent
agreement has been found between the calculated intensities and
the LO kev and 11 kev visual data. The calculations have therefore
been extended to other atoms at LO kev. This work is described
fully in Section C.

It may be said in conclusion that, as Schomaker and Glauber
pointed out, the anomalous structures found by electiron diffraction
for heavy-atom molecules are explained by the failure of the Born
approximation. This approximation has necessarily given way to
a more involved calculation. Initial experimental evidence points
to the adequacy of the new calculations, but a vositive verification
is not possible until more complete intensity data on a number of

heavy-atom molecules are available.
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*
Bl

Bromine-contaminated uranium hexafluoride, prepared by the
ac’ﬁion of bromine trifluoride on uranium metal, was kindly
supplied by the Atomic Inergy Research Department of North
American Aviation, Inc., Downey, California. Resublimation of
the uranium hexafluoride at reduced pressures removed most of
the bromine. The purified compound gave the expected LO kev
electroﬁ diffraétion pattern (4,5,11). Slight modification of
the electron diffraction apparatus, in particular of the power
supply and the filament geometry, was necessary in order to
obtain 11 kev photographs of uranium hexafluoride. (The "LO kev"
voltage was actually 39.47 kev by calibration with zinc oxide;
the "11 kev" voltage was 11.38 kev from the value 39.47 and the
npotentiometer readings at both voltages.) Unfortunately, the
sample bulb was found to contain a non-volatile residue when an
attempt was made 40 obtain confirmative photographs at 4O kev.
The assumption has been made that the photographs at 11 kev are
actually of uranium hexafluoride. This assumption is surely
justified by the facts tﬁat the pattern is too complex to be due
to hydrogen fluoride, bromine, or other possible contaminants, and

that there are very few volatile compounds of uranium.

# The work described in this section was done in collaboration
with Mr. Gary Felsenfeld.
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The 11 kev ﬁaﬁtem differs markedly from the LO kev pattern ---
this is the fj.fst direct experimental evidence for the failure
of the Born approximation in electron diffraction studies of
gases.

Equation (1) may be modified for use with visuél data and a

symmetric uranium hexafluoride model to give

‘ 6
T X 2 et——— i
(S) (S) UF COSMUF sin ru_FS

Iy
Iy

12 . ; 2
{ o~ (arF - 2au-p)s? gin oo e (18)
TR_F

2
N 3 o-(ar.F - app)s® 4 "'F‘Fsg
TF.F

where I(s) 4is the.intensity of scattering, K(s) 1is a smoothly
decreasing function of s, and e"*"‘o'.j52 is the temperature factor
for the distance i3 between atoms i and j.

For agreement between the intensity calculated for a symmetric
model from complex amplitudes and the intensity calculated for an
asymmetric model from the Born approximation (and thus for agreement
with the visual data), it is essential that 8., the point where
Mpij is 7/2 be very close to Sy, the point where Ars
(equation (13)) is 77/2. The modified intensity function I(s) K(s)

has been calculated for a symmetric model® of uranium hexafluoride

# ryp = 2.00 &, ryp=2.838, rpF=L.00 g,
ap.F - aU-F = 2.2 1073 32, ap.F - ag.p = 0.75 10-3 82,
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at L0 kev and at 11 kev from the /77 of the second Born calculation.
At U0 kev, s, is 11.2 and s, is about 10.5 (5) to 11.2 (11),
and there is good agreement between the calculated intensity and
the visual data. At 1l kev, s, is 3.8 and sy, is about 6.L to
6.6, and agreement is not obtained.

The 4O kev and 11 kev data were used, however, to modify the
plot of /= vs. / in an attempt to obtain agreement with

experiment. An equation of the form
cos A4y = A + B cos Cs (19)

was applicable over the entire & range at 4O kev (with A = -0.15,
B = 0.85, and C = 0.125), and it was assumed that this form was
also applicable at 11 kev. A radial distribution function (12) was
corputed from the visual data, and from the observed split the
value of C was obtained. The radial distribution function also
gave an approximate ratio of A to B. These values were then
refined by the comparison of calculated cﬁrves with the visual
curve. The best agreement with the visual curve was obtained

with the values A = -0,02, B = 0.99, C = 0.235. Equation (19)
was then used to revise the plot of @ﬂkx vs. { of Schomaker
and Glauber. Only a narrow lQW%.[ range of the plot was modified
by this procedure and the intensity function at 4O kev was hardly
affected. Thus, the revision resulted in agreement of the

calculated intensity with the data at both LO kev and 11 kev.
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T+ is doubtful, of course, whether this revised plot would be
satisfactory for other heavy-atom molecules.
‘Attention was now turned to Dr. Glauber's new treatment which

may be written
£(0)/ka2 = i‘lfao(fx)(e"z"‘i"o(x) - 1) x dx, an

if the screened-coulomb field is assumed. BEvaluation of the
real (R) and the imaginary (I) parts of this integral lead to 7/
and If(O)l :

Mesarll, o) =2 +8202

R and I were evaluated with the help of a desk calculator from
Simpson's rule for the following values of the parameters:

- ":Jé‘a 1, 2, 33 1"0’ 1, 3, 6.
Thgse values and the corresponding arguments are given in
Table I.

Plots of 0) vs. {4 for the desired « were obtained by
interpolation on plots of  vs. « for constant A . From
these data the quantities s, could be computed and compared
with sy. The screening radius for fluorine was assumed to be
ao/Zl/ 3 (equation (1L4)) at both voltages, and no screening
radius, independent of wavelength, could be found for uranium
which would give the proper values of s,. It also proved inadequate

to equate the screening radius to Yao/zl/ 3, where ¥ is a
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Table 1

Wumerical Integration of Equation (17)

-9 R I 7
% 0.951 0.21) 0,222
1 1.563 0.629 0.383
2 2.338 1.408% 0,541
3 2.81L 2.039 0.627
% 0.Lh2L 0.181 0.403
1 0.594 0,500 0.700
2 - 0.535 0.970 1,067
3 0.318 1.230 1.218
% 0.0L5 0.080 1.060
1 - 0,055 0.145 1.933
2 - 09227 - 00008 31178
3 - 0,186 - 0,204 3.972
3 - 0.00L 0.025 1.711
1 - 0,049 0.001 3.128
2 0,036 - 0.070 5.193
3 0.09L 0.03L 6.63h



21

constant independent of both wavelength and atomic number.
Data are available on the apparent splits in several heavy-

atom molecules at LO kev (7). It was assumed that sy, was

equal to 8, so that the data would permit the calculation of

Sqe The screening radius a was assumed to be given by
a = B(z,2) ag/2%/3. (20)

The quantities (F(2) were determined by successive approximation
from the LO kev s 's. A smooth curve was drawn through these
and through [y = 0.885, the calculation was reversed, and the
srlits shown in Table II were obtained. The smoothed values
By = 1.63 and Br = 0.925 and the corresponding lf(O)‘
gave a calculated intensity function which is in good agreement
with the L0 kev visual data. The best agreement with the low
voltage data, on the assumption that Py is a weak function of
the wavelength, is obtained with By = 0.9h and By = 1.93.
Data obtained at 11 kev for other molecules would be needed
to define further the relation of B to Z at that voltage.
Tables IIT and IV present observed ring-diameter positions
in units of q = 10 s/77 for LO kev and 11 kev uranium hexa-
fluoride together with positions obtained from the various
calculations just described. A comparison of gqg,1,, with
Gobg, does indicate to some extent the adsquacy of the

caleulated intensity function, particularly if there is good
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Table II

Apparent Distance Splits === LO kev

Distance Apperent Splits, X
Obs .2 Calc.? Calc.P Calc.©
(V.S. & (Glauber) (J.H. &
R.G.) J.1.)
UFg, U-F 0.30, 0.28 0,28 0.31 0.27
0s0), 0s-0 0.23 C.2L 0.25 0.2L
WFg | W-F 0.23 0,22 0.23 0.23
W(C0)g W-C 0.2L 0.2k 0.25 0.25
W(Co)¢ W-0 0.23 0.23 0.2h 0.2L
WClg =Gl ~0,18 0.18 0.20 0.18
IFS I-F 0.18 0.15 0.16 0.17
MoFg Ho-F 0.1h 0.12 0.12 0.12
Ho(C0) ¢ lo-C 0.13 0,13 0.1h 0.15
Mo(CO)g Mo-0 0.13 0.12 0.13 0.13
a See reference (7).
b The following values of £ were used: U = 1,63, F = 0.925,
gz : %:g%i 0=0,92, W= 1,39, Cw= 0,91, C1=0.97, I=1.21,

See Section C.
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Table IIT

L0 kev Uranium Hexafluoride Data

Min, Max, q_ 2 IR

obs. obs, Weight
Bauerb ond porn Glauber®
1 6.6 0
1 11.0 1.061 1.045 0
2 . 18.6 0.962 0.989 0.978 L
2 22.6 0.991 0.991 1.000 6
3 26.5 1.023 1.019 1.015 2
3 30.5 1.013 1,007 1.003 3
I 3L4.0 0.976 1.000 0.982 3
L 37.5 0.987 0.987 0.997 L
5 L2,! 0.991 0.993 0.995 8
S 47.5 0.985 0.998 0.992 6
6 53.2 0.983 0.985 0.998 9
6 58.0 0.98L4 1.000 0.995 10
7 63.3 0.979 0.987 0,986 10
7 67.8 0,982 0,999 0.988 10
8 72.6 0,993 0,996 1.001 9
8 77.9 0.983 0.997 0.996 8
9 82.3 0,994 1.002 1.002 6
9 86.9 0,992 1.006 1.003 N
10 92,0 0.992 1.007 1.003 2
10 96,6 0,995 1,007 1.007 0
Weighted mean: 0.9866 0.9957 0.9950
Estimated standard -
deviation of wvalue
of unit weightd: 0,025 0.018 0.018 (W = 10kL)

a These data are from the visual curve of Dr., O. Bastiansen (11).
Bauer (5) did not define his wavelength clearly so his visual
data were not used,

b These were obtained from Bauer's "Best Model", model 4.

¢ These were calculated from equation (17), using the adjusted
screening radii. '

d See reference (13).
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Table IV

11 kev Uranium Hexafluoride Data

Min,  Max. g qcalc./qobs. Weight
ond Born®  Glauber®
1 6.7 0.950 0.96L 0
1 11.0 0.998 0.989 1
2 13.3 0.983 0.983 5
2 15.6 0.97L 0.987 3
3 19.2 0.989 0,989 10
3 22,5 1.001 0.988 2
N 25,7 1.006 0,975 3
L 29,6 0,987 0.97h L
5 33.2 0,997 0.99L 7
5 37.3 0.997 0.997 10
6 42,2 0.995 0.997 7
6 L7.0 1,000 1.000 5
7 £3.6 0.995 1
Weighted mean: 0.9931 00,9900
Estimated standard
deviation of value
of unit weightd: 0.018 0.018 (=W = 58)

[ 3N e g ]

These are observations of J. Ibers.

These were calculated from the revised plot of AZ/C( vs. { .
These were calculated from equation (17), using the adjusted
screening radii. '

See reference (13).
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_agreeﬁent near the critical region of the curve (qb = 10 sbjﬁr
is about 34.5 at L0 kev and about 20,6 at 11 kev). Agreement
between the caiculated‘curve and the data cannot be claimed,
however, on this basis alone; more important, it is essential
that a detailed feature-by-feature comparison of the calculated
curve with the visual curve show satisfactory agreement.

It is true that with suitably adjusted screening radii Dr.
Glauber's treatment of the scattering problem has led to agreement
with the limited experimental data. It may be argued that the
introduction of such screening radii is less arbitrary than the
correction which was apolied to the second Born calculation,
but surely it is difficult to find a physical basis for wavelength-
derendent screening radii. It is important to point out, moreover,
that the assumption that atomic notentials are screened-coulomb
is extremely difficult to justify, and that the success of the
second Born calculation at LO kev might well be fortuitous. The
failure of the second Born calculation at 11 kev and of Dr. Glauber's
treatment at both LO kev and 11 kev demands the use of more
realistic atomic potentials; the arbitrary modification of the
second Born calculation or of the screening radii is hardly

Justified.
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Dr. Glauber left no detailed derivation of his formulas nor
an indication of the relation of his results to others in the
literature when he returned to Harvard University. (Holilre's
@aper suggests that one could obftain results very similar to
Dr. Glauber's from the vartial waves treatment.) As a result,
the lack of understanding of Dr. Glauber's treatment persisted.

Dr. Jean Hoerni, therefore, made some preliminary calculations
based on the partial waves treatment, with phases determined from
the WE3 method. The preliminary results were promising and more
extensive calculations were carried out. These are described in
the following two reprints. Attention is called to Table II of
Section B where for comparison the apparent distance splits

obtained in the calculations to be described are given.
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Complex Amplitudes for Electron Scattering by Atoms*
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The partial waves scattering theory has been applied to electron scattering by U and I atoms at 40 and
11 kev. The electron scattering by the U¥; molecule, predicted from these results, is in good agreement

with experiment.

1. INTRODUCTION

ECENTLY, Schomaker and Glauber! have pointed
out that anomalies, e.g., apparent asymmetry,
in the structures of molecules containing both heavy
and light atoms as determined by electron diffraction
can be removed by using complex atomic scattering
amplitudes f(8) and hence by rejecting the first Born
approximation which gives only real amplitudes. This
approximation, although theoretically justified only for
—a=7Z¢/(hv) small, has nevertheless been universally
employed in investigations of the molecular structure
of gases by electron diffraction. Using the second Born
approximation, Glauber and Schomaker? evaluated the
phase of the complex amplitude, n(8)=argf(8), for the
exponentially screened Coulomb potential — Zete 7/4/7;
agreement was obtained for a large group of molecules
at 40 kev. However, good agreement is not obtained
for the UFs pattern at 11 kev,? and, in any case, the
second Born approximation and the assumption of the
screened Coulomb field are hoth uncertain, so that a
more adequate calculation is desired. We describe below
an application of the partial waves scattering theory
to the problem of the scattering of electrons by atoms
(U and F). The energies considered (11 and 40 kev)
are sufficiently high so that electron exchange and
polarization effects can be neglected.

II. THEORY*
The solution to the problem of the elastic scattering
of a beam of particles by a central potential 1'(r) is
given by

J0)=(2ik)" T (24-1)(241—1)Py(cos), (1)
1=0)

where 6 is the scattering angle, k is 2%/A, and the
phases 8; may be interpreted as the phase differences
between the perturbed and unperturbed radial functions
at large distances from the nucleus. The 8,s can be
evaluated in several ways for electron scattering. When

* This work was supported in part by the U. 8, Office of Naval
Research.

T National Science Foundation Predoctoral Fellow, 1952-1933.

1 Contribution No. 1812,

' V. Schomaker and R, Glauber, Nature 170, 290 (1952).

*R. Glauber and V. Schomaker, Phys. Rev. 89, 667 (1953).

? Preliminary results by G. Felsenfeld and J. Ibers.

¢ As a general reference, we give N. F. Mott and H. 5. W.
Massey, The Theory of Atomic Collisions (Oxford University
Press, London, 1949), second edition, particularly Chapter VII.

8,1, (1) can be rewritten as

@)=k (2+1)8,(co), (2)

L=

and the &/s are given by
kam o ,
6= — f Viir)d o (kr)rdr. (3
Z62 o

Substitution of (3) into (2) yields the first Born
approximation for the scattering amplitudes, namely,

2ka p= sin(sr)
f"(‘ﬂ):—’—— f V) ridr, (4)
(3]

7% sr

where s= 2k sin(8/2). When the é,'s are not small, they
may be evaluated conveniently by the WKB method.
Starting with the relativistic Schrédinger equation,

ViR (rig=0), (5)

CE—=V(ryJ—m*c VE(r)—=2EV (r)
K2 (r) = = k:! H
e e

51-——: f G(l)d}—f Go(f)(h‘, (())
1 2
with

Glr)={(r)—=[U+5)/r P}, Golry={k=[(I+3}) r )L

Here, the energy E includes the rest energy, and ry, 7,>0
are the zeros of the respective integrands. In accordance
with the work of Langer,* we have replaced {({+1) by
(43)%. The 8/s may also be evaluated exactly. This
has been done by Bartlett and Welton® with a differ-
ential analyzer for Hg at 100 and 230 kev starting with
Gordon’s solutions of the Dirac equation. Although
the 6,’s from the WKB method are generally supposed
to be reliable only when large, and hence only when /
is small, Bartlett and Welton found these values to be
in excellent agreement with the exact values over the
entire range of /; they found the 3”’s to be reliable at
large 1.

where

we obtain

R, E. Langer, Bull. Am. Math. Soc. 40, 574 (1934); Phys.
Rev. 51, 669 (1937).

6 J. H. Bartlett, Jr., and T. A. Welton, Phys. Rev. 59, 281
(1941).
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11I. PROCEDURE AND RESULTS

We first compute the complex atomic scattering
amplitudes for U and F at 40 and 11 kev and then
apply these to the scattering by the UFs molecule.
UF¢ was selected because it offers the most severe test
(the molecule exhibits the largest apparent asymmetry!)
and because only for it do we have electron diffraction
photographs prepared at 11 kev as well as at the usual
H) kev.

For U we adopted the Thomas-Fermi potential,
using the approximate form®

Ze* s
Vry=——73 abirle (7)

o=l

where a;=0.10, ¢y=0.55, a;=0.35, b;=0.0, by=1.2,
by=10.3, and q, the screening radius, is 0.4685 2% For
I we used the Hartree potential® in the approximate
form

1 (r)=—(Ze/r){e P cre #r), (8)

where 3;=3.94, 8,=17.0, and ¢=—2.67. Preliminary
calculations indicated that the effect of electron spin
would be important only for /<2 and since in the
final summation (1) these terms are reduced in impor-
tance by the factor 214-1, we felt justified in adopting
the relativistic Schrodinger equation (5). For small [, the
6/s were calculated for 40 and 11 kev from the WKB
expression (6); for large I (2 25), it was found that the
6,”s (3) and é/s (6) were in excellent agreement, as
anticipated from the work of Bartlett and Welton.®
With the 8/s obtained in this way (Table T), we have
evaluated the magnitudes |f(6)| and the arguments
7(6) of the complex scattering amplitudes (Table I1I).
The 6/’s for U can also be computed over the entire I
range from the asymptotic expression (15) below. In
this case, although the &;’s differ from the above by as
much as 8 percent at 40 kev and 15 percent at 11 kev,
the resultant magnitudes and arguments in no case
differ by more than 3 percent from those in Table 11,
the relative error increasing with increasing 6.

In the application of these results to the molecule
UFs, the assumption is made that multiple scattering
and valence distortion are negligible. Then for visual
data the following expression for the intensity function
(specialized for the case of UF¢) is suitable:

I(5)K (s)=(6/rv_y) cos[qu (8)— 5% (8) ] sin(ry_ps)
4+ (| fx@)]/] fu@6)])
X {(12/rr_x){exp[ — (ay_r—av_p)s?]} sin(reys)
+ (3/rv.p){expl— (ap.r—av_r)s’]} sin(rr.vs)}, (9)

where /(s) is the modified scattering intensity, K (s) is
is a smoothly decreasing function of s, and exp(—a, %)

* . Moligre, Z. Naturforsch. 2a, 142 (1947).
AT W. Brown, Phys. Rev. 44, 214/ (1933).
¥ See reference 4, Chap. 1V, Eq. (23).
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COMPLEX AMPLITUDES FOR ELECTRON SCATTERING

Tasrr 1. Selected values of 6.

Uranium Fluorine

! 10 kev 11 kev 10 kev 11 kes
0 6.11 7.20 0.571 1.05
2 3.49 4.67 0.414 0.555
4 247 290 0.317 0.391
0 1.87 2.06 0.258 0.297
8 1.53 1.52 0.218 0.234

10 1.26 1.16 0.189 0.188

15 0.847 0.679 0.135 0.113

20 0.602 0.441 0.101 0.071

25 0.452 0.302 0.077 0.040

30 0.353 0.212 0.059 0.029

35 0.282 0.152 0.046 0.019

40 .228 0.110 0.036

50 0,155 0.059 0,022

70 0.076 0.018

100 0.028

3 The actual values used were 39.470 and 11.380 kev.

is the temperature factor for the distance r;; between
atoms 4 and j.!"° Using our complex amplitudes and a
symmetric UF; model," we have evaluated the function
I[(s)K(s) at 11 and 40 kev. Figure 1 compares the
calculated and the visually estimated versions of this
function. When one considers that the visual curves
are significant only for comparisons of intensity over a
small range of s (e.g., that one usually can compare
the height of maximum » only with the average of the
heights of maximum »41 and maximum n—1), the
agreement is excellent. For the present purpose, the
most significant parts of the patterns are the very
sensitive regions where 3y(8)—yr(6)==.2, and these
are reproduced satisfactorily (Table TIT).

Table II also provides a comparison with the magni-
tudes fB(6) calculated hy the first Born approximation®
[using (18) and (19)7] and the phase angles #3(6) for U
calculated by the second Born approximation. For the
latter it was necessary to extend the calculations of
Glauber and Schomaker? to the potential for U used
here. Their formula is

k
(0) = 8K, )= ———
7 K 4w fB(6)

X f 7Bk fB(k”, k)dQy,  (10)

6 Shaffer, Schomaker, and Pauling, J. Chem. Phys. 14, 659
(1940).

Brgp=2.004, re_y=283A, rpp=100A, up_g—ay_r=2.2
X 107342, gp.p—au-r=0.75X107342,

27Tt should be noted that fB(8) is related to F(8), the x-ray
form factor, by the relation

fB(6)=(—2ka/s?)[1—(F(8))/Z].

The F(6) for U obtained from the corresponding f2(8) given in
Table II agree to within 14 percent with the Thomas-Fermi
values given in Internationale Tabellen sur Bestimmung wvon
Kristallstrukiuren (Gebrider Borntraeger, Berlin, 1935), Vol 2,
p. 573. The F(g) for F agree to within 10 percent with those of
R. W. James and G. W. Brindley [Phil. Mag. 12, 81 (1931)7],
and to within 6 percent with the f of R. McWeeny [Acta Cryst.
4, 513 (1951)7]; our values bheing in general lower than those of
McWeeny and higher than those of James and Brindley. We
suspect these differences arise from differences in the models used.
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J. A, HOERNI AND J. A. IBERS 1184
It is planned to extend the calculations for 40-kev
/ Ly h T ARVARNARN AN electrons to other atoms with the hope of achieving a
L ,/ i [ ] / L / l\ f ! / Vo sufficiently general theoretical basis for electron
l"\ R P v / iy VR \ I \J fl g diffraction studies of the molecular structures of gases.
A / - / “ K“\ A We thank Professor Verner Schomaker for reading
. / P Y ;:/ o this paper and for making many helpful suggestions.
J/ . Iy AN 1V. APPENDIX--~-MATHEMATICAL DETAILS
| y U J Yy / The Phases §, and 5
" / / v /" [ When computing 8, it is convenient to split up (6)
W oAl as follows:
. . B . ; i " r3 r3 %
N ’ b= f G(r)ydr— f Go(r)dr+ f [G(r)—Go(r) Ydr
5 ry s 3
Fis, 1. Intensity curves for UFs ‘V” visual, “C” calculated =[,—1,+1,. (12)

for “40” or “11” kev. Further photographs will be made hoth at

40 and 11 kev, and the visual curves (40 V is due to Dr. Otto P AN s large . e N g () .
Bastiansen and 11 V to Felsenfeld and Thers (reference 3)) are Here, r, is sufficiently large so that for r>7y, Gr) and

not to be regarded as final, Gy(r) do not differ by more than 10 percent. Then [;
reduces to

where k and k' refer to the directions of incidence and by o

scattering, respectively, and k' is integrated over the ]32;({ f (V) 1/ [Golr) dr. (13)

sphere |k''|=k. When the potential (7) for U was Zetd \

inserted and the integration performed there resulted
: r1 was evaluated graphically and [, was integrated

34 numerically using Simpson’s rule; 7, can be integrated

3

By oo ! . ; :
o 2kB(6) cos(6/2) T ana}ytlml)y. 15(13) can be expresse’d in terms of
’ various power expansions and when V(r) is given by
2u;; cos(6/2) (7), the following expression is convenient:
X tanh™! e , (1
gy —cosd g @
gu= 14 (b, (2a), Fim—a £ ai [ Lobre /L= b/,
i=s r3
pij={L(b7—b32)/ (4k2a®) ; n e
+Lgi?—cos(6,2)] tan?(8/2)}*, =—ay at[ Ko(llx)—“#Al‘iI:’?l“ wi—— (3ul—u)—
i=1 3! 5!
which is in serious disagreement with the partial waves
values and with experiment, as may be seen from o , m?
Tables I1 and III. The good agreement with experiment — (1504 u;— 15u; )_77+ o }, (14)

obtained previously? must be due to a fortuitous

cancgllatxon of errors: For heavy atoms th.e exXpo-  y=b,(I+3)/ (ka), m=cosh [ (rsk)/(I+3)].

nentially screened Coulomb field is quite unsatisfactory

and (10), even at 40 kev, is inadequate. For large values of [ (2 25), it was found that ry=ry=ry,

Tasre IT. Magnitudes and arguments of the scattering amplitudes.

Uranium Fluorine
40 kev 1] kev 40 kev 11 kev
9 1761 () I o ) | 718)] a6 e AP Lrol w8 B B T R U]
0 14.51 0.317  17.24 0.50 12.01 0414 1636 0.90 231 0.079 232 2.15 (.141  2.20
1 10.30 0424 12.78 10.64 0.456 14.88 1.90 0.093 191 2.03 0.148  2.08
2 5.54 0.687 7.52 7.85 0.579 11.78 1.24 0.128 1.24 1.73 0.169  1.77
3 3.21 1.00 4.74 1.39 5.37 0.772 8.86 1.51 0776 0179 0.781 1.39 0.201 143
4 2.08 1.31 3.27 3.67 .01 6.72 0.507  0.231  0.511 1.08 0.243 112
5 1.46 1.60 2.42 2.61 1.28 5.23 0.349  0.281 0.352 0.841 0.290 0.871
[ 1.08 1.88 1.87 2.4 1.94 1.57 418 263 0.252  0.329 0.254 0.660 0341 0.685
7 0.837 2.16 1.49 1.52 1.85 3.44 0.190 0376  0.192 0.525 0396 0.546
8 0.683 242 1.21 1.24 2.13 2.88 0.148 0420 0.149 0424 0447 0442
10 0.500 © 2.89 0.848 344 0930 2.64 212 390 0.096 0487 0.098 0.291 0.552 0.302
12 0.403  3.26 0.624 0.756  3.03 1.63 0.068 0.551 0.070 0.211  0.651 Q.218
14 0.327  3.61 0.478 0.623  3.34 1.30 0.051  0.623 0.052 0162 0.748 0.164
16 0.263  3.95 0.378 4.64 0.520  3.60 1.06  5.60 0040  0.676 0.041 0.128 0.830 0.128
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so that (12) reduces to

3
6l= —a Z a;’KO(ui)-

(15)
i=1
For the same potential, (3) becomes
3 i 1 1).' 2
8f=—a 2, dez{l'i'"(”‘) ] (16)
i==1 2\ ka

The (/s were computed for 0LIL10, using the
polynomial expansions,” for /2 10 they were evaluated
using Watson’s relation!!

Oi(cosh§) ~(exp[ — (I4+%) (£— tanh§)]) (sech?§)
X (K[ (I4-3) tanhg ) +-0(e44/1).  (17)

At I=10, (17) gave values in excellent agreement with
the exact values and -therefore its use was justified for
higher /. When computing the phases for large ! (225),
only the term for i=3 is of importance in (7). Since
the corresponding § is much less than unity, (17)
reduces very nearly to

K[ (H-3)€]= Ko (143)(bs/ (ka)) ],

so that the 8;s and 6,”’s are in close agreement.

Corresponding quantities for the F potential (8) can
be readily obtained: Integrals involving a term of the
form cre~# are obtained by differentiating with respect
to $ the integrals already obtained for terms of the
form ce~#" (the U potential).

The Scattering Amplitudes

In summing (1), the convergence of the real part is
improved by subtracting fZ(f) as given by its scries
expansion (2) and adding it as obtained by the inte-

13 A, Cayley, Messenger Math. 17, 21 (1887). The same poly-
nomials with decimal coefficients are given by N. Rosen, Phys.
Rev. 38, 255 (1931).

i G, N. Watson, Messenger Math. 47, 151 (1918).

COMPLEX AMPLITUDES FOR
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ELECTRON SCATTERING

TasLe IT1. Values of s where 5y (8) —qv(6)=n/2.

Voltage, kev Sobserved Spartial waves 32nd Born
40 10.740.0 109 7.7
11 6.60.6 7.1 3.8

gration of (4). The integrated expressions are respec-

tively, for U and F,
3
fB ()= —2kad* T ailbPd¥s?) (18)
i=]
and
F8(0) = — 2ka (3124 5%) 7 (282) (B2+9%)72]. (19)

By substituting the following asymptotic expressions:'®

Ky(x)~Gn/x)te7, (20)
and
Pi(cosf)~N2 (wl sing) ! sin[ (/4 3)0+,'4 ]
LV2(xl sing)™}, (21)

into the respective expressions for the real and the
imaginary parts of f(8), it was shown that negligible
errors would arise from termination of the summation
at I= 70 for the real part and at /=100 for the imaginary
part, for 8>1° For §=0°, P){cosf)=1 and an exact
termination correction can be made.

The P,(cos8) were obtained from the available tables
up to /=10 and for 10<I<100, 1°<H<16°, they were
computed from the relation

Pi(cosf)~ (8, sinB) ) o[ (1438 (22)

which may be derived from the corresponding asym-
ptotic expressions.'® Equation (22) was satisfactory for
! as low as 5 over the whole range of # indicated in
Table II.

15 See, for example, . Jahnke and F. Emde, Funktioneniafcin
(Dover Publications, New York, 1945), fourth edition, p. 138,
noting that Ko(x)= (x/2)iHo" (iz), and p. 117,

16 Reference 15, pp. 117, 138; see also reference 7, p. 144.
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Atomic Scattering Amplitudes for Electron Diffraction™

=

By James A, Ibers% and Jean A. Hoerni

Gates and Crellin Laboratories of Chemlstry,

California Institute of Technology,™
Pasadena, California, U.S.A.

‘Scattering amplitudes for LO kev electrons
have been computéd from the partial waves
scattering theory for selected atoms and for
scattering angles between 0° and 28°. The
Thomas-Fermi potential was used in these
calculations; in some instances, Hartree
potentials were also used and the results

from the different potentials are compared.

1, Introduction

The atomic scattering amplitudes £(©) which are required in

the electron diffraction determination of the molecular structure

of gases have in the past been estimated by the first Born

approximation,

a0
£(6) = 5(e) = HX [ y(r) Snsr 2,
Ze< o sr

(1)

#% This work was supported in part by the U, S. Office of
Navsl Research.

#¢ General Electric Company Predoctoral Fellow, 1953-195k.

w3t Contribution No. 1869. Accepted for publication in
Acta Crystallographica, 195L.
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Here k is 27/A, o is -Ze?/4v, s is 2k sin(e/2), @
is the scattering angle (twice the Bragg angle), and V(r) is
. the potential energy of the incident electron in the atomic field,

The x-ray form factor F(B) is related to £5(8) by
£9(0) = (-2ket/s?) (1 - F(0)/2). (2)

Recent work (Schomaker & Glauber, 1952; (lauber & Schomaker, 1953)
has shown that the first Born approximation, which is theoretically
justified only for -«—0, fails at the voltages used in electron
diffraction studies and leads, for example, to apparent asymmetry
in the structures of molecules containing both heavy and light
atoms. The atomic scattering amplitude actually is complex and,

on the assumption that the molecular amplitude is simply a super-
position of atomic amplitudes, the intensity scattered by a molecule
is proportional to

sin sr, .

> fesce)] |es@) cosfrrye) ~mye —— 2 (3)
1, Srij

where /] (8) = arg f(8) and T35 is the distance between atoms
i and Jj. Complex atomié scattering amplitudes have recently
been computed by the partial waves scattering theory for U and F
atoms at LO and 11 kev, and the scattering of the UF 4 molecule,
predicted from these results, was found to be in good agreement
with experiment (Hoerni & Ibers, 1953). In this paper we extend

these calculations to other atoms and to a wider range of

scattering angles at L0 kev.
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2. Theory
The solution to the problem of elastic scattering of a beam
of particles by a central potential is given by
£le) = (2ik)™* i (24 +1) (2% 1) P, (cos 0). (L)
=0
When g:t << 1, the partial phases 8} can be computed from the

formila

o k ®
) :2:2”/ v(r) 3, () rar. (5)

°
For large values of é: we have shown (Hoerni & Ibers, 1953)
that the WKB method can be applied and that there results

approximately
- ko it 2 1 %
81.. — f V(r) {k -(il:t_a)?}"‘i dr. (6)
(£+3)/x

When the atom is very light (e.g. Z< 10) the second Born
approximation can be used. This approximation, which is more
convenient to apply but valid only when ]f(e)l I~ fB(Q) and

7 (e) is small, gives

(o) = (k/hszB(e))/fB(l,_«::,ag')fB(gg",;g) aQ,, (D

where k and k' refer to the directions of incidence and
scattering, respectively, and k" is integrated over the sphere

ngj = k (Glauber & Schomaker, 1953).
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3. Procedure and Results
The choice of V(r) is limited. It would be most desirable
to usé the Hartree-Fock potentials for all atcems. Thess
calculations, however, have not been carried out for neutral
atoms above calcium, and above krypton the Hartree calculations
have been made only for tungsten and mercury (Hartree, 19L6).
e have therefore adopted the Thomas-Fermi potential in the

approximate form of Rozental (1936)

- Ze? 3 -b: T
W(r) = - = .zl a;ei /a (8)
i=

where aj = 0.255, a, = 0.581, a3= 0.16L, by = 0,246,

by = 0.947, by 1,356, and a, the screening radius, is

0.1685/23/3 in A.* Equation (8) allows analytic integration
of (5) and (6).

Tables 1 and 2 give the values of ) () and If(Qﬂ
computed from (8) for selected values of Z and 6 at 39.47
kev. {This voltage corresponds to a wavelength of 0.06056 1,
the calibration wavelength used in the UF, studies.) It is
interesting that even fcr’veny light atoms the Nn {6) differ
appreciably from zerc. Comparison of If(Q)] with fB(e),

however, indicates a maximum difference occurring at high Z

* This form is a better approximation to the potential than the
fit of Molieére (1947) which we used in our previous paper.
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of oniy about 30% over the range of Z and @ considered.*
Some remarks are perhaps in order regarding the actual

calculation., It is convenient to improve the convergence of
(4}) in the following way. For the real part of f£(8) we

subtract term by term from (L) the series

[v 9]

k-1 z (2,@4»1) 5_;0 Py (cos ©)
A=0

and add £B(9), since substitution of (5) into (9) yields
(1). For the imaginary part of £(©) we subtract term by
term the asymptotic form of (1 = cos 2 82) for large »g s

namely 2 6:(2 . Using (8) we have

2 _2x25-2p, -1 1y-1 - 1 -1
2 SZ 2X%ay by Tka (£+%) exp{ 2((’+2)b1(ka) } (10

= g(L+3)

and we have for the resultant sum

<o

Z(zi’ﬂ) g(L+3) P, (cos 8)
A=0

= (2¢2ay2b; "1 Tka) e"bl/ka[l - 2 cos 0 e=2bl/ka

+e-lb1/ka }

(9)

)

(11)

The maximum difference for argon is about L%: This relative

reliability of £B(6) accounts for the satisfactory agreement

found by Bartell & Brockway (1953) between the atomic form
factor for argon calculated from the Hartree-Fock potential

and that obtained by use of the Born approximation from
- glectron intensity data.
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>When fhe summatioﬁs are made in this way, negligible errors
arise from termination of the series for both the real and
imaginary parts at ,@ = 100, except for © = 0°, but here an
exact correction can be applied.

In order to check the reliability of the Thomas~Fermi
potential, we have fitted the Hartree-Fock potentials for F

and A and the Hartree potentials for W and Hg in the form

.V(r) = = _Z_ef_ Z o(irnie"gir . ' (12)
r .
i

Equation (12) also allows analytic integration of (5) and (7).
Values of /71(9) and k(eﬂ for these potentials at 39.L47
kev are given in Table 3. It can be seen that If(eﬂ is
relatively insensitive to the potential used, except at low
angles. We find, as would be expected, that the relative
differences in the values of /71(9) computed from the Hartree
potentials and from the Thomas-Fermi potential increase with
decreasing Z; yet, the absolute differences do not increase.
Furthermore, our limited comparison indicates that the Hartree
values differ from the Thomas-Fermi values by amounts which
depend somewhat on © but relatively little on Z. Since it
is the absolute error in zﬁfrlij =My - ’7lj’ according
to equation (3), which affects the accuracy of the calculation
of scattered intensities, it seems best to use the Thomas~Fermi
potential for all atoms rather than to use the Hartree

poﬁentials where available in conjunction with the Thomas-Fermi
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~potential,

It is extremely difficult to give an estimate of the
accuracy of the results presented in Tables 1 and 2. The
actual numerical details, i.e. function values, summation,
problems of convergence, etc., have all been adequately
handléd. We cannot be so confident of the theoretical details.
No corrections have been made for polarization, electron
exchange, or electron spin. The first two effects are
presumably important only at very low /? and the extra
labor involved in the use of the Dirac equations is not
justified., The WKB method is itself an approximation;
however, previous investigators have found it to be reliable
under comparable circumstances (Bartlett & Welton, 19L1;
Gunnersen, 1952). (We employ an approximate WKB equation,
(6), which we have shown gives magnitudes and arguments ,
differing by not more than about 3% from those computed from
the more exact equation,*) The principal source of error in
the calculation probably lies in our uncertain knowledge of
the atomic potentials V(r), which is in fact so uncertain
as to justify all our other approximations. Altogether, we

feel that Tables 1 and 2 are sufficiently reliable to allow

* The use of equation (6) together with the differences in

the form of the approxdimate fit of the Thomas-Fermi potential
and the use of a convergence factor for the imaginary part
of f£(8) account for the differences in the values for U

. given here and given previously.
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molecﬁlar structufes, regardless of the atoms present, to be
determined as accurately as is presently possible for compounds
containing atoms of approximately the same atomic number. To
be sure, the approximation of equation (3), i.e. the neglect
of valence distortion, plural scattering, and the like, may
not be adequate: Indeed it is more doubtful for the actual
atomic scattering with phase shift than for that without phase
shift given by the first Borm approximation. In practice,
however, this approximation seems to be satisfactory.

We note that complex atomic scattering amplitudes cannot
generally be used to calculate the diffraction from single
crystals (Hoerni, 1954). Analogous to the x-ray case
(Coster, Knol, & Prins, 1930), complex f-values used in the
kinematical theory may lead to different intensities for the
reflections hkl and hkl in a crystal lacking a center of
symmetry., At the same time, however, dynamical interactions
arise among a number of diffracted beams in the crystal, so
that even with complex f-values the range of wvalidity of the

kinematical theory is limited to extremely small crystals.

i, Extension to Other Voltages
Cur results are directly applicable only for V = V5 =

39.47 kev. For voltages V not too different from V,, the
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following transformations might prove useful:
Nz, e, V) = MN(z', 6", v,) if
(13)
7' = Z(V/V),  sin(8'/2) = (2'/2)Y/3 (k/x.) sin(e/2),
ez, o, v| == lecz", o, v, | if a
2" = 2(kvo/kov)3,  sin(e"/2) = (2"/2)1/3 (k/k,) sin(e/2)

where v, = 1.11L8 1010 cﬁ/sec and k, = 103.75 Al refer
to 39,47 kev, 1In Table Ly results computed for Z = 60 for 55
and 25 kev using (L) are compared with the values deduced
from Tables 1 and 2 using (13) and (1L). These transformations
were suggested by the fact that they hold rigorously both for
fB(e)’ and, if one assumes the simple screened-coulomb field
-Ze? e=T/3 /r and the second Born- approximation, for M (8)
(Glauber & Schomaker, 1953). The agreement exhibited in
Table 4 for /M\(e) is remarkable but we do not imply that
such agreement can be obtained in all cases; the agreement
for |e(e)] is not as good but the indication is thab k(eﬂ

tran
are more reliable than £B(0).

We wish to thank Professor Verner Schomaker for his helpful

criticism of the manuscript.
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Part III

Some Calculations of Atomic Form Factors
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The Born emplitude £3(@) for electron scattering is related

to the x-ray form factor f£(08) by
By = 2 (4 _ 12(0)y 1)
52 Z

In the course of the work described in Part II, £5(0) was
comnutéd fbr argon and fluorine from Hartree-Fock poténtials
and for mercury and tungsten from Hartree potentials. Corre-
sponding values of f(@) are given in Table I.

Rather large differences between the values given in Table I
and those in the literature were noted, and it was decided to
compute form factors for some of the lighter atoms from the
Hartree-Fock potentials. Professor Schomaker pointed out that
£he x-ray form factor could be obtained by direct Fourier
transformation of the Hartree-Fock radial wave function, without
recourse to the potential. A description of these calculations

is given in the mamuscript which follows.
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Table I

X-ray Form Factors
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Some Calculations of Atomic Form Factors™
By Jean A. Hoerni and James A. Ibers®¥
Gates and Crellin Laboratories of Chemistry,

California Institute of Technology,**
Pasadena, California, U.S.A.

f-ray atomic form factors for carbon,
nitrogen and oxygen have been computed from
Hartree-Fock radial wave functions, and
compared with the values previously obtained

by James & Brindley, and McWeeny.

The x-ray form factor for coherent radiation is given by

£(3) = fg’m 12T ()

where ?(‘r_) is the electronic density of the isolated atom and
s = WTA™L sin 0 is the magnitude of the vector g in reciprocal

spaée. If the electronic density is spherically symmetric (1)

£(s) =/U(r) sin ST 4y (2)
[+ sTr

* This work was supported in part by the U, S. Office of
Naval Research.
** General Electric Company Predoctoral Fellow, 1953-195k.

##* Contribution No. 1898. This manuscript has been submitted
for publication in Acta Crystallographica, 195L; +the results
described here were presented at the Spring Meeting of the
American Crystallographic Association, Harvard University,
April 5-9, 195kL.

reduces to
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- where U(r) is fhe total radial charge density. James &
Brindley (1931) (J & B) evaluated (2) for a number of atoms
using the Hartree values of U(r) (self-consistent field,
without exchange). TFor other atoms, for which the Hartree
field was not available, they resorted to an inteipolation’
These calculations have been extended to higher values of s
by Viervoll & Ogrim (19L9).

If the electronic density is aspherical, it is convenient
to decompose (1) into the separate electronic contributions.
Filled or half-filled sub=shells are spherically symmetric and
can be treated as in (2), bubt odd p electrons, d electrons,

etc. require special handling: For a p electron defined by

| B B
§7p = \A;; —— cos ©

(where cg is the polar angle relative to the axis of the orbital

2
(3)

and | P2(r) dr = 1), McWeeny (1951) (McW) has shown that the
(+]

transform of (3) by (1) gives
£ = 1" cos?@®+£L sin?
o = O+ 5 e (W)
where (@ 1s the angle between s and the axis of the orbital and
;E’; = (3/Lm) ///P2(r) cos?0 sin 0 e5T €08 @ 4n 49 44 (5)

£, = (3/bm) /f[?%n) sindo e15T €08 6 gin?dar de dgf (6)
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McWeeny also obtains a "mean contribution" by averaging (L)
over all directions:

fp:%%+%%, | (1)
‘Similar quantities f£", f!, and f are defined for the whole
atom by addition of the respective contributions of the
individual electrons. McWeeny has applied these results to
atoms from hydfogen to neon, using the approximate variational
wave functions obtained in analytic form for the ground states
by Duncanson & Coulson (19Ll).

Self-consistent fields, many of which even include exchange
(the Hartree-Fock calculation) are now available for atoms for
which there was no information when James & Brindley made their
calculstions. Thus it is now possible to compute £ for most
of the lighter atoms directly, without recourse to interpolations,
It is of interest to do this for at least a few important atoms
for comparison with the J & B and McW values.

We have computed f for C, N, and O from the ground-state
Hartrée-Fock radial wave functions P(r) (Jucys, 1939; Hartree
& Hartree, 19L8; Hartree, Hartree, & Swirles, 1939), without
recourse to f" and f* . This is possible even for aspherical
atoms because £(g) is a linear function of {(r), so that

averaging f(g) over all orientations is equivalent to first
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- averaging f’(g) over all orientations and eventually applying

(2)*: o
’ ry - 2 sin sr
£{s) ..0[ E Pe(r) - dr.
all

electrons

This form is convenient for numerical integration by I.B.M.
methods which were available to us (Shaffer, Schomaker, &
Pauling; 1946). The 1ls, 2s, and 2p functions for each atom were
transformed separately, and the interval of summation was in
each case so small that the complete f +wvalues were unchanged
(to within 0.002 electrons) when the interval was doubled in
width, In Table I we give our numerical results and‘in Figure 1
these results are plotted up to the copper limit together with
the f of McWeeny and the values of James & Brindley.

Between the copper and molybdenum limits we are in good
agreement with Viervoll & Sgrim except for oxygen, where they
appear to have made a slight error. In this range only the ls
electrons contribute to f, so that the good agreement which we
also find with the McW curves is a measure of the reliability
of the Duncanson-Coulson ls wave functions.

In the copper range it can be seen from Figure 1 that the

(8)

* The J & B direct values for a few aspherical atoms are
presumably calculated in this way.
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Table T

Values of f
N - -
° /9_'_?_937 £ valence L 2 T

(A™)

0 6.000 6.000 7.000 8.000
1 5.766 5.776. 6.782 7.797
2 5.181 5.212 6,269 7.322
3 L.L26 MRyl 5.545 6,622
N 3.696 3.738 L.768 5.82L
5 3.092 3.117 11,020 £.035
6 2.63L 2,638 3.428 4,320
7 2,300 2.288 2.925 3.711
8 2.061 2.038 2.5L2 . 3,208
10 1,768 1.740 2,039 2,487
12 1.597 1.577 1.761 2,051
16 1.36L 1.367 1.486 1.623
20 1.155 1.171 1.311 1.420
2l 0.959 0.978 1.145 1,269
28 0.783 0.801 0.988 1,126
32 0.633 0,649 0.835 . 0,985

* 0.5937 = zﬁzi“ , where a = 0.52017 is the ratio of the

atomic unit of length to the f‘lngstrom.
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S= 42 sing

Figure 1



56

J & B curves are inaccurate®. Such inadequacies of the J & B
curves have already been cited experimentally (Brill, 1950,
Bacon, 1952). Since the J & B curve for oxygen was computed
directly from the Hartree wave functions without exchange, the
departure from our values is a measure of the effect of exchange.™
Txchange modifies primarily the density of the outer electrons,
in this case the 2s and 2p electrons., This effect is approxi=-
mately the same for C, N, and C, as can be seen from comparison
of exchange and non-exchange wave functions., The increasing
errors in the sequence 0 to C are therefore due to a failure of
the J & B interpolation, in which the 2s contribution was
obtained for C and N by interpolation between 0 and 1i and the
2p contribution essentially by a guess. It is therefore not
surprising that the J & B curves are unrelisble in the s

range where the 2s and 2p contributions are appreciable.

Figure 1 glso shows small differences between our curves and
those of McWeeny. These differences are due to the approximate
nature of the Duncanson-Coulson 2s and 2p wave functions., For
C, McWeeny has shown how to calculate an approximate form factor

for the valence state from ground state wave functions. We have

* We note that the f wvalues given by Pauling & Sherman (1932)
are in closer agreement with our values for C, N, and O
within the copper range than are the J & B values,

## We have recomputed F for oxygen from the U(r) presumably
used by J & B (Hartree & Black, 1933) and have found
substantial agreement,
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‘made é similar éalculation with results as shown in Table I.
‘The differences which arise between f and fyalence are

small in our work as they are in McWeeny's.”

| The usual procedure in structural inveStigations is to employ
isotropic form factors. Then any asymmetry in the electrenic
distribution, the anisotropy of thermsl vibrations, and all
other sundry effects are lumped together into asymmetric temper-
ature factors., In this case, the use of f is 2 reasonable
appréximation and the f values deduced from the Hartree-Fock
radial distributions are surely superior to McWeeny's. However,
the differences do not exceed 0.2 electrons and are hardly
significant in most crystal structure work. If, on the other
hand, the comparatively large effects of atomic asymmetry are o
be taken into account in an elaborate structure refinement, we

would writes:

foafria, (9)
o= f-%a, (20)

where 4 = f" -t can be computed from lMcWeeny's values.

This is a sufficient approximation, since 4 is small relative to

the f wvalue for the whole atom.

# The McW values of T - £, are not quite smooth.

alence
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Iﬁ agreamentbwith licWeeny's work, the present work has shown
that the interpclation technique of James & Brindley is unreliable.
It is not unlikely that their intermolated values for other atoms
as well are faulty, so that new calculations are desirable, based
when nossible on Hartree-Fock radial wave functions. If non-
srherical effects are considered, it should be noted that, whereas
(8) holds for any orbital, (L) and (7) only apply to p electrons.
Corresponding expressions for d electrons, for example, can be
worked out in a similar way, provided that the shape of orbital
has been previously deduced from an estimate of the bonds in which

the atom is engaged.

We wish to thank Professor Verner Schomaker for suggesting

this problem and for his continued interest in the work.



59

References

Bacon, G. E. (1952). Acta Cryst. 5, L92,
Brill, R. (1950). Acta Cryst. 3, 133.

Duncanson, W. E. & Coulson, C. A. (194l). Proc. Roy. Soc. Edinb.
462, 37.

Hartree, D. R. & Black, M. M. (1933). Proc. Roy. Soc. A139, 311.
Hartree, D. R. & Hartree, W. (1948). Proc. Roy. Soc. A193, 299.

Hartree, D. R., Hartree, W., & Swirles, B. (1939). Trans. Roy.
Soc, (London) A238, 229.

James, R. W. & Brindley, G. W. (1931). Phil. Mag, 12, 81.
Jucys, A. {1939). Proc. Roy. Soc. Al73, 59.

MciWeeny, R. (1951). Acta Cryst. L, 513.

Pauling, L. & Sherman, J. (1932). Z. Krist, 81, 1.

Shaffer, P. A., Schomaker, V., & Pauling, L. (1946). J. Chem.
Phys. &&, 659.

Viervoll, H. & Ogrim, 0. (1949). Acta Cryst. 2, 277.



Part IV

Structural Studies by X-ray Diffraction



61

Reprinted from Actu Crystallogruphica, Vol. 6, Part 4, April 1953

PRINTED IN DENMARK

Acta COryst. (1953). 6, 367

The unit cell and space group of tetrapyridinecopper (II) fluoborate.* By Jaues A. IBerst, Gates
and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, U.S.A.

(Received 15 January 1953)

Tetrapyridinecopper (II) fluoborate, Cu(C;HN),(BF,),,
was kindly supplied to us by Prof. James C. Warf (1952)
of the University of Southern California. The deep-blue
crystals exhibit primarily a columnar habit. Upon ex-
posure to air for a few days the crystals turn light green
in color, presumably owing to the loss of pyridine.

With Laue photographs prepared with a continuous
spectrum. of minimum wavelength 0-3 A, and with rota.-
tion photographs prepared with copper K radiation
filtered through nickel foil, we have found the crystal
to be orthorhombic with

a = 10:224£0-01, b = 13-874£0-01, ¢ = 16:5640-01 A .

* Contribution No. 1765 from the Gates and Crellin Labora-
tories.

+ National Science Foundation Predoctoral Fellow, 1952—
1953.

On Weissenberg photographs made with filtered copper
radiation even orders from the respective pinacoids were
observed up to b = 12, k = 16, and I = 18, but no odd
orders were observed. Reflections of all other types were
present. Hence the space group is probably Di-P2,2,2,.
No piezoelectric effect, however, could be observed. The
density measured pycnometrically was 1-55 g.cm.”3,
whereas a density of 15665 g.em.™ corresponds to four
molecules in the unit cell. The observed density is
probably low because the substance is very slightly
soluble in water, the pycnometric liquid.

Because of the size and the complexity of the unit cell,
no further work is contemplated on this structure.

Reference
Wawrr, J. C. (1952). J. Amer. Chem. Soc. 74, 3702.

FR. BAGGES KGL. HOFBOGTRYKKER|
COPENHAGEN, DENMARK
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1T

Potassium Fluotitanate

Although some contrary results are reported in the literature (1),
anhydrous potassium fluotitanate KoTiFg was prepared quite easily
by adding potassium fluoride to a hot aqueous-hydreofluoric acid
solution of titanium dioxide and allowing the solution to cool.
Potessium fluotitanate crystallized as very thin hexagonal plates.
These plates were found to be uniaxial under the petrographic
microgcope and the conclusion that the substance belonged to the
trigonal system was confirmed by Laue syrmetry DBd normal to the
face.

Layer-line measurements, uncorrected for film contraction, on
rotation photograrhs prepared with filtered copper K and filterasd
molybdenum K radiation indicated a ¢ axis of L.66 £ and an a axis
of £.70 . An observed density of 3.01 g/cm3, obtained by flotation
in methylene iodide-methylene bromide mixtures, agreed well with
the density of 3.05 g/cm3 calculated for one molecule in the unit cell.

Indexed a-axis and c-axis rotation vhotographs required a C
lattice and eliminated any screw axes or glide planes. This information
together with Laue syrmetry D3d and the orientation of the mirror
planes on the Laue photograph with resvect to the a axis required that
the space group he C%va D%, or D%d' Since no plezoelectric effect
was observed and since the molecule could easily have a center, the

space group was assumed 10 be centrosymmetric, that is ng - C3n.
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This snace group allows the titanium atom to be at 000, the
potassium ators to be at 1/3,2/3,%; 2/3,1/3,Z, and the
fluorine atoms to be arranged octahedrally (x,X,z; X,2x,23 2X,%,2;

X,%,7; %,2%,23 2X,%,%) around the titanium atom. It was concluded

- from geometrical considerations that reasonable values of these

parsmeters would be x = 1/8 to 1/5, 2z =~=1/L, and Z=3/L.

The narameters could be determined easily by a consideration of
the relative intensities of selected reflections as functions in
paramter space. The intensities, obtained on rotation rhotographs,
were estimated visually. The parameter x had been determined to
be 0.155+0.010 when the Program of the American Crystallographic
Association Meeting (1952) announced "The Crystal Structure of
K TiFg" by Stanley Siegel. Correspondence with Dr. Siegel (of
Argonne National Laboratory) confirmed the results to date, and
so work was discontinued.

Dr. Siegel's results (2) are:

Trigonal: a = 5.715£0.002 8, ¢ = L.656x0,001 &;
Q= 3.07 g/em3; Z = 1., Space group D%dfdim:

x = 0,156 £0,003, =z = 0,24+0,00h, Z = 0.700+0.00L.
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IIT

A Preliminary Report on the Structure of Monoclirc Ceric Iodate

A, Introduction

A tnorough and accurate determination of the structure of
.ceric iodate is of interest for several reasons: there are no
accurate data available on an iodate structure; there is, in
these times, a growing interest in rare-earth commounds and their
structures; there is a nezd for the application of modern
structure methods to inorganic compounds.

Only two iodate structures have been studied by single-crystal
techniques. Jodic acid was studied by Rogers and Helmholz (1)
in 1941. The structure was determined from Patterson and Fourier
projections, based almost exclusively on equatorial data obtained
with molybdenum radiation. The structure is built up of distorted
104 cctahedra. I-O distances of 1.80, 1.81, and 1.89 & were
found. Sodium iodate was studied by MacGillavry and van Eck (2)
in 1943. A previous investigation by Zachariasen (3) provided the
sodium and iodine positions; Fourier projections, based on equatorial
data obtained with molybdenum radiation, led to a structure which
may be described as a distorted cesium chloride packing of sodium
ions and iodate ions. I-C distances of 1.80, 1.80, and 1.83 R
were found., Sodium iodate was also studied by Waray-5zabd and
Neugebauer (L) in 1947. Only 2 very limited number of intensities

obtained with copper radiation were used. Systematic variation
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of the parameters led to a structure in agreement with the cne
of MacGillavry and van ick, except that I-O distances of 2.05,
2.05, and 2.08 K were found. This discrepancy in the I-0
kdistances of sodium iodate is not too surprising in view of the
very limited number of data used in the determinations.

Thus, there is very little information on icdate structures
and on the I-0 distance. Moreover, only structures of iodates of
the gemeral forrmla HIO3 have been studied. Ceric iodate, with
four iodate groups per rmolecule, is thus of added interest.

Cerium compounds are quite frequently isomorphous with
plutonium comnounds. The isomorrhism of rare-earth and trans-
uranic compounds is quite common; in fact, structures of
transuranic compounds are most conveniently determined by studies
of the isomorshous rare-earth compounds. Naturally, the chemistry
of both the rare-earth and transuranic comvounds is of great
interest today.

Because of the exvense and the labor involved, complete three-
dimensional structure determinations, which emnloy modern methods
and technigues (the three-dimensional Patterson, Fourier, and
least-squares), have been limited 2lnost entirely to organic
compounds of biological interest. It is contended that these
modern methods ére of general applicability and that tnis general

applicability cen be hidden by the overspecialization of the
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_ probiem. The épplication of these modern methods to iacrganic
structures is of value then, if for no other reason than to

prevent stagnation of thought and technique.

| A tetragonal form of ceric iodate (wiih a = 9,877 X, c = 5,259 X,
v-§7= 5. g/em3, Z = 2) has been renorted by Staritzky and Walker (5)
of Log Alamos Scientific Laboratory. Corresrondence with Dr.
Staritzky established that no further work was contemplated on

the strueture and that no sémple was available. It was suggested
that Professor H. H. "illard of the University of Michigan, who
nrepared the ceric iodate for Los Alamos, might be able to supnly
an additional sample. Professor Willard had no sample on hand,

but he immecdiately prerared about twenty grams of ceric iodate.
Optical goniometry and Laue photographs indicated that this sample
of ceric iodate was monoclinic rather than tetragonal. A powder
nhotogranph of the monoclinic form was prepared and sent to los
Alamos. Dr. W. Burton Lewis (6) of los Alamos examined the
nhotograrh and revorted that it showed no similarity to the powder
photograph which he had of the tetragonal form. Dr. Lewis also
expressed an interest in ceric iodate and the isomorrhous plutonium
iodate and suggested that his group might look into the preparation
and structure of the tetragonal form in conjunction with the

study at the California Institute of the monoclinic form. Tr.

Don Cromer (7) of Los Alamos reports that the tetragonal form

has been prepared and that a structure determination will begin
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Optical goniometry and lLaue vhotographs indicated that the
ceric iodate on hand was monoclinic with a @ angle of 97% £1°,
Welssenberg and rotétion rhotograrhs teken with cooper K radiation
- filtered through nickel gave for the edges of the unit cell
a=9.56%0,05 £, b= 14.90%0.07 &, c = 8.05%0.0L .
Extinctions required the space group to be Cgh-le/n. The observed

density of L.87£0,0h g/cm3 agreed well with the density of

.91 £0,07 g/em3 calculated for four molecules in the unit cell.

B. The Collection and istimation of Intensity Data

1. The prenaration of the specimen.--- Ceric iodate has & linear

absorption coefficient for copper K« (A= 1.5418 L) or 1270,

for molybdenum K¢ (A= 0.7107 £) of 159 (8). One habit of
monoclinic ceric iodate is enuant, and a calculation of absorption
for a cube 0.006 cm on an edge gives values of A, the ratio of
intensity with absorption to intensity without absorption, of 0.38
for molybdenum K& normal to a -face and Bragg angle 0° to 0.L8
for molybdenum radiaticn aiong a face diagonal and Bragg angle
90%#*, Corresponding values of A for copper K¥ are 0.0005 and

0.088. Reliable intensity data can thus bs obtained only with

# These calculations were made only for a few geometrically simple
cases, and there is no reason to believe that the maximum range
of values of A has heen found.
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nolyodenum radiétion on a cylindrical or spherical crystal where
exact absorption corrections can be made. A grinder patterned
after the design of Bond (9) readily reduced crystals of ceric
iodete to near-perfect svheres. A sphere with a maxirum diameter
of 0.0097 c¢m and a minimum diameter of 0,0091 com was selected for
usge in the intensity work and was mounted with silicone grease on
the end of a very thin glass rod. Laue nhotogranhs used for
orientation rurnoses showed that the crystal was of excellent
quality.

2. The preparation of the x-ray photographs.--- Weissenberg rhotograchs

vere taken with molybdenum radiation from a North American Philips
Corpany type 32067 (20 ma, 50 KVP) x-ray tube. A strin of
zirconjum metal 0.038 rm thick wes nlaced betwsen the layer-line
scresn and the film to filter the molybdenum radiation and
particularly to remove the fluorescent cerium-L and iodine-L
radiation, The film radius was 90/7 mm. Exposures of about
2000 ma-hrs gave data out to sia 8/A of 1.0. (@, the Bragg angle,
is one half the angle between the incident and scattered beam.)
The entire volume of the reciprocal lattice which lies within

gin 6/A €1.0 contains about 9,600 points; it was covered by
photograrhs around two axes us to an ejui-inclination angle M of
30°, Data were thus collected from the reciprocal lattice nets
0<h <13, 0¢ £ =11. The miltiple film techni-ue was used:

copper shests 0,025 mm thick were placed between successive films
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to iﬁcrease thé film factor and to reduce the total number of

films necessary to five. The camera would hold conveniently
,onlj three films and two sheets of copper. Thus, for each

layer, in addition to the 2000 ma-hr exrosure, a short exposure
. of about 100 mea-hrs was necessary.

3. The preparation of the intensity strip and the estimation of

intensities.-~- Intensities were estimated visually with the aid
of an intensity strip. Densitometer tests indicated that a change
in rhotographic density of about 5% could be detected excent at
very low density. “The intensity strip was therefore constructed
so that successive spots were related approximately by

1)%°%;  the intensities ranged from 1 to 100, and the

Ty = (Tye
weakest spot was barely visible. The 080 reflection was used in
the preparation of the strip although almost any reflection of
suitable intensity could have been used since the very small
spherical crystal gave round reflections of uniform size.
Intensities were estimated with the Weissenberg photograna on a
light box, the intensity strip on top of the rhotogravh, and a
simple magnifier of power 3X mounted about L cm from the films.
The comnressed side of the Weissenberg photogravh was measured.
The estimated intensities from a given layer were recorded in rows
and columns on a data sheet, rows corresmonding to constant k,

columns to constant h or [7. About 150 reflections mer hour could

be estimated. Although intensities were estimated in the range of
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scale‘of 2 to BO,Fonly those found to be between 7 and 60 wers
used in the calculation of film factors.
Table T summarizes the film factor data. In Table I 55, for
example, is the film factor between the first and second films of
a particular 1ayer (n) around the a axis. Hach value of f12 in
the table is the average of nerhaps a hundred observations, f23
is the average of nerhaps sixty observations. The quantities
th, th’ and f56 are based on a much smaller number of observations

and are not given in Table I.

C. The Reduction of the Observed Intensities to |F12

1. Introduction.--- The reduction of the ohserved intensities to

|712 may be thought of as a three-step process. In the first
step, the observed intensities are corrected for absorption and
extinction and modified by lorentz and polarization factors. In
the second step, these reduced intensities are used to determine
appropriate factors which bring the different reciprocal lattice
nets to the same relative scale. This is usually called the
correlation procedure. In the third step, the intensities, now on
the same relative scale, are‘mnltiplied by a scale factor k which
converts them to |F|2, The scale factor is usually determined
from Wilson's statistical method (10).

To make possible this reduction of the large number of intensity
data for monoclinic ceric iodate, full use had to be made of
runched card mathqu. The procedures used are described in detail

below.
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2, The calculation of the reduced intensity.

a. The generation of h, k, and.ﬂ, and the calculation of sinG.---

The expression
sin%0 = (1.L406 h%+ 0,569 k2 +1,983 £2 - 0,436 nf )10"3 Q)

maj be derived for monoclinic ceric iodate (molybdenum radiation).
Under the direction of Professor Schomaker, a hoard was wired
for the I.B.M. Electronic Caleulating Punch (the 60l) which
allowed all possible values of h, k, and # within the reflecting
volume of the reciprocal lattice sin 68/A £1.0 to be generated,
and the corresronding sin?0 (equation (1)) to be commuted in
a single pass through the machine. The quantities 1, k, and 13
and sin20 were runched into columns 9-10, 11-12, 13-1l, 15-19,
with the sign control for £ in colwm 1L, In all, 6,622
reflection cards were generated.

With the same programing of the 60l, a set of solid red
cards were rnrepared for k = 0, with the punching of sin20
suppressed. In this deck, the signal deck, there is a card
for each possibie combination of h and £ .

b. The calculation of M? and MC.--- The cuantity M® is defined by

Ia

Igbs. - u2 (2)

where Ighs. is the observed intensity and I® is the reduced

intensity., (The superscript Ma' refers to the a axis.) @ thus
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may include tﬁe absorption and extinction corrections and the
Lorentz and nolarization factors,

For ceric iodate no correction was made for extinction. A
relative correction was made for absorption by multiplying the
observed intensities by O = AgfAg. Values of Ag, the ratic
of ‘intensity with absorption to intensity without absorption at
Bragg angle ©, are given for snherical crystels as a function
of MUr, where M is the linear absorntion coefficient and r is
theradius of the sphere, by Evans and Ekstein (11). Values of
Ag for a  ur of 0.75 ( M= 159 om~l, T = 0.0047 cn) were
obtained by interpolation. For the purposes of rapid calculation

the exnression
ol = 1.000 - 0,13L sinZe (3)

was very convenient and was sufficiently accurate within the
desired angle range Ooé e éhSo. The nolarization factor and
the Lorentz factor for the equi-inclination Weissenberg

technique (12) may be combined to give

' i
5 " Tremem (i - s’ S

where M is the angle of inclination. M®* may therefore be
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written™

2
Ma - 20lcos 8

17 conZo0 (sin%0 - sinz/la)% (5)

The factor cos 0 / (1 +c0s220) of equation (5) was available
on I. B. M. cards as a function of sin @, for sin 6
0.000(0.001)1.000, These cards were used in the vprenaration
of & new deck, the J deck, which for sin & 0,000(0.001)0.707
contained the »nroduct (1.000 - 0.13L sin28) cos ¢ / (1 +cos220),
(equation (3)).

Sin © was computed from sin20 by use of the standard
60l square-root board, and was punched in colums 19-21 of the
reflection cards. These cards were sorted on sin © and merged
on sin © with the J deck. In one pass through the 60L M2
was then computed: sinz/uﬂ = (ku%/2a)2 was compubed and
subtracted from sin20, the square root of this difference was
taken in three iterations, and the result was multiplied by
2 and then by the combined absorption-angle factor which had been
read from the appropriate J card. The quantity M® was punched
in columns 22-2li. In a second pass through the 60L, the quantity

MC was calculated and vunched in columns 25-27.

# M® is written so that its maximm value is less than unity,
and therefore a column on the reflection card is saved for
other information.,
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¢. The hand«pﬁnching of the observed intensities.--- The following
procedure was used to hand-punch the observed intensities onto
‘thevreflectiom cards. The signal deck was olaced behind tae
reflection deck and the cards were sorted on k, £, h. Because
the cards were to be nlaced face up in the hopper of the key
munch, they were removed from the sorter in reverse order after
each sort; that is, the 9's were picked up before the O's. The
sorted cards were then placed in the hopper of the key punch,
and I3, was punched into columns 1-L. A signal card was
in front of each new h,f group of reflection cards. The
observed intensities thus were read successively down a colum
of constant f on the data sheet and punched until a red signal
card apveared, and then the intensities were read from the top
of the next colum. The signal cards eliminated the need for
close observation of the individual h, k, 4 indices and considerably
increased the sreed of the nunching process. The values of
Igbs. were listed from the cards and checked against the values
on the data sheets; any errors were corrected. The cards were
next resorted on k, h, £, and the same procedure was then
used to punch I into columns 5-8, In this operation a
skip bar was used which automatically reset the carriage of
the key punch to cclumm 5 after a card was ejected. Tinally,
the values of IJ,  were listed and checked.

The following code munches were used in the hand-punching
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operations: ’X in 1 (or 5), intensity observed to be 03 X in
'3 (or 7), intensity not observed; that is, reflection was
’ fequired to be absent by the space group, was hidden by the
beam-stop, or was so situated in the reciprocal lattice net
that it could not be obtained on a nhotograph around the
particular axis.
d. The caleculation of I%, I°, and R.--- The reflection cards
were separated on the collator into the following groucs:

Group I: M{ (no X) in 3 and 7 7,011 cards

Group II: NX in 3, X in 7 1,141 cards
Group IT1I: X in 3, N{in 7 1,194 cards
Group IV: X dn 3 and 7 277 cards.

The reduced intensities I® and IC (equation (2)) were
calculated for the Group I cards in a single pass through the
€0l and were punched into columms LO-L3 and Ll-L7. At the

same time the quantity R, defined by
R = I#IC, (6)

was calculated é.nd punched into columns L8-50, An X in 1 or
© suppressed the punching of R.

3. The correlation procedure.

a. Correlation.--- The Group I cards were tabulated: h, k, { s
12, IC, and R were listed from each card; control breaks were

set on h,/ so that a card count and TR were printed for
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each ’hikﬂj group. However, a card with an X in 1 or 5 did not
list and did not contribute to the card count or to tae sum.

The R's in esch group were examined and if there were no
large discrepancies =R wé,s divided by the card count to
give Rj4, the average ratio of reduced intensities for the
ith a-layer to those for the Jjth c-layer. If there were
discrepancies, these were arbitrarily removed from the cal-
culation of Ry 4.

The problem is to obtain values of H; and 14, where
H;, for examrle, is the factor which brings the ith a-layer
t0 a cormon intensity scale. First approximations to Hj

and "Lj were obtained from the relations

: 7
Bn T'Rny Yhng Ly TRiq  TRig (

The two sets of sums Jzﬁij and };Ri j were computed and
each set was reduced in scale by assigning the value 1.00 to

ite smallest member. The proportionality factor between ?Bii
(Hj) and ZTRyy (Lj) was determined by a limited comparison

L

with the observed Rij* ithe H; and Lj were refined by a
cyclic process until the changes which resulted were thought

to be consistent with the accuracy of the data. (The average

value of KR{-} - R;j W Ri; wes about 0.06, where the "4 !

refers to 4 > 0 and the "-" refers to A <O. The average
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vaiue ﬁij waé used in the calculation of H and Is.)
b. The adjustment of the intensities to the same relative scale.---
HMaster cards were prepared with h (or {) and the
corresponding H{l(or Lgl). The signal deck was sorted on
£, h and then collated to select equals. ({Equals arise when
the sign of A is disregarded.) The unselected cards were
merged with the h-master cards and the values of H{l were
gang runched onto the sighal cards. Similarly, values of 151
were gang vunched. The signal d eck, which now consisted of one
card for each possible combination of h and 4|, was merged
with the Group I reflection cards. The quantities I and

AI/I, defined by

I+ I, AL _ |I- Iy (8)
2 I I

where

c =1

-1 - .C
In = Igbs.ma Hiy Ip = Igps M Iy (9)

were commuted on the 60l and punched into columms 51-5h, 55-57
on the reflection cards; An X in 1 or 5 surpressed the nunching
of AI/I. |

Similar calculations were made for Group II (I = I) and

Group III (I = I;) reflection cards, although no AI/I could

# I and Iy were comruted from equation (9) rather than from.IaHil
and I°L3* in order to eliminate the accumlation of rounding-
off errors.



be computed;

The collator was used to select those cards in Group IV
‘which had I =0 dué to the requirements of the space group.
There were 252 such cards. The‘QS unselected cards represented
those reflections which were hidden by the beam-stop. All but
three 6f these reflections were observed and their intensities
estimated on zero and first order Weissenberg photograrhs
nrevared with filtered copper K radiation. The intensities
were then corrected for absorption, modified for Lorentz and
rolarigation factor55 and put on the scale of the molybdenum
intensities by comparison with reflections of known intensity.
The three unobserved reflections, 101, 112, and 202, were
arbitrarily assigned intensity O.

Cards with AI/I greater than 0.50 were selected on the
collator. There were 37 such cards. The indexing and the
estimation of intensities were rechecked for these reflections.
Usually, one estimation of the intensity had been made on a
badly elongated spot which arpeared on a high layer line. Such
an estimation must be considered wnreliable.

The number of cards in the various groups may now be broken
down as follows:

Group I: 7,011 cards of which l,255 have NX

in 1 or 5. The remaining cards are
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distributed as: I =0, 1,819; I =1, 581;
I=2, 275; I =3, 68; I al, 10; I =5, 3.
Group II::l,lhl cards. Group II1I: 1,19 cards.
1,286 cards in these groups have I=0,
Group IV: 277 cards. 25 reflections are hidden by
the beam-stop; 252 reflections are required by
tﬁe space group to have I = O,
It was quite easy to compute AL/L as a function of I
for the 4,255 reflections with NX in 1 and 5 of Group I. 7The
cards were grouped on I, and tabulated to give n, ZXI, and
S AI/I for each group. The results are presented in Table
II. The trend indicated is expected: The higher relative error
at low intensity results from the increased difficulty of
estimating such intensities; the higher relative error at very
high intensity results from the usual dependence of such
intensities upon a single estimation of a spot on the last
multiple £ilm,

li. Wilson's method: the calculation of |F)Z2.

a. Introduction,---Wilson's method (10) for the calculation of

IFI? gives
wmit :
cell

where f; is the x-ray form factor of the ith atom, and the



Table 1I. AI/TI as a Function of I

I I n AT/T

1 37 18.%0

2 16L 20.)

3 268 19.3

L 305 17.1

5 287 13.5

6 303 13.3

7 251 11.4

8 237 11.0

9 175 10.4

10 195 10.1

11 1L8 8.7

12 131 9.2

13 13L 7.7

b 104 7.1

15 95 6.6

16 89 8.7

17 66 5.8

18 6l 7.9

19 53 8.0
20-29 23.85 17 7.8
30-39 34,00 21 7.3
40-k9 43.61 127 7.8
50-59 53.94 89 5.9
60-69 63.95 62 7.8
70-79 74.15 Lo yn
80-89 83.95 37 9.7
90-99 oL.C0 - 26 11.2
100-199 137.53 91 Te?
200-299 213,07 1h 10.9
300-399 357.00 2 12.5
1100-1199 452,00 3 10,3

b -4

AI/I is 11.2%. This was reduced to 10.8% after
the re-examination of the 37 reflections with
AI/I > 0.50.
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guentities k and B are to be determined from the data.

Thus, if the I's are grouped according to sine; T, Zf§
and $in¢e/ AZ are commted for each group; and 1In(T/ E:ﬁ’g)

is plotted against 5Inée/ A¢; a straight line of slope -2B
and intercept =-In k should result, IMultiplication of I
by this k then gives |F|2,

b. The form factors.--- The form factor for oxygen (licWeeny's
?0 (13)) was already on cards as a function of sin Qpy, and
a simple rmultiplication on the 60l converted sin Og; to
sin G3p. A sebt of blank blue cards was numbered from 000 to
707 on the 60L. The form factor deck was sorted on sin 9y,
merged with these cards, and ?O was gang punched onto the
blue cards.

Thomas-Fermi form factors for cerium and iodine are available
in intervals of about 0,07 in sin Oyp in International Tables (1L).
These form factors may be computed, however, with an accuracy of
better than 2% from the following relation:

0,246%+ 2252 0.9472 + a2s?

0,16l ) g
+
1.3562+ a2s2

a = 0.u685/7L/3, 5 = WTA"L gin o, (12)

(11)

where
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(%uation (115 is based on Rozental's (15) aporovimate fit to
the Thomas-Fermi potential.) Corputation of fpy and fy
 eliminates plotting, internolation, and hand-punching.

The quantities fg, fI,' and Efg/lo (4.8 £2+1.6 £5+0.) £5)
were calculated” and punched onto the blue cards. The
reflection cards were sorted on sin 8, merged with the blue
cards, and fg,, f1, fp, and Sfsz/lO were gang punched into
colums 28-30, 31-33, 3L4-35, and 36-39.

c. The calculation of k¥ and B,--- The reflection cards were
grouped according to sin20, and for each group =.sin%, S.I,
S5£8/10, SMB, SUC, n, the total card count, and ng the
card count for I = 0 (X in 55) were obtained., To correct X1
for the I = 0 reflections, it was assumed that since an observed
intensity of 2 is barely perceptible, the average value of an

unobserved reflection is 1. Thus

Toobs. = (B+IC)/2 =¥ (13)
and
SI' = ZI +ngh (1)

where < I' is the corrected sum. A straight line was drawm

# Frofessor Sturdivant pointed out that the effect of disversion
by the K slectrons on the form factors for cerium and iodine
has been neglected in this calculation. It is estimated (16)
that the form factors for cerium and iodine should be reduced
by about 1.2 electrons; the correction, therefore, amounts to
at most 7% for sin 8/)4 £ 1.0.
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'bhrough a piot of Imu =1n ( I/ E??_') vs. 8in%8/ A%,
and from the slope and intercept the valnes
k = 518, B = 0.81
were obtained. The data used in this r»lot are given in
Table IIT.
d. The calculation of IF12/100 and of G.--- [F[2/100 is
given by
|F|2/100 = 5.18 I. (15)
The quantity G defined by
¢ = {IF2 - (S1d) B sin?/A% 1000 (6)
is needed in the calculation of the three-dimensional
Patterson function.

The quantity B sin20/ A2 was computed and punched onto the
blue form factor cards. These cards were then merged with the
exponential deck and e~B sin%0/A2 g punched onto the blue
cards. The reflection cards were then merged with the blue
cards, and the calculation of IFIZ/].OO and G was verformed
in one pass through the 60L. The quantities e-B 5in20/A 2,
IF{2/100, and G were punched into colums 58-60, 61-6L,

and 65-67.

. The Calculation of the Three-dimensional Patterson Function

1. Introduction.--- The Patterson function P(x,y,z) with the
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Table III.

Ay
325
570
730
8L6
973
106k
1162
12lo
1326
1386

86

Nata for the Determination of k¥ and B

o
18

Ll

90
107
16L
253
371
522
668
868

51n%9

0.0296
0.0765
0.1261
0.1757
0.2253
0.2753
0.3252
0.3752
0.4253
0.4751

0.14k
0.241
0.321
0.h09
0.500
0.561
0.617
0.675
0.706
0.724

ST
20251
20050
15503
12186
10429

7490
6889
5276
L1980
3261

103u
1.783
1.569
1,271
1,079
0.966
0,7h2
0.717
0.580
0.570
0.393
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» peak‘at the origin removed may be defined as
P(x,y,z) = ;-'%?-Q i ii-f}(hkl) cos 27 (hx+ky+{z) (a7
h--o. ko (@
where V is the volume of the unit cell, =x,y, and z are coordinates
- with respect to the axes of the lattice with magnitudes equal to
fractioné of the lattice dimensions, and G(hk{) is defined by
equation (16). . For machine caleunlation, it is convenient to reduce
equation (17) to a product of trigonometric functions. For the
space group P 27/n one obtains:
P(x,v,z) = 4000 ii i (& cos2Thx cos2rky cos2/{z
v hso Rew l=o (18)
+3B gin2ihx cos27iky sin2i(z)
where
A= G(hkl) + G(kE) + G(OKL) + G(hk0) + 2(G(n0A) +G(n0L)
+G(hoO) + G(0KO) + G(00£)) + %G(000) i

and

B = G(hkt) - G(hid) + 2( a(nof) - a(nor) ). (20)

An estimate of the half-width in Patterson x,y,z snace of an
M-M neak (where M is either cerium or iocdine) was made from the

peak shape function Pji{r) defined by (17)

sin 2 7 Hr

He gH . (21)
277 Hy

o

In equation (21) His 2 sin /3 , and r is the radial coordinate
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‘ maasﬁred from ﬁhe end of the interatomic vector between atoms i
and  j in Patterson space. An aporoximate Gaussian fit was made
to the form factor for M, and the integration of equation (21)
was then verformed analybically. A half-width of 0.3 § was
. obtained. Therefore, noints will be sufficiently dense in
Patterson space to enable the reak centers tc be located easily
if %, v, and 2 are varied in 1/60's (corresponding to soacings
of 0.159, 0.248, and 0.13L £).
For the monoclinic system it is only necessary to compute tne
Patterson function over one-fourth of Patterson space; that is,
it is only necessary to extend y and either x or z to 30/60.
A calculation based on this fact and on the maximum observed indices
in ceric iodate ( h =19, k=29, £ =16) indicated that the
mest economical order for summation was Kk, h,,ﬂ, with x and
v extending to 30/60 and z to €0/60.

2; The preparation of the first-dimension cards.--- The calculation

of a three-dimensional Patterson function on the lM-card system
devised by Professor Schomaker is described elsewhere (18). Only
the procedure used in the preparation of the first-dimension cards
is outlined here.

Ank) = G(akl) +G(hkd) and B(nke) = G(nkf) - G(hk!)

were first commuted in the following way: Two sets of blank cards
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were'X punched; bne with the X in 2, the other with the X in 6°,
and the two sets were merged. The general hkf reflection cards
(n,k, L £0) were sorted on %, h, k, { so that each nkd
card was followed by the corresvonding nk?  cerd. (Wote from
equation (1) that the hk.; card is not slways present.) With
the help of Dr. Louis Lavine, a collator board was wired whim% put an
X-in-6 card and an %-in-2 card behind each hk|f| groun. A single
nk/ card was thus followed by an X-in-2 and an X-in-6 card; =
single hkz card was an error condition which stopped the collator,
Next, B{nk!) and A(hk{) were comruted on the 60L, an X in 6
caused B(hk{) to be punched, an X in 2 caused A(hkd) to be
punched. A similar procedure was used in the calculation of
A(h0g) and B(hO{). Each of the other groups of specisl reflection
cards was merged with X-in-2 cards, and the calculation indicated
in equation (19) was performed. However, A(000) = G(000)/L was
comruted and vunched by hand.

Tn the same pass through the 60l the following durrry indices
ht, k', #' were computed and runched:

Xin 2: h'=h Xin 6: h' = h+20
1 =1 {'= L+20

A1l cards: k' = k/2, k even
k' = (k+81)/2, k odd.

% Columm 6 turned out to be & poor choice because of certain
subsequent gang-punching overations in the M-card calculaticn,
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Thesé dummy indices are necessary for the collating operations
in the M-cerd system and are described in detail elsewhere (18).
AorB, k', h', and ' were nunched into coluwms 2-5, 6-7, 8-9,
10-11. The cards so punched were the first-dimension cards for

| . the calculation of the three-dimensional Fatterson function.

3. The time and cards required.--- The actual calculation of the

three-dimensional Patterson function required about 60 man-hours
and about 75,000 I. B. M. cards.

L. The plotting of the results.~-- The 54,000 calculated values of

P(x,y,z) had to be plotted, of course. A&n X-z net was drawn on
vellum backed with orange carbon vaper. The x axis was drawn
out to 60/60 and was divided into 1/60's. The 2z axis was drawn
out to 30/60 and was divided also into 1/60's. The angle between
and x and z axes was f = 973°. The scale 0.0266 R =1m
was used. Copies were made from this vellum drawing by the
black line process. Thirty one ( v = 0/60, 1/60,...,30/60)
of these copies were used in nlotting the Patterson function; the

plotting required about LO man-hours.

E. The Interpretation of the Patterson Function

1. The location of the heavy atoms.--- Of the 55 heavy peaks in

the Patterson, 39 were extremely well resolved., The Harker section
vy = %, the section y = 0, and the three single Harker peaks at
2x,2y,2z which were resolved led without difficulty to the nositions

of three of the hesvy atoms. The positions. of the two remaining
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heavy atoms were then easily found. The five heavy atoms
accounted for all of the observed heavy peaks. The centers
-of the reaks were located by interpolation, and then a cyclic
procedure was used to refine the coordinates of the heavy
~atoms. The final coordinates are believed to be reliable to
0.001 of a cell edge; the coordinates are given in Table IV,

The next »roblem was to determine which of the heavy-atom
nositions was occupied by the cerium atom. From the coordinates
and the cell dimensions, distances to nearest neighbors were
comouted for the five heavy atoms. These distances favor tae
assignment of the cerium atom indicated in Table V. (The cell
dimensions are only lmown aporoximately, and therefore the distances
given in Table V are probably relisble to only +0.05 £.)
Moreover, with the M-card system, the peak shape function (equation
(21)), based on actual form factors, was evaluated for Ce-Ce,

Ce-1, Ce-0, I-I, and I-0 peaks. A comparison of these calculated
neak shanes with those found in the Patterson function also
supported the assignment of the cerium atom indicated in Table V.
The peak shapes, reduced to the scale of the Patterson function,
are given in Table VI,

2, The location of the oxygen atoms.--- In the Patterson function

there are 50 sharp peaks of height 180-22L and ¢ sharp veaks of
height 90-112 which result from heavy-atom-heavy-atom interactions.

There are 240 broad peaks of height 17-18 which result from



Table IV. Heavy-atom Coordinates™

Atom ‘ x ' ¥ z
Ce | 0.62L 0.239 0.029
I, 0.365 0,116 0.263
I, 0.837 0.h25 0.263
I 0.934 0.087 0.217
I, 0.288 0.378 0.150

* %‘he equi;ralent goiitions are X,¥,2; X,V,%;
B=X,J=2y3=2) X=Zy2~Ys%-2. .
X,y,% are expressed in fractions of a cell =dge.
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Table VI. Patterson Peak Shapes™

r (&) Ce-Ce Ce-I I-1 Ce=0 I-0
0 22l 201 180 18 17
0,148 181 168 19 15 13
0.296 101 92 80 9 9
0.LbLlL 3k 31 29 L N
0.592 11 11 9

0.741 7 7 6

*Phese are for doubled peaks on the scale of the Patterson.
Sinﬁlesabsolute peak shapes may be obtained by multiplying
by LT.50.
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heavy-atom-oxygen interactions. Therefore, the location of the

' oxygen atoms is a much more difficult task than the location of

 the heavy atoms. Knowledge of the heavy-stom positions is of

considerable value, however, in the location of the oxygen atoms.
The general level of the Patterson function is nerhaps 15,

sé that only peaks of height 30 or greater are considered to be

useful. (The actual range is 30 to about 60,) All such peaks

are 1i$ted, anSAwith the help of the 60, all possible interactions

of these peaks with one another are computed. If an interaction

corresmonds to the coordinétes of a heavy-atom-heavy-atom peak,

the oxygen position may be determined. That is,‘
MO=0-M, WO=0=-=DN;., M0O=NO=N=-M=MI (22)

where M, N, and O symbolize the coordinates of the heavy atoms

¥ and N and of the oxygén atom 0. By this procedure, nine of

the twelve oxygens in the asymmetric unit were located approximately.
Some details of the structure are now known from the heavy-atom

positions and from these approximate oxygen positions. The average

Ce-0 distance is sbout 2.3 f, the averase I-O distence is about

1.9 g, The bonding is Ce-0-I3; each cerium atom is surrounded by

eight néarest oxygen atoms arranged in an Archimedes antiprism.

- Each iodine atom is bonded to two ceriums through oxygens, but the

position of the third oxygen is not known. Therefore, the

coordination of oxygen atomsjgrcund an iodine atom cannot *-

determined.
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F. Discussion

1. The work that has been done.--- The structure of monoclinic

ceric iodate could not have been solved from two-dimensional
projections. Two-dimensional projections together with the

' .Harker’section mighp have provided information sufficient for
the approximate location of the heavy atoms. However, the extra
week involved in the calculation of the three-dimensional
Pattersén<funcﬁion rather than just a Harker section secems
insignificant in view of the five months required for the
collection of the data4and the estimation of intensities.
HMoreover, from the three-dimensional Patterson accurate heavy-
atom positions and some approximate oxygen positions'have been
obtained.,

2. Ehé work that will be done,--- Accurate cell dimensions for

monoclinic ceric iodate will be obtained.

Because the heavy-atom positions are known accurately, &
three-dimensional difference Fourier, based on the immer 1,500
or 2,000 reflections where the oxygen contributicn is relatively
higher, should lead to the oxygen positions without difficulty.
The structure can then be refined by a three-dimensional
least-squares technique. Itbis hoped that the difference Fourier

and the various refinements can be computed this swmer, 195L.
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Part V

Propositions
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1. Cox and Sharpe (1) report in addition to the trigonal form,
a hexagonal and a cubic form of potassium fluotitanate, K TiFg.
The latter two forms were observed on an x-ray powdei pattern of
' : 2 sample of KoTiFg which had been heated to 350°C for 2l hours
énd then cooled to room temperature.

It is proposed that KpTiFg when heated in sir to 350°C is
converted, at least pértiéily; to an oxyfluoride. Therefore, it
is proposed that polymorphism in KoTiFg has not been established
by Cox and Sharpe.

2.(a) The Gaussian Z(exp(-a(Z) sin20/A?)) has béen used (2,3) to
represent atomic form factors. This is a very'paor approximation.
Purthermore, a(Z) has to be determined for each Z.

An exponential Z{exp(-b(Z) sin6/A )) is proposed as an
approximation to atomic fbrm.factors, with b(2) given by a simple
formula. Good agreement, in view of the simplicity of the form,
is found with form factors for sing/A » 0.1,

(b) In general, in order to record the values of atomic form factors
on I.B.M. cards for crystal structure calculations, it is necessary
to plot the available data, interpolate, and then hand-punch. It is
proposed that when'the Thomas-Fermi form factors are to be used, it
is more canvenieht to calculate the values directly on I.B.ﬁ. machines
from a formla based on Rozental's (L) approximation to the Thomas-

Fermi potential.
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3.(a) It is proposed thet crystals of most substances can be ground

to nerfect or near-perfect spheres, and that this should be a

regular procedure prior to the collection of x-ray intensity data.

(b) Two modifications of the Bond sphere-grinder (5) are proposed

wiich make possible the grinding of very small crystals.

(¢) Some suggestions are offered for the design of a goniometer head

L“O

for use with sphérical crystals.

In the course of the visual estimation of x-ray intensities

on multiple films prepared with molybdenum radiation the following
effects were observed: First, the film factor for the first and
second films was consistently lower than the factor for the second
and third films; second, the film factor was found to vary between
about 3.1 and 3.L, whereas it is predicted to be around 3.8; third,
the ratio of intensity on a long exposure to that on a sho:t
exposure was less than the ratio predicted from the relative times.

Some partial explanations of these effects are proposed.

Some changes in the undergraduate chemistry curriculum at

the California Institute are oroposed.

Tt is proposed that the method used by Bartlett and Welton (6)
and by Gunnerseﬁ (7) for summing the slowly converging partial
waves series for the complex atomic scattering amplitude f£(9)

is unrelisble for low values of the scattering angle ©.
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7.{a) A modification of the final tabulation procedure in the M-card
system for the calculation of Fourier and Fatterson functions is
pronosed, This modification would, in many cases, save considerable
time in the plotting of the results.

(b) Tt is proposed that a great service to x-ray crystallogranhers
everywhere would be rendered if a thorough and up-to-date

description of the M-card system were nublished.

8.(a) The two series of compounds NOsF, NOpF, WOF; C10)F, C105F, ClO,F
have not been well characterized structurally or chemically. It
is nroposed that these compounds be investigated (in some cases,
reinvestigated) by the method of electron diffraction.

(b) Two possible methods for the nreparation of ClO0oF are proposed,

9.{a) A new set of values for the atomic form factor of boron is
oronosed., The calculation is based on Hartree non-exchange
wave functions (8) and on an extrapolation for the effect of
exchange.,
(b) Tt is proposed that an effort be made to interest someone at
the California Institute in the calculation of the atomic form
factors for at least the elements in the second row of the neriodic

table.

10, It is proposed that in the range 100 to 1,760 vards, man,

the runner, decelerates at approximately 0.17 inches/secondsZ.
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