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ABSTRACT

The Pauling theories of ferromagnetism and metal structure
are discussed and compared with other theories,. The results of
Pauling are derived with the inclusion of previously neglected tem-
perature effects. The metallic band structure assumed by Pauling
is also modified and the modification is shown to lead to better
agreement with the results of previous investigations,

The ferromagnetic alloys are studied with the use of the
Pauling theory. It is demonstrated that the simple theory is in-
adequate for the treatment of alloys, and an improved model is
proposed. Calculations based upon this model provide qualitative-
ly correct predictions of the behavior of the Curie temperature of
many ferromagnetic alloys. Explanations of the abnormal behavior
of the iron-vanadium and nickel-chromium alloys are offered, .

The effects of non-uniform electron distribution in ferro-
magnetic crystals are considered. An expression for the Curie
temperature is derived. If reasonable values of the parameters
which describe the non-uniformity are inserted in this expression,
the result is an increase in the predicted Curie temperature of
nickel and a decrease in that of iron, both of which are improve-
ments. Some methods of estimating the values of the parameters
are discussed.

It is concluded that the Pauling theory, with appropriate

modifications, will accurately describe ferromagnetic behavior.
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I. INTRODUCTION

The semi-empirical theory of ferromagnetism developed by
Pierre Weiss (1) in 1907 has served ever since as the guide for the-
oretical explanations of ferromagnetic behavior. The Weiss theory
is a simple extension of the Langevin theory of ferromagnetism,
which assumes that a paramagnetic material consists of large num-
bers of independent molecular dipoles which orient themselves in a
magnetic field according to the Boltzmann distribution law. The re-
sult obtained by Langevin (2) for the average moment per molecule

M-p L (e H)=XH

where }l is the permanent dipole moment andx the susceptibility
of each molecule, H is the field intensity, and L(x), the Langevin
function, is equal to coth x - 1/x.

The discovery of Weiss is based upon the observation that a
distinction must be made between the external applied field H and

the '"local field H, to which the molecular dipoles are exposed.

1
Lorentz (3), using a simple model, calculated the contribution to
the local field made by the alignment of molecular dipoles, obtain-

ing the equation '
M n
le =H + L= (1)

where n/V is the number of molecules per unit volume. The cor-

rect expression for the magnetic moment per atom is

M =X H, =X B
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4
where X is the molecular susceptibility.

is substituted in Equation (2) the re-

If the equation for H,;

sulting expression is
/

X
M=—=x > M
1.4%)(

4
If there is some temperature at which X"—-" , then

4rn
M will be finite even when the external field H is zero and the spon-
taneous magnetization which is characteristic of ferromagnetism

will result. The dependence of X/upon temperature for a system

of independent dipoles is given by X’ = A/T, according to the Lange-
vin theory. This ensures that ferromagnetic behavior will occur at
some critical point, but the value of the constant A is far too small
either in the classical Langevin theory or in its quantum—mechanical
counterpart to account for the observed ferromagnetism of iron, co-

" balt, nickel or gadolinium.,

Ignoring this difficulty, Weiss assumed that an equation

analogous to Equation (1) could be written
H L= H + &K ,\/ ‘

where a is a constant sufficiently large to account for the observed
ferromagnetic Curie temperatures. With the proper choice of a
Weiss was able to obtain reasonably good agreement between his
predictions and the experimentally observed variatién of magneti-
zation with temperature. The introduction of quantized states of
angular momentum does not alter the basic results obtained by Weiss

with the use of classical physics.
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The Weiss theory is not an explanation of ferromagnetism,
since it depends upon the assumption of a mysteriously high Weiss
Vfield. The excellence of agreement with experimental results has
suggesfed, however, that a correct physical treatment should re-
sult in the Weiss equations or something closely resembling 'tﬁem.
The principal quantitative theories of ferromagnetism have in fact
satisfied this requirement.

The Heisenberg theory of ferromagnetism (4) was the first
to offer an explanation of the large value of the Weiss field, Ac-
cording to Heisenberg the field arises from quantum mechanical ex-
change forces. Heisenberg assumed that the electrons in a ferro-
magnetic crystal were tightly bound to their respective atoms so
that an approximation could be made resembling the Heitler —Léndon
treatment for molecules. In the Heisenberg discussion it is assumed
that the tendency to form 'ionic'" structures is small and that orbitals
on different atoms are essentially orthogonal. The energy due to
the exchange effect between electrons i and j is then gi\:ren by

V(j = ‘aJLJ §£ ) éj

where Jij is the exchange integral for electrons i and j, and 5, is
the spin angular momentum vector of atomi(5). In order to account
for ferromagnetism it is necessary to assume that Jij is a positive
quantity, since if the exchange integral is positive the ground state
of the system is the one of highest multiplicity. Many attempts have
been made to justify this assumption, but it remains an entirely ar-
bitrary one and is probably incorrect in most cases. As Pauling (6)
has pointed out, the two-center exchange integrals which are en-

countered in molecular theory are almost always negative. Bethe (7)
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has shown that positive exchange integrals may exist over rather
limited ranges of interatomic distance. Slater (8) has shown cor-
relations between magnetic properties and the ratio of interatomic
distance to atomic radius. The results of Pauling's theory of fer-
romagnetism suggest strongly that Slater's correlations are ‘.acci—
dental to ferromagnetic behavior.

It is instructive to briefly consider the method which
Heisenberg used in attempting to solve the problem of ferromag-
netism, since it illustrates the complexity of a model in which all
of the effects depend upon the relative orientations of neighbors,
so that the energy of the system is determined only when the ori-
entation of each dipole is specified.

When coupling exists between the dipoles the crystal may
be treated as a large molecule in which the total spin of the crystal
is‘ conserved. The quantum numbers S', describing the total spin
of the crystal, and M,,, describing the spin component along the
z axis, have physical significance. Just as in the case of simple
molecules (9) one may use the atomic functions as unperturbed
‘wave functions. The perturbation, which is the exchange energy
Vij summed over all neighboring atoms, makes it necessary to
find the proper zero-order wave functions by forming linear com-

binations of the atomic functions. Specification of M, is not suf-

S
ficient to describe the energy of the crystal, since each set of states
of a given MS' contains components from various spectroscopic

states of the crystal which do not have the same energy. Even when

S' and MS' are specified the energy of the crystal is not uniquely
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determined; the dependence of the perturbing potential upon the
arrangement of neighboring spins allows variation of the total
energy. Faced with the problem of finding the energy as a func-
tion not only of S' but also as a function of the orientation of the
individual dipoles, Heisenberg was forced to make drastic si'm—
plifications.

The most important of these simplifications circumvents
the solution of the perturbation problem discussed above. It is
assumed that for any given total crystalline spin S' the energy
distribution in Gaussian about the average for all w (S') states
consistent with the given S'. The number of states between W(S')

and W(S') + x + dx is

w(S’) -X kA
Ve by - x @

The average value of W(S') and the Gaussian spread con-

stant A, have been evaluated (10) only for the case in which the

S!
.individual atomic spins are all 1/2. For other caseé Heisenberg
makes the assumption that all states with the same S' have the
same energy. The substitution of expression (3) for the density
of states into the partition function makes possible a calculation
of the magnetic moment as a function of temperature. In order
to do this it is necessary to make the further assumption that all
states of a given M, have S' =

MS' , which is a good approxima-

Sl

tion for large S'. The evaluation of the magnetic moment is de-

scribed by Van Vleck (10)., If unimportant higher order terms are
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neglected the result has the same form as that of the Weiss theory,
containing a parameter J which is related to the exchange integrals
7 Jij’ and is equal to Jij if all of the integrals are assumed to have the
same value, as Heisenberg does. The value of J is chosen to give
the best value of the Curie temPerature, since no simple met};od of
evaluating J exists. The curve in which the fractional saturation is
plotted against T/Tc’ where Tc is the Curie temperature, naturally
agrees with experiment to the same extent as does the Weiss theory.
The Heisenberg result is explicitly a function of the number of
nearest neighbors for each atom, as might be expected frc;m the
form of the perturbation. In this respect Heisenberg's theory would
appear to be more sophisticated than the theories to be discussed
below, since the latter do not directly dei:»end upon the crystal ‘strﬁc—
ture.

The assumptions involved in the Heisenberg calculation are
not satisfactory. Even if the exchange integral were positive the
use of the Gaussian distribution largely invalidates the': results. It
is interesting to note that Stoner (11) has shown that the method of
Heisenberg is equivalent to taking the potential of ea’cil atom as

Vi==2d 2% D3 =~ (%JM)Szl

‘n.EL h bors

os— H
where (5 is the Bohr magneton, z is the number of néarest neigh-
bors, and SZi is the z component of spin of the i th atom. Itis
therefore clear that Heisenberg is employing a disguised averaging
technique of the sort which is of importance in the theory of Pauling.
The original model of Heisenberg is a complex one, But the resuits

are misleading if one does not realize that the actual caléula.tion
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is based not upon the starting model but upon a much simpler one.

The Theory of Slater and the Structure of Metals

- The Heisenberg model depends upon the same approximations
as does the Heitler-London theory of molecules, and it is not sur-
prising that the same objections should be raised to the Heisenberg
theory as have been raised to other simple valence bondlapproxima-
tions. As in. the case of simpler molecules the metallic crystal has
been discussed from two points of view, one of which is the valence
bond model, the other the molecular orbital model. The principal
proponent of the former approach to metallic problems has been
Pauling (12, 13), while one of the most important advocates of the
latter model has been Slater (8). Theoretical chemists have tended
to prefer molecular orbital theory for the treatment of complex mole-

.cules because of the relative simplicity of the calculations involved.
For the same reason the molecular orbital method has been the
principal technique used in quantitative calculations of metallic prop-
erties.

The simplest molecular orbital theory, or “band theory",
cﬁ _metals makes use of linear combinations of atomic orbitals just
as in the treatment of molecules. There is one energy level for
each atom in the crystal and in the absence of interatomic exchange
perturbations all of the levels arising from one kind of atomic orbital
are degenerate. The introduction of interatomic electron interaction
terms removes the degeneracy and produces a spreading of the levels
into a more or less quasi-continuous set of levels called a band.

Each wave function spreads throughout the crystal after the fashion
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of molecular orbitals. The problem is to find the positions and
shapes of the bands arising from each of the atomic energy levels.

The band structure which Slater and most other physicists
have concluded is the correct one for iron, cobalt, and nickel con-
sists of a rather narrow band arising from all of the 3d atomic
orbitals and a broad '"valence'' band of 4s and 4p orbitals. The
existence of a ﬁarrow band implies a very small splitting of de-
generacy; it is to be expected that the wave functions of such a band
will be very much like atomic wave functions. On the other hand,
the wave functions associated with a very wide band will produce
electron densities which are much different from the unperturbed
atomic densities. According to Slater there is 0.6 electron in the
broad valence band of iron, cobalt, and nickel. The remaining
electrons are in the Yatomic" d band, and do not contribute sig-
nificantly to the cohesive energy of the crystal. This aspect of
the Slater model will be discussed in greater detail in the follow-
ing section.

Slater has given much attention to the problem of explain-
ing ferromagnetic behavior on the basis of his model of metal
structure, Slater objects to the Heisenberg-Van Vleck treatment
for the reason that the Heitler-London method is completely in-
accurate when dealing with polyatomic molecules or crystals if
overlap integrals between orbitals on different atoms are assumed
to be equal to zero, as is generally done in the very simple valence
bond treatments, and which is implicit in the derivation of the
equation for Vij' The energy of the system in such a case involves

overlap integi'als which may be small but are so numerous that
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they cause a serious error, according to Slater (14). He concludes
that the energy band method is superior to the Heitler-London method
for the e:?planation of crystal properties.

One of the well-known problems associated with molecular
orbital interpretations of molecular structure is the incorreci: be-
havior of MO functions at large internuclear separations., The MO
approximation weights ionic and covalent structures equally; as inter-
atomic distances grow larger this becomes an increasingly absurd
prediction. Slater recognizes this difficulty and points out that the
large ratio of the interatomic distance to the size of the d orbitals
in ferromagnetic elements makes it important to introduce correla-
tion of electron positions. He is at present studying the effect of intro-
duction of excited states in the variation function with the aim of pro-
ducing ""correlation through configuration interaction'. If these "anti-
‘jonic" terms prove to be as important as Slater suggests it is diffi-
cult to explain his denunciation of the Heisenberg-Van Vleck treatment,
If the ratio of interatomic distance to d orbital size is large, as Slater
claims, the overlap integrals are smaller than Slater originally sup-
posed so that even large numbers may not contribute ‘appreciably to
the energy of the system.

Because of uncertainty about his model Slater has restricted
himself to some general observations about the way in which ferro-
magnetism arises. The fundamental requirement, according to Slater,
is the existence of a narrow d band. In order to understand this re-
quirement it is necessary to consider the effect of exchange interac-
tions upon band structure.

The very simple band theory assumes that two electrons of
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opposite spin can be assigned to each energy level, starting with the
lowest level and working upward in the case of a system in the ground
state. Whenever there is a difference in energy between states of
positive and negative spin component this scheme is unsatisfactory.
The effect of a magnetic field or an exchange stabilization of the kind
proposed by Heisenberg must be described by a modified band system
in which bands of positive and negative spin are separated from one
another by an amount equal to the average difference in energy be-
tween a positive and negative spin function, Where no exchange per-
turbation exists the two bands are exactly superposed and the behavior
is that of a simple band., When the perturbation is introduced the
positive-spin band is lowered and the negative-spin band raised on
the energy scale and therefore, unless both bands are full, there will
be more positive spins than negative spins in the ground state of the
perturbed system. The size of the excess of positive spin for any given
displacement of the positive band relative to the negative band will de -
pend upon the density of levels in the bands, the exces:s being greater
when the density is greater. It is for this reason that Slater insists
upon the necessity of narrow d bands for any significant ferromagnetic
behavior. In one form or another this requirement appears in all of
the theories of ferromagnetism.

The Slater model of ferromagnetism may now be briefly de-
scribed., There is a narrow band formed from the five d orbitals of
each atom. Exchange interactions between spins cause a displacement
of all of the positive spin energies relative to the negative and produce
a net magnetic moment. Recently Slater has made modifications of

his theory (15) which bring it into closer agreement with that of Pauling.
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The significance of the change will be discussed in the conclusion of

this thesis.

The Collective Electron Theory of Stoner

Following the work of Heisenberg and the various modifica-
tions of his theory by others the next important quantitative treat-
ment of ferromagnetism was that of Stoner (16'). The Stoner theory
is based upon the Slater model of ferromagnetic metals, aﬂd the sta-
bilization energy is assumed to arise from the positive exchange in-
teractions among d electrons. Nomne of the magnetic moment arises
from the valence band. The principal innovation of the Sténer theory
is the treatment of all of the d electrons as freely circulating elec-
trons. This is the extreme opposite of the Heisenberg assumption
of Heitler-London bonds between atoms, giving rise to the ionic struc-
- tures which are forbidden in the Heisenberg theory and destroying
all correlation.

In a model of this sort the most obvious method of attack is
to treat the d electrons as a free electron gas. Stoner introduces
greater flexi’bility by assuming that the density of energy levels is
\pr_oportional to the square root of the energy as in the free electron
model, but with an arbitrary proportionality constant. This is
equivalent to the often-used modification of the free electron model
in which an effective mass is substituted for the true electron mass.
As Stoner points out, it is only necessary for the band form to re-
semble the free electron band form up to and somewhat beyond the
top of the electron distribution, and this requirement is fairly well

satisfied by band structures which have been computed by fairly
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accurate theoretical methods.

Stoner treats the statistical problem of ferromagnetism with
the use cﬁ Fermi-Dirac statistics, assuming various arbitrary values
for the ratio of the exchange field to the width of the d band. As ex-
pected, there is a critical value of the ratio below which no ferro-
magnetism occurs; at this value of the ratio the density of levels is
so small (i. e., the band is so wide) that the stabilization energy is
not sufficient to cause any displacement of electrons from the nega-
tive band into the positive one. The form of the Stoner theory devi-
ates somewhat from that of the Weiss theory when the d band is wide
compared with the exchange energy, because of the differences be-
tween Fermi-Dirac and Boltzmann statistics. The difference disap-
pears when the band is infinitely narrow since the two forms of sta-
tistics then predict the same distribution; even when_ the band is wide
 the deviation from Weiss form is never very great. Van Vleck (5)
has compared the Stoner and Heisenberg theories and points out that
the predicted results of the two extreme models both é,gree fairly
well with experiment, so that one may be reasonably certain that al-
though the correct model lies somewhere between the extremes the
aniswer does not change very much. This conclusion is of course
predicated upon the existence of positive interatomic exchange inte-

grals.

The Hypothesis of Zener

One of the striking things about most of the theoretical pub-
lications on ferromagnetism which were based on Heisenberg's ex-

change principle was the great trouble taken to justify the positive
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sign of the exchange integral, without which all ferromagnetism
seemed impossible. Only recently has a plausible suggestion been
made concerning another mechanism of exchange stabilization which
does nbt contradict so many of the basic ideas about molecular struc-
ture. In 1951, Zener (17) proposed that the stabilization of sfates of
non-zero moment arises from an exchange interaction between the
electrons of the valence band and those of the d band, and that this
exchange is related to the intra-atomic exchange coupling which
gives rise to alignment of spins in isolated atoms. This exchange
integral is, of course, positive. Zener further proposed that "the
exchange integrals between d shells of adjacent atoms are always
the same sign as in the H2 molecule', that is, negative rathé: than
positive, and that instead of contributing to the ferromagnetic effect
they are actually the cause of a reduced ferromagnetic behavior or
ev‘en antiferromagnetism. Finally Zener proposed that the d bands
were filled according to Hund's rule for atoms, which is equivalent
to the assumption of narrow d bands which is characteristic of all
ferromagnetic theories. In this model the atomic band interacts with
the valence band to cause some unpairing of valence electrons. The
unpaired electrons then cause alignment of the d band moment.

Zener did not attempt to develop a quantitative theory, since
it was his belief that no accurate values existed for the exchange
energies. His nearest approach to a quantitative statement was the

development of the expression

E=x id.*(ba/)’§3:
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where E is the energy of stabilization, Sd is the magnetic moment
arising from the d electrons, (%/ is a parameter determining the
strength of the coupling of valence electrons to d electrons, and a
is theAanti-ferromagnetic Heisenberg coupling coefficient. The form
of this equation is exactly that of the Weiss theory. When (5%<0(Y,
an antiferromagnetic behavior is predicted.

Zener retains the model of Slater and Stoner for metallic
structure, placing all of the d character in the narrow band and as-

suming about 0.6 valence electron.

The Pauling Theory of Metals

The assumption that there is only about 0.6 valence electron
in iron, cobalt and nickel has not been questioned by physicists. It
is» possible to explain much of the behavior of the saturation magnetic
- moment in ferromagnetic alloys with the use of such a model (15).
The major objection to the idea of 0.6 valence electron was raised
in 1938 by Pauling (12), who pointed out that the bond distances in
crystals of iron, cobalt, and nickel were not very much different
from the single-bond covalent radii observed in simple compounds
of these elements. Pauling observed that the interatomic distances
in these three metals were all about 2. 50A, and suggested that there
are about six bonds per atom in each of these elements, just as there
are in the octahedral complexes such as Fe(CN'):. The bonding or-
bitals in these complexes are assumed to have dzsp3 hybridization,
In the metals larger amounts of d character might lead to greater
stability. In any case, no more than six strong bonds can be formed

from the available orbitals. It would seem difficult to account for
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either the cohesive energy or the bond distances in these metals with
the assumption of only 0. 6 valence electron, and it is likely that the
view of Slater must be modified.

Given approximately six electrons in the valence band, Paul-
ing had to account for the observed magnetic moments. At the ‘time
of this work the valence electrons were not supposed to contribute
to the magnetic effect. It was imperative, therefore, to introduce
the familiar narrow band in which positive exchange interactions of
some sort would occur. Pauling postulated that, if the valence or-
bital hybridization involved n d orbitals, then the remaining (5-n) d
orbitals form a narrow band in which positive interactions could
occur., If such a band has the proper energy relationship to the valence
band, the atomic band will not be entirely filled and there will be a
resultant moment.

It is convenient to modify Pauling's original diagram of this
band structure in order to show the d band interaction, as discussed
earlier. Figure 4 (Part III} shows the separate bands for orbitals
of positive and negative spin. In iron the positive band is partly filled
‘and the negative band is empty. In cobalt, with one more electron
per atom, the positive band is completely filled and the negative band
partly filled. In nickel the filling of the negative band has pr‘ocegded
further. In this very simple model the number of valence electrons
and the relative positions of the atomic and valence bands are assumed
to remain constant from one element to the next.

The number of orbitals in the atomic band was estimated by
Pauling from the variation of magnetic moment with composition in

the binary alloys of iron, cobalt, and nickel, Pure iron has a
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gsaturation moment of 2,22 Bohr magnetons. The addition of cobalt
or nickel contributes electrons to the positive d atomic band until it
is filled. The magnetic moment is a maximum here. From the aver-
age pbsition of the experimentally observed maxima in the curves of
magnetization plotted against electron number Pauling determined
that ‘the atomic band contained 2.44 d orbitals. This is of course a
crude approximation, implying that the magnetic moment is only a
function of electron number. Actually there is considerable varia-
tion in the observed magnetic moments of various alloys with the
same electron number, and in all cases there is a plateau rather than
a maximum in the curve of magnetic moment plotted against electron
number. Both of these phenomena can be accounted for by ab more
detailed theory of ferromagnetism based upon this early Pauling
model.

| One of the striking differences between this model and that
of the physicists occurs in the explanation of the magnetic moment
of iron. In Pauling's arrangement iron has a moment because of
2.22 electrons per atom which are in the atomic band. In the Slater

‘model there is a hole of magnitude 2. 22 in the d band.

The Pauling Theory of Ferromagnetism

It seems quite reasonable that the next step should be the
combination of the best elements of the Zener theory of ferromag-
netism and the Pauling ideas of metal structure. The combination
was effected by Pauling in 1953, producing the first theory which is
capable of predicting both the saturation magnetic moment and the

Curie temperature with the adjustment of only one parameter. All
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other theories of the Weiss form have two parameters which must be
fixed for such a determination and are therefore worthless for that
purpose.

The Pauling theory of ferromagnetism {6) is based upon the
following assumptions:

1. There are nearly six valence electrons per atom as in
the earlier Pauling model.

2. The electrons in the valence band interact with the elec-
trons in the d band, as in Zener's hypothesis, to produce ferromag-
netism,

3. The Heisenberg antiferromagnetic exchange term is
negligible compared with the ferromagnetic exchange term. -

4. The positive exchange energy between the valence elec-
trons and the atomic electrons is equal to the Hund's rule stabiliza-
ti-oh energy in the isolated atom. The value of this energy may be
determined from tables of atomic spectroscopic levels.

5. The valence electrons are treated as a free electron gas.

6. The number of atomic electrons and atomic orbitals is
slightly different from the number given in the 1938 Pauling theory,
since a certain amount of moment is now contributed bfr uncoupling
of valence electrons. This number is the only undetermined parame-
ter in the Pauling theory., It will be demonstrated in Part III that
the choice made by Pauling is not necessarily the best one.

In the cases of cobalt and nickel there is a certain amount of
difficulty in explaining the atomic moments because in each case the
moment per atom cannot be a whole number if each atom is assumed

to have the same moment. This problem had arisen even in the
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physicists' theories, and both Mott and Jones (18.) and Pauling (6')
resolved the problem by assuming that the elements are mixtures
of atoms of different spins, In the case of cobalt the mixture would
be corﬁposed of 28.5%0 atoms with spin 3/2 and 71.5%0 with spin
1/2. In nickel there would be 28.5%0 with spin 1 and 71. 50/0; with
spin 0. The peréentages happen to be the same because nickel,
with one more electron than cobalt, has a magnetic moment almost
exactly one Bohr magneton less, Pauling (13) has discussed the
structural significance of these mixed atomic moments. The empty
"metallic'' orbital in the atoms of lower spin permits formation of
ionic structures, greatly increasing the possibility of resonance
stabilization and giving rise to metallic conduction propertieé.

7. The atomic band is assumed to be very narrow, so that
Hund's rule holds, and so that each atom can be treated indepen-
deﬁtly. Each atom has a moment which can be treated as ''perma-
nent' because the Hund's rule interaction enérgy between d electrons

is assumed to be much larger than kTC.

The method of calculation in the Pauling theory is quite
simple compared with the methods of any of its predecessors.
Heisenberg's difficulty arose from assumptions of direct interac-
tions between atoms, which required calculations in terms of an
overall crystalline quantum number. The Pauling theory postulates
the existence of individual permanent atomic moments in a sea of
partially unpaired valence electrons. The permanent atormic mo-
ments are not directly coupled to one another and the individual

atomic spin quantum numbers therefore retain their meaning.
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The energy of the system is a function only of the net permanent
magnetic moment component along the z axis, and the orientation of
these mc;ments is determined, as in the Langevin-Weiss theories,
according to the Boltzmann distribution law.

The valence electrons obey Fermi-Dirac statistics and must
be treated accordingly. Fortunately, as will be shown in Part II,
the distribution in a free electron gas is almost independent of tem-
perature in the temperature range to be considered, so that the cal-

culation of the number of unpaired valence electrons is simple.

Results of the Pauling Theory

The dependence of magnetization upon temperature predicted
by the Pauling theory can be expected to be fairly correct because
the Pauling theory has the same forﬁ as that of Weiss. The agree-
- ment with observed magnetic moment is quite good, but the number
of electrons assumed to be in the atomic band is flexible 1:6 a certain
extent, and is implicitly chosen to give the correct total magnetic
moment. In the case of iron it seems reasonable to assume that
there are about six valence electrons and therefore about two atomic
electrons. In cobalt and nickel, faced with the non-integral average
atomic moments discussed above, Pauling estimates the relative
amounts of each kind of atomic spin from Taglang's extrapolation
(19, 20') of the residual moments of isoelectronic sequences to the
electron number at which all residual moment disappears. The va-
lidity of such extrapolations will be discussed in the conclusion of
Part III.

The ultimate test of the Pauling theory would seem to lie
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in its ability to predict the Curie temperatures of the elements and
alloys. The results are not entirely satisfactory, The Curie tem-
perature. predicted for iron is somewhat higher than the observed
value. The predicted Curie temperature for cobalt is somewhat
lower, and that for nickel much lower than the experimental value.
The alloys also show large deviations in Curie temperature, though
the magnetic moments predicted are in fair agreement with experi-
ment.

The subject of the following chapters is a series of attempts
to improve upon the basic model presented by Pauling, eépecially
with regard to the prediction of Curie temperatures.

The first topic discussed is the accurate treatment of the
temperature dependence of magnetization in the original Pauling
model. The detailed techniques of calculation will be introduced
" at this point,

The second topic is a discussion of experimental data for
the magnetic elements and alloys. Modifications of the Pauling
theory will be made in order to provide better results for the pre-
dicted Curie temperatures.

The third topic is a discussion of inhomogeneous electron
distributions in ferromagnetic crystals and their effect upon the

Curie temperature.
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II. SOME EFFECTS OF TEMPERATURE IN THE

PAULING THEORY OF FERROMAGNETISM

The results which Pauling obtains are based upon certain
simplifying assumptions which have been outlined in the introduc-
tion, One of these assumptions is the negligibility of temperature
effects other than that concerned with alignment of atomic spins in
the Weiss field, There are two possible ways in which such an
assumption can lead to error in the Pauling calculation for iron.
First, it involves the neglect of a contribution to the susceptibility
from the thermally-induced uncoupling of the conduction électrons.
Second, the effect of temperature upon the lattice itself has been
néglected. Since there are no direct interactions between conduc-
tion electrons in the Pauling theory the latter effect is of signifi~
cance only insofar as it changes the effective atorﬁic volume of the
metal and alters the relationship describing the density of energy
levels.

The results of Pauling will now be rederived with the in-
clusion of these corrections.

Pauling makes the assumption that there are six '"valence
electrons' per atom in the ferromagnetic crystal and that these be-
have as free conduction electrons enclosed in a box., According to
the W.K.B. approximation (21) there is assigned to each energy
level in such a system a volume h3 in phase space. The number
of levels enclosed in a volume V in real space and %TL (E,m e’)%.

in momentum space is therefore given by the familiar formula
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13/2'
= (2,7236 ) V.L‘Tﬂ‘

The Pauling theory is based upon the Weiss formalism. The
large value of the '"local' susceptibility which is required for a ferro-
 magnetic effect in iron is obtained by as suming that the six conduction
electrons in d3 s p2 orbitals are stabilized by alignment pafallel with
the two 3d atomic electrons. This in turn results in the alignment of
the atomic moments in the "Weiss field' provided by the spin of the
unpaired conduction electrons. If this is to be true Weis-s magnetism
the local field must be directly proportional to the net atomic.moment;
the unpairing of valence electrons must be proportional to the net
atomic momént. The two atomic electrons on each iron atom which
. are assumed by Pauling to take no part in conduction or bi_.nding are
the source of what might be called the "essential" magnetic moment.
The magnetic moment provided by the conduction electrons is "acci-
dental" in the sense that it is a byproduct of the manner in which
Pauling obtains the Weiss field but is not necessary for the more
‘general Weiss theory. The atoms may have their spin magnetic mo-
ments oriented with respect to the z axis in the manner usually associ-
ated with the component of angular momentum in atoms. It is assumed
that the orbital magnetic moment is quenched so that the entire contri-
bution to the moment arises from electron spin.

The net z component per atom of atomic spin is called JZ.

Since thé spin quantum number S of each atom is 1, the net z com-

ponent for the crystal is J _ NU - ND
z =

N,
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where (NU - ND) is the difference between the number of atoms
with SZ = +1 and the number with SZ = -1, There may of course be
atoms with SZ = 0, but these do not contribute to Jz. The magnetic
moment produced by a net spin J, is gJ > where g, the gyromag-
netic ratio, is assumed temporarily to be equal to 2, the value for

pure spin contribution. The quantity gJZ will be called M, and

S
the net magnetic moment per atom produced by the unpairing of
conduction electrons will be designated by the symbol MV' The
subscript O0 following any of these symbols designates the value

of the variable at saturation.

It is assumed that there is an interaction energy 2Q which
~ is associated with the reversal of spin of one conduction electron
in the presence of the two atomic electrons of the iron atom. Paul-
ing (6) describes the method of determining Q from spéctroscopic
data for atornic states. The existence of a net atomic spin results
in the stabilization of conduction electrons with spin 1/2 relative
to those with spin -1/2 by an amount EQ MSO‘-

The problem of the unpairing of conﬁuctlon electrons in a
field was treated by Pauli (22) for the case of an extérnal magnetic
field. Pauli proposed this as a mechanism for temperature-
independent paramagnetism. The magnetic field produced by the
alignment of atomic spins is about 10-4 as great as the exchange

energy field and may be neglected in the discussion of ferromagnetism.

However, the formalism of the Pauli theory is valid for any field in
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which reversal of spin involves a constant energy change.

In connection with the investigation of the effects of temper-
ature it will be necessary to make an extension of the simple Pauli
formula, which was originally derived for a system of electrons in
the ground state. When the temperature is not absolute zero the
criterion of minimization of internal energy which is used in the
Pauli treatment is no longer correct.

If the Fermi-Dirac distribution is used in the analysis of
the free-electron model it is easily shown (23) that the mean energy
of a distribution of unpaired electrons at absolute zero is

= 3/5' =3 }la 3 No ?-/3

E°= o M \ K1

where E:) is the highest occupied level. At temperatures near ab-

- solute zero the approximate expression

E-E, [L+&™ %ET ]

may be used (23). The total energy of the system is NO'E. It can

‘also be shown {Appendix 1) that the entropy of this system to the

same degree of approximation is

NE, 5 2(T \
T 6 Ee

T
( ) NE[l“la (\{an ]

If one considers a distribution of N0 electrons with spin + 1/2
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and n electrons with spin -1/2, then in the absence of an external
field the .free energy of the entire system is F = F(No) + F(no). If
a field which differentiates energetically the two components of
spin is applied, the free energy of the system is increased by a

term Gno, so that one finds

F=N°-%E§[1‘%‘=]+“°'%€;[l e,a] + G,

The requirement for the equilibrium condition is that dF = 0, sub-
ject to the restriction that No tn = "YL . Substituting the values of
E(’) and 6(’) as functions of N0 and ng and introducing the Lagrange

multiplier A |, one gets

#=2 [N+l ]-2 8 [N ent]
+Gno+ A[No+To -1 ]

where o= /KE. 3 2./3
m 4w

Taking the customary partial derivatives with respect to N0 and n,

equating these to zero and eliminating A , one obtains
__2./3 _.3/3
s 23 A — (|
d.( o —no )“ = "‘"m NO ‘qno _-_‘

If (N - no)E S is small, binomial expansions can be made

in terms of the parameter g , giving the equations



N

If the term n, is replaced by —,E— and A and a are replaced

with their correct expressions one then obtains the equation

- gyl oy

~This is an expression first obtained by Bloch (24) in a different and

more complicated manner. The numerical values of the constants

may be substituted to give the expression

M, = 88Y B &Y. foz0n0 (1 o Tl
;

where i";(-‘ is of the order of 10 ““, In none of the crystals to be

considered does the temperature exceed about 103, so that the tem-
perature-dependent term is negligible. The remaining term is that
obtained by Pauli and Pauling. In the case of ferromagnetism the
energy term G is equal to QMS as has been shown earlier. It will
be observed that the Weiss requirement of linear dependence of M

v

upon MS is met by this equation.
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The other correction to be considered is the inclusion of
the dependence of the effective atomic volume upon temperature.
Equation (1) shows that MV varies as V2 /3. Since V can be written
a.pproi:imately as Vo (1 + YT) where Y is the coefficient of cubic

expansion and Vo is the volume at absolute zero, and since YT <X,

one may write

2f

fie

VP (55T

The inclusion of the factor Y results in an increase in the predicted

Y

Curie temperatures of all of the crystals considered, as shown in

Table 1.
Because of the volume change there should be a free energy

term corresponding to the PAV work, This has been neglected in

v+ T
E’

clearly much smaller than the first temperature-dependent term

. the Pauli derivation because the value of the product is

in the free energy.

Table 1.
. Substance Coefficient of Uncorrected Corrected
Expansion Curie Temp. Curie Temp.
Iron 3.5x 107> 1350° 1390°
Cobalt 3.6x107° 1190° 1240°
Nickel 3.8x107° 367° 370°

Gadolinium 0 -- --
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Calculation of Temperature-Magnetization Curves

The orientation of the atomic moments in the Weiss field as

a function of temperature must now be taken into account. A Weiss

M Q
208

electrons. That is, the energy required to ''turn over" an atom with

field of strength gauss is created by the unpairing of valence

spin of magnitude +1 in the presence of a single conduction electron
is equivalent to twice the interaction energy of an atom with spin +1

with a field of strength This energy is equal to ZMV Q and

(58'

therefore the partition function for the system is

=l N+

g () e®

S«z;=""

where there are NT atoms in the crystal. The atoms are indepen-
dent of one another so that the device of raising the single-atom par-

tition function to the power N,, is a valid one.

T
The atomic susceptibilityy of a system with partition func-

tion f is given by
| T 0
k=ﬁmaHj“%

where H is the Weiss field intensity. Making use of the proper par-

tition function and the definition of magnetic moment, the magnetic

moment which arises from the atomic moments alone can be written

Ma=2 3 Bs(5) =2 5B, (5%)-M,.. B, (1%

where Bs(u), the Brillouin function, is



-29-

+% ) co +x)u -+ co %
3, ()= (BrE)eeth(S blu-y cthd

This equation provides a second relationship between MV and MS’

the first being the equation
Ry T
M=o s S M (1+55—) 3

which has already been derived.

The solution of these simultaneous equations for My, and M

Rs

M/Q
is customarily carried out graphically. The function B (‘?E._‘]/_S M
M. QL $oo
-y
is drawn for some value of T. The intersection
Mg
Mg

)
T used. The total magnetization, M = MS + MV’ is calculated from

is plotted* against and the line through the origin w1th slope

My, Q(1+ ._.I)

of the two curves directly gives the value of for the value of

the known value of M, and Equation (2..)‘

S

As the temperature increases the slope of the straight line
also increases until its intersection with the Brillouin curve occurs

at the origin. This point corresponds to the Curie temperature,

£ TS
MyeQ (1+2557)

the slope of the Brillouin function at the origin. The limiting slope

with

Which may be calculated by equating the slope

of the Brillouin function is easily shown to be (S+1)/3. The Curie

temperature is therefore given by the equation

£

The Curie temperature of iron calculated in this manner has

*For the shape of the curve see Seitz (23).
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been given in Table 1. The complete magnetization curve of iron
is given in Figure 1.
If one temporarily neglects the term involving the coefficient
of expansion it is seen that the magnetization curve which is to be

expected is that of the Weiss curve for J =1, since

M - Ms*MV - Mg
Moo MSW+MVW_ Msm

As long as the magnetic moment arising from unpairing of conduc-

tion electrons is directly proportional to the net atomic moment with
a temperature-independent constant there can be no imprévement
upon the magnetization curve predicted by the most general W.éiss
théory. The Weiss magnetization curve deviates somewhat from
experimentally observed values in the high temperature region,
-where the absolute value of the slope is too small. The inqlusion

of the expansion coefficient will provide a correction in the right di-

rection, since the slope is of the form

d(M/ M) d(M,/ M.
I/ 7)) T dT/ ) [T

where c is a small positive constant, The correction is not suffi-

cient, however, to make the curve coincide with the experimentally

observed results.

Gyromagnetic Ratio

The assumption that the value of the gyromagnetic ratio is
2 has been made throughout the equations derived above. Pauling

indicates that in iron the gyromagnetic ratio is actually 1.946, and
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he introduces this factor by multiplying the value of M, by the frac-
1.946

tion 5000 * Since the forces involved in the Pauling theory are elec-
trostatic Iand not magnetic the value of g does not enter except in the
final evaluation of the magnetic moment. The Weiss field and the Curie
temperature depend only upon the net number of atomic electr.ons
aligned in the positive direction of the z axis, and not upon the net
moment. The treatment of Pauling is a consistent method of correct-
ing the value of M, , since the experimentally observed gyromagnetic
ratio may be expected to involve contributions from atomic and con-
duction electrons in proportion to the net number of each kind aligned
with the field. It is not necessary to take into account possible dif-
ferences in the gyromagnetic ratios of the two kinds of electrons,
though such differences might be expected to exist, because, provided
that the Pauling theory is correct (and that the modifications which
are made in the present study are not very large in their effect) the
ratio of the net number of aligned atomic electrons to the net number
of aligned conduction electrons is independent of température, and
the intensity of magnetization at any temperature will be correct pro-
vided that My has been corrected in the manner described above.
The Pauling theory in effect predicts that the gyromagnetic ratio

should be independent of temperature.

Treatment of Other Metals

Pauling makes the assumption, based upon a consideration
of metallic properties (6, 13), that 28. 50/0' of the atoms in nickel

have atomic spin 1 while the remaining 71. 5°/0 have no resultant
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spin angular momentum. Similarly, 28.5%0 of the atoms in cobalt
are assumed to have spin 3/2 while the remainder have spin 1/2.
This assumption may be introduced formally by slight modifications
of the.preceding treatment. If there are several different "kinds"
of atoms in a given crystal, each comprising a fraction r; of the
total number of atoms NT’ and if there is associated with each kind

of atom a spin S;, then the partition function for the sysfem is

S2=19; ___MVQ— g r. Nt
F=T (% e%n
¢ 9 ==

where Q is the interaction energy of a conduction electron with an
atomic spin of magnitude 1. Taking the usual derivative of f with

respect to H, one finds

M .
M.~ P%\Sm Z den By, (—P‘%Ta)}

[S

where MSOO — %1. S' Z: n, Sz-} :

The Curie temperature is then giveh by

Mve
To= SR T S (5+ 1]

since Mv = —’v‘—s' Mvmas in the case of iron.

MSm

The application of this equation gives somewhat different

results from those of Pauling in the case of cobalt, leading to a
Curie temperature of 1160° K without correction for volume ex-

pansion. The averaging method used by Pauling is completely
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accurate in the case of nickel since the contributing moments are

S=1and S =0, and the latter leads to a constant factor in the par-

tition function.

Figures 2 and 3 show the temperature-magnetization curves

for cobalt and nickel.
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III., FERROMAGNETIC ALLOYS AND BAND STRUCTURE

'fhe preceding calculations are all based upon the assumption
that the valence bond orbitals have d3sp'2 hybridization, and that there
are exactly six valence electrons per atom. In the case of ifbn, which
will be considered first, the interaction energy for a valence electron
with an atomic electron can be estimated with fair accuracy (6), since
the tables of spectroscopic levels for iron are complete. Pauling
computes the interaction energy between a d electron and an s elec-
tron, a d electron and a p electron, and a d electron and .énother d
electron. He then weights these energies according to the d_3$p2 hy-
bridization to find the average interaction energy of a valence elec-
tron. | | |

It was pointed out in the introduction that.the assumption of
| dgsp2 hybridization was arbitrary. The fact that the predicted Curie
temperature of iron is too high by 350° suggests that the choice was
not .correct. In order to determine what the hybridization should be,
Pauling's calculation was repeated with varying amounts of d charac-
ter in the valence band. It was assumed that no moré than six strong
bonds could fo‘rm whatever the hybridization. The variable affecting
the result most is the interaction energy, which decreases as the
amount of d character in the valence orbitals is decreased. It was
not required that the valence band have six electrons. Instead, the
relative numbers of electrons in the valence band and the atomic band
were adjusted to give the proper value of the saturation magnetic mo-
ment. This procedure was repeated for each choice of hybridization

until that choice which gave the correct Curie temperature was found.
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The variation of the Curie point with hybridization is shown in Table 2.

Table 2
Valence band No. of valence MS TC
d character electrons @ .
0.0 0.26 2.26 23.2°K
1.0 2.17 2.17 312,
2.0 5.92 2.08 756.
2.5 5.95 2.05 1045,

The proper Curie point is predicted when the valence elec-
trons have hybridization dZ' 5spz" 5. There are 5.95 valehce elec-
trons in the valence band and 2, 05 atomic electrons. There .a_,re now
2.5 atomic orbitals per atom, rather than the 2.0 of Pauling's theory.
This is a satisfying development, since the band model now agrees
with that first assumed by Pauling in 1938, in which the atomic band
had 2. 44 orbitals. This ensures that the predicted behavior of the
magnetic moments of alloys will be at least as accurate as that of
the early Pauling model. In the recent Pauling paper on ferromag-
‘netism there is implied an atomic band structure for iron which is
different from that of cobalt. This is contradictory to‘ most of what
is usually assumed about the band structure of the ferromagnetic
elements, includiﬁg the assumptions of the 1938 Pauling paper., It
will therefore be assumed instead that iron, cobalt, and nickel all

24 Ssz' > valence bond hybridization.

have 2.5 atomic orbitals and d
The calculation of the Curie temperatures of cobalt and nickel
can now be made using this band structure. Since he was unable to

obtain accurate values for the interaction energies because of the
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incompleteness of the spectroscopic tables for these elements,
Pauling estimated that the energies were 5%0 and 10%0 higher
respectively than those of iron. The use of these values to cal-
culate the Curie point does not result in any improvement over
the results of Pauling, In fact, the results are worse {about
400 degrees lower for cobalt). This is not surprising, since
the amount of d character in the bonds is smaller than that in

3Sp2 bonds of Pauling, It is interesting to note, however,

that dgspZ bonds are actually impossible in cobalt because more

the d

than two d orbitals must be used up to accommeodate the number
of atomic electrons which Pauling calculates are in the d band.
Even if there were only enough d orbitals in the atomic bandit_o
hold the atomic electrons, 2.285 atomic orbitals would be needed,
and the valence hybridization in cobalt could be, at best,

2.715 2.285
d sp

. The value Pauling finds for the Curie tempera-
ture of cobalt is therefore too high even according to his own
model,

The weakest point in this argument seems to lie in the
‘choice of interaction energies, and those of cobalt and nickel
were reexamined. It was found that Pauling's estimat‘e is some-~
what low, and that the successive increases in energy from iron
to cobalt and cobalt to nickel might be as high as 13°/0 rather
than the 5°/0 estimated by Pauling. Nonetheless it appears cer-
tain that the spectroscopic levels cannot be sufficiently far apart
to account for the large energies required to give the proper

Curie temperatures for cobalt and nickel. The principal object

of the investigation is the study of the behavior of the alloys,
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and it is clear that no meaningful calculation of the Curie tempera-
tures of the alloys can be made if the Curie temperatures of the
pure elements are not correct. It was therefore decided to adjust
the inferaction energies of cobalt and nickel to give the proper
magnetic moments and Curie temperatures using the band sti‘uc—
ture‘decided upon above. The experimental data on behavior of
alloys are plentiful and full of anomalies, so that the ability of the
Pauling theory to predict this behavior represents a significant
test despite the added arbitrariness of the selection of an inter-
action energy. The physical justification of this step will be dis-
cussed in the conclusion of the thesis.

Thé interaction energy values chosen for cobalt and .ﬁi_ckel
were 0.80 e.v. and 0.93 e.v. respectively (compared with 0. 58
e.v. for iron). The number of valence electrons found for both
cébalt and nickel is 5.53. This seems an unusual coincidence,
and the question arises as to why iron has 5.95 valence electrons
rather than 5.53. The answer appears to lie in the fact that the
stable phase for iron below the Curie point is the a or body cen-
‘tered phase, while cobalt and nickel exist in a face centered ¥
phase. Iron undergoes a transition from the a phase fo the Y phase
some distance above the Curie point. It is interesting to note that
although the paramagnetic moments predicted from the slopes of
the curves of susceptibility plotted against temperature disagree
with the results in the ferromagnetic region, the ratio of the slope
of the paramagnetic curve of the a phase of iron to the slope of the
paramagnetic curve of the ¥ phase of iron is close to what would be

predicted if there were a change from 5.95 valence electrons to
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5.53 valence electrons. There is an apparent increase in atomic
magnetic moment from 2,05 Bohr magnetons to 2.47 Bohr magne-
tons when iron undergoes the a-Y transition. It seems quite likely,
therefore, that the number of valence electrons associated with ¥
phases in iron, cobalt, and nickel is 5. 53.

The first attempt to test the ideas outlined above was made
on the alloy which is 50°/0 iron and 50%/0 nickel. (All alloy com-
positions are given in atom per cent.) Since this is a Y phase it
was assumed that there are 5.53 valence electrons. Assuming
that all atoms have the same average moment and that the inter-
action energy of the alloy is the average of the iron and nickel
energies, the answer obtained for the magnetic moment is in fair
agreement with experiment. The predicted Curie temperature,
however, is about 1400°K, close to that of cobalt, and far differ-
e:dt from the observed value of 835°. The problem is easily
stated: Since the electron number is the same for this alloy as
it is for cobalt, and since the average interaction enérgy is about
the same as that of cobalt, how can the Curie temperature of the

. alloy be almost six hundred degrees less than that of cobalt, es-
pecially since the experimental magnetic moments are about the
same ?

The solution of the problem requires a closer examination
of the hypothesis of band structure. A fundamental assumption of
the Pauling theory is the existence of narrow atomic bands; iron
will have 2.5 d + orbitals and 2.5 d- orbitals in two bands sepa-
rated by the Hund's rule interaction energy for d electrons. Now

suppose that one atom of nickel replaces an atom of iron. An
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atomic level is lost from the iron band and one nickel atomic level
appears. But since nickel has a higher atomic number this level
will be an "impurity level" below the main iron band. This result
has beeh established by many theoretical investigations (25). As
more nickel atoms are added the number of levels in the nicke/i
band increases and the number in the iron band decreases. In the
equimolar mixture it is not unreasonable to suppose that the ar-
rangement is as shown in Figure 5, in which the Ni+ band is lowest,
followed by the Fe+ band, then the Ni- band, and finally the Fe- band.
The wave functions in the nickel bands are largely concentrated upon
nickel atoms, since the nickel potential wells are deeper. ‘In order
to keep the crystal microscopically neutral the functions in thé _iron
bands will then have to be concentrated upon the iron atoms. * Thus,
the alloy should be treated as a mixture of two kinds of atoms with
the interaction energies of iron and nickel respectively. If there
are 5; 53 valence electrons there w’ill.be 3.47 atomic elgctrons just
as in cobalt. Filling in the atomic bands in the usual order one places
1.25 electrons in the Ni+ band, 1.25 in the Fe+ band, and 0.97 in the
Ni- band. The permanent atomic moment is therefore 1.53, just as
in éobalt, but the moment interacts with the valence ele.ctrons as
though there were 0.28 Bohr magnetons of moment arising from the
nickel atoms and 1. 25 from iron. Since the interaction energy of iron
is low compared with that of nickel there is a considerable lowering
of the Curie temperature from that predicted by the simple model

just discussed, in which iron and nickel were assumed to contribute

- e s -

* A somewhat similar model for alloys has been suggested by
Slater (15).
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half each to the interaction energy. The Curie temperature predicted
is now 10300 and the magnetic moment is about 0.1 Bohr magneton
too high. One may leave matters as they stand or one may take the
logical. step of assuming that the bands are not entirely separated,
but overlap at some point. This would reduce both the magneﬁc mo-
ment and the Curie temperature. It is clear that the only overlap
which can affect the result would occur between the Fe+ and Ni- bands.
Assuming that the levels in the bands are evenly distributed, one can
adjust the overlap to give the correct magnetic moment. The Curie
temperature predicted is then 960°K, which is just 11%0 ﬁigher than
the correct value.

At this point it is necessary to explain some of the details
of calculation. Non-integral moments must still be resolved iﬁto
sums of integral moments. In cobalt and nickel the individual mo-
‘ments used are 3/2 and 1/2 and 1 and 0 respectively, just as in the
earlier work. The atomic magnetic moment of iron, 2.05 Bohr mag-
netons, is resolved into moments of 2 and 3, or, in alioys where the
moment of iron falls below 2.0, into moments of 2 and 1. In most
cases the results seem to be relatively independent of the manner of
choosing the components.

The partition function and the definition of ferromagnetic sus-
ceptibility in terms of the partition function must be modified some-
what when there are atoms possessing different interaction energies

with the field. The Curie temperature is given by

T - 3_7'“': [ZTLQL g—‘ﬁ"é SL(S'L*DJ’

an equation closely resembling that used for cobalt in Part Il
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The atomic volume used is the weighted mean of the atomic
volumes of the elements.

The essential point of the preceding paragraphs is that one
must consider atomic bands of alloyed metals as being filled "in
series!" rather than "in parallel', The exact manner in which';ba.nds
fill will of course depend upon the order in which they are arranged
relative to one another. It is to be expected that in a binary.alloy
composed of two elements which are several atomic numbers apart,
the bands of the element of higher atomic number will no longer
alternate with those of the other, but will both lie below (figure 6).
Such an alloy would be expected to have a much lower magnetic mo-
ment than an isoelectronic alloy of elements closer together in the
periodic table. Examples of this sort of alloy will be discusséd in
the next section.

A study of the binary alloys of ferromagnetic elements has
been made using the methods described. The Curie temperature
and magnetic moment were calculated for various comiaoaitions with
an arrangement of bands which will be described for each alloy, In
the relatively few cases, like that of the 50°% o i'ron-SOo/o nickel alloy,
in which both the calculated moment and Curie point were high, suf-
ficient overlap of the bands was introduced to correct the magnetic
moment. In these cases the values of Mg and Tc are given both
with and without the correction. The graphs of the results show the
correctea Curie temperatures. The experimental data, unless other-
wise noted, were taken from Bozorth's book on ferromagnetism (26).
The calculations were not made for composition regions where two

phases are stable. Such omissions are noted below.
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Cobalt-Nickel (Table 3, Figure 7). The application of this

method was first made to the system cobalt-nickel because no over-
lap is ne.cessary at any point in order to obtain the proper magnetic
moment. The order of the atomic bands is Ni+, Co+, Ni-, Co-.
There is little doubt that the number of valence electrons is 5. 53
since the alloy and thé 'two elements all have the Y structure. The
predicted Curie temperatures are in excellent agreement with ob-
served values, no point deviating from the correct value by more
than 5%0. The predicted moments are a little too low, but never
by more than 0.06 Bohr magneton.

Iron-cobalt (Table 4, Figure 8). The arrangement of bands
is Co+, Fe+, Co-, Fe-. A small amount of overlap is intreduced
between the Fe+ and Co- bands to obtain a better value of the moment.
The Curie temperatures predicted for the middle composition range
are much higher than the experimentally observed temperatures,
and exhibit a fairly sharp maximum at 60°/0 cobalt, while the ex-
perimental curve shows a broad plateau from about ZOO/ o to 70%0
cobalt. The phase diagram, however, shows that in this composition
range the ferromagnetic boundary is also a phase boﬁndary; The
temperature-magnetization curves (27) have the usual Weiss form
up to the Curie temperature, but do not fall smoothly to zero at that
point. Instead there is a sudden drop in magnetic moment because
of the transition to a non-magnetic phase. Forrer (28) has extrapo-
lated the temperature-magnetization curves for these alloys in the
manner in which they would be expected to behave if the phase change
did not occur. He obtains a new, higher, value which is the true

Curie temperature for the y phase. The Pauling theory would
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naturally be expected to give this answer rather than the experi-
mentally observed value.

Table 4 and Figure 8 compare the predicted Curie tempera-
tures with those obtained by Forrer. The agreement is certainly
not as good as in the case of cobalt-nickel alloys, but there é’;re
several impressive points of agreement. The maximum Curie
temperature does occur at 60°%/0, as the theory predicts. This
is rather remarkable in view of the fact that the magnetic moment
reaches its maximum at a cobalt concentration of _400/ o, and has
dropped considerably from its maximum value by the time the
60°/0 composition is reached. It is interesting to compare these
results with those predicted by the simple interpretation of the
Pauling theory which failed so badly in the iron-nickel alloy firsf
discussed. The maximum Curie temperature, as shown in Figure
4,> occurs at about 400/0. The Curie temperature in this simple
model is determined almost entirely by the magnetic moment,
and the maxima of the magnetic moment and the Curié température
must occur at the same place. This strict dependence is not ob-
served experimentally. A second and more st'rikingv example of
the independence of magnetic moment from Curie temperature is
given by the behavior of pure cobalt upon the addition of small
amounts of iron. The Curie temperature goes down, but the mag-
netic moment rises. The behavior predicted by the theory devel-~
oped in this chapter is not very satisfactory in this region. A de-
crease in Curie temperature is indeed predicted when small amounts
of iron are added, and there is good agreement with experiment

for concentrations of iron up to about 50/ o. Beyond that, however,
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the predicted values increase rapidly, while the experimental Curie
point continues to decrease. Nonetheless, the fact that this behavior
" should belpredicted at all seems significant.

‘Iron-nickel (Table 5). The calculation is made only for the
pure Y phase, and it is assumed that there are 5. 53 valence electrons.
As indicated earlier thé band structure chosen is Ni+, Fe-t—_, Ni-, Fe-.
The behavior of the Curie temperature is fairly good from pure nickel
to 40%0 iron. At higher iron concentrations the predicted Curie
temperature levels off, This is another example of a region in which
Curie temperature drops and magnetic moment continues to rise,
and once again the theory predicts the observed effect, but without
sufficient magnitude to obtain a quantitatively correct answer. The
principal problem in dealing with alloys of iron with cobalt and nickel
arises from the structural differences of iron, which give rise' to
complicated phase changes which cannot be easily compensated for
by means of a simple model.

The remaining alloys considered are those in which one ele-
ment is ferromagnetic and the other is not.

Iron-chromium {Table 6, Figure 9). Itis known that chrom-

ium has no ferromagnetic properties, Therefore it is assumed that
there are 6.00 valence electrons in chromium, and that the number
of valence electrons in the alloy system is the weighted average of

" 6.00 and 5.95, since these alloys have the o structure. The order
of the atomic bands is Fe+, Cr+, Fe-, Cr-. It is to be noted that
since the only filled band is an iron band it is not necessary to know
the interaction energy of chromium. The predicted Curie tempera-

tures agree very well with experiment except at extremely low values,
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where the predicted values are somewhat too large.

Nickel-chromium (Table 7). This alloy presents a problem

which has not been entirely solved, thougli Slater (15) has recently
offered an explanation which seems to be very much like that given
here, except that it is developed in terms of the Slater m’odelj of
metais. The magnetié behavior of alloys of nickel with copper and
zinc has Iong been explained by assuming that the excess atomic
electrons of the copper or zinc fill the hole in nickel's atomic band.
This explanation serves just as well in the present theory as in the
older ones. A more unusual case is that of the alloys of nickel and
aluminum. These behave like the nickel alloys with_ copper and
zinc., It appears that the three valence electrons of alumimirh are
in a band which lies so much higher than the atomic band of nickel
that the valence electrons of aluminum leave the valence band to
fiil the nickel atomic band instead.

The nickel-chromium alloys might reasonably be expected
to behave like the iron-chromium alloys. In that case the number
of atomic electrons would decrease with increasing chromium con-
centration. In the alloys with iron this leads to a deérease in atomic
moment, but nickel alloys would show a very large increase in mo-
ment as chromium was added because the size of the hole in the
atomic band would increase. This is not observed. Instead, the
magnetization decrease as a function of electron number is almost
exactly the same as that obtained by the addition of copper, which
has a completely filled atomic d shell of five electrons. This sug-
gests that the six valence electrons of chromium are in a band which,

like that of aluminum, is relatively far above the atomic band of
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nickel (Figure 6). The five valence electrons fill the hole in the nickel
band.

Since the difference in atomic numbers is so great, the order
of the atomic bands is Ni+, Ni-, Cr+, Cr-, with a large space be-
tween Ni- and Cr+. The magnetic moment and Curie temperature
decrease linearly and ﬁanish, according to theory, at 8°/0 chromium.
The observed decreases are also linear and magnetization vanishes
at 13%/0 chromium.

Cobalt-chromium: The same argument seems to apply to

these alloys as to nickel-chromium alloys. The bands ar_é Co+, Co-,
Cr+, Cr-. The calculated vanishing point for ferromagnetic’ behavior
is at 20°/0 chromium; the experimental value is 25°/0. There is a
phase change at about 10°/0 chromium which introduces a diséontinuity
in the Curie temperature. It is not possible to make calculations for
the £ phase which forms above this point. The extrapolation of the ¥
phase Curie temperatures gives a vanishing point at about 20%/0
chromium, as found in the calculation,

Iron-vanadium (Table 8). In view of the behavior of cobalt-

chromium alloys, it seems likely that the arrangement of atomic
bands in iron-—vanadiur.n alloys would be similar. The order Fet,
Fe-, V+, V-, is accordingly used. In analogy with cobalt-chromium
the vanadium valence band is situated above the iron valence band

and the vanadium electrons fill the iron atomic bands. The Curie
temperature and magnetic moment of this system both rise upon the
addition of vanadium because the Fe+ band must first be completely
filled before the Fe- band can begin to be filled. The predicted maxi-

. . _ o . L.
mum in the Curie temperature occurs at 8 /o vanadium and is
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actually observed at 5-1/2°/0 vanadium. This rise has always been
considered as an anomaly in the behavior of alloys.

The accompanying predicted rise in magnetic moment is not
reported, but the magnetic moment data (29) have been ''corrected"
to account for carbon impurities which apparently affect the magnetic
moment rather seriously, though leaving the Curie temperature rela-
tively unchanged. There seems to be good reason to doubt the accu-
racy of these corrections.

The vanishing point of ferromagnetism is predicted to be at
37%0 vanadium. There is difficulty in obtaining reliable experimen-
tal values for the vanishing point because of the carbon ifnpurities
and phase changes, |

Nickel-copper (Table 9, Figure 10). Dealing with an alloy

of two elements adjacent in the periodic table, it can be assumed
that the valence bands are more or less superimposed, and one re-
turns to the treatment of cobalt-nickel and similar alloys. There
are 5. 53 valence electrons and the arrangement of atomic bands is
Cu+, Ni+, Cﬁ—, Ni-. The only band not entirely - filled is Ni-, so
‘that as in all the other cases the non-ferromagnetic atom has no mo-
ment associated with it and one does not need to knqwlits interaction
energy with the valence electrons, The Curie temperature and mag-
netic moment decrease linearly both in theory and in fact. The pre-
dicted vanishing point for magnetic behavior is 53% 0 copper, rather
than the observed 60%/o.

Gadolinium-magnesium, This alloy presents a complicated

problem. The permanent magnetic moment of gadolinium is undoubt-

edly to be ascribed to the seven 4f electrons, leaving three valence
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electrons. There are two valence electrons in magnesium. The
relative positions of the atomic bands are not easily determined.
So long as colxnparis'ons are made between 3d bands one may be
fairly.certain that those belonging to an element of higher atomic
number lie lower. Thjs is not true of a comparison between ';bands
composed respectively of 4f and 3d orbitals. In such a case it is
entirely possible for the arrangement to be Gd+, Mg+, Gd-, Mg-.
If this is so, the magnetic properties are entirely due to the Gd+
band, which remains completely filled as the amount of magnesium
inéreases, though of course the number of levels in the band de-
creases. This behavior is accidental, arising because the 4f shell
in gadolinium is half filled. |

For this reason the behavior of the system is describable
in terms of the simple theory which fails for all the other alloys.
In.that approach the interaction energy of magnesium is zero, and
the interaétion energy of the alloy is therefore the interaction energy
of gadolinium multiplied by its per cent concentration. Exactly the
same result is predicted by means of the more complicated model
simply because the filling of Gd bands never changes. That is the
as'sumption, in fact, which ruins the simple theory in é,ll of the other
alloys.

The equimolar alloy of gadolinium and magnésium is pre-
dicted on this basis to have a Curie temperature of 124° and a mag-
netic moment of 3. 58 (uncbrrected for gyromagnetic ratio). The
observed Curie point is 103° (30'). The mixture of composition
Gd9Mg is predicted to have a Curie point at 254° and a magnetic

moment of 6.37. Gaume-Mahn (30) found a Curie temperature of
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267° for an alloy which she estimated to have the composition GdgMg.
Pauling has pointed out (31) that this value is actually consistent with
the composition Gd1 2Mg, which would have a predicted magnetic mo-
ment of 6.55. Itis difficult to tell whether these computations should
be trusted to have such high accuracy. At low concentrations 6f mag-
nesium the method should be fairly accurate, just as it is for the
other alloys, since Pauling chose the interaction energy of gadolinium
to give the proper Curie temperature. Nonetheless it is hazardous to
draw conclusions until further information is available to determine
the arrangement of atomic bands. In particular the experimental mag-
netic moments should be determined.

The model introduced in the preceding pages seems to describe
the general form of behavior of magnetic alloys reasonably well. It
is more than an ad hoc model, for it arises as a logical consequence
of >the original postulates of Pauling and introduces nothing which is
not fairly well established with regard to band behavior, though no
doubt the picture is oversimplified. |

It is observed that over a large range of alloy compositions
(though by no means for all compositions) the predicted magnetic mo-
ments of the various kinds of atoms remain fairly constant. Iron has
a moment of about 2.5 in many of the alloys, nickel exhibits a moment
of 0.4 to 0.6, and cobalt has a moment in the neighborhood of 1.5.
This seems to agree with the unpublished results of recent experiments
at the Oak Ridge and Brookhaven Na‘tional_Laboratories reported by
Slater (15).

One can now critically examine Taglang's studies qf the mag-

netic moments of isoelectronic sequences. For example, Taglang
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adds cobalt to an equimolar mixture of iron and nickel. The reason
for the depression of the Curie point in the iron-nickel binary alloy
has been given. The magnetic moment is slightly depressed for the
same reason, namely, that the effective interaction energy is lower
for a mixture of iron and nickel than for pure cobalt. The effect upon
the Curie temperaturé is profound, but the effect upon the saturation
moment is small because the atomic moment is essentially unchanged
and only the contribution from uncoupled valence electrons is altered.
Taglang plots the magnetic moment against the Curie tempera-
ture for this sequence, finds a linear dependence and extrapolates to
T, = 0, thus obtaining a residual magnetic moment which is to be
identified with the quantity MS in the Pauling theory. This t.r‘e_atment
rests on the assumption that the equation for the dependence of T on
MS is
Tc = GMV = G.(M - Ms)

MS is a constant and therefore if one plots the total moment M against
T, the point at which TC vanishes is that at which M = MS’ Unfortu-
nately this equation is incorrect. Speaking very gen‘erally,‘ Tc is pro-
’pprtional to the number of valence electrons uncoupled and also to

the interaction energy. But MV is directly proportional to the inter-
action energy, and therefore Tc is proportional to the square of MV'
Of course, when MV is large the dependence will look linear over a
small range of variation of MV’ but Taglang's extrapolation to zero
over such large distances is likely to be somewhat in error. The qua-

dratic dependence will certainly result in an answer smaller than Tag-

lang's, both for the moments to be associated with individual
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isoelectronic sequences and for the electron number at which ferro-
magnetism vanishes, Taglang's residual moment for the cobalt iso-
electronic sequence is 1.57. It is not at all unlikely that the correct
extraﬁolation would give the answer 1. 53 which is deduced from the

calculations of this chapter,



°/o Ni
10
20
30
40
50
60
70
80

90

°/6 Co

10
20
30
40
50
60
70
80

95
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Table 3

Cobalt-Nickel

Moo(Calc.) M_(Obs. )
1.59 1.61
1,48 1.52
1.3'; 1.42
1.26 1.32
1.14 1.20
1.05 1.09
0.92 0.98
1.81 0.86
0.71 0.73

Table 4

Meo

| (No Overlap)

2.38

Iron-Cobalt

M(Obs. )

2.34

Phase transition

2.71
2.61
2.45
2.30

2.15

2.46
2,46
2.40
2.30

2.17

Phase transition

1.76

1.80

Tc
(No Overlap)

1320° K.

1780
1790
1700
1660
1560

1390

Tc(Calc. )

1340° K.

1270
1190
1138
1060
985
900
864

726

T (Final)

1235° K.

1530
1620
1630
1660

1560

1390

T _(Obs. )

1350° K.
1300
1240
1180
1120
1040
950
870

770

T (Obs.)

1150° K.

1300
1363
1400
1410

1340

1370
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Table 5

Iron-~Nickel

°/o Ni M, (Calc. ) M_,(Obs. ) T (Calc.)
50 1.65% 1.65 960° K.
60 1.46 "1.50 960
70 1.24 1.30 875
80 1.03 1.07 800
90 0,82 0.85 745

TC(Obs. )

' 835° K.

870
870
845

760

* The composition 50 °/o iron-50°/0 nickel is the only one requlrlng

introduction of overlap. (See text,)

Table 6

Iron-Chromium

°/o Cr My(Calc.) Mw(Obs.) T, (Calc.)

2 2.17 2.12 1030° K.
5 2.10 2.05 1010
10 2.00 1.90 960
20 1.78 1.65 851
50 1.11 0.90 535
. 60 0.88 0. 65 431
80 0. 45 -- 218

Table 7

Nickel-Chromium

o]
/o Cr M (Calc.) M,,(Obs. ) T (Calc.)
2 0.47 -- 480° K.
4 0.30 310

8 0.00 --

T_ (Obs. )
1050° K.
1040

990
910
550
430

73

T, (Obs.)
510° K.

430
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Table 8

Iron-Vanadium

%o v | Mm(Callc.) T_(Calc. ) T _ (Obs.)
2 2.28 1110° K. 1060° K.
5 2.37 | 1210 1090
7 2.42 1260 1060
10 2.33 1200 -
20 1.45 620 --
Table 9

Nickel-Copper

o _
/o Cu M, (Calc.) M (Obs. ) TC(Calc. ) TC(Ob_s. )
10 ©0.49 0. 50 516° K. 510° K.
20 0.37 0.38 394 390
30 0.26 0. 28 274 310

40 0.15 0.20 155 215
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IVv. THE EFFECTS OF INHOMOGENEOUS

ELECTRON DISTRIBUTION

In his paper on ferromagnetism Pauling suggested that his
theory might be refined by a consideration of the non-uniform proba-
- bility distribution of electrons in crystals of ferromagnetic sub-
stances. In the simple theory it is implied that the conduction elec-
trons spend equal amounts of time in all parts of the crystal. This
is a bad assumption, because a conduction electron with a given
direction of spin spends a greater amount of time in regions where
its spin is aligned parallel with the spin of the neighboriﬁg atomic
electrons than in regions where the spin is aligned anti-parallel.
This chapter describes a method of modifying the Pauling theory
to take into account the non-uniform electron density.

One of the major advantages of the simple theory of ferro-
magnetism is the ease of calculation of the partition function for the
crystal. Since the electron density is assumed to be uniform each
atomic moment may be considered to be interacting with the Weiss
field independently of the other atomic moments. If the idea of uni-
\form electron distribution is abandoned the simple form of the par-
tition function discussed in the preceding chapter must, strictly
speaking, also be abandoned. The density of conduction electrons
in a given small region of the crystal depends upon the degree of
alignment of atomic spins in that region. The extent of further align-
ment depends upon the density of conduction electrons. Consegquently,
further alignment will tend to occur iﬁ regions where the existing

amount of alignment is greater, The atomic spins are no longer
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independent, and the partition function must describe the crystal as
one large system, rather than as NT independent ones,

In order to make the calculation feasible it is assumed that
the 1§ca1 interactions are small, and that a single value of MV is
sufficient to describe the energy of the entire crystal. The quantity
MV takes into account the changed uncoupling effect of the unequal
distribution of valence electrons, but averages this effect over the .

entire crystal. The partition function has the same form under

these restrictions as it does in the simple theory.

Calculation of MV

The case in which the atomic moment is 1 will be considered
first. It is assumed that the probability of finding a conduction elec-
tron with spin + 1/2 in the neighborhood of a given atom is R1 times
gi’eater if the atom has atomic spin component SZ = 0 than if it has
S = -1, and R2 times greater if the atom has S, = +1 than if it has

Z
SZ = -1,

If the number of atoms with SZ =1 is called NU’ the number
with SZ = 0 is called NO’ and the number with Sz = -1 is called ND’

then the conduction electrons with spin + 1/2 are stabilized by an

amount of energy proportional to
e Ny —Np
RZ /Vu f'/?a No +ND

Electrons with spin - 1/2 have a greater probability density in the

neighborhood of atoms with S, = -1 and a smaller probability density
in the neighborhood of atoms with SZ = +1. The value of MV is as-

sumed to be proportional as in the simpler theory to the difference
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between the two oppositely displaced energy curves for the conduc-

tion electrons of spin + 1/2 and - 1/2.

MV___Z<_ /?2 /VU '"ND + /VU "/‘?2 /VD } .
ZANR N, +R My + )y N, +R Ny + R Np) )

The expression is symmetric with respect to interchange of NU and

N It reduces to the simple form of the earlier theory when

D

Ry=R,=1. M is then proportional to MS, the net magnetic mo-

1 Vv

ment component per atom in the z direction:

MSE Q(NU"NQ) ;
Ny

- X ,
MV— 2 MS when '?,‘:'l?a?-/.

The partition function provides one relationship between MV

and MS' A second expression is necessary in order to fix MV and

MS as a function of temperature, The quantity MS is a single-valued

function of M,, in the simpler theory. If Equation (1) is restated in

v
terms of MS’ it is found that this is no longer true. Instead the equa-

tion has the form
Py (RN + R, (4 MY R, (1) Ny Wt )+ (621) vy -ra)? )
M (%_’)LA/,_‘MSZ M5 {8, Ny Nr (R 1) + 2 B, M- (W ~M5) )

where MV/ = Msoo MV‘

Veo
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The quadratic equation in M_ may be solved for Ms’ giving

Ms= =R Nolir (&, 71) -2 R, Ny (M.~ 1)

T IR, No Wy (R + 1) + 2 R, Ny (NN ) ]2
t + M‘flz(ezﬂ)z NZ CRENZ +R,(R4+1) Ny (N ~N,)
* ‘E_zz;_f(wr— NoY2+ R, (A=A5)2)

/
gz NE (R=1)*

If MV is small this can be expanded to give

- 2 mf
Me= g FE RN R rer N, By ]

[ (%—,")14‘@] [Nr-"/o]z}

/el(ez*/)/l/o/vr * < /ez Ny (/V.,.-‘/Vo)

It is now possible to expand the denominator in terms of
N :
powers of 2 . It was found necessary to retain terms of the sec-

Np

ond power., This gives the equation
M. = M [ RENZ+ R(R +1) M, (M-, ) + [(£,~1)* 2
R) ;?-Wiz 1 Yo TARATR XA T %) [ 2 } -f-,??— [’Vr_'vo]

X {,_ LR (R +1)-2K,) N, [Q,(sz-l)—é)f’l Z,{/z_m}
e, N o2 £, AP
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which can be written in the form
= M « 3 2 3 «
s 7 {7 e MMt & Mo 2, w20 v - 1
where
2 2
= ¢'€L [ (v(’-—/) +A9:.J

SR er)- €0 0] ]
—0R, {P(é’f—l) QA"{{(PH)L*,Q}

= YR [e2, my:) B R (8, +1)]
TRR, LR (1) -8, [£ (0.4)-2 R (4 f_z__;_’Z 7
+ [ (%:_’_)l+_pz_] [e (Q+/).—;z&]2

4= LR (6.+)-2p 73 [RE+R ~ (e~,) -2R,]
R4S +(57/_) re e (eLH)] [28,)

X[,Q'(P‘j—/)—;zf?_j

TR )20 02, (@-1)*
s
+ R =R, (P +1)]
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In order to provide a single-valued relationship between MV
and MS an average value of MS must now be calculated for each value

of MV' When the power series expansion of MS is valid the equation

is
/@1 My [2?A/" g /VJ : F
iy * N, +e, N, 'V'/‘CA//V+cNoﬂ
T
With the values of R1 and RZ which are used in these equations,
M5 is a positive quantity in regions near the origin., Hence
A A q g g
the criterion for the Curie temperature is that the slope of the curve
fl_’;s must be equal to that of the Brillouin function at the origin.
Sao

This is a necessary condition, since if the slope is smaller f:here is
bound to be an intersection of the two curves at some point other than
the origin and some magnetization will be predicted. The condition
is. also sufficient because the positive second derivative ensures that
if there is no intersection at the origin there will be no intersection
elsewhere in the approximately straightline region of the Brillouin
curve., Since the Brillouin function undergoes a sharp decrease in
.slope as the argument increases there is no danger of an intersection
anywhere, and no non-trivial solution exists. The criterion for the

Curie temperature is therefore given by the limiting slope

A M CN¥ e, N2 +c, N*N2
M-Soa OLMV]M‘, o N M [ + N

+ S Ne NS +C:N¢:'JM=

In order to evaluate this derivative it is necessary to deter-

mine the average values of the powers of NO at MV = 0. Iniromn all
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values of NO from 0 to NT are consistent with MV = Ms = 0. The
only restriction is that NU - ND = 0. Since the energy of all states

with MV = 0 is the same it is sufficient to consider the degeneracy

associated with a given value of NO' The degeneracy is given by

M
— S AN, wlh)
A/o M=o ,

To evaluate _1\_10 the sums are approximated by integrals and

the factorial function is replaced by Stirling's formula, giving

No dNo
/-\/—o -— A/oNc /”7?:'”9) Ar-No

N,
S =

Ao ( /VT-A/,,) IVT‘*A/O
2.

The limits of the integrals will depend upon the substance
being considered. In the case of iron at the Curie temperature the
limits are 0 and NT' In the case of nickel the lower limit is 0,715
NT and the upper limit is NT' The customary method (10) of evalu-

ating integrals of this sort involves writing the integrals as

fe’c(")a(x.

If f(x) has a sharp maximum at X it is then possible to expand f(x')

about X, and retain only the first two non-vanishing terms in the
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expansion, Since the maximum is a sharp one the limits of the inte-
gration may be taken as -o0 and + 9 and the integral becomes

ej(x°7c°€'z‘? )C”(Xo) (X‘Xo);x ‘

-0

In the case of iron this method works quite well, but there is
some question in the case of nickel concerning the validity of the use
of the Gaussian approximation to the integral. Another method has
therefore been devised for the evaluation of the integrals which de-
pends upon somewhat different approximations and does not require
alteration of the limits of integration.

The case of iron will be considered first. The function N—O

may be written as

A
— 4 g A
A/b “[ e 9C/V

f e ™,

where

3(No)== (|—No) [n N, + (NQ-NT) Iwn ( NT;-No)
f(No)= '—No ,’Y\ I\lo + (NO‘NT) ly\ (N-r:;Nc)

In the same manner as described above for Van Vleck's method
g(NO) and f(NO) are expanded about their respective maxima, giving

the equation

3(No)= S(No*)+ 3._.(2@)(,\/0_'\':)2*_ gmé(N:-’ (NO_NO*)B_'.‘”

and an analogous equation for f(NO).
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The maxima of g(NO) and f(No) must now be found. Taking
the first derivatives one obtains the equations

/
(No)= - + | Ny—No
3 ) No “( -:Z/V‘,

- No

£(n) = lY\(NT—No)

The maximum of f(NO) therefore occurs at N’*(‘) = NT/3. It is clear
that the term 1 /NO in the expression for g'(NO) may be neglected in
the neighborhood of the maximum, and g'(N’E)) is identical with

f‘(N* . Similarly it is found that

g|| (N *) - - -__l_____ _ \'
( N *)z N~ N N

YN = - L
5: NT‘ ND* No*
(N *) | i
% | (/y*) (/V /Y*) M (No*)z

wi No* - - |
3 () (N ~NX)? " (NF)*

In each case the difference between g (N ) and { (N ) is a
number which is very small compared with either of the derivatives.
Therefore all of the derivatives of g(NO) evaluated at NT) may be set
equal to all of the derivatives of f(NO) evaluated at N:) . The only
terms of the expansions for which this is not true are the constant

terms of each., Consequently the expression for T\TO may be written
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(Ay) ag__@/*) (M ~Wo*)? 4+ LN) (W, =24 *)
— ea © +0 (X}
w- <Y

ef(”) e E”( ¥ (A/ A/r)z. Em(”#) (’Va __A/of)a .

o d/'/a
A
= e} 4 e/" (w,*)
e F(M%X)

= =
I

By similar arguments one finds that N2 o

that m is small compared with NT so that the term m/NO which ap-

N .
(NO) prov1ded

pears in the first derivative of the function analogous to g(NO) is
negligible.
In the case of nickel one may use exactly the same analysis

except that the lower limit of the integrals is 0. 715 N"I" The maxi-

mum for this region is at the lower limit N- = 0.715 NT' The func-

O
tion g(No) is decreasing in value in this region very rapidly with in-

‘creasing NO’ and one finds that the above method once again gives

' m
the result that (NO) O)

The evaluation of these average values of powers of NO makes

= (N

it possible to determine the Curie temperature provided that the
values of R1 and R2 are known. In order to demonstrate roughly
the nature of the corrections provided by this modification it may be
assumed that the values of R1 and RZ are the same for iron as for

nickel, and that R2 is equal to R%l . The possible change in the
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predicted Curie temperature of nickel shown in Table 10 is not
very grgat if one makes this assumption, but every choice of R1
results in a decrease in the predicted Curie temperature of iron
and an increase in that of nickel. This has also been found to be

true over a very wide range of the parameters R representing
2

considerable deviations from the restriction RZ = R1 .
Table 10

Rl TC(Fe) TC(NI)
1.00 1395° K. 370° K.
1.50 1281 374
1.81 1168 377
2.00 1100 378
2.16 1045 379
4.00 630 383

An examination of Equation {1) shows that one effect of mak-
ing R2 greater than 1 is to decrease the uncoupling of valence elec-
trons. This is the predominant effect in iron, and the Curie tem-
perature decreases. In nickel, however, the presence of large num-
bers of atoms with SZ = 0 tends to concentrate the valence electrons
in the region where uncoupling is possible when RZ is greater than

R In such a case, increasing R‘2 will, up to a certain point, in-

1‘
crease uncoupling, and the Curie temperature will be raised. In
the following section some methods of estimating the relationships

between R; and Ry will be discussed.
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The case of cobalt differs from those of iron and nickel in
the magnitudes of the spin components involved. The components
are + 3/2 and + 1/2, and three parameters, R3/2, Rl/Z’ and R-I/Z
are required. The factor of increased probability of finding a con-
duction electron of spin +1/2 near an atom with spin componént i

is Ri' In this case

Mv = %:C—o J Ra/?- N;/l+' RVLN"z — Q“"z N"’z -3 N‘B/;.
Ko No Ry, N + Ry, Noy, + Ny,

+ 3 NJ/Z + '?~l,z Nc/z_"" Q\l-‘LN"’; 3R3/1N-3/2
Na/z + E"’z, N |I7_+ '?l/z. N""‘2.+ .?3/2 N“B/?_

The procedure for finding a relationship between MS and
MV is somewhat more complicated than that for iron and nickel.

It is necessary to find average values for both N1 /2 and N__1 /2 in

order to evaluate m—s. It is found that the state of e:;tremely high
‘degeneracy at the Curie temperature is that for which Ny /2 equals
N;-I/Z' With this restriction the sum (N1 /2 + N-l/Z) behaves in
exactly the same manner as does NO in the treatment of nickel.

The application of this modified theory to cobalt results in
a negligible change in the Curie temperature, as might be expected
from the metal's intermediate position and structure.

The saturation magnetié moment éredicted for nickel and

cobalt in this theory are slightly different from those given by Paul-

ing, but the changes are not significant ones. The reason for the
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change is readily seen by an examination of Equation ! . In the

case of iron, if both N, and NO are set equal to zero one obtains

D
the result that M-V = g, which is exactly the same as in Pauling's
simpler theory. This is to be expected because in the limiting
case in which all atomic spins are aligned the increased proba-
bility density of conduction electrons about aligned atoms merely
results in a homogeneous distribution of conduction electrons re-
gardless of the values of R1 and RZ' For nickel, however, the

value of NO at saturation is 0.715 NT and M., has a va1u¢ differ-

v
ent from the saturation value given by Pauling. Using the value
R, = 2.16 which was most suitable according to Table 1, an in-

crease of 0.006 in the saturation moment of nickel is obtained.

Cobalt shows an increase of 0,01 Bohr magnetons.,
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V. SOME PROBLEMS RELATED TO

THE ESTIMATION OF THE PARAMETERS Ri

The use of the approximation that R2 is equal to R% in the
equations of the preceding section is not entirely satisfactory, since
it is assumed that the parameters Ri are the same for iron as for
nickel and that they are independent of the numbers NU and ND. An
attempt will be made in the following pages to determine thé varia-

and N, and of the sub-

tion of these parameters with variation of N D

8)
stance being considered.

The choice of a model for the crystalline potentia;l is limited
largely by the difficulty of solving all but the simplest problems in-
volving periodic potentials. In the problem to be considered the
potential is hot strictly periodic and it will therefore be necessary
to make rather drastic simplifications in order to arrive at a model
for the potential for which a solution can readily be found*. It is
usual to replace the periodic Coulomb potential of the atoms in a
crystal by a periodic potential whose unit is a well of some attrac-
tive shape and of finite depth (21, 32). In practice it is seldom pos-

‘s_ible to use anything more complicated than a square well or a sinu-
soidal potential. The model chosen for this discussion will be a
square well potential,

The electrons referred to in the work of Pauling as '"conduc-

tion electrons'' are presumably sufficiently near the tops of the

*It is to be noted that numerous discussions have been given (25, 33)
of impurities in periodic potentials. Some of these discuss the
case of random impurities. These discussions always draw some
rather general conclusions about the behavior of energy levels but
never give the behavior of the wave functions themselves, or even
solve the problem for the energy levels,
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periodic potential wells to behave as nearly free electrons, It will
be assumed that these conduction electrons form a discrete energy
band and that the separation of this band from lower-shell bands is
su.fficiently great so that one may consider the filling of the conduc-
tion band as a separate problem. The potential in which the ;:onduc-
tion electrons move is then considered to be an almost periodic
square well potential, the aperiodicity being introduced by the dif-
ferences in depths of the wells corresponding to the differences in
stabilization energies of conduction electrons in the neighborhood
of atoms with different values of the atomic spin component.

To estimate roughly the depth of these wells one
might utilize the first ionization energy which is 7.90 e. v, iﬁ the
case of iron,; 7.86 e.v. for cobalt, and 7.63 e.v. for nickel. Since
the potential is coulombic, -1/2V =T, so that the magnitude of
the depth of the well is twice that of the ioniz.ation energy. In mak-
ing calculations it was assumed that the nickel potential is 10%0
greater than the iron potential. It is only necessary to know the
ratio of the potentials.

The "ideal" problem which it would be desirable to solve in-
volves a potential which, in the cases of iron and nickél, has square
wells of three different depths (Figure 11), The first of these is of
depth V, the second of depth V-Q, and the third of depth V-2, where
Q is the stabilization energy defined in Part II of this thesis, and V
is the number estimated in the preceding.paragraph. The solutions
should then be calculated for all possible numbers of each type of
well, and for all possible permutations of arrangement for these

given numbers. The problem which will be solved instead is based
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upon rather crude approximations to these ideal potentials. The
periodicity will be essentially ignored, as in the treatment of Paul-
ing's original theory.

It is noted that the potential shown in Figure 11 may be di-
vided into three regions. For energy levels in region III the solu-
tions are sinusoidal in all three wells. The probability of finding
an electron in well A compared with the probability of finding it in
well B for the energy levels in region III will be estimated by use
of the W.K.B. method. In region I this procedure is unsatisfactory
because the wave function is sinusoidal in A and exponential in B
and C, so that the potential is not constant over many wavelengths
and there is in fact no approximate wavelength which can be éssigned
to the wave function in B and C. In region I the problem may be
simplified by allowing the inter-well width to approach zero while
the depth of the wells remains constant. In the limit the barriers
between the wells may be ignored, and the problem reduces to one
in which a well of depth Q and width equal to the aggregate width of
wells of type A is set in the bottom of an infinite-walled box whose
width is that of the aggregate of wells of both types A and B, Itis
assumed that for levels in region I the presence of wells of type C
may be neglected, since the exponential function in well C will be
small compared to that in well B. It is likely that the limiting prob-
lem in which the inter-well width is zero will exhibit in its solution
the same dependence upon the number of deeper wells present as
does the more complicated problem from which it was derived, pro-
vided that the periodicity of the original potential does not produce

marked perturbation of the free electron levels.
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The Problem of a Well in the Bottom of a Box

The potential in the problem to be solved is shown in Figure
12. The determination of eigenvalues involves the solution of a
transcendental equation, and is generally accomplished by means
of a graph. This method is unsatisfactory where immense numbers
of levels are to be considered, so that it is necessary to develop
approximate algebraic expressions for the desired quanfities.

In the usual method of solution (34) the potential is divided
into three regions. In the first and third of these the wave functions
are exponential; in the middle region they are sinusoidal. Because
of the symmetry requirements these solutions may be writtep im-

mediately as

- &
LLl = A1 QHX + AQ_ e x
w, = B cos kx

-&
Uz = Aze*fx + Al_e X

where

k =

H = J2m(V-E) J_E—E:E,
- - 2

The application of the usual continuity conditions for the function

and its first derivative at boundaries yields the requirement that
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‘bn \(a tan\-\ ( NJ{O_) = .5_0_—

ko

for symmetric solutions and that

- tanh (Nﬂc\) cot kaa = Ha

ka

for the altermnating antisymmetric solutions.
In this problem the argument (NJ{ a) is quite large and

tanh (N} a) is essentially equal to one. The simplified equations

Ha Ha (1)

tan ka = @ -cot ka = &4¢
ko ka

are of course the familiar conditions arising in the problem‘of the
potential step. It is noted also that the requirement that u3(b)=0
implies that Az/ﬁ' = @7 24fb » so that A, is approximately zero
and may be neglected. Considering only the positive half of the po-
tential, which is entirely sufficient because of the symmetry, one

then has
u, = B, cos kx Uz = A\‘ e-‘H)x

The problem is to find the quantity Pl’ the probability of

finding a particle in the well for E € Q. This is given by

Q
B,z go cos® kx dx
b
B (Tcostkx dx + AL § e” Xy

Bl(% + z;}k Sinlk&)

- !
<amn

B2(% + jk sinzka) -2%_{.1 (e~ 2%b

o 24{0.)
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S +mﬁ;smaka

™

a 4 g 2 - 2 fa

7 + 4k5maka “+ f%f*“ o of

B2
Let g = k(l. and 11: }fm. At the boundary x = a, Bl Co8 g:»Ale‘n-
and therefore _%z, = cos” .
X e-zda

Therefore

o (3 v g e)
i (% 4+ —ll-}—-dk S|r\2_g) + C;S;‘F

Since both Z#Lk sin € and cos* &

are small compared

R
with a/2, and
.@_ >~ _ < where & and € are both &Kc,
¢+ +e C+ €
it follows that
P = a - T
-1 a + cos m + cos"g

H

It is assumed that the corresponding three-dimensional po-

tential well is such that the three-dimensional problem is separable

in Cartesian coordinates. The probability of finding a particle in a

three-dimensional well is

P = BB Be oty oy (5

- a+ s Jla +cost§, a+ cos €,

J{x J{y ' 'R:"’"
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The significant variable is the ratio of finding the particle
in the well, per unit volume of the well, to the probability of find-

ing it outside the well, per unit volume of the remaining part of

the box:
R _ Do _ am — a’ P
1- P a’? 1-P
o — a :

The quantization condition for the problem is given almost exactiy

2
by = § tan g . This implies that £+ uy = 1 and there-
1 ¢ @

fore that

R(E . an -« tzm V. 1
) ch ~ /Kz ‘ Ex + EY + _EL
~NE -t VR

There are of course mé.ny values of Ex’ Ey’ and EZ which

satisfy the requirement that Ex + Ey + EZ = E, Since all three di-

rections are equivalent, —E—x = -ZE—}Y = Ez for a given value of E. As
.long as the three energy components deviate from Ex by an amount

small compared with V - _E—x’ the value of R(E) remains unchanged.

The values of Ex’ Ey’ and EZ will therefore be replaced by E/3,

a reasonable approximation for all but a relatively small number of

states all of which occur when E is nearly equal to V. It is there-

fore found that

RE)y ab-o [zm V(V-E)*
3o* H* £’
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The density of even levels in the one-dimensional problem
will now be considered. Equation (1) may be written n-= g tan g s
and it is further observed that §2+ Tf' = Q_?H—L—w . A graphical
solution which is often used involves plotting M against % , so that
the correct solutions are the intersections of the function %tcuz%
with the circle of radius € = l\lm% . The function §tang
is of course multivalued in 'rl , one branch of the function in the
first quadrant occurring in each of the intervals nw to (n +1 /2)w.

The odd functions provide the solutions between (n + 1/2)w and
(n+l)w, and since the odd and even levels alternate it is sufficient
to consider only one set in order to determine the density of all
levels.

It is clear that there can be at most one intersection of eéch
branch of the function gm"‘g with the circle in the first quadrant.
Since branch n occurs in a specified range of g such that
(n+1/ 2)1r>§ > nw, it follows that the solutions must be distributed
according to the same rule. There must be one even:energy level
for every interval of v in € . Furthermore, the smallest possible
.interval between successive even levels is 'TZT' .

It is possible to calculate the density of levels in this system.
Because of the large value of ¢, the radius of the circle, the succes-
sive solutions are closely spaced along the circle with respect to the
polar angle 0., It is the_refore permissible to assume that for two suc-
cessive solutions the slope of the circle at both intersections is the
same. The slopeis dN = - ?; . Therefore if one solution is
given by the points (%o ) 120) the}a point in the neighborhood is

given by
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1=, (35.)

The function E 'td.'nghas the slope

3%( =Tan¥ +§sec’§

If it is temporarily assumed that the next solution: occurs at E + 10,

then the slope of this function at the next intersection will be

tan (Sorm) + (Sor w) sec* 8o+ )

and in the neighborhood of this intersection the function is approxi-

mated by the straight line

= [tanse+ (o) se€ R [5-8,-1] o, e wtan,

At the point of intersection which represents the desired new

solution

[ tan . +(5.+w)sed SJ[§-8, 7] +m tdn g,
=~ 32 (5-5)

e\ w [ (Bot )sec* %, ]
(8 E; ~tan g, + (Bt m)seet 8. {5 /%)

For all but a negligible number of levels near the mouth of

the well %ogec}' E")) 5_9., , so that one obtains
o
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’

=¥, +'n’(§°+’l‘r)3ec’~§o{/__ %o
tangr(gsv) se g 7o Ltan g, +(g,+w) secg]

Since - g, > T  for all but a small number of leveis at
the bottom of the well the term ( g‘g—w) may be replaced by go .
Since Secl'gc’-‘ l+‘tanz§° it is also permissible to neglect the term
tan §o in the denominator. If one now takes into account the odd
levels, one of which may be assumed to be half way between each

of the even levels, one obtains the final expression

~ r /
gn+/— gn - Zz E‘ - ?n \SGngnJ

The assumpfion used to obtain this result, that g,”_; 3“ = Tf)
is seen to lead to a consistent answer.

It is concluded from this analysis that the infinite-well den-
sity function, in which the spacing is exactly%r in g » is entirely
adequate for the description of the density of levels in the finite well.

The potential for the ferromagnetic crystal is based upon
that of the preceding calculation and takes the form shown in Figure
13. In region III, containing about 97%0 of the levels, it is permis-
sible to use the WKB approximation. In region I the depéndence of
R upon a has already been determined. In region II it is necessary
to combine the approximations used in regions I and Ill. First, wells
of types A and B are grouped together and compared with wells of

type C, in which the solutions are exponential, using the method

previously applied to region I. The inequality in probability density
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in well A compared with well B, which has relatively little effect
upon the result, can be estimated by use of the WKB approximation.
A It is not easy to decide on an adequate averaging process
for R. Electrons in lower levels with large values of R probably
have a more profound effect upon atomic alignment than their> rela-
tively small numbers would suggest, because of the production of
very large '""local' Weiss fields in the neighborhood of tfxese elec-

trons. The use of an average value of M., does not permit a direct

A
description of this effect, but it may be possible to take some ac-
count of the influence of electrons in levels having high values of

R by using the quantity R in the equations relating M, and M:

E:_ L/Q‘Q/?(E)/?(E}dE + 3/1/, c0.97 = /écpza,(an—af) )-o.?7
3 Ny
P (€)= L2 (2m) Ve g 1k

(2)

The number 0,97 arises from the electrons inilevels of
region III. No attempt is made to obtain a value of K from this
equation. Instead the single parameter /3 is fixed and assﬁmed
to.remain constant for all of the elements. All that can be said
in defense of this assumption is that /9 does not contain terms
which are dependent upon a, a ., Or Q. The fact thé.t the com~
pletely determined constant which has been replaced by the param-
eter (3 is not of the right order of magnitude to give reasonable
values of R is not surprising considering the change involved in
transforming the potential of Figure 11 to that of Figure 13. One

can only hope that the original assumption involved in that
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transformation is cerrect, namely, that the functional dependence
of R upon a is preserved. If appropriate values of Q, a and a
a.‘re inserted, all of the R ; are determined once 15 is chosen. Table
11 lists the values of these quantities which were used. The well
width w is taken as the cube root of the effective atomic volﬁﬁe at
the Curie temperaturé. R 1 is calculated by using the total width
of wells of types A and B as the value of a, and the 'total width of
wells of all three types for a - R2 is calculated using the total
width of wells of type A as the value of a, and the total width of
wells of types A and B for a_ . The true value of R2 is calculated
by multiplying the result of the latter calculation by the value of
R1 previously calculated, since what has been calculated here is
the ratio of the probability of finding a particle in well A compared
with that for finding it in B, while RZ was originally defined as the
rétio of A relative to C.

The extension to the case of cobalt involves the use of wells
of four different depths. Consequently there are two :regions analo-
gous to region Il of Figure 13 in which weighting facj;ors like that of
.Equation (2) must be applied. The same value for ﬁ is assumed
for cobalt as for the other elements, and three numbers, R3/2,
Rl/Z and R—l/Z’ are calculated.

Many values of ﬁ were inserted in Equation (2) in order to
observe the variation in the predicted Curie temperatures, Some
values of R1 and R2 for iron and nickel and the corresponding Curie
temperatures predicted are shown in Table 11. As in the earlier
-results with the assumption that R2 = R'lz, the predicted Cgrie tem-

perature of iron changes rapidly relative to that of nickel. When
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the predicted Curie temperature of iron is set at 1080° K the Curie
temperqture of nickel is predicted to be 457° K and that of cobalt
is predicted to be 1271° K. These are of course improvements
both ﬁpon the results of the simple Pauling theory and the results
of Chapter II, but it is difficult to tell whether the effect is a‘-ctually

large enough to account for the necessary correction.



Table 1la
R1 R
8 -1/3 8 -
a x10 NT a amx}.O NT
Fe 2.27 0.874 am 1.99
Ni 2.25 0.950 a 2.14
m
Table 11b
QZ(Fe) x 10'31NT4/3 R, R,
Fe Fe
2.96 2.50 7.51
2.43 2.05 5.11
2.24 1.89 4,37
Table 1lc
Qz(Fe) < 10-31NT4/3 Tc(Fe)
2.96 1330° K.
2.43 1130
1080
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0.794 a
m

0.550 a
m

TC(Ni)

469° K,
457

457
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Vi. CONCLUSION

The conclusion to be drawn from the preceding discussion,
especially that of Part III, is that the Pauling model of metals and
the Zener theory of ferromagnetism are, when properly combined
and modified, reasonably adequate descriptions of ferromagnetic
behavior., It seems unlikely that such a large amount of experi-
mental evidence could be even qualitatively explained by the Paul-
ing theory if it were not nearly correct. The problem of the Curie
temperatures of the alloys is by no means solved, but it seems cer-
tain that this model is a step in the right direction.

The question arises as to the way in which the differences
Betw_e.en the Pauling model and that of Slater, Stoner and other
physicists éan be reconciled. Slater himself (15) has recently
pointed out that there is a sharp dip in density in the middle of
his "atomic'' d band and that this separates the d band into an upper
and a lower part which may be identified respectively with the
atomic and valence d orbitals of Pauling. One must also reexamine
the concept of '"valence electron' which has perhaps been a little
more inflexible than necessary.

When identical atoms are brought together to form a crys-
tal it is supposed by physicists and chemists alike that there is a
narrow relatively unperturbed atomic band and a widened valence
band which is formed from the strongly overlapping bonding orbi-
tals of the atoms. All that is actually réquired of a ""valence level”
is that it be energetically more stable than the isolated atomic

wave function from which it was formed. It is not essential that
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electrons in these levels behave as a free electron gas. The lower
part of Slater's d band seems to satisfy the requirement for a valence
band.» If it is reasonably broad it will contribute a significant amount
to valence stabilization, and the entire valence band might be treéted
roughly as a hybrid of d, s, and p orbitals. The difference between
the Slater and Pauling models may actually be largely one of nomen-
clature. |

What will happen if the valence electrons are not treated as
free electrons ? The first variation which comes to mind is that used
by Stoner. Suppose that one chooses an effective mass for the elec-
tron, as Stoner did, in order to give better results for the Curie
temperatures of cobalt and nickel. A step very much like this has,
in fact, already been taken by means of the adjustment of the inter-
action energy described in Part IIl. Since all effects in the Pauling
theory depend upon the uncoupling of valence electrons, ahd the num-
ber of valence electrons uncoupled is proportional to the product of
the interaction energy and the density of levels, the alteration of
the interaction energy produces an effect nearly equivalent to that
‘produced by multiplication of the valence band level density by a con-
sfant factor, which is equivalent to choosing a new effective mass
for the electron. The only difference between effects arises because
the Curie temperature is proportional to the first pbwer of the den-
sity and the second power of the interaction energy, while the number
of valence electrons uncoupled is proportional to the first power of
each. This results in a small variation in the total moment when
the product of the density and the square of the interaction energy

is kept constant and the interaction energy is varied.
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It is clear that even if the original Pauling theory were en-
tirely successful in predicting the Curie temperature of iron it would
not be possible to state with certainty that the valence electrons were
free electrons. It could only be concluded that the product of the true
level density and the square of the true interaction energy was about
the same as that of the free electron density and the square of the
atomic interaction energy. Provided that this product is kept con-
stant it makes relatively little difference what values of the effec-
tive mass and interaction energy are used, The principal assumption
which is made in varying the band structure of iron to find the best
value of the Curie temperature is not that the electrons are free,
but that the ratios of the interaction energies of d electrons with s
electrons, with p electrons, and with other d electrons rerha.in con-
stant whatever the actual values of the interaction energies.

The 0.6 electron per atom which physicists call the valence
electrons are generally believed to behave as free particles, so that
the Zener model could not be used to explain ferroma;gnetism if
these were éctually the only valence electrons. If that were so,

" the amount of uncoupling would not be enough to give the high .Curie
témperatures of the ferromagnetic elements. One must conclude

both from this argument and from the evidence of bond distances

that bonding stabilization is contributed by about six electrons per
atom. From the calculations involving cobalt and nickel it is fur-
ther concluded that these electrons are not entirely free. This modi-
fication removes the principal objection of physicists to the Pauling

model,
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One could abandon the assumptions made in Part III and
methodically investigate the behavior of the alloys with the use of
various values of the valence band hybridization, interaction energy,
and effective electron mass. The best answer cannot lie far from
the one used in Part III, because about 2.5 atomic orbitals are
necessary to account for the behavior of the magnetic moments of
the alloys. Similarly, one could adapt the calculations.of Part IV
to the problem of alloys and perhaps account for some of the devi-
ations from experimental results. The major conclusion, however,
would probably remain unaltered. Ferromagnetism is to be attribu-
ted primarily to interactions of electrons in narrow bands with
electrons in relatively wide bands. The electrons in the wide bands
are not necessarily free electrons, but may be discussed ih terms
of an effective electron mass. The number of orbitals in the narrow
d band is about 2. 5; the number of electrons in the wider Band is
about 6. 0. With minor modifications, this model will probably be
capable of adequately describing the properties of thel ferromag-

netic elements and all of their alloys.
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APPENDIX 1

ENTROPY OF A FERMI GAS NEAR ABSOLUTE ZERO

- It is necessary to evaluate the number of possible distribu-
tions corresponding to the most probable configuration of a free

electron gas at some temperature T near absolute zero. For a

Fermi-Dirac system (35)
0= 3 0= gy I (=) +Nj In(F-1)]

|
where f- = E(E—E/'V*T+' , and %) = 2TV (2 m)a/z\/E=cU—E

"3

In the integral approximation,

Ina = Cf EA[-1n0-§) + §+ (5E') ] 4E.

We follow the method of Sommerfeld and Bethe (36) for evalu-

ation of integrals of this sort. Integrating by parts, we find

N L Py Ay
__ Do 3 S mF & 7 [_‘2—5 Z2EL —LZZ“(E'

@
An integral of the form fo((E) Z;Z’éé @ZE  can be expanded as a
(]

power series in kT. Taking only the first two terms, the value of

the integral is

A(E) + T2 (£T)* é’_f‘ﬁ)
é .

2€*

Therefore we have
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|n_QD;5 §c[(f';z)g:+ T (&T)za-a; (/f;/z)s']

+ < 5
arL(&E e Ze e

+ (A1) 22 (2 %% MY, :
6 EZ_(EE “%EE 2)21]

Since only first order corrections are to be considered it
is sufficient to set E' = Eg , the value of E' at absolute zero, The
only first order term in T arises as one part of

- w? * 2 ’ 2
= [ X°(£T) 2 (2 SN 5 )E’].

The remaining terms are either of higher order or are temperature-
independent and therefore are part of the entropy at absolute zero,
which is zero.

The equation which results is

In g = 2 ) gl a3t kT

Therefore we have
F=H-Ts=H- 4T /n, =
or2 L4 £t (47)*]~ e 1 6 (£D)"

- 2
= . 2 e S5 a2
e 5 E, L/ 27 {/TE;Z- zi].‘
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PROPOSITIONS

1.. It is proposed that the enzyme ascorbic acid oxidase
functions by direct combination with oxygen and not by the rever-
sible oxidation of cuprous ion, as is generally believed. Evidence
is presented for this conclusion, and it is suggested that all
naturally occurring copper~containing proteins which have a
deep blue color in 5°/0 solution be investigated for possiﬁle ‘
ability to unite with oxygen.

2. It has recently been stated (1) that the binding of zinc
by the hormone ACTH is favored by high concentrations of hydro-
gen ion, though other proteins are well known to have a decre_ased
affinity for metals at low pH. It is proposed that this conclusion
is inco.rrect, and it is shown that the experimental data upon
which it is based, when correctly interpreted, account satisfac-
torily for the observed results without requiring the abnorrﬁal
behavior of ACTH,

3. The Doppler effect for scattering by periodic struc-
tures may be discussed most conveniently by the introduction of
a four-dimensional reciprocal lattice.

4, It is proposed that the number of valence electrons
characteristic of the Y phases of iron, cobalt, and nickel is 5. 53,

5. It is suggested that the method used by Taglang (2) to
determine the atomic moments of isoelectronic sequences of
ferromagnetic alloys is not accurate because the assumed linear
relationship between magnetic moment and Curie temperature
doesnot exist. The values of the atomic moment obtained by

Taglang are shown to be too high,
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6. It is proposed that the magnetic behavior of iron-vanadium
alloys be reinvestigated with the use of carbon-free metals. It is
predicted that a rise in the magnetic moment will be observed upon
the addition of small amounts of vanadium to pure iron.

7. It is suggested that the hemocyanin of the horseshbe crab,

Limulus polyphemus, is used almost entirely for reserve oxygen

storage, much like the myoglobin of vertebrates.

8, It is proposed that the conclusions reached by Huxley
and Stampfli (3) concerning the current distribution on the surface
of internodes in single nerve fibers are not justified by the experi-
mental technique employed. A modified experiment is proposed
which would provide the information necessary to draw such con-
clusions.

9. The statement that the introduction of metallic orbitals
in the Pauling theory of metals is necessary for the explaﬁation of
metallic conduction is incompatible with the statement that the
Pauling theory can be shown to be identical with the simple Bloch
theory.

\ 10. It has recently been discovered (4) that the rapid de-
composition of diazomethane can produce unique and complex frac-
ture patterns in spherical Pyrex containers, and that these patterns
can be recorded by a suitable experimental arrangement. With a
knowledge of the tensile strength of Pyrex it has been possible to
evaluate the line integral of the pattern over the surface of the
sphere, to obtain a value of the heat of formation of diazomethane
of 40.3 kcal., in excellent agreement with the estimated experi-

mental value of 40.4 kcal.
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11. A recent review article (5) on the formation of Liesegang
rings discusses the "quantum-mechanical" explanation of the phenome-
non. The original paper (6) upon which this discussion is based con-
tains several fundamental errors, and it is proposed that there is no
basis for a discussion of the Liesegang phenomenon in terms ‘of

quantum mechanics.
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