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ABSTRACT

The problem of determining linear models of structures from
seismic response data is studied using ideas from the theory of system
identification. The investigation employs a general formulation called
the output-error approach, in which optimal estimates of the model
parameters are ohtained by minimizing a selected measure-of-fit
between the responses of the structure and the model. The question
of whether the parameters can be determined uniquely and reliably in
this way is studied for a general class of linear structural models,
Because earthquake records are normally available from only a small
number of locations in a structure, and because of measurement noise,
it is shown that it is necessary in practice to estimate parameters of
the dominant modes in the records, rather than the stiffness and damp-
ing matrices.

Two output-error techniques are investigated. Tests of the
first, an optimal filter method, show that its advantages are offset by
weaknesses which make it unsatisfactory for application to seismic
response. A new technique, called the modal minimization method,
is developed to overcome these difficulties. It is a reliable and effi-
cient method to determine the optimal estimates of modal parameters
for linear structural models.

The modal minimization method is applied to two multi-story
buildings that experienced the 1971 San Fernando earthquake. New
information is obtained concerning the properties of the higher modes
of the taller building and more reliable estunates ol the properties of

the fundamental modes of both structures are found. The time-varying



character of the equivalent linear parameters is also studied for both
buildings. It is shown for the two buildings examined that the optimal,
time-invariant, linear models with a small number of modes can re-
produce the strong-motion records much better than had been supposed

from previous work using less systematic techniques.
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1. INTRODUCTION

1.1 Structural Identification, Introduction and Previous Work

Broadly speaking, system identification is the process of try-
ing to deduce a model of a real system from its output and possibly
its input. In this definition, 2 model is any mathematical represen-
tation of the system which allows a good approximation to its output
to be computed. * An important aspect of system identification is to
allow for the fact that measurements made on the system are inevi-
tably contaminated by noise. Some survey articles on system iden-
tification in general are those by Cuenod and Sage (1968), Bekey
(1970), Nieman, Fisher and Seborg (1971), Astrdm and Eykhoff
(1971), Bowles and Straeter (1972), and Sage (1972). " The book by
Eykhoff (1974) also has an extensive bibliography.

This dissertation is concerned with the application of system
identification ideas to structural systems such as buildings, bridges
and dams. In this context, the output of the system refers to the
histories of response quantities measured at points within the struc-
ture. These quantities could be the displacement or its time deriva-
tives, velocity and acceleration, or even the stress or strain.

However, it is rare for the latter to be measured in structures and

The terms input and output are used here in a technical sense to de-
scribe the observed portions of the excitation and response, respec-
tively. Theyneednot correspond to the complete excitation and re-
sponse of the system.

ate ol

"“References are given at the end of each chapter.



and the term ''response at a point" will be used to refer to the dis-
placement or its derivatives unless otherwise specified. The input to
the system refers to the measured portion of the excitation producing
the structural response.

Some survey articles on different areas of structural identi-
fication are those by Schiff (1972), Collins, Young and Kiefling (1972},
Rodeman and Yao (1973) and Hart and Yao (1977). Hudson (1977) has
reviewed the means by which structural response data can be produced.
We shall first consider two widely-used sources, steady-state har-
monic tests and ambient vibrations, and then concentrate on the major
concern of this dissertation, which is the use of seismic response

records.

1.1.1 Steady-State Harmonic Tests

Steady-state harmonic tests are performed by shaking a struc-
ture with special mechanical vibrators which effectively exert a sin-
usoidal point-force on the structure. In this area, structural identi-
fication with linear models has been applied quite extensively. The
basic approach, as in most frequency-domain methods, is to estimate
the amplitude and phase components of the transfer function,

H(iw), between the location of the response measurement and the
location of the excitation. Because of both the steady-state charac-
ter and the monochromatic frequency content of the input and output,
these functions can be evaluated directly from the amplitude and phase

of the response, relative to the exciting force, for each frequency of



excitation.

In practice, the phase information is often ignored and the
modal parameters are estimated from resonant peaks of [ﬁ(iw)l,
the amplitude of the estimated transfer function. The modal fre-
quencies are estimated from the location of these peaks; the modal
damping factors are estimated from their half-power bandwidth; and
the (unscaled) modeshape values are estimated from their heights.
Some consideration of the phase is required to determine the correct
sign of each modeshape value. In some cases, the parameter esti-
mates obtained by this resonant-peak technique are strongly affected
by modal interference, that is, by the contribution to the response of
other modcs in the neighborhood of a given modal frequency. This
can make the damping estimates particularly unreliable. Hoerner and
Jennings (1969) have investigated a particular case of modal interfer-
ence.

A deficiency of the resonant-peak technique is that only a small
number of points of 1I:\I(iu))[ are used to estimate the modal param-
eters, so much of the data is ignored or, at best, used only quali-
tatively. This makes the estimates sensitive to measurement noise
and to model error, where the latter refers to errors arising becausec
the structure is not a time-invariant linear system with uncoupled
modes as assumed in the model. Nevertheless, the approach has
proved successful with low-amplitude forced vibration tests because
the noise levels involved are small for the lower modes of vibration.

However, as discussed later, the same technique applied to \H(iu))\



estimated from seisinic response records leads to unreliable para-
meter estimates because the noise levels and model error are much
greater.

Ibéfﬁez (1972) has pointed out the above deficiency in the context
of steady-state harmonic tests and proposes a technique which uses
all the frequency-domain data. This procedure, which he calls YFIT,
estimates the parameters by minimizing an output-error functional.

It is essentially a frequency-domain version of the general system
identification approach adopted in this work.

The above discussion has been concerned with identification
using linear models. The identification of structures using nonlinear
models and steady-state harmonic data has been investigated by
several authors, including Ibitez (1972), Jennings (1967) and Novak

(1971).

1.1.2 Ambient Vibrations

Structural identification has also been carried out by utilizing
ultra low-level ambient vibrations induced by wind and microtremors.
Techniques for this application generally assume that the system is
linear, the excitation is (band-limited) white~-noise and that the re-
sponse is an ergodic random process. The stochastic hypotheses
are necessary because the actual excitation, which is spatially-dis-
tributed, is not recorded.

By treating each individualmodal response as that of a singledegree-

of-freedom oscillator, itis posasible to dcterminc an cffective transfer



function using an approach based on the equation:

P_(w) = |Hiw)| %P, ()

where PO and Pi are the power spectral density of the output and
input respectively of a linear system. FIor ambient vibrations, PO
must be estimated from the recorded response whereas Pi is un-
known but, by hypothesis, assumed constant. In practice, because
only records of finite length are used, the stochastic hypotheses above
have the same effect as making the deterministic assumption that the
average over the records of the Fourier amplitude spectrum of each
point-excitation does not vary greatly with frequency. The average
spectrumm of the records can then be used directly as an estimate
of IH(iw)\ in the neighborhood of each modal frequency. This allows
the efficient Cooley-Tukey FFT algorithm to be used.

Once ‘H(iw)\ has been estimated, the parameters can be
determined by the resonant-peak technique discussed in the previous
section. Again, difficulties arise because of modal interference and
the use of only a few data points, which are accentuated in this appli-
cation because of the more variable character of the estimated
transfer function. In addition, the assumption that the average spec-
trum of the excitation is approximately constant is often violated.
This can be caused by strong wind gusts for eiarnple. A further
consideration relates to the frequency resolution. In steady-state
harmonic tests the frequency resolution depends on the frequency

control of the shaker. With modern equipment, a frequency



resolution of 0,01 Hz or less can be achieved. However, when the
transfer function is estimated from ambient data the frequency reso-
lution is given by 1/T where T 1is the record length, so that very
long records are required to adequately define the resonant peaks of
the low modes.

Schiff and his colleagues (1972, 1973) give a discussion of the
difficulties which arise when the modal paramcters arc cstimated
from an estimate of the transfer function made under the assumption
of white-noise excitation. Schiff proposes applying a parametric
curve-fitting method to lﬁ(iu>)i which considers all the frequency-
domain information in the neighborhood of a modal frequency in order
to get more reliable estimates of the corresponding modal parameters.
In the second paper, the authors carry out some tests by applying this
technique and Vanmarcke's method of moments (1970) to simulated
data. They were interested in investigating whether these techniques
could successfully estimate the damping from short-duration records
so that they could be used with seismic response data. The results
indicate that for a single-degree-of-freedom linear oscillator at
least ten cycles from a stationary response are required to get rea-
sonable damping estimates from either of the methods mentioned
above. Furthermore, nonstationarity of the response has a strong
influence on the accuracy of the damping estimates. By way of
comparison, one of the time-domain techniques discussed later gives
nearly exact results in an analogous situation, even when only half of

a cycle of nonstationary response, together with the corresponding



nonstationary excitation, are used in the identification process. This
illustrates the importance of using input records if they are available.
The discussion so far has concentrated on frequency-domain
identification methods for ambient vibration data and the attendant
difficulties. Gersch and his colleagues (1974, 1976) have developed
a time-domain technique which is based on an auto-regressive moving-
average model of a discrete time-series. This technique appears to
be a promising one for ambient vibration applications, particularly
since it gives some idea of the accuracy of the computed estimates

of the parameters.

1.1.3 Seismic Response Data

It has long been recognized that an earthquake can be viewed
as a full-scale, large-amplitude experiment on a structure, and that
if the structural motion is recorded, it offers an opportunity to make
a quantitative study of the behavior of the structure at dynamic force
and deflection levels directly relevant to earthquake-resistant design.
However, the time and location of a strong-motion earthquake can
not be predicted with confidence so the acquisition of such data
requires an extensive deployment of dedicated instrumentation, which
must be capable of remaining operational over long periods of time.
For these reasons, response data of good quality were not readily
available until recently, so there was little motivation to develop
systematic techniques for structural identification from earthquake

rccords.



The 1971 San Fernando earthquake in California dramatically
changed this situation. Seismic response records from about 50
buildings in the Los Angeles area were obtained (Jennings, 1971;
California Institute of Technology, 1971-1974). None of the instru-
mented buildings was heavily damaged but the peak acceleration
response in some buildings approached % g and many of the buildings
exhibited nonlinear behavior, at leasl to the exlent of lengthening
fundamental periods.

To date, the ideas of system identification have not been fully
utilized in the interpretation of these records. A common approach
has been to compare the recorded response of a building with the
response of a synthesized linear model subjected to the recorded
base excitation. This comparison has been followed by some trial-
and-error adjustment of the model parameters to achieve better
visual matching of the theoretical and recorded response. (Wood,
1972; Blume and Associates, 301-443, Gates, 445-574, Martin and
Associates, 575-596, in Murphy, 1973). Such an approach can be
viewed as a rudimentary scheme for estimating parameters in the
time domain. One of the aims of this work is to investigate system-
atic versions of this procedure which give the best possible response
matching in a2 well-defined sense.

Systematic techniques for structural idéntification from
earthquake records must contend with the transient nature of the
excitation and response records. However, in contrast to ambient

vibrations excited by wind and microtremors, most of the excitation



can be recorded.

If a building is supported solely by a rigid foundation then the
excitation would be completely specified by recording the motion in
the six rigid-body degrees of freedom of the base. In the past, only
the three translational components at one point on the base have been
recorded so that it is difficult to separate the rocking and twisting
components of the base motion from the translational components.
Nevertheless, in the absence of strong soil-structure interaction,
the dominant contribution to the lateral response of the structure will
arise from the horizontal motion of the base. Itis also often assumed
that the building axes define two orthogonal horizontal directions in
which the total horizontal response can be decomposed so that the
component in each direction is due only to the base motion in that
direction. This leads to the commonly assumed planar structural
modele. One limitation of these models is that they do not treat
properly any torsional response of the structure.

Several authors have applied frequency-domain identification
to data from the San Fernando earthquake (Hart, 597-607, in Murphy,
1973; Udwadia and Trifunac, 1974; Hart et al, 1975; Hart and
Vasudevan, 1975). For a planar linear model the response history
y (acceleration, velocity or displacement) at any point is related in
the frequency domain to the base acceleration history %z by the

transformed Duhamel equation:

Y(w) = Hiw) Z (w) (1.1.1)
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where H(iw) is the appropriate transfer function. In theory, this
relation could be applied to estimate H(iw) and then any of the rele-
vant techniques discussed in the previous sections could be applied

to estimate the modal parameters, although the half-power band-width
method for estimating damping is generally replaced by an approach
based on the height of the resonant peak. This approach requires a
prior estimate of the corresponding modeshape so that the participa-
tion factor can be evaluated.

In practice, difficulties arise because the estimated transfer
functions are characterized by extreme variability with numerous
peaks which appear to be a function of measurement noise and model
error and are not related to resonant peaks. Smoothing of ‘Y(w)i
and ]Z (w)| before taking their quotient, or smoothing of !ﬁ(iw)i
after division, can reduce the variability and therefore make the
resonant peaks more apparent, but this leads to a loss of inforination
which can result in the damping being overestimated. Generally,
past work suggests that the only modal parameters which can be re-
liably estimated from ‘ﬁ(iw)\ by current techniques are the fre-
quencies of the first few modes and possibly the damping factor of the
fundamental translational modes.

A further complication in any frequency-domain approach
arises from the typical short duration of earvthquake records. This
leads to a frequency resolution which is inadequate for long-period
structures when the Cooley-Tukey FFT algorithm is used to determine

the Fourier spectra of the base motion and structural response.
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Spectral ordinates can be calculated at intermediate frequency points
either by adding zeros to the digitized time-history data or by eval-
uating the Fourier transform integral at selected frequencies. This
will produce valid estimates of the true Fourier spectrum only if the
major portion of the complete excitation and response histories are
used in the spectral analysis. This same requirement is also nec-
essary of course for the transformed Duhamel equation (1.1.1) to
be a valid approximation, unless it is modified to include nonzero initial
and final conditions. Because of these considerations, there are
difficullies in any frequency-domain approach which must be overcome
if short time segments of the full response are to be used.

Some of the above difficulties can be avoided by using the
time-domain version of the nonparametric identification procedure
based on equation (1.1.1), that is, the impulse response function h(t)

is estimated from the Duhamel or superposition integral equation:

t
y(&) = [ h(ryz(t- mar (1.1.2)
0

where it is assumed that there is no motion until time t = 0. The
modal parameters are then estimated from the computed h(t).
Torkamani and Hart (1975) have estimated the impulse re-
sponse function by discretizing equation (1.1.2), which leads to a set
of ill-conditioned linear equations. They apply a smoothing criterion
during the estimation of h(t) to help overcome this problem. Udwadia

and Marmarelis (1976) have estimated h(t) from equation (1.1.2) by



-12-

using a correlation technique based on the assumption that the base
motion is white noisc. They used the basement and roof records
produced in the Millikan Library building at the California Institute

of Technology during the San I'ernando earthquake. In a companion
paper, these authors have also applied the correlation technique to
determine the second-order Wiener kernel of the Millikan Library
from this earthquake data to attempt to gain some insight into the
nonlinear processes which occurred in the building (Marmarelis and
Udwadia, 1976). The Wiener kernels give a nonlinear, nonparametric
model which is based on a representation of the response as a sum of
integral terms that is valid for a general class of nonlinear systems.
The first-order kernel is analogous Lo the lmpulse response function
because the corresponding integral term in the representation of the
response has the same form as the right-hand side of equation (1. 1.2).
One problem in identifying Wiener models from earthquake records

is that the excitation is not band-limited white noise and it is difficult
to determine the effect of this on the estimated kernels.

In the cited papers by Udwadia and Marmarelis, the authors
point out the nature of the compromise that must be made in the
selection of the record length to be analyzed. On one hand this should
be long so that the statistical variability of the estimates is reduced but
on the other hand it should be short enocugh that the structural prop-
erties can be considered stationary. This is a major difficulty for
non-parametric identification of structural systems because many

cycles of response are required to give reliable estimates.



-13-

Iemura and Jennings (1973) have developed a novel nonpara-
metric technique based on the general form of the equation of motion
for a single degree-of-freedom oscillator. They used their approach
to eslimate the global hysteresis loops from the roof response of the
Millikan Library during the San Fernando earthquake. The same
approach has recently been applied to some seismic response records
for an earth dam (Abdel-Ghaffar et al, 1977). The hysteresis loops
identified by this technique appear to be contaminated by considerable
noise unless the original data are severely band-pass filtered about
the fundamental frequency of the structure.

In general, the performance of nonparametric identification
methods when applied to earthquake records has not been completely
satisfactory. It is felt that these difficulties may stem from the lack
of model constraints during identification in the presence of high
levels of measiirement noise and model error, particularly the latter.
For example, in the nonparametric procedures based on equation
(1.1.1) or (1. 1. 2), the only assumptions made about the structural
model is that it is linear and time-invariant. Much useful informa-
tion, such as the fact that the dynamics satisfy Newton's Second Law,
is ignored. A parametric model is imposed only after the transfer
function H(iw) or the impulse response function h(t) is estimated,
so the prior information contained in this model is not used in the
critical first stage of the identification where it wnuld facilitate the
extraction of the signal information from the noise. It would appear

to be advantageous to impose the parametric model right from the
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start when such a model is available. Prior knowledge can then be
utilized more efficiently to reduce statistical variability and hence

to enable the structural parameters to be estimated more reliably

from short records.

Most of the work in structural identification using parametric
models has been based on variations of the response-matching idea
mentioned earlier. This is referred to as the output-error approach
to parameter estimation and it is the basis of the techniques inves-
tigated in this dissertation. The model parameters are estimated by
minimizing an integral (continuous data) or sum (discrete data) of the
squared response error. Althoughpastworkhas favored the time domain,
linear parametric models can also be determined in the frequency do-
main by applying the output-error approach using the square of the trans-
formed response error. If the complete records are used, then by
Parseval's identity the parameter estimates should be equal to those
obtained by minimizing in the time domain.

Many authors havé tested identification techniques for para-
metric models by employing simulated seismic response data.
Distefano and Rath (1974) have applied two output-error techniques,
one based on an optimal filter and the other on a Gauss-Newton
procedure (which is also known as the modified Newton-Raphson
method). They use these techniques to estimate the parameters of
some single degree-of-freedom nonlinear models from simulated

data. The same optimal filter approach is used in this work with
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linear models. Beliveau (1975) has also used the Gauss-Newton
method to estimate the parameters of a single-mass linear soil-
structure system and a single degree-of-freedom nonlinear system
on a rigid foundation. Udwadia and Shah (1975) cstimated the stiff
ness distribution of a continuous shear beam. They found it necessary
for this continuous case to add derivative terms to the integral squared
response error to provide smoothing constraints during minimization,
which was done by a mixed gradient technique (steepest descent fol-
lowed by conjugate gradient near the minimum). Finally, a discrete
equation-error technique has been developed by Caravani et al (1977)
to estimate the stiffness and damping matrices for a linear chain
model. In contrast to output-crror tcchniques, this technique requires
a response record for each degree of freedom and so it has limited
potential as far as seismic data is concerned.

Several authors have applied time-domain techniques to de-
termine parametric models from both simulated and real data.
Raggett (1974) has employed an output-error approach to estimate
modal parameters. He uses the simulated seismic response of a
three degree-of-freedom linear chain system and response data from
a real structure. His technique is described more fully in Chapter 5
because the technique discussed there has several similar features.
Distefano and Pena-Pardo (1976) have used the optimal filter tech-
nique to estimate the parameters of a linear three degree-of-freedom
chain model and the same model with cubic softening added. They

tested the algorithm with simulated data and then applied it to records
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obtained from a three-story steel-frame structure, which was shaken
by simulated earthquakes on the large shaking-table at the Richmond
Field Station, University of California, Berkeley. This facility has
also been used by Matzen and McNiven (1976, 1977) to generate
seismic'' response records for a single-story steel-frame. They
then use these recorded data, after some prior testing with simulated
data, to estimate the parameters of a single degree-of-freedom
model with a Ramberg-Osgood hysteresis law. They employed a
Gauss-Newton procedure to minimize the integral squared response
error. Finally, Beck and Jennings (1977) tested an optimal filter
algorithm on a single degree-of-freedom linear oscillator and then
applied this algorithm to short time-segments of the response to
investigate the changes in the equivalent linear parameters of the
fundamental mode of the Union Bank building during the San Fernando

earthquake.

1.2. OQutline of This Work

The principal aim of this work was to devise a practical ap-
proach which would allow the best estimates of parameters of linear
structural models to be determined systematically from records of
base motion and response during an earthquake.

Linear models were chosen partly because they are a natural
starting point for identification of structures and partly because they
are easily formulated. In addition, the identification of time-invar-

iant linear models is of practical importance because these are the
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models commonly used in dynamic design. This is either through
their use in the response spectrum approach (Hudson, 1956; Housner,
1959), which is based on the modal decomposition of linear structural
models, or through the use of synthesized models and particular
ground motion records to compute full response histories. One of
the aims of this work was to investigate how well time-invariant
linear models can reproduce the strong-motion response of a build-
ing.

The general features of parametric and nonparametric models
for structural identification are discussed in Chapter 2, and it is
concluded that the former models are more useful in earthquake
engineering. It is noted that empirical parametric models obtained
by the identification of existing structures can be used to evaluate the
accuracy of techniques for synthesizing models from structural plans.
In addition, empirical models can be used to estimate parameters,
such as those describing structural damping, which are difficult to
determine by synthesis.

These remarks in Chapter 2 are followed by the formulation
of what is termed the output-error approach to parameter estimation.
This approach is based on the idea of estimating the parameters by
calculating those values which optimize the match between the re-
corded andmodel responses. It is noted that any technique which
implements this formulation will not only provide a means for deter-
mining the optimal estimates of the parameters of specified models,

but in the case where measurement noise is known to be small, it
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will also allow the mathematical form of the model to be evaluated.
The remainder of Chapter 2 contains a discussion of the reliability
of the estimates of the parameters obtained by an output-error
method.

In Chapter 3, the question of identifiability of a general class
of linear structural models is examined. This involves an investi-
gation into whether the values of the parameters of the model are
specified uniquely by its input and output, which is a necessary condi-
tion for uniqueness of the optimal estimates given by an output-error
method. An investigation of identifiability is particularly important
when the measured output from a system does not correspond to the
history of the complete state of the model used in the identification.
This is the situation when earthquake records are used in structural
identification because on one hand, the response is typically measured
at only a small number of locations in the structure, while on the
other hand, it is desirable to have a large number of degrees of
freedom to model adequately the distribution of stiffness.

Two results of importance are proved in Chapter 3 relating
to the identifiability of the class of linear structural models con-
sidered. The first shows which parameters are specified uniquely
by the input and output of a model. These are the modal periods,
damping factors and effective participation factors. The second
result shows that to determine the stiffness and damping matrices

uniquely within the general class of linear models with N degrees
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of freedom, it is necessary to measure the response at no less than
#N of the degrees of freedom. This assumes thal sufficiently good
prior information about these parameters is available so that the
appropriate values can be chosen from a finite number of possible
values. If this is not the case, uniqueness is strictly guaranteed

only if the response is measured at every degree of freedom.

The class of models may be further restricted to ensure identi-
fiability. However, it is concluded that even if the models are identi-
fiable, the stiffness and damping matrices generally cannot be esti-
mated reliably in applications because of noise in the records. A
practical strategy is then suggested for structural identification using
linear models and earthquake records, in which the parameters of
the dominant modes are estimated by perforining a series of identi-
fications.

An investigation is made of two output-error techniques to
estimate modal parameters of linear models from seismic records.
The first, described in Chapter 4, is an optimal filter method which
was adapted from the literature on state estimation. This technique
processes the data sequentially and leads to sequential estimates of
the parameters. The second method, described in Chapter 5, is
an iterative approach which uses all the data at each iteration. It
is referred to as the modal minimization metﬁod and it was developed
in this work to provide a reliable technique to estimate the modal

parameters after certain weaknesses of the optimal filter technique
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became apparent when it was applied to seismic records. Both
methods were initially tested by using simulated seismic response
records.

The modal minimization method was applied to seismic rec-
ords from two multi-story buildings and the results are reported in
Chapter 6. Optimal estimates of the parameters of the first few
dominant modes are presented and their reliability is discussed. It
is shown that the optimal time-invariant linear models for the build-
ings can reproduce their strong-motion response remarkably well.
In addition, time-varying lincar models are used to examine changes
in the structural properties of the buildings during their earthquake

response,
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II. IDENTIFICATION USING PARAMETRIC MODELS

Some of the features of two principal categories of models,
parametric and nonparametric, are discussed in this Chapter and the
advantages derived from using the former in earthquake engineering
are given. The output-error approach to parameter estimatjon is
then formulated and several associated problems are examined,
including the reliability of the estimates of the parameters. Except
for §2. 1.1 and parts of §2. 1. 2, the discussion in this Chapter has
general applicability in system identification. In later Chapters,

several aspecls will be specialized to linear structural models.

2,1, Paramectric and Nonparametric Models in System Identification

A model is defined here to be any mathematical representation
which approximates the relation between the input and output of a
system. The models emploved in system identification can be clas-
sified into two principal categories:

(2a) Parametric models. Here a particular mathematical

form is chosen to describe the essential features of the input-output
relation of the system under study, but certain parameters must be
assigned values before the model is completely specified. Often prior
information is available to assist in this step, but in general some of
the parameters must be estimated from the input and output of the
system. As an example, a single degree-of-freedom model could be

represented in the time domain by the differential equation:
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X+ £(t, x,x32) = z(t) (2.1.1)

where =x(t) is the output of the model; =z(t) is the input to the model;
the restoring force f is a prescribed function or functional and a
is a vector of unknown parameters to be estimated. If the model is
linear and time-invariant, an equivalent representation in the fre-

quency domain (Fourier-transform space) is:

X(w) = H(iw2)Z(w) (2.1.2)

where H is a prescribed function of y containing unknown param-
eters a to be estimated.

(b) Nonparametric models. Here the unknown parts of the

model are functions rather than parameters, and so they are like
infinite-dimensional ""parameters' for identification. The only as-
sumptions that need be made about the system are that it has finite
memory and is time-invariant, although linearity is also often as-
sumed. The system is treated ag a '"black box'! since the aim is to
determine a functional relationship between the input and output with-
out recourse to any prior information about the internal structure

of the system. For example, a time-invariant linear model with a
single input and a single output could be characterized by the impulse

response function h(t) and the associated input-output relation:

x(t) = jo h(7)z(t - T)dT (2.1.3)
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The corresponding model in the frequency domain would be given by
the transfer function H(iyw), the Fourier transform of h(t), and the

input-output relation:
X(w) = Hiw)Z(w) . (2. 1. 4)

Note that in the nonparametric formulation, h(t) and H(iw) are arbi-
trary functions to be estimated from the input and output, whereas in
(a) these functions are of a prescribed form but with unknown param-
eters. Different identification procedures are therefore required in
the two cases.

In view of the preceding discussion of models, system identi-
fication can be considered as the process of:

1) specifying the matﬁematical form (input-output re-
lation) of the model for the system under study,

2) estimating the unknown parameters for a parametric
model, or the unknown functions for a nonparametric model, using
input and output data from the system,

3) evaluating the capability of the selected model to

describe the essential features of the system.

2.1,1, Parametric and Nonparametric Models in Earthquake

Engineering

The prime motivation to engage in system identification re-
search in earthquake engineering is to provide the design engineer

with more accurate models with which to predict the seismic response
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of a proposed structure during its design. Nonparametric models
suffer from several disadvantages for this application which stem
from the fact that they neglect prior knowledge about the system.

Firstly, the identification of nonparametric models for struc-
tural systems is inevitably followed by a parametric interpretation,
whenever this is possible. For example, the estimated transfer
function }:I(iw) completely characterizes a linear nonparametric
model for a structure, but without imposing some parametric model
it is difficult to give a physical interpretation of the information in
this model. This is the reason for the common practice of subse
quently estimating the parameters of a linear parametric model from
the estimated transfer function. It has already been pointed out in
Chapter 1 that if parametric models based on prior information are
available, it would be better from the point of view of reducing sta-
tistical variability to use these models from the beginning of the
identification process. This is particularly the case when linearity
is assumed because the parametric form of linear structural models
is well known.

Possibly the greatest disadvantage of truly nonparametric
models in earthquake engineering is that they are empirical models
which cannot be constructed by synthesis. Successful identification
from records at a number of points in a structure leads to a relation
between the excitation and response at only those points. The be-
havior at other points in the structure, or the seismic response of

different structures, cannot be predicted from a purely nonparametric
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model. In particular, these models are not useful in the process
of designing for earthquake resistance wherein the seismic behavior
of a proposed structure must be predicted,

These disadvantages of nonparametric modcls can be avoided
by using empirical and synthesized parametric models, so that the
latter models are more useful in earthquake engineering. In the
remainder of this dissertation, the emphasis will therefore shift to
parametric models and the adjective "parametric'' will often be

omitted.

2.1.2. Empirical and Synthesized Parametric Models

To predict realistically the seismic response of a structure
during its design, theoretical models are required for which the
parameters can be estimated from the properties of the structural

subcomponents and their interactions. The resulting parametric

models will be called synthesized models to distinguish them from

empirical models for which the parameters are estimated from

records of the structural response. Synthesized models are some-

times called theoretical models, but in this work a theoretical model

will mean a general mathematical form describing the internal struc-
ture of a system, without specification of values of the parameters.

To illustrate these definitions, consider the equation
Mx + Cx + Kx = {(t) (2.1.5)

which will be used later as a theoretical structural model. Its
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mathematical form is based on Newton's Second Law and the cons-
titutive laws for a linear viscoelastic solid. If the unknown parameters
in this theoretical model are estimated by synthesis using the plans of

a structure, it becomes a synthesized model, whereas if the unknown
parameters are estimated from structural records, it becomes an em-
pirical model. A useful interpretation of a theoretical model is that it
is a generic form defining a whole class of models. Each model has

the same mathematical form and is given by a particular set of values
for the parameters,

Despite recent advances, which include the development of the
finite element method and great improvements in computer technology,
synthesis of structural models has only met with partial success. One
of the reasons for this is that it is extremely difficult to estimate sys-
tem damping from the damping of each subcomponent. Raggett (1975)
has made a contribution in this area. However, even the values of the
significant modal periods for linear models are often not predicted
well (Wood, 1972; Murphy, 1973), and these are the most important
parameters in predicting the seismic response to a given ground-
motion history.

The lack of complete success with structural synthesis could be
due to a number of factors which include the uncertainties associated

with the properties of the structural and nonstructural components, the
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simplification necessary to ensure the model is computationally fea-
sible, and the difficulties in selecting a theoretical model which is
capable of realistically modelling the physics of the strong-motion
response of a structure. As a consequence of these problems, it be-
comes necessary to complement the a priori knowledge used in a syn-

thesized model by the a posteriori knowledge derived from empirical

models.

Empirical models of existing structures have some intrinsic
value of their own. However, it is the interplay between synthesized
and empirical models based on the same theoretical model which is of
greatest value in earthquake engineering., Generally, the empirical
model will be a reduced form of the full theoretical model because it
must be identifiable from records at only a few positions in the struc-
ture (§2.4. 1) and because of the limited resolution of the parameters
in the presence of noise {§2.4.1). For example, an empirical struc-
tural model corresponding to a linear theoretical model should be
based on parameters of the dominant modes and not upon the equation
of motion in physical coordinates which involves all the parameters of
the mass, stiffness and damping matrices (see__Chapter 3). Thus,
when identification is performed on a structure in the field, the em-
pirical model cannot be expected to give the same level of detail as a

synthesized model, but it will impose constraints on that model.
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These empirically-determined constraints can be used to modi-
fy a synthesized model of the structure to ensure that such a model is
consistent with the observed behavior. For a linear model, the mod-
ification could be as simple as scaling the synthesized stiffness matrix
to match the observed fundamental frequency or it could be the small-
est possible change in the elements of the stiffness matrix necessary
to give the observed values for all of the related modal quantities.

To lead to improvements in the earthquake-resistant design
process, the identification of an empirical madel for an existing struc-
ture may best be viewed as having three functions:

1) The estimated parameters may be used to evaluate the ac-
curacy of the techniques used to synthesize the parameters for a cor-
responding theoretical model. For example, for linear models the
accuracy of the modal periods and participation factors obtained by
synthesis can be determined.

2) For those parameters of a theoretical model which cannot
be reliably estimated by synthesis, the corresponding estimated pa-
rameters of the empirical model can be used to determine typical values
for a given type of structure, For example, modal damping factors
determined empirically can be used with linear theoretical models
during design.

3) Some evaluation can be made of the mathematical form of
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the theoretical model from the degree to which the empirical model
matches the structural response. For example, the ability of linear
structural models to describe the response of structures to strong
ground motion can be examined in this way,

One of the fundamental problems arising during the identifi-
cation of an empirical model is whether the parameter estimates are
reliable. Different aspects of this problem are discussed after the
output-error approach to system identification is introduced in the

next section.

2.2. Output-error Approach to System Identification

The output-error approach (Bekey, 1970; Bowles and Straeter,
1972) to the estimation of parameters of dynamic models is used in
this dissertation. The equation-error approach (Bowles and Straeter,
1972; Distefano and Rath, p. 16 and 51, 1974) was investigated for
linear single degree-of-freedom models but its accuracy in several
cases was found to be inferior to the output-error approach. Fur-
thermore, it is well known that this approach is not useful for multi-
degree-of-freedom models because it either requires measurements
at every degree of freedom, or measurement at one degree of freedom
of each modal contribution if a modal approach is taken.

The idea behind the output-error method, illustrated in Fig, 2,1,
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is to estimate the parameters of 2 model by determining those values
which give an optimal match of the output of the model and the output
of the real system, when both are subjected to nominally the same
input. The quality of the output match is determined by some scalar
measure-of-fit, J, which is a positive-definite function of the output-
error, Either a continuous form or a discrete form can be chosen for
the measure-of-fit, In the applications in this dissertation, continuous
records are used which are obtained by linear interpolation between
discrete data points, and so an integral mean-square output-error is
chosen for J. Finally, the purpose of the parameter-adjustment algo-
rithm, shown in a schematic way in Fig.2.1, is to select the optimal
parameter values by minimizing the measure-of-fit J in a systematic
manner. Appropriate algorithms are discussed later in §2, 2, 4.

It is convenient to formulate the output-error approach in four
parts: state equation, output equation, criterion for optimality, and

minimization (or parameter-adjustment) algorithm.

2.2,1. Stale Eguation

It is assumed that a theoretical model is available which is
spatially discretized, so that its dynamics may be described by a

state equation expressed in the general first-order form:

x(t) = £(x,z, t;a) (2.2.1)
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Here x is the state vector of the model. For structural models, it
will consist of the generalized displacements and velocities for every
degree of freedom of the model. It is not necessary for the state vec-
tor to correspond to physical coordinates; for example, it may cor-
respond to modal coordinates if a linear model is used. The vector
function or functional f describes the mathematical form of the theo-
retical model and its argument z represents the input history to the
model, The vector ¢ consists of the parameters of the model.

Notice that the history of the state is not uniquely defined by
Eq. (2.2.1) unless the initial state, §(Ti) , 1is prescribed., However,
this is likely to be unknown in many applications. For example, when
using seismic records to identify structures, it is genecrally not pos-
sible to take advantage of the fact that the structure starts from rest.
The reason for this is that the initial start-up motion is usually lost
because a certain threshold motion is required before recording occurs.
If the time interval used in the identification is only a portion of the full
history of the response, §_(Ti) is still likely to be unknown because ob-
servations of the state will be contaminated by noise. Furthermore,
the complete state is typically not observed anyway,

The value chosen for the initial state will influence the estimated
values for the model parameters. Both sets of unknown quantities are

therefore combined into one vector a and all the components are



-37-

!

treated as "model parameters' which are to be estimated from avail-

able data, that is,

x(T,)

o
i
IR

It should also be noted that what is to be considered as the input
z is model-dependent and that this model input may not include all the
excitation of the real system, as indicated in Fig.2.1. For example,
for planar structural models the seismic input corresponds to one
component of the horizontal acceleration at one point on the base of
the structure, whereas the real structural motion parallel to a verti-
cal plane may also be caused partly by out-of-plane excitation and ro-

tation of the base,.

2.2.2. Output Equation and Qutput-error

The output equation describes how the output of the model is
related to the state of the model. It is sufficient for most purposes
to take a linear relation between the model output m and the state

and its rate of change, so that:

m =T x + X (2.2.2)

where I‘l and I‘Z are constant rectangular matrices. The elements
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of these matrices might be chosen, for cxample, to be either zero ox
unity in such a way that they select those components of x and g
which contribute to the output.

The output-error v is the difference between the output meas-

urements y of the real system and the model output m, that is,

v(t;a) = y(t) -m(t;a, z) (2.2.3)

where the jimplicit dependence of the model output on the parameters
of the model and the input to the model has been shown. There are
two contributions to v, measurement noise and model error, which
are discussed in §2.4.3. Also, the dimension of vy, m and v will
in general be smaller than the dimension of x because the number of
output records will be less than the desired number of degrees of
freedom in the model.

In etructural identification, the output vector y will be the
record esponse (displacement, velocity or acceleration) at various
poin a1 the structure, The term I‘Zz.c_ is included in (2. 2. 2) so that
it possible to use acceleration records, Although the acceleration

+y be integrated to provide displacement and _velocity historics, this
process accentuates the long-period errors in the digitized data, which
in some cases rnay cause difficulties in the identification. It also

lowers the signal-to-noise ratio at high frequencies, which can be an
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advantage when determining the properties of the lower modes but not

if the higher modes are of interest,

2.2.3. Optimality Criterion

For a given recorded input z and recorded output y over a
time interval [Ti’ Tf] , the optimal estimates of the parameters are
defined to be the values which minimize the measure-of-fit:

(11

o f
J@) =
o7

lwttal®  dt+ fa-a) @2.2.4)
; V(t) A

subject to the constraints of Eqs. (2.2.1), (2.2.2) and (2.2.3). The
vector of optimal estimates is denoted by _é'_t_. It is assumed for the
present that 4 is defined uniquely by the minimization.

In Eq. (2.2.4), ;5:0 is an a priori estimate of the parameters,
and A and V(t) are prescribed symmetric positive semi-definite and
positive definite matrices respectively, which allow weighting of the
parameters and output-error based on prior knowledge, Some judg-
ment is required in selecting these quantities. The norms in Eq. (2. 2. 4)

arc the weighted Euclidean norms:
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2 o7
iv =) ) V.. (t)v.v.
and (2.2.5)
s 1220 ) A A ;
- EOUA—éJj 15031 730,105 - %, )

The weighting matrices are commonly taken diagonal so that, for
examplec, H_\CHZ reduces to ;Vii(t)vf .

Instead of viewing the out;}ut—error approach as estimating the
parameters of a theoretical model, it is often useful to take an alter-
nate point of view: a class of models is defined, then the recorded
input and output from the system under study are used to determine
the optimal model within the class, The class is defined by the theo-
retical model chosen to represent the system, together with the output
equation. FKEach model in the class is given by assigning values to the
parameters of the theoretical model from within a set of allowable
values; the optimal model being given by 4.

The optimal model is essentially that model with the smallest
weighted integral-squared output-error but with some constraints,

governed by the size of the elements of A, which prevent too large

. For example, if A.. is

a departure from the prior estimates -%-O i

relatively large, a. will be constrained to remain close to 30 i
1 ’

during the minimization of J. It is desirable in many structural
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applications to set A equal to zero so that the parameters are not
constrained by prior estimates, However, for reasons explained later,
this cannot be done with one group of output-error techniques, the filter
methods.

It is apparent that in the case A =0 the output-error approach
allows the chosen theoretical model to be evaluated, when there is prior
information available which indicates that measurement noise has only
a small influence on the optimal output-error. In this case, since the
mean-square output-error is minimized, if the agreement between the
response of the real system and the optimal model is not satisfactory,
then the theoretical model must be at fault,

The optimality criterion has been given in a deterministic set-
ting where the presence of noise in the data is acknowledged but no
statistical assumptions are made about its form, It is possible to give
a stochastic interpretation of the optimality criterion, because the same
minimization problem can be derived by assuming the output-error v
is Gaussian white noise with zero mean and covariance matrix V‘l(t).
In this case, if A =0, é is the maximum likelihood estimate of a.

On the other hand, if the parameters are assumed to be Gaussian ran-
dom variables with mean éO and covariance A’l, then _é; is the

Bayesian maximum probability estimate. These ideas for a discrete

measure-of-fit are discussed in Bowles and Straeter (1972), while
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Jazwinski (p. 150, 1970) treats both discrete and continuous cases.

2.2.4. Minimization Algorithms

The problem of identilying the optimal model from system
data has been reduced to minimizing the function J(a) in Eq. (2.2.4)
where v is subjected to the constraints of Eqs. (2.2.3), (2.2.2) and
(2.2.1). This minimization could be tackled by directly solving the
condition for the stationarity of J with respect to a:

}

vJ =0 (2.2.6)

a=3a
although this usually leads to a set of simultaneous nonlinear algebraic
equations in a which cannot be solved analytically. The nonlinearity
arises because the model response is almost always a nonlinear function
of the parameters, even if the model itself is linear in the state and
linear in the parameters (Eykhoff, p. 113 and p.446; 1974). Most
techniques actually carry out the minimization by other means although
the Gauss-Newton minimization method is equivalent to applying to
Eq. (2.2.6) a modification of the classical Newton-Raphson method for
finding the zcros of a multi-variable vector function,

Two major groups of methods for determining the minimum of
J can be distinguished and these will be considered briefly., A number

of authors, including Bekey (1970), Bowles and Stracter (1972) and
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Eykhoff (p. 151, 1974), have given a more extensive review of minimi-
zation techniques.

(a) Filtering methods: These are based on state estimation

theory (assuming no ''process' or "plant' noise) and the minimization
is achieved in an indirect manner by solving an initial-value problem.
Either a deterministic setting (invariant-imbedding filter) or a
stochastic sctting {extended Kalman filter) can be used but the final
equations to be solved are formally equivalent,

A characteristic feature of these methods is that they process
the data sequentially and give rise to sequential estimates of both the
parameters and the state. One drawback of these methods for param-
eter estimation is that they give only anapproximation to the optimal
estimates,

The invariant-imbedding filter is discussed in more detail in
Chapter 4.

(b) Descent methods: These arc itcrative methods which use

all the data over a given time segment at each iteration. They may be
interpreted geometrically as finding the minimum by a search in the
multi-dimensional space rcpresented by the allowable values of the

parameter vector a. An initial estimate ::’.:l_ is required to start the

0

algorithm, even if A is zero in (2, 2.4).

Some techniques in this category which have been used in
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structural identification have been given in §1. 1. 3 and include the
Gauss-Newton method {also called the modified Newton-Raphson
method), the method of steepest descent and the conjugate gradient
method., The first procedure is a modification of the classical

%—vvj[ S in (2. 3. 8)]is

Newton-Raphson method, The Hessian matrix
modified by neglecting the term containing the second derivatives of
the model response with respect to the parameters (Matzen and
McNiven, p.17, 1976; Distefano and Rath, p. 16, 1974), Bard (1970)
has compared several descent methods for their application to param.-
eter estimation,

A new descent method called the modal minimization method is
introduced in Chapter 5, This was specifically developed to provide
a reliable technique for the identification of lincar multi-degree-of-

freedom models,

2.3. Some Useful Definitions and Shorthand Notation

It is convenient to introduce the scalar product <=+, *> defined
on the space of continuous vector functions by:
T

<b,e>=1 T(b(), vite(mar (2.3.1)

T,
i

where V is a prescribed continuous matrix function which is symmetric

and positive definite and b,c are any continuous vector functions
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defined on the given time interval [T;>T;]. The notation (-,*) refers

to the usual Euclidean (or vector) scalar product, so that:

(b(t), V(e(®) =), * V(b (e, () (2.3.2)
5

R s =YY A (a -3
and (2-3g, A2 -ag)) =) 2 Ayla -8y ) 5-3, 4)

L]

~ 12
“la-5,l° (2.3.3)

from Eq. (2.2.5). Itis easy to show from (2. 3.7) that <=+, *> sat-
isfies the required properties (symmetry, linearity and positive de-
finiteness) to make it a scalar product.

With this shorthand notation, Eqs. (2.2.4) and (2. 2. 3} may

be written as:

Ja) =< v, v>+(a-3,,A2-2,) (2. 3. 4)

and v(a) =y - m(a. z) (2.3.5)
It is also useful for later work to define:
Jola) =<y, v>. (2.3.6)

From the properties of a scalar product, it can be shown that Egs.

(2.3.4) and (2. 3. 5) imply:

0J
(VI (@], 2 5o
— ko day (2.3.7)

_ dm . ~
=-2 <X,-EE—~>+Z(_£1{,A(3 —io))
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where 4 is the unit vector (_Lk)j = 6jk , and:
A1 Al 9%
Si @) =] 2V VI )].k: 2 52 0a_
J ) (2.3.8)
dm 9m A 9 m
= L — , .r__:...>+ - <.Y..’
aJ dak ik 0 3ak

The symmetric matrix S :S(é) is called the sensitivitymatrix, It

plays an important role in the application of any output-error approach
and it will be discussed in more detail later., It is also convenient to

introduce a reduced sensitivity matrix-function ASJ(g_) defined by:

~ om 8115_1

Sjk(i) :<§‘§Jf s *g;l:> (2.3.9)

The matrix g(i) is symmetric and at least positive semi-definite.

It can easily be shown that S is positive definite if and only if the
om

da,

interwval [Ti’ Tf] (see Appendix A).

(the sensitivity coefficients) are linearly independent over the time

Several technical points are to be noted in relation to these
definitions. First, the output-error v(a), and hence J(a) and S(a),
are also functions of the input and output records, z and y respec-
tively, while g(g) depends on m(a,z) and so it is a function of z
(but not y). These arguments have been omitted in the above notation
and the time dependence of y, z, m and v is also not denoted
explicitly. Second, it is assumed that there is sufficient continuity and

differentiability for all the quantities involved to be mcaningful and for
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the manipulations carried out on these quantities to be valid.

The definitions above are useful for two reasons. The first
reason is that they are a convenient shorthand which makes the
analysis in subsequent discussions more economical. The second and
most important reason is that they give wide generality to the argu-
ments developed in the remainder of this chapter. Thus, the dis-
cussion need not be restricted to the particular measure-of-fit J
defined in (2. 2.4), It will apply to any measure-of-fit which has the
form of Eq. (2.3.4), where <=, *> is now to be interpreted as an
arbitrary scalar product and the time interval [Ti’ Tf] is to be inter-
preted as the appropriate data interval., The discussion which follows
can therefore be applied to measures-of-fit which arc integrals (con-
tinuous data) or sums (discrete data) in either the time domain or
frequency domain. The model does not even have to be dynamic; it

could be a "static"

model, that is, (e, z) could be simply an al-

gebraic relation between the "output'" m and '"input" z involving
unknown parameters a. With a suitable interpretation, the output-
error approach and the discussion in the following sections are

therefore applicable to structural identification using the data from

steady-statc harmonic tests.

2.4, Reliability of Optimal Estimatcs ot Parameters

There are a number of questions relating to the reliability of
the optimal estimates of the parameters which should be considered

when applying an output-error algorithm to a theoretical model of a
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system.

One important question is whether the values of the parameters
of the theoretical model can be expected to be defined uniquely by the
input and output for the system. 'The first step is to examine whether
the corresponding class of models is identifiable.  This concept is
discussed in §2, 4.1 and its relation to the resolution of the internal
structure of the system is given.

Identifiability of the models is necessary for meaningful results
but it does not ensure that the optimal estimates of the parameters are
unique. Conditions for uniqueness are considered in §2. 4. 2 along with
the question of convergence of the algorithm, that is, whether the
values of the parameters returned by the algorithm actually give the
global minimum of J.

The next question considered is how the accuracy of the
optimal cstimates is affected by measurement noise. A fundamnental
difficulty is that there are no true or exact values for the parameters
because every theoretical model gives only an approximation to the
physical processes nccurring in the real system. This prohlem is
considered in §2. 4, 3 where the concept of an ideal model is introduced
to act as a basis for judging the accuracy of the optimal model. In
§2.4. 4, a deterministic error analysis is carried out to investigate
the accuracy of the optimal estimates of the parameters with respect
to the ideal values. Only limited results can be obtained unless

quantitative assumptions are made about the level of measurement
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noise and ideal model error. In §2.4.5, some properties of the
sensitivity matrix desirable for good accuracy are discussed and a
geometrical interpretation of these properties is mentioned.

In §2. 4.6, attention is drawn to the fact that the optimal esti-
mates of the parameters can be expected to change as different por-
tions of the data from a system are used because of limitations of the
theoretical model. This is followed by a section containing some

final remarks on the problem of assessing the reliability of the param-

eter estimates,

2.4.1. Identifiability and Resolution:

Let M denote the class of models corresponding to a theoretical
model to be used in the identification of a system. The first question
considered in this subsection is whether knowledge of the input and
output of any model in M gives sufficient information to allow the
values of the parameters for that model to be determined. To show
that this need not be the case, an example is given which is based on
some work by Udwadia and Sharma (1978), but given from a slightly
different point of view.

Consider a theoretical structural model which is a linear chain
model with two degrees of freedom (Fig.2.2). To begin with, suppose

that the output m corresponds to the response of the top mass m

2’
so that a class of models is defined by the state equations:
mo¥X, t+ k,x, -k, x, =-m.,%
2 272 7271 2 (2. 4. 1)

m, %, + (k1 +k2)xl - kzxz =-m %
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Figure 2, 2. Linear chain model with two degrees of freedom
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and the output equation:
(2.4.2)

where the parameters k1 and kz can have only positive values.
The masses my and m, are assumed to be known and equal, and are

denoted by m It is also assumed that the model is initially at rest

o
so that the initial conditions X, (0) =0 :;;i(O), i=1,2 are known. Thus,

the vector of parameters is _a_:[kl,kz]t and the set of allowable values

G={ak;>0,k,>0}.

2
The input-output relation for the models can be given in an

explicit form, rather than as a differential equation, by using

Duhamel's integral:

21 o .t
m(t;a, z) :—S ajr— { sinw (t- MzZ(T)dT (2. 4. 3)
rL::l ‘r "0 r

Here the modal frequencies Wy and wz(wl <w2) are given by the

positive roots of:

2.2 2
w

2
mo( ) —mo(kl+2k2)w +k1k2 =0 (2.4.4)

and the modal participation factors @, r= 1,2, are given by:

1 flfcp(lr) _
Ct‘r = ‘—'*——-(-}—')’—2- (2. 4. 5)
1+[Cp1 ]
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_ 0,2

where cp(r) =1- W (2.4.6)

m
1 k

2
The model output m 1is controlled by the four derived
parameters Gy Wy, C(l and cvz which are functions of the model
parameters k., and k,. It may be shown by substitution that these

1 2

derived parameters have the same values for the two models given by:

k, =k¥>0 , kzzkf >0
“ (2.4.7)
b _ l B
and k1 = Zkz s k2 = 21(1

(The algebra is shortened if the numerator of the difference

P 1

o (k§,K3) - o (2k5,5

k’f) is shown to vanish.) Thus, these two models
will have the same outpul regardless of the input z and so the valucs

of the parameters for any model in the prescribed class of models

are not specified uniquely by the input and output unless kl = Zkz. It

should be noted, however, that the response of mass my will be

different in the two models.

Suppose the output Eq. (2. 4. 2) was changed to:
m =X (2. 4. 8)

so that the output now corresponds to the response of the bottom mass
m,. For this new class of models, it turns out that the parameters
are defined uniquely by any input-output pair if the input z has finitc

duration. This is because in this case the four derived paramelers
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controlling the output, w 0 cp(ll)al and qogz)ozz are specified

| A

uniquely (see Chapter 3), and these in turn specify kl and kZ

uniquely.

Definitions of Identifiability

Consider a class of models M and a class of inputs C, then:

A model in I is globally identifiable for C if the values of its

parameters are specificd uniquely by each input in C and the corre-
sponding output.

A weaker property can be defined which is implied by the above
but which is motivated by the fact that local uniqueness may be all
that is required if sufficiently good prior knowledge of the parameters
is available:

If the values of the parameters are specified uniquely by each
input and output only in some neighborhood of the actual parameter

values, the model will be said to be locally identifiable for C.

Prior to identification, it is not known which particular model
in a class will be determined by the input and output so it is useful to
investigate the identifiability of the whole class:

The class M is globally (or locally) identifiable if each model
in M is globally (or locally) identifiable. The adjective '"globally™
will sometimes be omitted.

With this terminology, the first class of models in the example,
which used the response of the top mass as output, is not globally

identifiable for any input, although it is locally identifiable for any
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input of finite duration. The second class of modcls, which used the
response of the bottom mass as output, is globally identifiable for
the class of inputs with finite duration.

Other definitions of identifiability have appeared in the liter-
ature. It is shown in Appendix A that the definitions used here are
equivalent to the concepts of global and local identifiability introduced
by Bellman and Zistr'dm (1970), except for an essential change in their
definition of global identifiability. In addition, the definitions used
here have been generalized from the delta-function input used by
Bellman and Astrom to a prescribed class of inputs, so that the inputs
expected in applications can be included. Another definition of iden-
tifiability has been given by Beck and Arnold (1977) in their rccently
published book on parameter estimation. It is shown to be a stronger
form of localidentifiability in Appendix A.

It is emphasized that identifiability as defined here relates to
the unique determination of the parameters of a model from the input
and output of the model. An obvious question to be asked is what

happens when input and output records from a real system are used to

determine the optimal model within an identifiable class of models.
The situation is now complicated by noise in the records and the
limitations of the class of models in describing the behavior of the
system, and minimizing J might not lead to unique optimal estimates
of the parameters. However, it is easily scen that global and local

identifiability of an optimal model are necessary conditions for global
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and local uniqueness, respectively, of the corresponding optimal

estimates of the parameters based on minimizing JO' The difficulty
in finding sufficient conditions for uniqueness is that the output-crror
is unknown prior to identification. A partial result is given in §2. 4.2

where it is shown that linear independence of the sensitivity coefficients

om

'é'?a‘:.' is sufficient for local uniqueness of the optimal estimates, pro-
vided the optimal output-error is sufficiently small,

When a class of models based on some theoretical model is
used in the identification of a system, unique determination of the
optimal estimates of the model parameters may be viewed as re-
solving the internal structure of the system, as it is portraycd by the
theorctical model. If too much detail is asked for, the class of models
may not be identifiable and the desired resolution will be unattainable.

Even if the desired resolution is attained, some of the model
parameters might be estimated inaccurately because of noise. The
accuracy of the parameter estimates is governed by the sensitivity of
the model output to each parameter and by the characteristics of the
noisec in the records from the system. In general, as the resolution
is increased by refining the models, the optimal model becomes more
sensitive to the particular noise content of the records used. A
compromise must therefore be made between the amount of resolution
asked for and the variance of the optimal estimates of the parameters.
This trade-off between resolution and variance is well-known in the

literature relating to the geophysical inverse problem (see, for
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example, Jackson, 1972).

In Chapter 3, the ideas in this subsection are applied to a class
of linear structural models. It is shown that these models are typi-
cally not identitiable if the unknown parameters of the theoretical model
are the elements of the stiffness and damping matrices, the mass
matrix being assumed known. It is also shown that certain parameters
of each mode give all the information about the stiffness and damping
distributions that is contained in the input and output. Furthermore,
as a compromise between the resolution of this information and the
accuracy of the estimates, only the parameters of the domjinant modes

should be estimated.

2.4.2, Convergence and Uniqueness of the Optimal Estimates

Recall that an optimal parameter vector gives the global mini-
mum of J(a) in Eq. (2.3.4), subject to the constraints of (2. 3. 5)
and the input-output relation (state equation and output equation) for
the class of models being used. Two questions which should.be con-
sidered are whether the minimization algorithm has converged to the
global minimum of J and whether this minimum defines unique opti-
mal estimates. Convergence cannot be confirmed simply by examin-
ing the output because the cffect of lack of convergence on the output-
error cannot be distinguished from the eftects of measurement noise
and model error (§2.4.4). Also, uniqueness is not implied, of course,
by the existence of the global minimum.

A technical point requires clarification. Recall that a class
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of models is defined by a theoretical model, an output equation and

a set G of allowable values for the parameters of the theoretical
model. The allowable set G will usually be determined on physical
grounds and, for czamplc, might correspond simply to cach param-
eter being positive. The global minimum of J is strictly associated
with the region of allowable values in the parameter space defined by
G. However, if the parameters are constrained during the minimi-
zation, the algorithm must be written to cope with the case where the
global minimum may lic on the boundary of the region. Alternatively,
one can leave the minimi zation unconstrained and check the final
estimates; this is the approach used in the applications in this dis-
sertation, If the values returned as the optimal estimates by the min-
imization algorithm lie outside the allowable set, it is clearly indic-
ative of either trouble with the algorithm or inadequacy of the chosen
class of models to represent the system,

Let é be the parameter vector calculated by the minimization
algorithm, then for é to be an optimal parameter vector, it must
satisfy successively:

1) vJ(a)=0  (stationary point)

2)" J(@)=J(2) for all a in some neighborhood of 3

(local minimum)

3) J(3)<J(a) forall a (global minimum)

Note that in general there is at least onc point in parameter space at

which the conditions 1), 2)' and 3)' are satisfied because J(a) isa
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continuous function of a and it is bounded below by zero. The excep-

tional case is where the global minimum occurs as {g_t_” tends to
infinity, which should not occur in practice.
To identify a system unambigucusly, unique optimal estimates
are necessary. This requires a refinement of 2)' and 3)' to give:
2) J(é)<J(§l~) for all g_;‘-_é;_ in some neighborhood of §_ (strict
local minimum)

3) J(§)<J(§_) for all a# §_ (unique occurrence of global mini-

The condition 2) excludes the possibility that §__ is just one of a
continuum of points giving the same minimum value of J, while 3)
also excludes the possibility that the global minimum occurs at other
local minima. Notice that the results of Appendix A imply that 2)
and 3) would be guarantced if the optimal model were locally identi-
fiable and globally idcentifiable, rcspectively, and if the optimal output-
error i}_ were zero. Unfortunately, measurement noise and model
error make the latter a most unlikely event.

Ideally, the parameter vector _é_i_ calculated by the minimiza-
tion algorithm should be required to satisfy conditions 1), 2) and 3),
each successive condition being more restrictive than its predecessor.
Each of these conditions is discussed in turn.

1) Stationary point:

Define the algorithm crror by:

[3] i

e;=5vI@) (2.4.9)

DN
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then € should ideally be zero but in practice it need only be small.
Its effect on the accuracy of §_ is shown in §2. 4. 4.

If VJ is not used explicitly in the algorithm, the algorithm
error can be calculated separately by using Eqs. (2.3.7) and (2. 3. 5),

that is:

(eg)y == <V, 5>+ (i, A - &) (2. 4.10)

o R dm om
where v=y-m(a,z) and o S 5a |
k kija

A small algorithm error can always be expected because of

round-off errors when evaluating the quantities J, VJ, elc, in the
algorithm and because the minimum is always an approximate one.
The latter situation arises either because only a {inite number of
iterations are performed (descent methods) or because of an approxi-
mation in the theory (filter methods).

2) Local minimum and local uniqueness

Assume e, =0, then {rom a result in advanced calculus, a

J
gives a strict local minimum of J if the sensitivity matrix S :S(é)

is positive definite [see, for example, Eq. (2.4.32)]. This is a suf-
ficient condition for a strict local minimum, but not a necessary onec,
However, it is necessary that S be positive semi-definite for a mini-

mum at gt_ The sensitivity matrix can always be evaluated by sub-

stituting 51 given by the algorithm into Eq. (2. 3. 8).

o N

If the sensitivity coefficients 5o are linearly independent and

the output-error :\‘Z corresponding to é is sufficiently small, then S
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will be posilive delinile. This follows from (2. 3. 8) and (2. 3. 9)

because:
S(a) =S(a) +A - B(a) (2.4.11)
821_17_1 2 2
where BJ k(i) =<V, _8—535_5;> (2.4.12)

The weighting matrix A 1is positive semi-definite by definition and if

om A
the = are linearly independent, S(a) is positive definite

(Appe:ani)?fi% Thus, if B(4) is sufficiently small, §:S(§_._} will be
positive definite.

Equation (2. 4. 11} also suggests that S could be made positive
definite by a suitable choice of the weighting matrix A, at the risk
of possibly biasing the estimates (see %2.4.3 and $2.4.4). Thus,
prior knowledge could be used to force the parameter estimates to

be locally unique.

3) Global minimum and global uniqueness:

Assuming that conditions 1) and 2) are satisfied, the remain-
ing questions are whether the strict local minimum given by i is
also the global minimum of J and whether it is the only local mini-
mum to give the global minimum. These questions are difficult to
answer affirmatively, although if the maodel corresponding to i is
not globally identifiable, there is at least one other point in param-

as a

eter space which gives the same minimum of Jo a.

The difficulties can be traced back to the nonlinear dependence
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of the model output mf(a,z) on the parameters a (§2.2.4). If the
model output was a linear function of a, then B(a) would be identi-
cally zero in (2. 4. 11) and thus S =S+A would be positive definite for
all parameters a, if the class of models were locally identifiable
(see Appendix A). In this case, J(a) would have a unique stationary
point and this would give a minimum, so that once this point was lo-
cated by the minimization algorithm, it would be guaranteed to give
the global minimum and to be the only point to do so.

On the other hand, when the mnodel output m(a, z) is a non-
linear function of a, B(a) is no longer identically zero. In gen-
eral, S(a) is not positive definite for all a and it is possible for
J to have more than one local minimum. Thus, the global propecrty
of any calculated minimum cannot be ascertained, unless all of
the local minima are found, or one of those which are found gives
J(a) =0, both conditions being unlikely to be satisfied in practice.
Similarly, the unique occurrence of the global minimum cannot
be ascertained without determining 2ll of the local minjma,
unless a minimum is found which gives J(a) =0 and it is known that
the class of models is globally identifiable,

To illustrate the difficulties which can arise, consider an
R-mode model of a linear structural system with N degrees of free-
dom (N>R). The measure-of-fit J(a) will have a global minimum
where the parameters of the R modes of the model are close to the
parameters of the first R dominant modes of the lincar system.

However, J(a) will also have other local minima where parameters
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of the model are close to the parameters of any R modes of the
linear system. Since most minimization algorithms will give a local
minimum close to the initial estimates of the parameters, if the ini-
tial eslitnates of the modal parameters were not particularly good,
the algorithm may converge only to a local minimum and thereby miss
some of the important modes.

In conclusion, it is generally not possible to determine whether
the global minimum of J has been found and whether it occurs at a
unique point, unless an exhaustive search is made through the param-
eter space. The computation involved in such a search would, in many
cases, be prohibitively expensive. It is common practice to be satis-
fied with finding a strict local minimum near the initial estimate §_0
of the parameter vector a. This approach is also taken in the appli-

cations described later.

2,4,3., Mcasurement Noise and the Ideal Model

In this subsection, the effect of measurement noise on the
accuracy of the optimal estimates of the parameters is considered.

The term measurement noise is used to describe all those errors, both

systematic and random, which lead to a difference between the history
of the actual excitation or response at a point and the processed record
of this used in the identification. Measurement noise thereforeincludes
all those errors whicharise in measuring, recording and digitizing which
are not removed by subsequent data processing (see Fig. 2.1).

It is instructive to start with the hypothetical, ideal situation



where the records are noise-free and the chosen class of models, 0,
is capable of modelling the behavior of the real system exactly, that
is, the system has the sarne behavior as some model in [l with the
parameter values i*’ say. In this case, the optimal estimates of
the parameters, determined by minimizing JO@_) defined in Eq.
(2.3.6), are equal to the true valuesof the parameters of the system, and

a) is zero because a perfect output match is achieved. The equality
= p P q y

of 2 and a™ follows from a result given in Appendix A, under the

J

assumption that the clase T is identifiable. On the other hand, if
the optimal cstimates were determined by minimizing J(a) instead

of J'O(g._) , they would generally be biased, because from (2. 3. 7):

VI(a¥) =95 (@) r2AE” =2A(" - 3g)

"é—O)
(2.4.13)

whercas VI{@E) =0

A step towards the real situation can be taken by admitting
that the theoretical model used will not represent the dynamics of the
real system exactly. The expression 'the true values of the param-

elers of the system' is therefore meaningless. However, an ideal

model within the class M can be postulated which is the optimal

model using JO and the true system input and output, Zy and Ys

which are not affected by measurement noise (Fig. 2.3). The param

eter values 9_* corresponding to the ideal model are called the ideal

.

parameter values and the difference e mia”

ey Sy - m@’, 50), between

the true system output and the output of the ideal model, is called
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the ideal model-error.

To arrive at the real situation, input and output rmneasurement-
noise must also be considered (Fig. 2. 3). In general, the optimal
parametler values :a\;, determined by minimizing Jo(i), are now dif-
ferent from the ideal parameter values g_*. The reason for this dif-
ference is that if any portion of the combination of measurement noise
plus model error in the output-error of the ideal model can he treated
as a possible model signal, the parameters will be changed from their
ideal values to cancel this portion. The effect is to reduce the output-
error and thus Jo(é) is less than Jo(g*). These ideas are illustrated
in more detail in the next section where an error analysis is performed.

In a sense, the ideal model given by _a:* is the best model

within the class of models because its definition is in terms of the truc

system input and output (E-O and y_s), so it is not influenced by meas-
urement noise. However, it is only a canceptual device because its
determination would require complete knowledge of the measurement
noise. In practice, one must be content with the optimal model, which
is the best model within the given class for the records of the input
and output (z and Yy).

It is the ideal model which indicates how well the theoretical
model can approximate the behavior of the real system over a given
time segment [Ti’ Tf]. To be able to judge the theoretical model from
the quality of the optimal output-match, one must have confidence that
measurement noise has not greatly affected the accuracy of the opti-

mal estimates of the parameters. To gain this confidence, processing
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of the data may be necessary to improve the sigual-to-noise ratio.
Of course, some prior knowledge of the characteristics of the noise
and of the system are necessary to distinguish noise from signals in
the records.

Considerable work has been done with strong-motion seismic
records to identiiy the various sources of errors contributing to
measurement noise, and to develop data-processing techniques to
reduce their effects (Trifunac et al, 1970, 1971). It is believed that
when these techniques are applied to the records obtained from stand-
ard accelerographs, the final processed records are of good quality
over most of the frequency range of interestin structural engineering.
For structural identification, the corrected data should be adecquate
over the frequency range from approximately 0.2 11z to approximately
10Hz. Difficulties can arise from measurement noise during identi-
fication of the fundamental modes of long-period structures (periods
of the order of 5 seconds or more), and during identification of modes
with short periods (periods of the order of 0.1 second or less). The
difficulties in the latter case arc partly due to the size of the typical

sample interval, 0. 02 sccond.

2.4.4, Deterministic Error Analysis

The following error analysis shows how measurementnoisc and
the algorithm error (§2.4.2) affect the accuracy of the optimal parameter
estimates. Theideal parameter values defined inthe previous subsection
areused to judge the accuracy of the optimal estimates.

The notation used is as follows (Fig. 2.3):
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(vector of) parameter values

ideal parameter values

optimal parameter estimates given by the minimi-
zation algorithm

a priori estimate of a™ [Eq. (2. 3. 4)]

error in response of ideal model due to the trans-
mission of e, through the model

%—VJ ~ » the error of the minimization algorithm
a

(§2.4.2)

ideal model error

output measurement-noise

input measurement-noise

output of a model with parametcrs a subjected to
an input z

output of ideal model subjected to the true input

output of optimal model subjected to the input record

vy -mf(a.z). the output-error for a model with
parameters a

y_(g*), the output-error for the ideal model

y_(é\._) , the output-error for the optimal model
output record corresponding to Y

true systcm output: response of system at the lo-
cation of the output transducers

input record corresponding to Zg

true system input: excitation of system at the loca-

tion of the input transducers
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Z, = excitation of system which affects its response

but which is ignored in the models

Consider the output-error of a general model within a pre-

scribed class, then:

v(2) =y -m(z, z)
(2. 4.14)
=gy Ty - mla, z)

This shows that v(a) consists of the output measurement-noise e

0

plus the model error [X_S -m(a,z)] and that the model output m (a, z)
will attempt to match the combination of output measurement noise and
true system output when JO =<v,v> is minimized. The output-error

of the ideal model:

v =v(@a®) =y -m(@’™, 2) (2. 4. 15)

can be expressed in the form:

v :S:_M+_go~gl (2.4.16)

where M :}:s -r_r_l(g*,io) is the ideal model error; =YY, is the

output measurement noise; and e =m (a”,z)- :gg(_z—_x_"‘,j/io)

mitted input measurement-noisc, defined to be the difference be-

is the trans-

tween the outputs of the ideal model when it is subjected to the re-
corded input z and the true input z, respectively, If a lincar model
is used, the output m is a linear function of the input, so that

N :@(iﬁ:’sz), In this case, e is therefore the response of the ideal
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model to the input measurement noise e, =z-%

Subtracting (2. 4. 14) and (2. 4. 15) leads to:
v(a) = V +m( z) m(a, z) (2.4.17)

This equation indicates that the value of J (a) <v(a),v(a)> might
be reduced from its value Jo(g_"‘) =<v*,v¥*> by changing the param-
eters from their ideal values so that the difference in the oulput can-
cels a portion of the combination of measurement noise and ideal
model error, In the presence of measurement noise, JO@—) would
therefore be cxpected to be less than ‘TO@-*) and the optimal esti-
mates of the parameters would not be equal to the ideal values. The
aim is to derive an "error equation' for the difference _z’_{_-g.f:.

To arrive at the error equation, a truncated Taylor series of

A

VJ about a is made:

O] bt

1

J\

SUI@*) = 3I@) +5VIE) *- 1) +0(la - 3] ) (2. 4.18)

where the last term accounts for the truncation error, with

)

“a aH = (a - a,i—gt_). If Fgs. (2.3.7), (2.3.8) and (2.4.9) are sub-

stituted into (2. 4. 18), the following equation can be derived:

S - a%) =da™+ OU'“L—a il ) (2. 4.19)
~ - 2 A
5 g (3 ..0m om , 9m
where SkJ == Sk] (i) ——<—5-g;( ,’é‘a‘—j'>+ AkJ -<Y__,5:’;k—52—1;/ (Z. 4. 20)
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. - 8r_r_1* o
d"k=(§j)k+< x",-éa;»(_ik,A@_"*__a_o)) (2.4.21)
i L ~ . 2 ~ . Z 1
g om Owe) o dmfa,z)l 9m  9m(a,z)
an = s = e —— ) p— o e
aak aak 9_ Bak Bak é Bakaaj E)akaaj é

These equations show how the accuracy of the optimal estimates _3_.,
with respect to the ideal parameter values 3*, depends on the sen-
sitivity matrix §, the algorithm error e., the input and output mea-

surement-noise 9_1 and _e_O, the ideal model error EM and the

weighting term in J involving the a priori estimates -5—0 of the param-
eters.
If e, 9_1 , __E:O and A arc all set to zero, _%_:g_* should be

a solution of (2. 4.19) regardless of e

M * because model error affects

the accuracy only in the presecence of noise. This is the case because

d* immediately red ki 9mla. zo)
i . Nt - — —<v - 35 e
x immediately reduces to <&\’ Fa Yo m(a’ ,_Z_O), 5 Lo

k k|
which is zero because, by the definition of _a_f:‘, it minimizes IO when
;@ :d by Z..
y and z are replaced by Y and 2
The practical use of (2.4, 19) is limited because é* involves
the unknown ideal parameter values and it is therefore difficult to
bound. A bound which is useful to compare the accuracy of each esti-

mate on a relative basis can be derived directly from (2. 4. 17), which

implies:
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on n ém 8w
<Y 32 ZESYT g * da, ’ da, (aJ -a.)
k j k |
+0(|la*-3]°) (2. 4. 22)

SE-a% =d+ o(4-2%1%) (2. 4.23)

S, . =S .(@& SR 2.4.24

where Skj = kJ(i) ~<aak e (2. 4. 24)
¢ ~ al’il »

d =<v"-v, aak> (2.4, 25)

The matrix g(ﬂ) was defined in $2. 3 and it is positive definite, and
hence nonsingular, if the sensitivity coefficients are linearly inde-
pendent (Appendix A). If it assumed that the errors are small enough
for the second-order terms in Eq. (2. 4. 23) to be neglected, then this

equation implies:

|8, -aX] sz |(§“1)kjd. [ (2. 4. 26)

By the Schwarz inequality for scalar products:

PN ~

d9m dm %

R R e A e e b (2. 4.27)

J

This gives the following bound:
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XL
\ak- ak\ < o>_4 \('s“‘l)kjls;j (2.4,28)
J
where 02 :<:";*’“i’ :‘:*"‘i> (2. 4.29)

The quantity ¢ is unknown because y_* is unknown and it does not
appear likely that 0 can be bounded by known quantities without mak-
ing some assumptions about the level of measurement noise and model
error. However, (2.4.28) does indicate relative bounds on the errors
in the optimal estimates because the matrix S can always be calcu -
lated from (2. 4. 24).

If it should happen that the parameters are "orthogonal', in

the sense that gkj =0 if k#j, then (2.4.28) becomes:
(2. 4. 30)

This indicates that for good accuracy, the diagonal terms of S should
be large. This point of view is taken up again in $2. 4. 5.

A statistical approach might also be taken to investigate the
effect of measurement noise on the accuracy of the parameter estimates.
In such an approach, one could imagine a series of hypothetical exper-
iments where the same system input and output, _7;0(1;) and Xs (t),
tE[Ti, Tf], were repeatedly measured, recorded and processed. For
each such experiment at least a portion of the measurement noise
would be different and hence the input and output records, z(t) and

y(t), te€ [Ti’ Tf], would also be different. Over a large number of
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exper'unents, a distribution of the optimal estimatcs of the parameters
would be obtained,

The applicability of a statistical approach depends on the vali-
dity of the stochastic model used for the random portion of the mea-
surement noise and whether the systematic portion can be identified
properly. If the measuring and recording of data can be done only once
for a given excitation of the system, it is difficult to test a hypothesized
stochastic model for the measurement noise. This is the case when
seismic records are used,

If a serics of independent excitations were used to develop sta-
tistical information, the dependence of the ideal model on the excitation
should also be taken into account (scc ¥2.4,6). This would appear to
require that the statistical approach be extended to include the exci-
tation, the ideal model error and the ideal parameter values as random
quantities. The difficult task of simultaneously identifying a dynamic
model and stochastic models for the measurement noise and ideal model
error would then be required.

In this dissertation, attention is focussed on the identification
problem where the records used are from only one excitation of the
system. No hypotheses are made about the detailed nature of the
random or systematic portions of the measurement noise and idcal
model error because, on the basis of one sample, it is unlikely that
there is sufficient independent information to properly verify these

assumptions.
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2.4.5. Secnsitivity Analysis

In the absence of assumptions about the level of measurement
noise and ideal model error, one cannot expect to determine bounds on
the error in each estimate of the parameters. Recognizing this fact,
an alternative approach can be made which lecads to partial but useful
information about the accuracy of the estimates of the parameters.
This approach is based on the sensitivity of the measurc-of-fit J to
variations in each parameter about its optimal estimate.

Suppose J is sensitive to a change in the value of a parameter

a The change in J from its value J(_E_l_*) for the ideal model to its

X

~ - .
value J(a) for the optimal model, because of measurement noise,

should then correspond to only a relatively small change in ay from

al’: to ﬁk. Thus, if each error (3k~a1’::) is bounded by applying a
sensitivity analysis for an assumed diffcrence (J(a™)-J(4)), this

will give a qualitative idea of the accuracy of the optimal estimmates on
a relative basis. Such a sensitivity analysis cannot be expected to

give bounds on the actual error for each estimate since J(a™) is an

unknown quantity. From Eq. (2. 3. 4):
JA(@™-3)) (2.4.31)

and hence, with (2. 4. 16) in mind, J(_zi*) depends on the measurement
noise, the ideal model error and the a priori estimate 2.
1¢ ideal model error an e a priori estimate 2,

A Taylor series expansion of J(a) about 3 gives:
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J(@¥) =J@) +(2e,a"- &)
(2.4.32)
oA g A e a3
+(a*-4,5(a%-3))+0i[la*-4[")

where é“-::S(%) (Eq. (2. 3.8)). If it is assumed that e._ is negligible,

J

then (2. 4. 32) shows that the sensitivity of J to variations about the
optimal estimates §L_ is governed by the sensitivity matrix 8.

The sensitivity matrix S can always be calculated after the
optimal estimates have been obtained. It is useful to do so from sev-
eral points of view. First, if it is positive definite, as assumed here,
then _é:. is locally unique (§2. 4. 2). Furthermore, it is desirable that
S be approximately diagonal and that the diagonal elements, which are
necessarily positive, be large with respect to J(_?_i_}.

The first property ensures that the parameters are "orthogonal'!,
that is, that a large error in one parameter does not producec large
errors in the other parameters. If two parameters ay and aj are

not nearly "orthogonal'’, so that ékj is comparable in magnitude with

kk k

a considerable amount but for the combined effect of these errors on J

S and éjj’ then it is possible for both a, and 3j to be in error by
to cancel. Thus, it would be expected that these parameters would be
difficult to estimate accurately by minimizing J.

On the other hand, if S is approxirmately diagonal, then for a
fixed J(a™), the parameter errors will be governed directly by the

size of the S since from (2. 4. 32):

kk’
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\4 & A Sk 2 ~ Sy A
LSBT ® I -3E) (2. 4.33)
k
which implies that:
~ ~ b < sk B A ~
4, -a) ] = 3™ -T@17/8], (2. 4. 34)

#

For good accuracy, the diagonal terms § should therefore be large.

kk
This bound is analogous to the one in Eq. (2. 4.30). In fact, the ma-

trices S (Eq. (2. .4. 24)) and é (Eq. (2. 4. 20)) are approximately equal
when A =0, This is because the optimal output-error Sf_ is normally
relatively small so that in most cases the third term in (2. 4. 20) is
negligible,

When A #0, Eqgs. (2.4.20) and (2. 4. 34) appear to imply that

by taking A large, the accuracy can be improved., However, this

kk
is not necessarily the case since (J(f}_*) - J(é_)) also depends on A.

- A —3 while, f the definiti
Wk T ®r A Tag 1ile, from the inition

of a,k in §2. 4. 3, the latter is independent of A. Thus, the error in

In fact, in the limitas A

the optimal parameter estimate §.k approaches the initial error
@g, - 25%)-

Many of the above comments can be given a geometrical inter-
pretation. If the sensitivity matrix S is positive definite, the contours
of J in parameter space for constant J‘(g*) close to J(&) are hyper-
ellipses centered at the point %_ and given by the quadratic form as-
sociated with S. Although a® will be unknown, it must lie on the

hyperellipse given by J(a™) and so the accuracy of the optimal param-

eter estimates will be governed by the shape and overall size of this
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hyperellipse, which in turn is controlled by the properties of the
sensitivity matrix.

If S is diagonal, the axes of the hyperellipse are parallel to
the axes of the parameter space and it can be seen that the semi-axes

of the hyperellipse give bounds on the errors lﬁk - a;: . This leads

o

directly to the bounds given in (2, 4, 34). -

.

On the other hand, if S is not diagonal, the hyperellipse is
oriented "obliquely', so that its axes are not parallel to the axes of
the paramcter space. However, the length of the axes of the hyper-
ellipse continue to control the accurécy of the parameters. Since these
lengths are inversely proportional to the square root of the eigenvalues
ot 3, the accuracy is ultimately controlled by these eigenvalues. In
the Yorthogonal' case, the eigenvalues of S are equal to the diagonal
elements and the present interpretation reduces to the earlier one.
It is clcar from this gcomectrical interpretation that if any eigenvalue
A of é is almost zero, so that g‘» is ill-conditioned, the corresponding
axis of the hyperellipse is relatively large. Thus, all those parameters
which have a significant component in the principal direction (cigen-

vector) associated with A will be poorly estimated in general.

2.4,6, Effect of Model Limitations on Paramecter Estimates

lf the chosen theoretical model was capable of giving an exact
description of the dynamic behavior of a system, the ideal model
would be invariant with respect to the particular data used in the identi-

fication of the system, and the optimal modcl would change as diffcrent
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data samples were used only to the extent of a change in the measure-
ment noise. In practice, the theoretical model describes the behavior
of the system only approximately, so that both the ideal and optimal
models will change as different data from the system are used. For

example, if a linear theoretical model is used to identify a nonlinear

&

system, the estimated parameters can be expected to change-as the
level of the response changes.

In general, the optimal model can only be expected to predict
the output of a system for an excitation with similar characteristics
to that producing the data used to determine the model. Tests can be
made to examine how well the optimal model determined from one
sample of data is able to predict the output for other samples of data.
Also, the optimal model can be determined from different samples
to examine whether it is unduly sensitive to the particular data used.
With each of these approaches, there is a fundammental difficully in
determining how much of the observed differences are due to limitations
of the theoretical model in representing the hehavior of the system and
how much are due to measurement noise. The degree to which these
effects can be separated depends on the amount of prior knowledge

which is available about the characteristics of the noise and the system.

2.4.7. Final Remarks

One of the most difficult parts of system identification is as-
sessing whether the parameter estimates are reliable. When an out-

put-error approach is taken, it is suggested that this problem be
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tackled in a number of steps, so that intermediate results may be
examined. Thesec steps may be summarized as follows:

1) The models used should be at least locally identifiable
(§2.4.1).

2) The estimates returned by the output-error algorithm should
be checked to determine whether they are the optimal estimates. A
fundamental difficulty arises here in ensuring that a global rf;inimum
is found (§2.4.2).

3) The accuracy of the optimal estimates should be assessed.
One difficulty is that there is no exact model to act as a basis for
judging accuracy, so an ideal model is introduced as a substitute for an
exact model (§2.4.3). Another difficulty is that often only 1imited data
arc available which makes it difficult to confirm assumptions about the
character of the noise in the records and to cstimate its level. How-
ever, the accuracy of each estimate may be compared on a relative
basis by an error analysis (§2.4.4) or a sensitivity analysis (§2.4.5).

4) The final problem which should be considered is whether the
optimal ecstimates are unduly sensitive to the particular data used to
determine them because of the limitations of the model in describing
the behavior of the system (§ 2. 4. 6).

In making an assessment of the parameter estimates as above,
experience with the system or other similar systems is a great advan-
tage. When using linear structural models, for example, there is a
considerable amount of accumulated information which can be used to

assess whether the estimates are reasonable. This is not the case for
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the identification of nonlinear structural models, which is one of sev-
eral reasons that make this a much more difficult problem.

It should also be mentioned that there are other ways of look-
ing at the problems discussed above. One alternative to the ideal model
is to assume that the system dynamics are described by the state equa-
tion of the theoretical model with an additive term cafled the gquation-

error (also called the plant noise or process noise in a stochastic set-

ting. See, for example, Bowles and Straeter, 1972). A combined
oulput-error/equation-error approach can then be used to estimate

the parameters of the theoretical model, as in the filtering problem of
state estimation theory. The ideal model error and the equation-error
are two different treatments of the same problem, which is that any
theoretical model will provide only an approximation to the dynamics
of a real system, but the ideal model error is the appropriate concept
to use in an output-error approach,

The approach to parameter estimation in this dissertation is
primarily a deterministic one where noise is acknowledged but no
assumptions are made about its character. There are a number of
papers and books on system identification which provide a stochastic
treatment. Eykhoff (1974) and Beck and Arnold (1977) are two ex-
amples which have been cited earlier.

When using seismic records, the samplke base is so limitedthat
there are inherent difficulties in verifying statistical assumptions and
in judging the validity of the error estimates. However, for such

cases, a deterministic framework can be used to derive the
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equivalent of many of the results based on stochastic theory. This was
pointed out, for example, in $2.2.3 with regard to the minimization
problem [Eq. (2. 2. 4)] of the output-error approach. Again, the filters
arising in the theory of state estimation, which may be specialized as
output-error methods, can be derived on a deterministic basis (invar-
jant-imbedding filter) or a stochastic basis (extended K&lman filter).

A final example is that the sensitivity matrix (§2.4.5), which plays an
important role in determining the accuracy of the parameter estimates
within a deterministic setting, plays an equally important role in a
stochastic error-analysis, where it is known as the (Fisher) infor-

mation matrix.
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III. LINEAR STRUCTURAL MODELS

The identifiability of a class of linear structural models is
considered in this chapter. It is shown that certain modal parameters
are determined uniquely by the input and output of a model in this
class, but that the stiffness and damping matrices are not determined
uniquely in typical situations. A discussion is made of other diffi-
culties arising in the application of thesc models to the identification of
structures from seismic records. Tt is concluded that when linear

models are used, they should be based on the dominant modes in the

records of the response and not on the stiffness and damping matrices.

3.1. A Class of Linear Structural Models

Recall from §2. 2, 3 that the class of models used in an identi-
fication process is defined by a theoretical model, which determines
the eguation for the siale of the model; an ovulpul equation, which re-
lates the output of the model to the state; and a set of allowable values
for the parameters of the models. Xach aspect will be considered in
turn for a class of linear structural models with N degrees of free-

dom, which is denoted by mN for convenience,

3.1. 1. Theoretical Model

A discrete theoretical model is used which has the following

equation of motion:

Mit +Cx +Kx = -Mb¥(t) (3.1.1)



-84 -

This model has had a long history in analysis and design in structural
dynamics. For a physical interpretation, it may be imagined that it
represents a physical model consisting of a three-dimensional dis-
tribution of lumped masses linked by linear, massless springs and
dashpots (viscous dampers), with the model sitting on a rigid base
N]t

then consists of the generalized displacement relative to the base of

oy
which moves in only one direction. The vector x "—'[xl,xz, v..X

each degree of freedom of each lumped mass of the model, and %
is the acceleration of the base. To emphasize that each component
of x has a specified dircction agsociated with it, the = will be

called the coordinates of the model. The components of the vector

b = [bl,bz,. .. ,bN]t are the so-called pseudo-static influence coef-
ficients which depend only on the geometry of the model (Ch. 27,
Clough and Penzien, 1975). If z is a displacement of the base,
x+bz represents the corresponding total or absolute displacement
of the masses. It will be assumed that the geometry of the model is
prescribed so that b is known. The NXN matrices M, C and K
are the mass, damping and stiffness matrices respectively and are
parameters of the model. Equation (3.1.1) may be interpreted as
expressing the balance between the inertia M(X+ bZ) of the physical
model, its elastic restoring force -Kx and its viscous damping
force —Cé, in accordance with Newton's Second Law.

The theoretical model given by Eq. (3. 1.1) is often used as
a planar model for buildings. In this case, the vector x is taken to

represent the horizontal displacement at points in the structure,with
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all displacements parallel to a fixed vertical planc, and Z is taken
to be the horizantal component of base motion parallel to this plane.
All the components of b are therefore unity. The theory in this
chapter can be specialized to the planar interpretation by choosing

these special values for the components of b; indeed, this is done

later with some illustrative examples. ’

The three-dimensional interpretation of x in (3. 1. 1) is empha-
sized here because ultimately a reduced form of this model based on
the dominant modes of response is used. The planar interprctation is
then unneccssarily restrictive because it precludes torsional response
whereas the model based on modes does not. However, it is shown
below that the simplified way in which the seismic excitation is repre-
sented by a single input in the model may cause some difficulties in
identifying torsional modes,

There are several simplifications in the way that the seismic
excitation is defined in the model. These include:

1) treating the base of the structure as rigid,

2) neglecting the three rotational components of motion of the
base,

3} neglecting two of the translational components, one vertical
and one horizontal, of the motion of the base.

The first two simplifications should lead to good approximations if
there is no pronounced soil-structure interaction. Furthermore, the
present data do not allow these features of the model to be improved

because existing basement records consist of three orthogonal
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translational components of motion at only one point of the base.

The effect of neglecting one horizontal component of the base
motion is considered for the case in which the structural output consists
of the horizontal motion in a fixed direction at certain points within the

structure. Even though the output is 'planar', the state x of the

model can be treated as three-dimensional to includg-torsional re-
sponse. The horizontal base motion in the given direction s;.ould rep-
resent the principal contribution of the seismic excitation to the output.
This component of the base motion would therefore be used as the mod-
el input Z. However, the horizontal base motion orthogonal to the
given direction can also contribute to the output of the structure by
being part of the excitation of cither the torsional modes or any trans-
lational modes which have a pronounced three-dimensional character.
Some of the problems arising in the applicalions in Chapter 6
are attributed to inadequate modelling of the torsional contributions to
the translational motion at the location of the accelerograph. To treat
this feature, it will be necessary to extend the theoretical model to
include both horizontal components of the base motion. This will
introduce another participation factor for each mode, but the methods

presented in this dissertation should remain applicable after some

modifications.

3.1.2. Output Equation

The output m of each model in the class mN is taken to be

a vector consisting of the response at certain coordinates in the model.

To determine identifiability, it is unnecessary to prescribe which
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quantity x, X, or i*ii is actually observed., It is therefore conven-
ient to define the form of the output for each model by a set 3, a

subset of the integers 1 to N, corresponding to those coordinates

at which the response is measured. For example, if x;, ;(l and 59;3

are measured, then J={1,3}.

3.1.3, Allowable Values of the Parameters

The parameters of the theoretical model are the elements of
the matriccs M, K and C and thc initial conditions. Thcrc arc
certain physical properties which the mathematical model should
imitate and which are commmonly used to place restrictions on M, K
and C. These restrictions will be used in defining the allowable
values of the parameters for the class mN.

1) Mass Matrix: The %, are assumed to correspond to the

degrees of freedom of each lumped mass. The mass matrix M is

therefore diagonal and positive definite, that is:
my 0
M = ' , m; >0 (3.1.2)

0 my

In this chapter, the mass matrix will be assumed known when trying to
resolve the internal structure of the model from the input and output.

The mass matrix for an assumed discretization of a structure is

easier to determine a priori, using structural plans, than either the
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stiffness or damping matrix. Furthermore, it is obvious from Eq.
(3.1.1) that without some constraint on M, the stiffness and damping

matrices cannot be determined from the input and output.

2) Stiffness Matrix: The stiffness matrix K :[kij] is required

to be symmetric and positive definite:

K=K’ or k.=k., 3.1.3)
ij ~ i

and §tKgc_>O , vx#0 (3. 1.4)

The symmetry follows from Betti's reciprocity law (Ch.11, Clough and
Penzien, 1975). Thenecessityfor (3. 1. 3)canalso be shown by applying
Newton's Third Law to each massless spring in the physical model of
§3.1.1, noting that kij is the force in the direction of Xj given by
unit displacement of =, with all the other coordinates zero. The
positive definiteness is imposed so that the equilibrium state of each
model is stable.

3) Damping Matrix: The damping matrix C =][c ij] is re-

quired to be symmetric and positive semi-definite:

C=Ct or c..=c., (3.1.5)

and ='Cxz0 , vx (3.1.6)

The symmetry is imposed for a similar reason to that in 2). The
positive semi-definiteness is imposed so that the rate of energy dis-

sipation by the viscous damping forces is non-negative.
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Itis also assumed thatthe viscous damping is distributed through-
out themodel in sucha way that''classical, oscillatory"modes exist. The
"'classical' partmeans thatthe modeshapes are the same in the damped and
undamped cases, sothey arethe generalized eigenvectors of both K and C
with respectto M. Thispropertyisequivalenttothe following relation

between M, K and C (Caughey and O'Kelly, 1965)

cmlk =rMm (3.1.7)

The "oscillatory'" part means that each mode is less than critically
damped,

4) Initial Conditions: Recall from §2.2.1 that the initial con-

ditions are also treated as parameters of the model., Unrestricted

paremeters X and Vo are therefore required such that:

x(0) = x, and x(0) (3.1.8)

~Yo

3.2. Modal Form of Theoretical Model

It will become apparent as the theory develops that a2 modal
formulation plays an essential role in identification using linear
theoretical models. In this section, the standard transformation of
Eq. (3.1.1) to the uncoupled modal form is described, and a converse
result is given. An equivalent formulation in terms of transfer func-
tions is also presented,.

3.2.1. Uncoupled Equations of Motion

1),_1{;_( 2), - ,l!f_(N)] denote the modeshape matrix

Let Y= [_lli_(

whose columns are the generalized eigenvectors of K, so:
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. ;A2

or KY =MY(2 (3.2.1)

- -

b2 0

2
where o? 2 : .
© 2
LO Wi

and the wr>0 are the modal frequencies. The modes are labelled in

order of increasing frequency. By an assumed property of C, each

i (T)

modeshape Y also satisfies:

oy a ™, wo1, N

or CY¥ =MVYD (3.2.2)
—d 0 ] —Z(‘ w 0 ]
1 ¥171
d 20w
A 2 272
D= =

0 dN 0 ZQNwN
L J L N

Here, the modal damping factors Qr have been introduced by defining:

¢ =5 (3.2.3)

Since C is positive semi-definite, each erO and hence each
ngO. Furthermore, the modes are assumed to be oscillatory so

each gr<1 [see kg. (3.2.9)].
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(1)

Since the Y are linearly independent (or can be chosen to
be such in the case of equal frequencies and damping factors), the

matrix Y is nonsingular. A vector function § can therefore be

defined by:

gty =¥ x(t)

so Lthat: x(t) =Y §(1)
N (3.2.4)

or =) ¢ w121,
r=1

Substituting (3. 2. 4) into (3. 1. 1) and pre-multiplying by ¥

(M) g+ (Flov)E + (FKY)E = -¥iMbE (Y (3.2.5)

Define the generalized mass matrix by:
M=Y MY (3.2.6)

then substituting (3.2.1), (3.2.2) and (3. 2. 6) into (3. 2. 5):

'_§+Dé+o?‘§: ~aZ(t) (3.2.7)

where o2 M M =y (3.2.8)

is a vector of modal participation factors. In component form, (3.2.7)

becomes:

. 2
g fefw s twf =-oZ(t), r=1,...,N (3.2.9)
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The magnitude or norm of each '_,‘I_(r) is so far arbitrary and
so the scaling of each §r is also arbitrary. Itis useful for our pur-
poses to express (3.2.4) and (3. 2. 9) in forms which are invariant
with respect to the normalization introduced for each j}_(r). This can

(r)

be done by defining x5 the contribution to X from the rth mode,

Fa

by:
Ty :xyir)g (t) (3. 2.10)

i r

so that (3. 2.4) may be written:

N
(1) = E x{r)(t) (3.2.11)
r=1
and (3. 2.9) leads to:
:zir) »r-zgrwrigrh wix§r) - -;3§1’):7:(t) (3.2.12)
(r) _ 4 (r)
where Bi A{fi cvr (3.2.13)

The parameter B;r) will be called the effective participation factor

for the rth mode at the ith coordinate,

Equations (3.2.11), (3. 2.12) and (3. 2. 13) play an important
role in both the theory and applications in this dissertation. Notice
that the response Xi produced by Z depends on the parameters
f (r) _(r) (r) oy, (r) - 2(x)
twr’gr’ pi » X (0),Vi 0): z=1,... ,N} where vl ER

The final points to be discussed relate to the generalized mass

matrix M of Eq. (3.2.6). Ttis a standard result that M is diagonal
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because the modeshapes are orthogonal with respect to the mass
matrix M. Furthermore, the modeshapes can be normalized so that

Eq. (3.2.6) may be rewritten as:

vivy =1
N (3.2.14)
(r),(s) _ .
or ’Ljnﬁwi wi —6rs
i=

where I is the identity matrix of order N. This relation expressing
orthogonality and normality is convenient for later use.

As a final remark, it can be shown that if there areno repeated
modes (modes with a common frequency and damping factor), Y
satisfying (3.2.1), (3.2.2) and (3.2, 14) is unique to within a change of

i . r
sign of each column in \lr( ),

3.2.2 Construction of a Modcl from Modal Paramctcrs

Given a model in the class I the modal parameters can be

N’
determined by solving an eigenvalue problem as in §3.2.1. Conversely,
it is shown in this subsection that a unique model in HlN can be deter-
mined if modal quantities with the requisite properties are available.
Suppose the quantities w., C,r and \lér) are known for
i,r=1,...,N and satisfy uur>0, 0= gr<1 and Eq. (3.2.14). As
suggested by (3.2.1), (3.2.2) and (3. 2. 14), take a linear model with

the known mass matrix M and stiffness and damping matrices given

by:



-94.-

2
K = MY v'M
¢ (3.2.15)
and C=MYDYM
In component form, these equations become:
N
k..=m.m, T; (ﬂ2¢§r)¢(r)
1] 1} =1 )
r=1
N L (3.2.16)
d =2 Y !(r);,(r)
an clJ mm, } grwrui pj

It is easy to show that this linear model is in mN because K and C
defined by (3. 2. 15) satisfy the conditions of §3.1,3. Furthermore,

this is the only model in M which has the given modal parameters

N

~

because if some other model with stiffness and damping matrices K
and C has the same modal parameters, then from (3.2.1) and

(3.2, 14):
2 eyt
K=MY(1 ¥ M=K

and similarly, C=C.

3.2.3, Transfer Function Formulation:

It is convenient in proving the results of the next section to use
the equivalent form of Eqs. (3.2.11) and (3.2, 12) obtained by applying
Laplace's transformation,

Let Xi(s) and ‘i(s) denote the Laplace transforms of the dis-

placement x. and basc motion Z, that is:
1
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QO -st
X.(s) :f x.(tle " dt
1 J 1
0
~ 00 -st
Z(s)=1 #(t)e *tat
“0

'd

where s may be complex., For later theory, it is necess;ry to de-
termine a region in the complex plane where Xi(s) and Z(s) are
analytic functions, If f{t) Is pilecewise continuous on (0, ), and of
exponential order as t— oo, say f(t)= O(GCt), then the Laplace trans-
form F{s) of f(t) exists and is an analytic function of s in
Re(s)>c, It is assumed that %2(t) has finite duration, so the above
result implies that i(s) is analytic on the whole s-plane. However,
after the base motion has finished, the model will undergo free vibra-
tions so Xi(s) will have poles in the left-half plane. But from the
result above it will be analytic on the right half-plane

39+: {s:Re(s)>0} , Since Xi(t) must remain bounded as t~ oo, The
proofs of the results in 3,3 rely on the fact that Xi(s) (or Z(s)) on

by ¥ are equivalent representations of Xi(t) (or %Z(t)) on the time in-
terval (0, o).

From the transforms of Eqs.(3.2.11) and (3.2, 12):
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N
X, (s) = z x5 (3.2.19)

1

szxirks)_sxﬁrNO)_XJTN0)+zgrwrsX£rhs)

i i
(3. 2. 20)
-zgrwrxgr)m) +miX§r)(s) = -Bir)éﬂ s)
Combining (3. 2. 19) and (3. 2, 20):
Xi(s):Gi(s)+Hi(s)2(s), vseat (3.2.21)
N
where Gi(s)é z [vi(r)(())+2grwrxi(r)(0)+ sxgr)(O)]H(r)(s) (3.2.22)
r=1
N
H.(s) & Z ﬁi(r)H(r)(s) (3.2.23)
r=1
ults) 2 S ! - (3.2.24)

s“+2C w s+w
r r r

The function H. {s) is the transfer function between the base motion
1

z and the corresponding response x .
i

(r) ~

Each H' '(s) has a pole at S and its complex conjugate sr

where:

. (1. c2E
S.. ——Qrwr+ i(l - {,r) w (3.2.25)
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These poles are simple because Q <1. The poles of Gi(s) are those

(r)

s and —s-r for which X, (0)#0 or v( )(0)’#0 and the poles of Hi(s)

r

are those s_ and -s—l_ for which f3§ )# 0. Assuming that all the s,

are distinct, the residue at 5. of Gi(s) is:

o

r r

and the residue at 5. of Hi(s) is:

pl™)
S35 i (3.2.27)
21 - ¢H)Fu?

The residues at gr are the complex conjugates of (3.2,26) and (3, 2. 27).
The points {Sr'gr: r=1,... ,N} are distinct unless there are

repeated modes with the same frequency and damping factor. For an

N degree-of-freedom model with R modes having a common fre-

quency and damping factor, the R modes will appear as a single mode

(r) (r)

(0, (0) and [3( r) equal to the sum of

which has values of X
these quantities for the repeated modes, To be consistent with the

theory to be developed, it is assumed that (R-1) modes are "missing"
from the response. This is achieved by taking x( )(0) = (r)(U) = ‘3(1')_ 0]

for (R-1) values of r.
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3. 3. Uniqueness of Some Modal Parameters

In this section, some results arc proved which form the basis
of the approach suggested for identification using linear models, It
is shown that certain modal parameters of any model in mN are de-
termined uniquely by the input and output of the mogel. The proofs
do not give a practical way of actually determining the values of these
parameters. This is left to later chapters,

It is first assumed that the models are initially at rest.

Proposition 1

Consider any model in the class mN which is initially at rest
but is then excited by a known base history z of finite duration. If
the output {xi(t) or :>'<:i(t) or 3ii(t): t=0 and i€d} is known, then:

1) the f’ir), r=1,...,N and i€d, are determined uniquely,

2) wr and Qr are determined uniquely if the rth mode makes

(

a contribution to the output, that is, if ﬁir) #0 for some i€,

The converse is also true,

Proof:
The proof is given for the case in which the output is the res-
ponse at the single coordinate .. It can be generalized immediately

to an arbitrary set of coordinates, Furthermore, only knowledge of
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x, 1s considered because the proof is almost identical for x. and %,
i i i

if the relations Xi(s) = in(s) and Xl(s) - s?‘xi(s) are used., For
brevity in the development, some statements enclosed in brackets are

included, These are standard results from the theory of complex

variables, e.g. Churchill et al (1974). -

Notice that under the hypothesisthat the model is initially at
rest, GiEO in Eq, (3.,2.21), The proof of the converse is therefore
immediate because if 1) and 2) of the proposition hold, the transfer
function Hi(.s) in (3,2, 21) is known., The converse was included to
emphasize that the values of the parameters given in 1) and 2) give
all the information about the model that is contained in the response
.. Thus, the parameters listed are a complete set from this point

of view.

Themain result of the propositionisnow proved. Suppose that
Xi(t)’ t20, isknownand suppose that ffi)r, Er,égr): r=1,...,N} and
{'(;r’ Ej’r,'ﬁ'gr): r=1,..., N} areboth possible sets of values for the param-
eters of themodel under study. Thismeans thateach setofvaluesiscon-
sistent withmeasured inputand output, Z and X, - Let ﬁi(s) and ﬁi(s)
be the transfer functions corresponding to the two sets of values [Eqs.

N ~

(3.2.23) and (3. 2. 24)]. The basic idea is to show that Hi ‘EHi and

o

to find the conditions under which this implies that &r =0, 5. :Qr,
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and é(r) ~§ir>,

i

+
By the hypotheses and Eq. (3.2.21), Vs€® :

X, (s) =H, (s)Z(s)

(3.3.1)
and X, (s) :Hi(s)Z(s)
Subtracting: 0 :AHi(s)Z(s) < (3.3.2)
A ~ -
where AHi = F ; ~H.1 (3. 3.3)

Since the zeros of an analytic function are isolated, there exists a
domain 990 in s@)+ over which Z(s)#0. This implies from (3.3.2)
that AHi:O on ;90, which in turn implies that AHi:O everywhere
in the complex plane except possibly at the poles of I?Ii and ﬁi' [If

F is analytic on a domain D and F =0 on DOCD, then ¥ =0

on D]. It therefore follows that AHi is analytic and zero everywhere,
[1f F(s) is boﬁnded and analytic throughout a domain

{s:0<ls -sol <8}, then either F is analytic at Sy ©°F else Sy is
a removable singular point of F]l. Each pole of f:Ii must therefore

be cancelled by a pole of ﬁi and vice versa, Recalling the results

of §3.2.3, in particular (3. 2.25) and (3. 2.27), this can occur if and
(r)

only if for each r such that pi #0, the following equalities hold

(relabelling if necessary):

T =0, =c g% g (3.3. 4)

r r Ir T 1 1
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3

1

and if (. 0, then =0, This proves the proposition.

A(r)
i

It should be noted that the condition that the input be of finite
duration guarantees that it contains all but a countable number of fre-
quencies. This is because a finite duration ensures that the Laplace
transform of the input is analytic everywhere and sorit has only iso-
lated zeros. The Fourier transform, being the Laplace transform
evaluated along the imaginary axis, therefore has the latter property
also. Proposition 1 shows that, in theory, this property is sufficient
to ensure unique determination of the modal parameters which control
the output. In practice, the input would have to have a sufficiently
strong signal over the bandwidth containing the modal frequencies so
that the signal-to-noise ratio of the modes in the output would allow
the modal parameters to be estimated reliably.

The theory can be extended to include the case of nonzero

initial conditions. This situation is pertinent to the case where the

initial portions of the base motion and response are not observed and

(r)

so the initial values of the modal contributions x, ' are unknown,

A complication in this case is that it is possible for the base motion
to interact with the initial motion in such a way that two completely
different models in mN can have the same response for that base
motion., This problem does not arise when the base motion z of the

models belongs to the class C. of piecewise-linear time histories with

L
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finite duration, This is the case in later applications where the input
to the model is given by a linear varialion between successive discrete

data points,

Proposition 2

P

Consider any model in the class M. which is excited by a

N

.

known base motion history Z in the class of piecewise-linear functions
GL. If the output {xi(t) or }‘;i(t) or '>'§i(t): t=0 and i€ J} is known,

then:
(

i

1) the ﬁgr), xr)(O) and Vgr)(O), r=1,...,N and i€d, are

determined uniquely,

th
2) wr and C,r arc determined uniquely if the r mode makes

a contribution to the output, that is, if either ﬁgr) #0 or xgr)(O) #0 or

Vgr)(O) #0 for some i€ d,

The converse is also true,

Prooi:

As before, the proof is given for one component xi(t), t=20.

3

It is similar for x. and %, if X(s) = sX_(s)-§L xfr)(o) and
Nl 1 N 1 1 ‘ r‘il 1
T (x) (x)
X.(s)=s Xi(S) -8 ) % (0)- v, '(0) are used,
i
: r=1 r=1
The proof is basically the samc as that for Proposition 1, The

main difference is that instead of Eq. (3. 3.2), subtraction of the two
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expressioas for Xi(s) leads to:

e +
0 =AG,(s) +AH,(s)Z(s) , Vs €8 (3. 3. 5)
here AG. B EE (3.3.6)
where My 17 o
An
and AH, S H, -H (3.3.7)

If it is assumed that AHi is not identically zero on its whole domain
of analyticity, its zeros are isolated and (3, 3.5) leads to an expres-
sion for 'Z:(s) which is not consistent with its form for 7z in CL°
It can therefore be concluded that AHi is zero everywhere except
possibly at the poles of I—A{i and ﬁl Repeating the arguments in the
proof of Proposition 1 leads to the same results as in Egs. (3. 3. 4).
Equation (3, 3,5) therefore implies that AGi is zero on 39+.
Repeating previous arguments, /\Gi is zero everywhere and each
pole of CA}i is cancelled by a pole of 51 and vice versa. Recalling
the results of §3.2.3, in particular (3.2.25) and (3, 2. 26), this can
occur if and only if for each r such that ;cgr)(O) #0 or Qgr)(O) #0, the

following equalities hold (relabelling if necessary):

W, =0, 0 =050 =x0),5

(3. 3.8)

and if ?;].(Lr)(c)) -0 :%i(r)(O), then ’:Eﬁ”(()) -0 :’x7§1')(0) .

The results due to AHi and AGi being identically zero are
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combined to complete the proof of the proposition,

3,4, Identifiability of Models in mN

In this section, the identifiability of the class mN of linear

models is investigated. Recall that the identifiability of a model is
determined by examining whether noise-free input a;d outpuf of the
model specify the parameters uniquely. Recall also that at least local
identifiability is neccssary to give uniquc optimal cstimatces when
minimizing JO during the identification of a structure since, if the
models are locally but not globally identifiable, it may be possible

to use prior information about the parameters to choose the appro-
priate model from the finite number of solutions for an optimal model.
This cannotbe done if the models are not locally identifiable because
there is then a continuum of solutions.

The main result of this section is that, in general, the models
in mN are neither globally nor locally identifiable unless the re-
sponse is measured at half or more of the coordinates. Thus, the
stiffness and damping matrices of a linear model of a structure
typically cannot be determined from seismic records.

The approach taken in establishing these results is to find

conditions under which the modal parameters of Proposition 1 deter-

mine the model, since these parameters give all the information about
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the internal structure of the model that is contained in the input and
output, It is assumed that the complete histories of the input and
output are used and that the input has finite duration, because these
were hypotheses of Proposition 1. Clearly, if a model is not identi-
fiable when the complete histories are used, it is ngt identifiable when
a portion of these histories are used, By applying Proposition 2, the
results in this section can be shown to remain valid when the initial
portions of the input and output are not available, provided the inputs

to the models can be taken as piecewise-linear functions.

3.4.1. Identifiability, Controllability and Observability

It is assumed that a model in mN is initially at rest and is

() _

then excited only by base motion, If ﬁi for each i in J, the

rth mode will be missing from the output. Thus, the condition
ﬁftr) #0 at some measurement point is necessary if wr and Qr are to
be determined from the input and outpﬁt. This is also a sufficient con-~
dition according to Proposition 1. This condition, which can be
written: vr=1,,...,N,d i€J such that 6§r) #0, is equivalent to the
three conditions:

(a) the model has no repeated modes;

(b) there are no modes with a zero participation factor;

(c) no mode has a node at each coordinate at which the



-106-

response is measured,

Conditions (a) and (b) are equivalent to the model being controllable
and conditions (a) and {¢) are equivalent to it being observable {Kalman,
1963). Thus, a necessary and sufficient condition for all of the modal
frequencies and damping factors of a model to be determincid from its
input and output is that it be controllable and observable. Notice that
if the input and output of a model show that it is not controllable and
observable, then it is not possible to determine which of conditions

(a), (b) and (c) are violated on the basis of these data alone.

It follows from the above that a necessary condition for both
global and local identifiability of mN is that each model be control-
lable and observable. Since there are obviously models in mN which
do not satisfy these conditions, the class of models is neither global-~
ly nor locally identifiable for any input. However, only the subclass
of controllable and observable models is of interest for applications
using data from actual structures., This is because the optimal model
for the class W.N identified from structural data will always be con-
structed with N contributing modes, The optimal model is therefore
automatically controllable and observable.

Recall that a model in mN can be specified uniquely if all of

its modal parameters are known (see $3.2.2). If a model is control-

lable and observable, its modal frequencies and damping factors can
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be determined, but this still leaves the modeshapes, Proposition 1

indicates that the only other information in the output relating to the

internal structure of the model is the ﬁgr) for r=1,...,N and for
each i in J, Thus, the output only directly specifies all the mode-
shape components \if}(:) when Jd=11,2,...,N}, that is, th? output
corresponds to the complete state x of the model. In all other cases,
the modeshapes are not defined by the input and output alone. How-

ever, they must satisfy orthogonality, that is, satisfy the constraint

(3.2. 14) where the mass matrix M is known, It is therefore pos-

sible that this information, together with the values of the (Sgr) de-~
termined by the input and output, may be sufficient to determine the
modeshapes, This is examined in the next two subsections, first for

local identifiability and then for global identifiahility.

3. 4.2. Local Identifiability

The following result is proved in this subsection:

Proposition 3

Consider the subclass of controllable and observable models
in mN and let NOSN be the number of coordinates at which the re-
sponse is measured, which is equal to the number of integers in the

output set J, then:
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The subclass is locally identifiable if and only if NOZ %N,
that is, the response is measurcd at no less than half the coordinatles

in a model,

Proof:

>

r

Suppose the input and output of a model in the subclass is
measured, then from §3.4.1, all the modal frequencies and damping
factors are determined. Consider the equations which are satisfied

2 (r) .
by the N unknown modeshape components lllk . First, there are

)

the equations given by the fact that 5fr is determined by the input
i
and output for each of the N modes and for each 1 in J. From

(3.2.8) with M=1I, and from (3,2.13), this gives N XN quadratic

equations:

N
Z mkbktlffr)wf)=f3§r) (3. 4.1)
k=1

However, only NO X (N-1) of these equations are independent since

for each i:

N N
2 @;r) - Z wgr)o’r =(¥a); =b, (3.4.2)
r:l r:].

The constraint (3.2, 14) gives %‘N(N +1) independent quadralic
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equations after symmetry is taken into account:

Z mkv(r) (S) s s=r (3' 4’3)

There are therefore NZ +(N0-%"N)(N - 1) independent quadratic
equations for the N2 unknowns in the modeshape mitrix Y.,

Notice that for any solution for Y, there are 2N 1 cor-
responding solutions in which the signs of the columns are changed,
but all these solutions give the same model in mN' In particular,
there are at least ZN solutions of the equations, each corresponding
to a modeshape matrix of the observed model.

If NO< ’%N, there are more unknowns than equations. Thus,
there are free unknowns which can be arbitrarily assigned values and
this leads, in general, to a whole continuum of real solutions for the
modeshape matrix, and hence for K and C through Eqs. (3.2, 15).
Thus, if NO< N, the subclass of controllable and observable models
is not locally identifiable, However, there can be exceptional models
which are locally identifiable. F¥or these models, only a finite set of
values for the free unknowns leads to real solutions for ¥; all other
values lead to complex solutions. This can be shown by using the

theorem introduced in the next subsection,

If N “"N which can only occur if N is even, there are the



-110-

same number of unknowns as independent equations, IYrom a stand-
ard result of algebraic geometry, this implies that there are only a
finite number of real solutions for Y, Thus, the stiffness and damp-
ing matrices are locally unique since, for a finite number of solutions,
each solution must be isolated in the parameter spage, The subclass
of controllable and observable models is therefore locally izientiﬁable.
If NO>%N, there are fewer unknowns than equations, so the
number of solutions must certainly remain finite and the subclass
must again be locally identifiable. It might be thought that in this
case there should be a unique solution for ¥, to within an inconse-
quential change of sign of each column, and hence a unique solution
for K and C. However, because of the nonlinearity of the equations,

there are exceptional cases which prevent the whole subclass of models

from being globally identifiable unless NO =N.

3.4.3. Global Identifiability

Because of the nonlinearity of the equations, conditions for
global identifiability of the subclass of controllable and observable
models in mN cannot be determined by simply counting unknowns and
equations. Instead, the equations must be soived to determine whether
there is a unique real solution. The approach taken here is based on

a theorem which is proved in Appendix B. The question posed is:
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How many models in mN would give rise to the same output as a

known controllable and observable model when subjected to the same
input? Notice that any model consistent with the input and output of the
observed model must also be controllable and observable. The theorem

reduces the above problem to solving a matrix problem which is easier

e

F s

to treat than the equations in §3. 4. 2.
Let ¥ :{_1{{_(1), . ,\_‘J'(N)] be a modeshape matrix of a model in

mN, then it is convenient to introduce the transformed modeshape

matrix @ :[_Cg(l),. .. ,gg( N)] by defining:

=M=y (3. 4.4)

(r)

The transformed modeshapes @ therefore satisfy:

. (3. 4.5)
(r) ___5,.(r)
or Py tEma sV
By Eq. (3. 2. 14):
t
$°% =1 (3. 4. 6)

Since the left-hand inverse and right-hand inverse are always equal,

1
= @t, The transformed modeshape

this equation implies that ¢~
matrix ¢ is therefore a real, unitary (or orthogonal) matrix. The
roles of ¢ and Y are equivalent since the mass matrix M is as-

sumed known,
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Theorem

Consider a controllable and observable model in mN whose
output for a known input is measured. Let & be the output set de-
fining the coordinates at which the response is measured. Let ¢ be
a transformed modeshape matrix of the observed model. The number

of models in M_ which are consistent with the observed data is equal

N

to the number of solutions of the following matrix problem:

Find a nonsingular, real matrix B such that:

(i) Bt_e_i se, , Vi€ J (3.4.7)

(ii) Bo=p (3.4.8)

i) Bo*h ey =0 , rts (3. 4.9)

where & is the unit vector given by (Si)k :61k and p is a known

vector of dimension N with elements given by:

o =b

K =Py (3.4.10)

Wsmp—'

Furthermore, for each solution B, the transformed mode-

(r)

shapes ’S\é of the model in mN which has the same output as the

observed model are given by:

B! (3.4.11)

where v = BTt Bol ) (3. 4. 12)
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The proof of this theorem is presented in Appendix B,

The theorem can be used to prove a number of results con-
cerning the determination of models from their input and output.
Notice that once Lhe modeshape matrix ¥ is determined from Egs.
(3.4.11), (3.4.12) and (3. 4. 4), the corresponding model can be deter-
mined from Egs. (3.2.15) since it must have the sar;e modal fre-

quencies and damping factors as the observed model.

Proposition 4

Consider the subclass of controllable and observable models

in mN and let N_. be as defined in Proposition 3, then:

0
The subclass is globally identifiable if and only if NO:N, that

is, the response is observed at every coordinate of a model.

Proof:

If N,=N, then Eg. (3.4.7) in the theorem holds for all

0
i=1,...,N and so the only solution of the matrix problem is B =1,
the identity matrix. The subclass is therefore globally identifiable.
Notice that the hypothesis that the models are observable is redundant
when NO=N since a mode cannot have a node at every coordinate,

To show that N,=N 1is a necessary condition for global identi-

0
fiability, it is sufficient to show that if NO =N -1, there are models
which are not determined uniquely by their input and output.

Without loss of generality, the coordinates can be labelled so

that the output set is J = {1,2,...,N-1}. According to the theorem,

the number of models consistent with the input and output of a given
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model is equal to the number of nonsingular solutions to Egs. (3. 4. 7),
(3.4.8) and (3.4.9). From (3.4.7), the first (N-1) rows of

B :[bij] are the same as the identity matrix and hence:

B [cp(r),_(z),...,pg) gl (3. 4.13)
where pré (Bg(r)) Z by 0 1 (3.4.14)

The first (N-1) equations in (3. 4. 8) are satisfied identically and the

last equation gives:

N
Z = (3. 4.15)
i=1

From the orthogonality condition (3. 4. 9):

N-1
P.Pg = y CP5(_r)'S )~°P§)CP§’) , T#s (3. 4. 16)
i=1

(r)

where Lhe last equality follows from the orthogonality of the @

To determine B, the b 1,...,N, could be determined

Ni” T
from Egs. (3.4.14), (3.4.15) and (3. 4. 16). However, it is sufficient
to determine the solutions for the p.. T =1,...,N, because there is

a one-to-one correspondence between these unknowns and the bNi'

This follows from (3. 4. 14), which can be written:

p=2 bN (3. 4.17)
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t t .
where P-:[pl’pZ" .. ,pN] and by :[le’bNZ” .. ’bNN] . Inverting

this relation:
b =% (3.4.18)
Equation (3. 4. 15) may therefore be written:
t t
pN:_p_EN:E@B (3. 4.19)

But from (3. 2.8), (3.4.5) and (3. 4. 10):

a=8'p (3. 4.20)
and so: pngtE
N
or z &rpr:pN (3.4.21)
r=1

Equations (3. 4. 16) and (3. 4. 21) give the p, in terms of the mode-

(s)

shape components Py

and the participation factors o of the
1
. ot Wi - z
observed model, together with the constant pN bNmN for the class
of models.

The equations for the p. can be uncoupled as follows., Mul-

tiply (3. 4.21) by P and then use (3.4.16) to get the quadratic

equation:
N
2 T s .
Clsps ’pNPS'i‘ Z (qu)&_)cp&):o , 8=1,,..,N (3. 4.22)
r=1

rks
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This can be simplified since from (3. 4. 20):

ta=p
N
r) . .
or Y ool a0, 121, N (3. 4.23)
r=1
Substituting into (3. 4. 22):
2. Lonl8) . a8) -
S "NPs HpN (pN “s¥N ) =0 (3. 4.24)

This gives two solutions for each P

(1) p =y’ s or (i) p = S (3. 4.25)

Note that a #0 because, by hypothesis, the observed model is
controllable.

If solution (i) is taken for each s=1,...,N, itis easily
verified using (3. 4. 23) that this gives a solution of (3. 4. 16) and
(3. 4.21). Furthermore, from (3. 4.13), (3. 4. 11) and (3. 4. 12), this
solution corresponds to the observed model. Uniqueness therefore
depends on whether it 1s possible to have another solution for p
where some of the p, are given by (i) and some by (ii). This
amounts to checking what combinations of (i) and (ii) can satisfy
Eqs. (3.4.16) and (3. 4.21). Beccausc of the conditions on the p§r) for
controllability and observability, it turns out that another solution is

possible if and only if all but two modes have a node at coordinate N,
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the only coordinate whose response is not measured. If q and r

are such that:

ngl);éo, C;Dg)#() but co&s):o for all other s=1,...,N (3.4.26)

then the other solution for p is given by:

o o
__r,m 9.4 _ 1 _
pq~aq@N, P, -arcpN and pS—Ofor all others=l,... ,N (3.4.27)

(r)

The corresponding transformed modeshapes E can be found frora
(3.4.13), (3.4.11) and (3. 4, 12) and then the corresponding model can
be constructed as in $3. 2. 2.

There are obviously models in the subclass of controllable and
observable madels which satisfy the conditions (3. 4. 26), so the sub-

class is not globally identifiable when N_=N- 1, and hence when

0

N, <N. This completes the proof of Proposition 4.

0
It is unlikely that an optimal model determined during the
identification of a structure would satisfy the requirements in (3. 4. 26)

if N was large, although for small N, the requirement could be
satisfied by "reasonable! models. As NO is reduced, it is expected
that the conditions for nonuniqueness will become less stringent.

As an illustration of the results given by Eqs. (3. 4. 26) and
(3. 4.27), consider the case where N =3 and NO:Z. In particular,

suppose that the observed model is an undamped chain model (Fig. 3. 1).

Damping consistent with m3 is not considered because its inclusion
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is a trivial extension as far as uniqueness is concerned, since the
damping matrix is constructed from the modeshapes in the same way
as the stiffness matrix (§3.2.2). Taking m1=2m, m, =m,=m and
klzkz:k3 =k, the model has a node at X5 in its second mode. Thus,
conditions (3. 4. 26) are satisfied if the response is measured only at
coordinates %4 and X Recall that the pseudostat{; influence coef-
ficients are fixed by the prescribed geometry of the coordinates
(63.1.1), and in this case by=b,=b, =1. Starting with the substitu-
tion of the transformed modeshapes and the participation factors of
the chain model into Eq. (3. 4.27), the stiffness matrix of the other
model with the same output can be calculated by following the steps

given above. The calculations show that the stiffness matrices of

the original model and its counterpart are given by:

K=k| 2 -1 0

12 -1
0 -1 1
(3. 4.28)
and K=k | 1.4545 0.09095 -0.5455

0. 09095 2, 8183 0. 09095
-0. 5455 0.09095 0. 4546

Their common frequencies are: @ = 0. 4208 Wy, Wy =Wy, Wy= 1.6802 Wy

1
where W, = (k/m)®, and their common effective participation factors

are: ﬁgl): 0. 6483, 51(2):0. 3333, ;31(3)= 0.0184, p(;).—. 1.2966, p§2)= ~0.3333,

BG):O. 0367. Notice that although the second model must lie in I
3 3

and have the same geometry for its coordinates, it is not another
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: 4
M=y — XN

m2 -——-————-—b—-XZ
E i

Figurc 3. 1. Undam ed linear chain model with N degrees
of freedom.
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chain model because K is not tridiagonal,

3.4.4. Identifiability of Linear Chain Models

The previous work demonstrates that the class of models mN
is too general to guarantee unique determination of a model from its
input and output unless the complete state is measured, Ii the class

is further restricted, the chances of it being identifiable can be en-
hanced, although this may also reduce the capabilities of adequately
modelling an actual structure. One possibility is to restrict the
models to the subclass of mN given by the class of linear chain models
(Fig.3.1). In this case, the stiffness and damping matrices have the
additional property of being tridiagonal. However, they are even
further restricted because a general symmetric, tridiagonal matrix

of order N has 2N-1 independent parameters but KX and C for

a chain model each have N independent parameters.

The question of uniqueness in the determination of linear chain
models from their input and output has been studied by Udwadia and
Sharma (1978) for models without damping, and Udwadia, Sharma
and Shah (1978) for models with damping. Their damped models do

not necessarily belong to M because they do not assume uncoupled

N
modes; in fact, their work does not involve a modal approach.

Udwadia and his colleagues consider the problem of determining the
unknown stiffnesses ki’ i=l,...,N or unknown damping coefficients

Ci’ i=1l,...,N, from knowledge of the base motion and the response

at one coordinate or '"floar!'. Their results show that the class of
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linear models is globally identitiable if the output is the response of
the first floor but it is only locally identifiable if the output is the
response of any other floor.

The first result can be demonstrated by a simpler argument
than the original proof by Udwadia and his colleagues. Consider the
undamped case. Let w, denote the absolute displacefﬁent of mass
m, which corresponds to the ith "floor'. In the notation of Fig. 3.1,

wi:xi+z and, for convenience, set w, =z, Consider the situation in

0
the frequency domain as w— oo and denote Fourier transforms by
capital letters. The motion of each mass must be much smaller than

that of the mass below it because the inertia of each mass restricts

the transmission of the high-frequency motion up the model. In fact:

Wi(w) ki

Wi_l(w) m

—}-Zas #~* oo (3.4.29)
iw

because the inertia of each mass is balanced to the lowest order by
the spring force set up by the motion of the mass below. Thus, at
high frequencies, there is a progressive decrease of the order of -—1—2-

w
in the motion at each successive mass higher up in the model.

From (3. 4.29):

u)ZW‘1 (w)

—Zo (3. 4. 30)

k; =-m,; lim
1 1 w?o
Since the base displacement z and the first floor response lex1+z

are known by hypothesis, kl can be determined. From the equation
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of motion for mass m,:

1
-1(w1-wo) -kz(xvl—wz) (3.4.31)

1
-.2-) as W7oo, and so as W™ oo;

~n11w2Wl(Uu) = - kz[Wl (w) -W O(w)] - kz Wl (W)~

Thus, the stiffness of the second spring is given by:

LW (@) ) Z(0)]/ W (@) (3. 4. 32)

k, = -k; + lim [:ml 1

W o
where all the quantities on the right-hand side are known. This allows

Wo to be determined from (3.4, 31), that is:

1 .
W, _ig[mlwl o (wy - z)—l—kzwl] (3. 4.33)

Since Wy and w, are now known, the arguments can be repeated to

determine k, and w and so on.

3 37
This confirms that every undamped chain model is determined
uniquely by knowledge of the base motion and the first floor response,
and so in this case the class of chain models is identifiable for inputs
of finite duration. However, it should be noted that the algorithm to
construct the stiffnesses requires accurate knowledge of the motion
at high frequencies where in earthquake records the signals are very

small. (The limit process can be approximated by taking any ®w much

greater than Wigs the highest modal frequency of the model,) In
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almost all practlical applicatious, high-{requency noise would prevent
accurate determination of the stiffnesses. In fact, only the lower mode
properties will be determined with reasonable accuracy (see 3. 5).
Consequently, the uniqueness result should not be used to govern the
placement of a transducer in a building, as has been suggested, be-
cause the first floor will usually have the lowest sigmal-to-noise ratio

for the response of each mode.

3.4.5. An Example: Two Degree of Freedom Models

To illustrate some aspects of nonuniqueness in the determina-
tion of models from their input and output, the class mz of linear
models having two degrees of freedom is considered in detail, Sup-
pose that the geometry of the coordinates X, is given by b1:b2:1
and that the output is the response at x;, then 2 general model in
mZ can be depicted as a lumped-mass system connected by springs
(Fig. 3.2). No special significance should be attached to the spatial
arrangement of the masses in Fig. 3. 2, although the coordinate direc-
tions must always be consistent with b1 =b,=1. Also, damping is not
included because it does not provide additional insight intoe the non-
uniqueness.

To revert temporarily to a more general situation, %.lj(i £3)
is used to denote the stiffness for relative motion between coordinates
x; and Xj when all other coordinates are fixed, and %ii is used to

denote the stiffness for relative motion between coordinate Xi and the

base, again when the other coordinates are fixed. For a class of
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X X
= =2
T ml A 111 m2 S,y o s S——
Ky oMo} K2 [ONNe) Ka2
z(+)

Figure 3.2. Undamped linear model with two degrees of freedom
and pseudostatic influence coefficients b1=b2:1.
The symbol[X] indicates that the response is measured
at that mass.
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simple geometries, Kij will be the stiffness of the spring connecting
x. and x.. If there is no spring between the coordinates, then #«..
1 1
is sel to zero. The %ij are to be distinguished from the elements

k.l_ of the stiffness matrix K. The following nuseful relation can be

proved by deriving the equations of motion of the general mass-spring

o

system using Lagrange's equations:

klj =i Kij s 1 'rlJ

(3. 4. 34)

The inverse relation, which will also be used in this subsection, has

the same form:

(3. 4. 35)

N
K. = Z k..
11 1]
j=l

Equations (3. 4. 34) are useful for constructing the stiffness matrix for
a general arrangement of point masses connected by linear, massless
springs. The point masses can be replaced by finite, rigid lumped-
masses provided they have no rotational degrees of freedom. There
are also similar equations to (3. 4. 34) and (3. 4. 35) which give the
relation between the dashpot coefficients and elements of the damping

matrix.
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Returning to the class mz, consider a model which is control-
lable, then W and ﬁ(lr)# 0, r=1,2, are determined by its input and
output, the latter being the response at Xy Two points to be noted
are that this is a casc with N0 =N -1 and that a coupled model with
two degrees of freedom must be observable because it cannot have
repeated modal frequencies and it cannot have a node’at a coordinate.
This last result also ensures that the conditions (3. 4. 26) for non-
uniqueness are always satisfied because in the present case, the
conditions reduce to cp(zl) #0 and m(zz)#o. Let ¢ :[q_z(l),gg(z)] be the
transformed modeshape matrix of the observed model. From (3.4.27),
(3.4.13) and (3.4.11), there is one other model consistent with the

observed data, called the companion model , which is given by the

transformed modeshape matrix ¢ = @(1),’;{(2)] where:

1) 1 :p(ll) 2 Cp(lZ)
gt - ,glA-L (3. 4. 36)
71} o Y2 o
2 (P(Z) 1 Cp(1)
Lal 2 o, 2
and Yy and Y, are to be selected so that :6_(1) and E(Z) have unit

magnitude. Evaluating the Yo and using the orthogonality of the E_b:(r)

and (3. 4. 20) to simplify (3. 4.36), it can be shown that & can be

expressed in the form:
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$=ve
(3.4.37)
1 P2
where v ______l_‘:,_

(0% +p5)%
P2 Py
1

b.m_. , so that in the present case

Recall from (3. 4. 10) that pi =

1

ol

N

1

pl=ml , PZ:m
According to (3.2.15) and (3. 4. 4), the stiffness matrices of

2, 2
+ = +
and (pl FJZ) (rnl mz) .

N

the observed and companion models are given by:

1 x
K =MZa0%etv®
(3. 4.38)
- AU
and K =M~2Q"¢™™M
Thus, from (3.4.37) and (3. 4. 38):
v 5 -3 % 3t
K=M*VM )KM*VM %" (3. 4.39)
Observe that:
1
MZ2= P, O
0 P,
and so:
r b |
1 1
1 _x 1
M2VM ™ Z= (3. 4. 40)
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where r=m2/m1. Substituting (3. 4. 40) into (3. 4. 39) gives the fol-

lowing relation between the stiffness elements of K and K:

1

Ky =17 iy 12k, 1k, ]
~ ~ 1
K, =Ky = o [7k ) + - Dk, - k5] (3. 4. 41)
R S 21k, +k, ] )
22 T+ MF 11 - “TX2 %2

These relations can be interpreted in terms of spring stiffness in the

two models by using (3. 4. 34) and (3. 4. 35):

"11 7 "
R S 3.4, 42
My =T5r (ap = T%pg) (3. 4. 42)

Moo ZTH +(1+x) ny2

Notice that the spring between mass m, and the base is the same in
each model, This is consistent with a general result which can be
proved using the theorem in Appendix B: il bk =1, k=1,...,N, and
the response is measured at X then the stiffness %ii for relative
motion between X, and the base is determined uniquely.

One interesting case is given by setting Kll =0, so that the

ohserved model is a chain model with the response measured at the

""roof', In this case:
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~

KH:O
Hoo=—t g 3. 4. 43
"2 TTTr 22 (3. 4.43)
7L22=(1+r)?£12

The companion model is therefore a chain model as well, This is a

more general case of the example given in 82,4, 1 which had m_= m.,,

so r=1,

Another interesting case is given by setting #__ =0, so that

22

the observed model is now a chain model with the response measured

at the first "floor', In this case:

11 %11
Ry = e # (3. 4. 44)
127" T+r ™11 -
%22:(1+r) “12

Notice that the companion model is not a chain model. This is as it
should be, because the result proved by Udwadia and his colleagues
(83. 4. 4) states that a chain model is determined uniquely by its first
floor response,.

This last example also illustrates another feature in the iden-

tification of general linear models; since >0, (3.4.,44) shows

7{1 1

that K12<0, so that the companion model has a spring with a negative

stiffness. Indeed, the companion model is physically unreasonable if
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one insists on interpreting its stiffness distribution in terms of physi-
cal springs between coordinates, However, this interpretation is too
rigid because there are physically reasonable systems which require
negative stiffnesses if their stiffness distribution is modelled by
springs. The governing requirement is only that the stiffness matrix
be positive definite, ”

For example, consider a uniform cantilever beam undergoing
lateral deflection, Let %, be the deflection half-way along the beam

and X, the deflectionatthe free end (¥Fig. 3.3a). Using elementary

beam theory, the corresponding stiffness matrix is:

K* =k (3. 4. 45)

where ko = ‘é@_}_%_
7L

matrix (Fig. 3. 3. b) is given by applying (3. 4. 35) to (3.4.45). This

The system of springs which has the same stiffness

gives:
%il = 11k0>0
n’l"z = 5k, >0 (3. 4. 46)
%'2"2 = ~3k0<0

A spring with a negative stiffness is therefore required in order to

model correctly the bending in the beam, Furthermore, three springs
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Figure 3.3. (a) Unitorm cantilever beam (b) System of springs
with the same stiffness matrix for the coordinates
Xy and X5
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are required; two springs can model shear but not bending.

As a final comment on this point, Eq. (3.4, 35) can be used to
prove the follov;zing result:v

If K is a symmetric, positive definite matrix, then it cor-
responds to the stiffness matrix of a spring system with every spring
stiffness positive if and only if all the off-diagonal elements of K are

nonpositive and K is weakly diagonally dominant, that is,
N

k;2) kgl i=1.0.,N.
ii ij
=1

1#1
3.5. Determining Linear Models of Structures from Earthquake

Records

The application of the class of linear models mN to the identi-
fication of a structure from seismic records is considered in this
section. It is shown that reliable estimates of the stiffness and damp-
ing matrices typically cannot be made from records of earthquake
response because of basic limitations of the data., A practical strategy
is then suggested for structural identification using linear models,
which consists of two stages, In the first stage, parameters of the
dominant modes in the records are estimated. In the second stage,

these parameters are used to improve synthesized models, which are

capable of giving more detailed estimates of the structural response.
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3.5, 1. Limitations of the Data and Models

The first limitation to be considered arises because the seis-
mic response is usually measured at only a few points in a structure,
In order for the optimal estimates of the stiffness and damp-
ing matrices, K and C, tobeatlcast locally uniqye, the class I
must be locally identifiable, From $3, 4. 2, the response must there-
fore be measured at 3N or more of the coordinates, This require-
ment will, in general, impose a severe restriction on the number of
degrees of freedom allowable in the models, For example, if only
one response record is available, which is the case for the two build-
ings examined in Chapter 6, the models cannot have more than two
degrees of freedom, Thus, if the matrices K and C are taken as
the parameters to be estimated uniquely, the number of degrees of
freedom of the models in ?ﬂN will typically be so small that the mass,
stiffness and damping distributions in the structure will be modelled
very poorly,

On the other hand, the modal parameters for the structure, as
given in Proposition 1, can theoretically be determined for models
with any number of degrees of [reedumn, Furthermore, within the
framework of a linear model, these parameters contain all the infor-

mation about the structural properties that can be estimated directly
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from the input and output records., It is therefore recommended that
these modal parameters be estimated, rather than K and C.
Another important limitation is due to noise in the records
which places an upper bound on the number of modes that can be esti-
mated reliably, This relates back to the discussion,in $2, 4, 1 of the
compromise that must be made between resolution and variance of the
parameter estimates. Experience with a few applications to multi-
story buildings suggests that the bound will generally be of the order
of ten modes or less., This is due to several factors which cause a
deterioration in the signal-to-noise ratio of the higher modes, The
fact that the distributed inertia forces induced by the earthquake
motion all act in the same direction, but the modeshapes of the higher
modes change sign up the building, limits the energy fed into these
modes, This effect is seen in the linear models as a decrease in
participation factor with mode number. In addition, the energy con-
tent of the ground motion falls off at high frcquencies, These two
factors result in a smaller signal for the higher modes. There is
also a decrease in the signal-to-noise ratio due to an increase in the
noise levels at higher frequencies because of limitations in the mea-
suring, recording and data-manipulation processes, In terms of the

modal approach recommended above, these factors imply that only the
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dominant modes of the response can be estimated reliably from
earthquake data.

These factors also imply that the higher-mode information in
the stiffness and damping matrices will be unreliable if attempts are
made to estimate these matrices from seismic rec6rds. Since Egs.
(3.2.16) show that it is the properties of the higher modes which dom-
inate the values of K and C, the stiffness and damping matrices
will be estimated poorly from structural data, even if in theory they
can be determined uniquely by the input and output records. This is
a general conclusion for structural identification using linear models,
irrespective of whether the class mN or some other class such as
chain models is used,

Since the stiffness matrix cannot be cstimated rcliably from
records of the earthquake response of a structure, the distribution of
forces also cannot be estimated reliably. This is particularly unfor-
tunate because the forces are of great interest to the earthquake
engineer,

Two approaches are suggested to enable the forces to be deter-
mined or estimated. A purely empirical approach is to use appropri-

ate transducers to measure directly the strees or strain in structural

members, There are obviously practical limitations on the number of
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such transducers which could be distributed throughout a structure,
but they could be used to check the other approach to determine the
forces, This is the one suggested in $2. 1. 2 in which the parameters
of a synthesized model, such as a finite-element model, are adjusted
so that the properties of its lower modes are equal ¥ the same pro-
perties estimated from the structural data (see, for example, Collins
et al, 1974), This will ensure that the output of the model is consis-
tent with the recorded motion of the structure. The altered model
may then be used to estimate the earthquake forces and also the struc-
tural motion at points where it was not recorded.

The final limitation to be mentioned is a consequence of the
approximations inherent in the models in M N Properties such as
linearity, time-invariance and uncoupled mades are not features of
real structures, which can exhibit amplitude nonlinearities, struc-
tural deterioration and other complications during an earthquake,
The simplifications inherent in the linear modelling may be adequate
at low levels of excitation, but for strong ground-motion they can be
expected to lead to a pronounced dependence of the estimates of the

parameters on the particular data sample chosen, as discussed in a

how well linear models can be made to fit the data because of their
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dominant role in present structural design. They also serve as a
useful first step towards the problems involved in using nonlinear
models in structural identification,

The limitations discussed in this section are summarized

in Table 3.1, together with suggestions to avoid thege difficulties,

Limitation Consequence Suggested Approach
"|Limited number of re- | Limits resolution be- Determine the modal
cords compared with cause modeshape in- parameters of Prop-
desired number of co~ | formation missing ositions 1 or 2,
ordinates in model from data. Matrices which contain all the
K and C typically information in the
cannot be determined records
uniquely
Noise in the records Limits resolution be- Must be content with
cause higher-mode in- | estimating param-
formation is strongly eters of dominant
influenced by noise, modes in records of
Matrices K and C response

estimated poorly,
even if they are iden-

tifiable
Model is only an Optimal model depends|{ Future research to
approximation on data used to deter- identify more real-

mine it and it may not istic models.
predict response well
for other excitations

TABLE 3.1, Limitations when using linear models and earthquake re-
cords for structural identification.
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3.5.2, Models Based on Dominant Males

In the previous subsection, it was suggested that the practical
strategy for structural identification with linear models is to take a
) : (r) (1) .
modal approach wherein the parameters w Qr, Bi , %, (0} and
1
vfr)(O) are estimated for the dominant modes in the-seismic response
i -

records. This amounts to using a class of models defined by the

theoretical model [Eq. (3.2.12)]:

iir)+2€rwr}.§§r)+&lixir) :_ﬁir)'z'(t), r :1,. .. ’N (3. 5, 1)

()

with the initial displacement and velocity, xgr)(O) and v,

(0), also

treated as parameters, together with the output equation [Eq, (3. 2. 11)]:

N

_ (r) . -
x, = 2 %, Vi€ d (3.5.2)
r=1

where the output set J defines the coordinates (points and directions)
at which the response X };1 or 551 is measured,

In this approach, the structural data areused to determine the
number of modes, N, of the model as follows. A small number of
modes is taken initially and the optimal estimatecs of the modal param-

eters are determined from the recorded input and output. Another

mode is then added to the model and all of the modal parameters are
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again estimated, This is continued until the change in the optimal
measure-~of-fit, Jmin’ with the addition of another mode, indicates
that the output match is no longer significantly improved.

Clearly, some judgment is involved in determining the best
value of N, so it is not a precisely defined quantity, but the above
approach does give some indication of the resolution which can be
achieved in the presence of the noise in the records, The parameters
of the N modes included in the model by using the above criterion
based on Jmin are not necessarily estimnated accurately because this
depends on the nature of the noise., However, if additional modes
were included, they would have such a small effect on the output that
it is likely that the estimates of their parameters would be completely
unreliable.

Some of the advantages of using models based on the dominant
modes in structural identification are:

1) They deal directly with the parameters that control the
structural output, as it is interpreted by a linear model.

2) The models are controllable, observable and identifiable,
from the results of §3.3 and §3. 4, 1.

3) The order of the model is not arbitrarily defined, but is

determined from the structural data,
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4) The estimated parameters can be used to alter any synthe-
sized linear model, whether it be discrete or continuous, to ensure
that it is consistent with the structural data.

In the remaining chapters of this dissertation, attention will
shift to structural models based on the dominant modes of the output.
In Chapters 4 and 5, techniques are described which allow the modal
parameters to be estimated from seismic records. The results
obtained when these techniques were applied to seismic records from

two buildings are discussed in Chapters 4 and 6.
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Iv. OPTIMAL FILTER METHOD

4.1. Introduction

The concept of an optimal filter plays an important role in mod-
ern control theory. Although a number of optimal filters can be de-
fined, depending on the criterion for optimality, they ﬁll share the
same basic property of estimating the state of a prescribed model for
a system. At each instant of time, the filter gives the optimal estimate
of the state based on the histories of the input and output of the system
up until that time. If the values of parameters of the model are not
known, the state and parameters can be estimated simultaneously by
combining them into an augmented state and then determining the opti-
mal filter for this new state. In this case, by a suitable choice of the
optirnality criterion, determination of the optimal filter is an output-
error method for parameter estimation.

A deterministic, least-squares filter has been developed by
Bellman et al (1966), and extended by Detchmendy and Sridhar (1966),
by using the concept of invariant imbedding. Several investigations
have recently been made to determine whether this filter is a useful
technique to identify structures from seismic records (Distefano and
Rath, 1974; Distefano and Pena-Pardo, 1976; Beck and Jennings, 1977).
The method has several attractive features, including the ability to
treat nonlinear models and to show how the estimates of the parameters
change with time. The work with simulated response data, generated

by calculating the response of a model to recorded ground motion, was
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promising. However, applications to real seismic data reported later
in this chapter show that there are weaknesses in the method when
there is significant measurement noise or model error.

The contents of this chapter are as follows. A general formu-

lation of the invariant-imbedding filter is given in §4. 2 for the problem

-

&

of estimating simultaneously the state and parameters. It is possible
to introduce this as a special case of an output-error approach to state
estimation, but the formulation given here emphasizes the similarities
with the general output-error approach to parameter estimation which
was given in §2. 2. The filter cquations are derived in §4. 3 for a gen-
eral type of model and are then specialized in §4. 4 for a single degree-
of-freedom linear model. The latter section also contains some re-
sults and conclusions from tests of the filter using simulated response

records and seismic response records from a multi-story building.

4,2. Formulation

Recall from §2. 2 that when the usual output-error approach

to parameter estimation is applied, if the initial state is unknown, it

is included along with the unknown model parameters in the vector a
to be estimated from the input and output of the system. The approach
is then strictly one to estimate simultaneously the state, x, and the
parameters, g, because once a is estimated, the complete history
of the state can be determined from (2. 2.1). The optimal filter method
also estimates the state and parameters but it does so by combining

the parameters and the final state into one vector c. By estimating
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c¢ for a continuous succession of increasing subintervals of the com-
plete data interval, sequential estimates of the parameters are obtain-
ed.
To be specific, the augmented state is defined by:
x(t) .

u(t) = (4.2.1)

o
With this definition, the state Eqg. (2.2.1) can be rewritten as:

1= 2, ti2)
d(t) =g(u, 02 (4.2.2)
9

since the model parameters are constants. Also, to simplify the nota-
tion, the input z to the model has been omitted as an argument of g.
It is assumed that f allows the complete history of x to be determined
from the value of u at any point.

Suppose 7 lies in the interval [Ti’ Tf] corresponding to the
portion of the data from the system which is to be used in the estimation.
A vector ¢ is defined by c=u(y), then for the subinterval [T.l, 7], the

measure-of-fit defined by (2. 2. 4) can be rewritten as:

r'rH . 2 d ” 12
y(t) -Tqu(t) -Taw)|”  dt+]lu(T,)-a,

T V(t) A (4. 2. 3)
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since, by hypothesis, u is completely determined by the final-value
problem given by (4.2.2) and the end condition u(r)=c. Notice that
a in the last term of (2. 2. 4) has been replaced by the equivalent vector
E(Ti) and éO has been rewritten as EO' Notice also that [‘1 and I‘Z
are modified forms of the matrices appearing in Eq. A2.2.2) in which
columns of zeros have been added so that the model output x_r} is given
by Iju+T,u .

The optimal estimates of the final state and parameters for the
subintcrval [Ti, 1] of the data are given by the value of ¢ which mini-

mizes J{c, 7). If this value is denoted by e(r), that is,

J{e(T), ) =min J{c, 7) (4. 2. 4)

C

then e(T) is the optimal filter of u evaluated at time 7. The history

of the optimal filter e(r), TG[Ti, Tf] , gives sequential optimal esti-
mates of the state and parameters based on increasing portions of the
observed data.

Notice that initially, when ¢ is close to Ti’ the term in
(4. 2. 3) containing the initial estimates EO will dominate J and the
optimal estimates will be biased towards the initial estimates., If the
elements of A are small enough, or the interval [Ti, Tf] is large

enough, however, the integral term in J will eventually dominate as

T is increased. The optimal filter will therefore begin with the initial
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estimates and "'converge'' to values which are controlled primarily by
the data from the system, and the rate of ""convergence' can be changed
by altering the size of the elements of A. In the absence of model error
and measurement noise, this behavior would represent an asymptotic
approach to the true values of the parameters, In applications to real
data the optimal filter need not converge to constant values of the pa-
rameters because the optimal estimates based on the data may change
as more data are used, for the reasons discussed in §2.4.6.

Finally, it should be noted that the optimal estimates of the pa-
rameters in é and e (Tf) are equal if the same measure-of-fit is
used [equations (2.2.4) and (4.2.3)]. The only difference between the
two output-error approaches is that one finds the minimum of J by

defining the complete history of the state x in terms of an initial-

value problem and the other uses a final-value problem,

4.3. Invariant-imbedding Filter Equations

The original derivation of the equations for the invariant-im-
bedding filter was given by Bellman et al (1966) and this was extended
by Detchmendy and Sridhar (1966) to include an equation-error term in
the state Eq, (4.2.2). Only the output-error approach is considered in
this work and a similar derivation to that of Bellman et al is given.

The problem addressed is to solve the series of minimizations
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of J(c, T} as g ranges over the interval [Ti’Tf]' This is equivalent
to determining the history of the optimal filter on this interval. The
first step is to derive a partial differential equation for J(c, 7). Since
u is defined on the interval [Ti,q—] by the state Eq, (4.2.2) and the

end condition u(T)=c, the notation u(t:T,c) is used. At time T,

e

#

u(t;T,c) has the value ¢ and at time T+8T, it has the value "c+ 6¢c

where:
. 2
sc =u(T;7,¢) 87 +0( 8T )
2
=g(c, 1) 67 +0(87 ) (4.3.1)
But:
u(t;,c) =u(t;7+ 67,¢+5¢) (4.3.2)

on the interval [Ti,'r] . Apply a Taylor series expansion to the right-

hand side of (4. 3. 2) and substitute (4. 3. 1); then let §71—-0. This leads

to:
gT(t;'r,g)=~g£(t;¢,_c_)g(g,'r) (4. 3.3)
ou,
where u.T is the vector with elements ”é“{-'l' and u 1s the matrix with
- C

ou, -
elements %5. By differentiating J and using (4. 3. 3), the following

linear partial differential equation can be derived:

2
T e, m)t (‘T_c_(ﬁ' ). gle, )= |lyl)-T e -Telc. T)HV(T) (4.3.4)
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where (+, ) is the Euclidean scalar product. The initial condition as-
sociated with (4. 3. 4) is given directly by (4. 2. 3):
~ 2
J(e, T.)=||c -Gyl (4.3.5)
S0ty £ A

A Taylor series expansion is used to solve Egs. (4. 3. 4) and
(4.3.5). Thus, with T as a parameter, J and g may be expanded

about c=e(T) to get:

e, ) =3le(m, T+]e-emll®  +... (4.3.6)
R(T)
and gle, ) =gfe(m), Tl+g [e(m), Tlc-e(MI+. .. (4.3.7)

There is no first-order term in (4, 3. 6) because e(T) minimizes

J(c, T) and this implies that:

J le(m, -0 (4. 3. 8)

The symmetric matrix R(T) in (4.3,6) is defined by:

a2

1
R(’T)].‘:-— J(_g_, T) (4.3.9)
[ ij 2 aciacj S_:E(T)

it is the sensitivity matrix of J(c, T) with respect to c, the counter-
part of é:S@_) defined by (2.3.8). If R(T) is positive definite, e(T)
gives a strict local minimum of J(c, 7).

If the infinite expansions (4. 3. 6) and (4. 3. 7) are substituted

into (4. 3. 4), an infinite hierarchy of coupled ordinary differential
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. . . th . .
equations is obtained in which the n* equation governs the behavior of
an array of dimension (n-1)., The first three equations of this hier-
archy are the scalar equation giving the measure-of-fit of the optimal

estimate:

T ;
min J(c, )23 e(T), ] :f Hz(t)—I‘l_e_z_(t)—fz_g_(g,t)ﬂz dt  (4.3.10)
c T, v

- i
the vector equation:

e(M=gle, T)+Q(T)Ht(_e_,T)V(T)[x(T)—I‘l_cj_(T)—ng_(g, ] (4.3.11)
and the matrix equation:

QT =g, (e, NAN+QMIE, (e, TI+Q(T)K (e, TIQ(T)
- - (4. 3.12)
-Q(TH"(e, T)V(T)H(e, TIQ(T)- Q(T)E(T)Q(T)

-1 .. . . . .
Here Q(T)=R "(T) is introduced to avoid numerical inversion of the
matrix R(T) and the matrices H,K and E are defined by:
H(e, T) =1, +rzgg‘3’ T) (4.3.13)

Kjjle = Fahy (00T VO -TieM-Tgle, WD (43,14

3
1 0" J(c, T) .
E (T)=5) 745" (e, - g ) (4. 3.15)
ij 2 £ aciacjack E:E(T) k ®k

An approximate solution for the optimal filter can be calculated
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if the termm E(T) is dropped in (4.3.12). The first three equations

of the hierarchy are then decoupled from the remaining equations. The
approximate optimal filter, referred to from now on as the invariant-
imbedding filter, is therefore defined by the initial-value problem
given by Egs.(4.3.11) and (4. 3. 12) with E=0, togeth’gr with the ini-

tial conditions:

. -1
e(T)) =g, ;5 Q(T)) =A (4.3.16)

which are derived by substituting (4. 3. 6) into (4. 3.5). Notice that

(4. 3.16) implies that A must be nonsingular and, in particular, that
it cannot be set to zero in (4. 2.3). The initial estimates will there-
fore always have some influence during the minimization of J{c, 1)
when T is close to Ti'

The optimal filter e(T) gives the optimal estimate of u(T)
using the subinterval [Ti,'r] of the data, If the associated optimal
estimate of the history of the augmented state is required, which is
denoted by _{\i(t;T)’ tE[Ti, 7], it must be determined by the state Eq.

(4. 2. 2) and the end condition:

a(T;T) =e(T) (4.3.17)

The two time-parameters in the notation for ﬁ are therefore inter-

preted as follows: t indicates the time at which the state u(t) is
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estimated and T indicates low much of the available data over the in-
terval [T, Tf] has been used in the estimation. In view of these

i
comments, (4.3.10) is an interesting result because it states that the

minimum of J(c, T), which, according to (4. 2. 3), is given by:

HZ " -

.
minI(e, =] [y®)-T8Em-Tgd, b
c T. Vi)

_ 1

N "~ 2
+Hy_(Ti;T)~p_ol|A (4. 3.18)

is also given by replacing l’i_(t;'r) by e(t). However, it is clear from
their respective definitions that these latter quantities are not equal.
In fact, _Aq and e satisfy different differential equations, Egs. (4.2, 2)
and (4. 3. 11) respectively.

In general, the invariant-imbedding filter is only an approxi-
mation to the optimal filter. However, the truncated equations are

exact if the equation for the augmented state u is linear, that is,

a(t) =gfu, t) =B(t)u +b(t) (4.3.19)

where the matrix B(t) and vector b(t) are known, In this case E
is identically zero because J(S’ T) is a quadratic function of c. How-
ever, for parameter estimation, the equation for the augmented state

is nonlinear for any nontrivial problem [see, for example, Eq. (4. 4. 3)].
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In the above linear case, Eqs. (4.3.11) to (4.3.16) are formally
equivalent to the equations for the stochastic filter of Kalman and Bucy
(1961) if process noise is neglected, The Kalman-Bucy filter is in this
case the minimum variance estimator of the state u of a lincar system,

whose parameters are known, in the presence of Gawssian white noise

in the observations. For this filter, Q(t) corresponds to the covar-
iance matrix of u(t).

Inthenonlinear case, the equations for the invariant-imbedding fil-
ter are formally equivalent to those for the extendedKalman filter if the
term involving K in (4.3.12) is omitted. The presentderivationofthe in-
variant-imbedding equations doesnotinclude an equation-error term, cor-
responding to the processnoise of the extended Kalman filter, but this term
can be included (Detchmendy and Sridhar,1966). The extended Kalman fil-
ter and other approximations for a stochastic nonlincar filter are discussed

by Jazwinski (1970).

4.4, Single Degree-of-freedom Linear Model

The general filter equations of the last section are specialized
in this section for the problem of estimating the state and parameters
using a linear model with a single degree of frecedom. This model is
then used to examine the behavior of the invariant-imbedding filter for
one of the simplest models useful in structural identification.

Consider the model given by the equations:
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v +azv+a1x = -a3z(t)

(4. 4.1)

where al—wz, aZZZ\;w, a3=p and @w=2w/T; x and v are the dis-

placement and velocity of the model; Z 1is the input; T is the undamp-

2

Ed
ed natural period of the model; ( 1is its viscous damping factor; and

the input multiplier p 1is called the participation factor of the model.
Notice that the model Eq. (4. 4.1) has the same form as the modal
Eq.(3.5.1). In fact, the model is used later to estimate the corre-
sponding parameters of the fundamental mode of a building,

From (4. 2.1), the augmented state vector is given by:
t .
u(t) :[x(t),v(t),al,az,a3] (4. 4.2)
and the corresponding state equation is:

A(t) =g(u,t) =[v, - a;x - a, v - 2,4(1), 0, 0, 0]° (4. 4.3)

This last equation is nonlinear in u, even though the original model
is linear in the response guantlities and in the parameters,

It is assumed that the histories of the input %Z and the relative
are avail-

displacement, velocity or acceleration, x v, Oor a

0> 0 0’

able over some time interval [Ti’ Tf] . The output can therefore be

described by:



t
y =[k1x0,k2v0,k3a0] (4. 4. 4)

where ki =1 if the corresponding response quantity is to be used in

the estimation, otherwise it is zero. The model output is:

et -
m :[klx, kzv,k3v] (4. 4.5)
or m =L u+l,u (4.4.6)
where Tl = kl 0 0| and I‘Z: 0 0 000 (4.4.7)
0 k3 ¢ 0 00O
0 0 0k, 0 00

The measure-of-fit J which is to be minimized by the optimal

filter becomes:

T T
2 2
Je, M=k, V4 JT [x0~x] dt +k,V,, jT [v0~ v] dt

1 1

T
R TA A 2
tky Vs, “[T [ao— v] dt +A11[X(Ti) —XO]

1

(4. 4. 8)
2

~ 2 ~
+A22[V(Ti)—v0] + A -a

33le3 1,o]

- 2
c_-2

. a2
thgleg -3, ol A leg -5y o]

where the weighting matrices A and V(t) have been taken diagonal

and constant, and x and v satisfy (4, 4. 1) with x(T)= s v{T) = ¢,
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a,=c a_=c a_, =c¢

. he V., are us iz i
1 37 5 =y 3¢5 The i 4re used to normalize each integral

so that the effects of the different magnitudes of the response quantities

are reduced., This is achieved by taking:

-1 2
Vip® (Tg- Ti)]:max ENGIN (4. 4. 9)

with similar expressions for V and V3,) s and with the maximum
-~

22

taken over [Ti, Tf]. Alternatively, the integral-square response could

have been used:

T
vl -] Tl at (4. 4.10)
11 0
T.
1
with similar expressions for sz and V33. The square root of each

integral term in (4. 4. 8) can be interpreted as the ratio of the root-
mean-square (r.m. s.) response-error to the maximum response if
(4. 4.9) is used, and as the ratio of the r.m. s response-error to the
r.m, s, response if (4. 4.10) is used,

The optimal filter is the value of ¢ which minimizes J(c, T)

and it leads to the sequential optimal estimates e(T):
(1) =[£ (1), %(737), 8 (1), 8,(7), & ()] (4. 4.11)

as T ranges over the interval [Ti’ Tf]. Equations (4. 3. 11) and

(4. 3. 12) for the invariant-imbedding filter become:
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ei(1) =g5le, ™) +1) V1 Q4 (M (7) - &g ()]
(4. 4.12)

+kZV22Q (T V(1) - ey (T)] +k3V33Pj2(_c_, Mlagy(1)-g, (e, )]

and (M) =Fyle, DB e, 7)-k) V QTG0 kp V(MY 5 (7)
(4.4.13)
“k3V33Poles NBle, 7)-ky Vy Ny (1)[ag(n) - gy (e, )]

where P.. =0

fi 2 if k=1

(eQ -I-e Q ,te Q +e Q  +t2Q ), ifk=2
2734 7735

=0, otherwise (4. 4. 14)

e Nac 1%t 9580 T 9250 448e . (&4 15)

The initial conditions are given by Egs. (4. 3. 16), which become:

e(Ty) =%y, ¥.8) (03, 0723 O] (4.4.16)

where the vector on the right-hand side contains the prescribed initial

estimates, together with:

1
ij(Ti) :K.‘.éjk (4.4.17)
ji

The last term in (4.4, 13) arises from the matrix K defined by

(4. 3. 14) and it makes a contribution only if k that is, acceleration

3° b

matching is included in J. The term is shown here for completeness

but it was not included in the results reported below. With the term
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omitted, the equations are identical to those for the extended Kalman

filter.

4,4,1, Tests: Simulated Data

Numerous tests of the filter method were made using response

-

td

data generated by numerically solving the equations of motion (4. 4. 1).
The oscillator was taken to be initially at rest and Zz was taken to be
the first 10 seconds of the N-S component of the 1940 El Centro earth-
quake record (Figure 4, 1).

A normalized version of the initial value problem for the in-
variant-imbedding filter given by Eqs. (4. 4. 12) to (4.4.17) was solved
using a standard subroutine for systems of first-order differential
equations. It is only necessary to solve the Ricatti equation for Q
fér each Qij with j2i because Q is symmetric. The subroutine
used is based on the Adams-Moulton predictor-corrector algorithm
with a variable time-step capability, The time-step is selected so
that the local truncation error in the numerical solution of the equations
is nominally less than a prescribed amount, which was taken as 1% of
the current calculated solution. The subrontine therefore selects small
time-steps when the matrix Q(t) is initially changing rapidly and then
automatically increases the time-step as the rate of change of Q(t)

decreases.
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The filter equations were solved in a normalized, nondimen-
sional form given by scaling e{t) and Q(t) by the initial estimates of
the parameters and by the maximum of the recorded response, This
helps when selecting appropriate values for Q(0) or A. In addition,
the relative sizes of the diagonal terms of the inversg sensitivity ma-
trix Q(t) then give an indication of the accuracy of the estimates rel-
ative to one another.

The first illustration of the results obtained uses the relative
displacement of a linear oscillator with T =1,0 sec,, ¢ -5% and
p=1.0. To investigate the performance of the filter when both the
parameters and the initial conditions are unknown, the estimates of
the initial displacement and velocity were taken to be 10% of X and
L'I)oxm respectively, where X is the "recorded' peak displacement.
The values of the ij(o) in the normalized version of (4.4, 17) were

chosen to be:

10, j=3,4,5 (4. 4.18)

The initial estimates of the model parameters and the estimates
given by the filter after the first 5 seconds of the data have been used
are shown in Table 4.1, The corresponding estimates of the period,

damping factor and participation factor are also shown. It took
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approximately 15 seconds of CPU time on an IBM 370/158 to compute
the first 5 seconds of the filter, which arc typical figures for all the
computer runs with a single-degree-of-freedom model. The behavior
of the sequential estimates of the parameters, which are given by the
filter components e3(t), e4(t) and eS(t), are shown in Fig. 4. 2. The
estimates have essentially converged to the true values in about 3-%
cycles. The slower rate of convergence for the damping coefficient in
Fig. 4.2 is typical of all the results obtained with lightly-damped os-
cillators and it is presumably due to the fact that the response is less
sensitive to the damping. The estimates of the response converge
much more rapidly. Figure 4.3 shows that the filter component el(t)
converges to the actual displacement in a quarter of a cycle. The
velocity component, ez(t), took one cycle to converge.

It was found that using any of the relative displacement, veloc-
ity and acceleration of the single-degree-of-freedom oscillator leads to
almost the same rate of convergence and accuracy of the filter, pro-
vided the normalized filter equations are used. This is illustrated in
Table 4.2 which shows the estimates of the physical parameters after
using the first 6.5 seconds of the response of a linear oscillator with
T=1.0 sec., (=5% and p=1.0. The initial estimates of the model
parameters a;, a and a, were taken to be 50% greater than the

2

true values, and the estimates of the initial displacement and velocity
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were set to zero., The values of the ij(o) were taken to be:

Q..(O):A.’.lz 10"6 , j=1,2
JJ 1

A ,» 1=3.4.5 (4.4.19)

where A is given in Table 4. 2. The case where the relative displace-
ment is used illustrates that when the ij(O) are relatively small, the
optimal estimates can be influenced by the initial estimates via their
terms in J, whereas once the ij{O) are sufficiently large, the op-
timal cstimates are controlled by the rcsponsc data via the integral
terms in J.

It was also found that the filter technique was capable of suc-
cessfully estimating the parameters of a linear oscillator over the range
of damping from (=0% to (=100%. Figure 4.4 (a) corresponds to
an oscillator with T=1.0 sec., (=5% and p=1.0 and Fig, 4. 4(b)
corresponds to an oscillator with the same parameters except that the
damping is increased to {=50%. In both cases, the relative accelera-
tion was used as the output to be matched by the model and the initial

estimates of the parameters a a, and a, were taken to be 50%

17 72 3

greater than the true values. For the same initial values of the ij(O)
[Eq.(4.4.19) with )\ = 104], the estimates of the parameters took about
2% cycles (C =5%) and %cycle (C=50%) to converge. The estimates of

the model parameters after 3 seconds of response data were accurate
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2.0
8 — G, (1/a,(0)
| --=- 3, (1)/d,(0)
TP 83“)/ 83 (o)
r_
L (a)
0.0 1 L 1 { L
0.0 1.0 2.0 3.0
Time (sec)
2.0
i — §,(1 /8,
B - = 62(7)/82(0)
Loy
. (b)
0.0 1 l L I 1
0.0 1.0 2.0 3.0
Time (sec)

Figure 4.4. Sequential estimates of the modcl paramcters for two lincar
oscillators, (a) T=1.0, ¢=5%, p=1.0 and (b) T=1,0,
$=50%, p=1.0, using the relative acceleration of each os-
cillator,
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to —;‘% or less in each case.

It was observed that in every case where the initial matrix
Q(0) was taken diagonal, the sequential estimates of the parameters
approached constant values, If the filter correctly calculated the op-
timal estimates, it would converge to the true values,of the parameters
because there is no model error and no significant measurement noise,
The reasons for this were discussed in §4.2, However, it was found
that when the ij(o) were relatively small, the steady-state values
calculated by the filter were not always close to the true values of the
parameters, It appears that Q(T) approaches the singular solution
Q=0 of the Ricatti equation (4. 4. 13), regardless of whether the filter
values are optimal, so that eventually the data are not used to update
e(T) in (4.4.12). Notice from the examples in Table 4. 2 that the
approach to Q=0 is eventually independent of the initial conditions on
Q.

A similar behavior of Q(t) occurs when the Kalman-Bucy
filter is applied to a linear model of the form of (4, 3. 19), which can
lead to "divergence' wherein the filter output gradually departs from
the recorded output (Jazwinski, 1970). Although the same effect occurs
in the present case, it has a different cause. In the Kalman-Bucy
filter, it is due to model error. The filter values are always optimal

because the equations for the filter give the exact solution for a linear
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model of the form of (4. 3.19). In the present application, there is no
model error and the ''divergence' of the filter output, or the ""pseudo-
convergence'' of the estimates of the parameters, is due to the sub-

optimal nature of the nonlinear filter.

4,4,2 Tests: Real Data -

The computer program employed above was next used to estimate
the parameters of the fundamental longitudinal mode of the Union Bank
Building, Los Angeles, from records obtained during the 1971 San
Fernando earthquake, The response of this building is studied in more
detail in the next chapter using a different technique., The purpose of
the present section is to show that the estimates of the parameters
calculated by the filter can be in considerable error compared with the
optimal estimates when there is significant model error or measure-
ment noise. This was originally discovered during an investigation of
the sensitivity of J with respect to the model parameters, but a dif-
ferent approach is taken here in order to demonstrate the magnitude
of the errors in the estimates given by the filter in specific cases,

The results presented in Table 4, 3 include the final estimates
given by the filter for time segments from 5 to 15 seconds and from 15
to 25 seconds of the longitudinal component of the relative displacement

th
at the 19 ~ floor. The longitudinal component of the absoclute
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acceleration in the sub-basement was taken as the input to the models.
The two time-segments represent respectively the worst and best per-
formance of the filter in finding the optimal estimates for a number of
time segments. The optimal estimates in Table, 4.3 were obtained by
minimizing J, EXq. (4.4.8), using the technique to bef_described in
the next chapter. The value of JO in the Table is the contril;ution to
J from the first integral term in (4. 4. 8) since here k1 =1 and
k.2 =k3= 0. The Table also shows that increasing ij(O) does not im-
prove the performance of the filter, in contrast to the behavior of the
filter with simulated data.

To determine the values of J or VJ for the estimates given
by the filter, the commplete displacement history for the model is re-
quired. Thus, Eqgs. (4.4.1) must be solved backwards in time because
__e_(Tf) gives estimates of the final values of the displacement and veloc-
ity and not the initial conditions. Since this is equivalent to computing
a forward solution with negative damping, the solution can become un-
stable. The unstable nature of the backwards problem can also be un-
derstood by noting that the solution of (4. 4. 1) for a forward problem in
time is eventually independent of the initial conditions, The seriousness
of the instability depends on the size of the quantity Cw Tf. Tests showed
that sufficient accuracy was obtained in the present problem because

the damping is small and the duration is just over two cycles. For
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larger damping or longer durations, the instability might cause diffi-
culties in evaluating the performance of the filter.

The estimates given by the filter for the time segment of the
displacement record from 5 to 15 seconds were particularly poor. It
is shown in the next chapter that there is significantlong-period noise
in this portion of the record, in addition to the model error due to ig-
nored higher modes and nonlinearities in the response of the building.
These effects are thought to explain why the filter had difficulty in es-
timating the damping coefficient, as suggested by the large final values
of Q44 in Table 4. 3. The smaller value of JO shows that these ef-
fects are not so pronounced in the time segment from 15 to 25 seconds.
The optimal estimates of the displacement of the fundamental mode,
given by minimizing .TO for each time segment using the method in the
next chapter, are given in Figs. 4.5 and 4. 6 to indicate the magnitude
of the model error plus measurement noise,

Figure 4.7 is included to show the behavior of the sequential
estimates of the model parameters in a case where the filter is pre-
sumably giving optimal, or near optimal, estimates. The plots were
generated during the run of the filter program which gave the results
in Table 4. 3 for the portion of the relative displacement record from

15 to 25 seconds. The variation of the estimates during the latter part

of the time segment show that there is interaction between the estimates
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of the damping coefficient az and the participation factor a,, these
estimates tending to increase or to dec‘rease together. Plots such as
Fig. 4.7, together with the information given by the inverse sensitivity
matrix Q(t), are useful features of the filter method when it can be
relied upon to produce optimal estimates,

It was found that rerunning the filter using the final estimates
of the preceding run as the initial estimates of the new run led to some
improvement in the estimates, This is illustrated in Table 4. 4 for
two additional runs of the filter. If the filter was truly optimal, re-
peating this process should produce convergence to the optimal esti-

mates corresponding to J since the initial estimates should even-

0’
tually equal the final estimates and there should be no contribution to
the minimum of J from the terms weighting the initial estimates. The
results in Table 4.4 show that the approximate filter need not behave
in this manner.

The ;bscrvcd behavior of the filter during the tests with simu-
lated and real data is consistent with the expected behavior of the error

due to neglecting the term containing E in (4. 3.12). From (4. 3.5)

and (4. 3, 15), this error is initially zero. However, the terms
2>3(c, 1)

.9c.0
(’Jc1 CJ ck 3:2(7)
model response is a nonlinear function of the parameters. Thus, E(T)

can be expected to become nonzero because the

will also become nonzero and the approximation will deteriorate with
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time, unless the output of the exact filter converges rapidly to the re-
corded output, In this case, Eq. (4. 3.'11) rapidly approaches _é_‘—'_g_
and hence E quickly tends to zero. The term involving E in (4. 3. 12)
should therefore never get the chance to grow relatively large and the
approximate filter should have almost the same behavior as the exact
filter. The conditions for good performance of the approximate filter
therefore appear to be that the model output is capable of giving a good
fit to the recorded output, and the weighting matrix A is small enough
that convergence of the model output to the recorded output is nat slow-
ed too much by the influence of the initial estimates.

The following conclusion is suggested by the above discussion
and by the tests of the filter: The method should produce optimal, or
near optimal, estimates if the model is capable of matching the record-
ed data well, but it can be unreliable if the optimum output-error is
large, either because of measurement noise or model error. Unfor-
tunately, significant model error is a possibility when linear models
are applied to identify structures using strong-motion records. Thus,
following the tests of the filter method, it was felt that a more reliable
technique was required for the desired applications. A technique was
therefore developed which involves no approximations in the theory. It
is both more reliable and more efficient numerically than the filter

method, although the useful feature of obtaining sequential estimates of
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the parameters is lost. The technique is introduced in the next chapter.
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V. MODAL MINIMIZATION METHOD

5.1. Introduction

Difficulties encountered in the application of the optimal filter
method to the earthquake response of the Union Bank building empha-
sized the need for a reliable technique which would be guaranteed to
find a minimum of the measure-of-fit J while remaining numerically
efficient. This led to the development of the modal minimization method
for multi-degree-of-freedom linear models.

The method is an extension of a well-known iterative approach
to minimizing a function J(al, ey an), whereby a series of one-di-
mensional minimizations are performed with respect to each a; (Bekey,
p. 157, 1970). In the basic approach, one first solves the problem

(0 (0)

1’2.5.1’) J(a ., g reees an )} and then, with the minimizing argument de-

1

1

(1) (1) (0) (0)
noted by al 1’ az,a3 , e ,an

LIS

) is found and so on., After

A ()

, ngin J(a
2
one sweep through the parameters, giving new estimates

1 e e e . . .
i ) for the minimizing point of J, successive sweeps can be

ceey A
performed until convergence is achieved.

Bekey (1970) points out that this method is slow to converge if
the axes of the contours of J near the minimum are not aligned closely

with the axes of the parameters, However, for the present problem of

estimating the modal parameters of linear structural models, the
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properties ot the models can be exploited to reduce this effect and to
make other modifications of the basic method which lead to better
numerical efficiency.

In the next section, the vulpul-error approach is specialized
for the class of problems treated in the applications. The modal mini-
mization method is then described. Finally, the results of applying

the method to simulated data are given.

5.2, Formulation of Problem

The modal minimization method is an output-error method for
estimating the modal parameters of a linear model. The case con-
sidered here is that in which the input and output consist of one compo-
nent of the base excitation and the parallel component of the response
at some point in the structure respectively. The applications given
later are of this kind, but the method is easily extended to include mul-
tiple inputs and multiple outputs.

The parameters to be estimated are the modal parameters

-1, 02,00 e 12,0, e
RETRSFETNEREI e
and Dy =al? =l (5.2.2)

This is the model given in $3. 5, 2 with:

R P YO (G (5. 2.3)

2
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Also, the subscript i on each xgr) has been omitted because the
response of only one coordinate is used.

The recorded output is assumed to consist of the history of

t
y =[k x5, kv, kaa] (5.2, 4)
over some interval [Ti’ Tf]. Thus, any combination of the displace-

ment, velocity or acceleration records of one component of the struc-
tural response at a point can be used by choosing each ki as either 1

or 0, as in §4.4. The corresponding model output is:

m :[1<1x,k2§<,k35§]t (5. 2. 5)
where, from (3.5.2):
N
X(t;i(l),. ‘e ,E(N)) =Z x(r)(t;g( I.)) (5.2, 6)
r=1

The measure-of-fit to be used for the output matching is given

by Egs. (2.2.3), (2.2.4), (5.2.4) and (5. 2. 5):

T
7,2, 2y =k, Vg JT f(XO-X)Zdt

1

Tf .2
+k2V22£T (vy-x)"dt (5.2.7)
i

T

P
333T_
1

£ 2
i,V (ag-%)7dt
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This has to be minimized subject to Egs. (5.2.1), (5.2.2) and (5. 2. 6).
Notice that the weighting matrix A in'(Z. 2. 4) hae been get to zero and
V(t) has been taken diagonal and constant, although a more general
case could also be treated if desired. The Vii were chosen to nor-
malize each integral as in (4. 4.9). This allows a comparison to be
made between the optimal values of J for different time segments
and for different response quantities.

Some results of interest can be derived by using the notation of

§2.3, so that:

12,2, aM) ey, v (5.2.8)

where _Yzy_*r_g_l(g(l),.. . ,a(N);z) (5.2.9)

and y and m are given by Eqs. (5.2.4) and (5. 2.5). At the global
()

minimum a :§_ , r=1,...,N, of J, VI =0 and hence from
(2.3.7):
. om
<v, ’('r) >=0,k=1,2,...,5and r=1,2,...,N (5.2.10)
8ak'

The sensitivity coefficients are therefore orthogonal to the output-er-
ror at the optimal estimates of the parameters. This is true for any
model, linear or nonlinear, but an additional result can be derived for
linear models. From Eqs. (5.2.5) and (5.2.6), and from Eqs. (5.3.7)

and (5. 3. 8) given in the next section:
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N 5 5
m = Z Z a{r) 22 (5.2.11)
- . k aa(r)
r=1k=3 k
so that (5.2, 10) implies:
<¥,Mm>=0 (5.2.12)

The output of the optimal model and the optimal output-errcor are
therefore orthogonal under the scalar product <+,*>. For example,
if only displacement matching is considered (k1 =1, kZ: 0, k3: 0),

then:

r f AN
J (xo—x)x dt =0

5.3. Minimization Method

The method used to minimize J(g(l), ‘e ’?_(N)) is described in

four parts: modal sweeps, single-mode minimization, one-dimen-
sional (1-D) minimization, and numerical evaluation of J.

1) Modal sweeps

Initial estimates are made for the g_(r), r=1,...,N, then J

(1)

is minimized with respect to a' "/, the parameters of the first mode,

while the parameters of the other modes are held fixed. Using the

(1) ()

new estimate of a and the initial estimates of the other a‘'"’,

(2).

is
then minimized with respect to a By estimating one mode at a

time in this manner, new estimates of the modal parameters are

available after one sweep of the N modes. Successive sweeps are
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performed until J is no longer reduced significantly. From three to

five modal sweeps were usually sufficient to give adequate convergence
to the minimum of J.
The method may be summarized as consisting of repeated ap-

plications of the following sequence of minimizations:

J(ﬁ(l),a(z),. .. ,a(N)) =min J(a(l),a(z),. . ,a(N))
J(é\,(l),a(z), ’a(N)) =1min J(.%(l), (2')’ ’a(N))

Notice that this method of minimizing J can be considered as an ap-
plication of the basic approach outlined in §5. 1 except that it is at the
modal level instead of at the level of each parameter., The procedure
used to minimize J with respect to a given mode is described in the
next part.

2) Single-mode minimization

Consider the stage in 2 modal sweep where J is to be mini-
mized with respect tothe parameters of the P mode. From(5.2.6)
and (5.2.7), itfollows that the latest estimates of the parameters of the

other modes are used to subtract all but the rth mode from the re-

corded response. The remaining portion of the response is then used

(x)

to determine the new estimate of a Thus, the minimization of J

(r)

with respect to a is equivalent to minimizing the function:
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r T 2
7@ Vi1, o 0wl ar

2
+k2V22JrT Re) vy il )(L;’:t_(r))_J dt (5.3.1)
i
Ter (r) () r)
+k V33j )J dt

subject to the constraints of (5, 2. 1) and (5. 2. 2). Here,

(r)

v(()r) =v, - x(8) (5.3.2)
s=1
s#r
N
aér) “%o0 2 ()
17

are all known quantities, because the modal contributions are given

by the latest estimates of the _a;(s), s #r.

The linearity of the model can be exploited in the minimization

of Jr(g._(r)) to enable the parameters a(3r), ag:r) and a(sr) to be

determined explicitly in terms of a(lr) and a;r), Define a linear

operator by:

2
(ryod_, (x)d  _(r)
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and define the functions sl({r)(t;a(lr),a(zr)), k =3,4,5, by:

L) -, $(ir =0, 8T =0 (5.3.4)
LB g (r)(T Y21, éf;)(rri) =0 (5. 3. 5)
L0, =0, 5y =1 (5.3.6)

From these

and

The term a

response X

definitions, and the linearity of Egs. (5.2.1) and (5.2.2):

5
S N T L ) (5.3.7)
123
(r)
(r)_2ox -
i k=3,4,5 (5. 3. 8)

(r)_(r)

3 83 is the forced vibration component of the modal

(r) (r) (r)__(r) (r)

and a, 'sy "tag s’ is the free vibration component

due to the initial conditions. For fixed a(r) and a(r) it follows from

(5.3.1), (5.

given by the solution for az

equations:

where

1 2
3.7) and (5. 3. 8) that the global minimum of J'r(_a_._( 1)) s
(r) _(r) (r)

» 3y and ag of the linear system of

5

z b3(11<)1(\r) g),j:3,4,5 (5.3.9)
K=3

T
_k VllJ. f r) (r)dt+kzvzzj‘ fégr)él(f)dt

i

+k V33j f r) I(f)dt (5. 3. 10)

l
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and (r)—k v J f (r) r)dt+k v, [ fé(r)v(r)dt
11 22, % Yo
T,
1
T
f..(r)_(r)
+k3V33j 3 2y dt (5.3.11)

i

There is a unique solution to the equations given by (5. 3. 9)

gince the 3%3 matrix [b( )] is non-singular., This follows from the

fact that this matrix corresponds to the matrix S defined by (2. 3.9),

which,according to Appendix A, is positive definite because the sen-

(r)  _(x) (r)

sitivity coefficients Sy ', Sy and s, ' are clearly linearly inde-

pendent in view of (5.3, 7), (5.2.1) and (5. 2. 2).
(r) (r)

By using the solution to (5. 3. 9) for any given a; ’ and aj’,
a function fr can be defined by:

a{*)) = min 7 ™) (5. 3. 12)

@, ),

’

£ (@)

The original problem of solving ;r%)i% Jr(g._(r)) therefore reduces to
finding the minimum of fr. This is achjieved by applying the basic
iterative approach outlined in §5.1. Thus, a series of 1-D mijni-
mizations are performed by minimizing fr alternately with respect to
agr) and with respect to a(zr). This process, which is indicated
schematically in Fig. 5. 1, is continued until a consecutive pair of 1-D
minimizations results in a fractional decrease in fr of less than ¢,

where € is specified. The procedure used to carry out each 1-D

minimization is described in the next part,
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O(r)

'O

Figure 5.1, Schematic diagram of contours of fr(agr),a(zr )) [Eq.

(5. 3.12)] showing a path of convergénce.
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The criterion for convergence in terms of the relative change in
fr was chosen instead of the change in the estimates of the parameters
(r) (r)

1 and as because the latter can cause difficulties with the higher

modes. The response may be so insensitive to these parameters that

a

the changes in f reach the roundoff level of the computer before the
parameters have converged to the specified accuracy, and this may
prevent the algorithm from ''converging'. The criterion in terms of
fr’ on the other hand, automatically takes into account the fact that
the resolution differs from one parameter to another. In the results
reported later, € was set equal to 10~4 in the criterion for conver-

gence.

(r)

1 and a

The parameters a can be replaced by the modal

(r)
2
period, Tr’ and damping factor, gr, in the algorithm to minimize
fr so that the 1-D minimizations are with respect to these latter pa-
rameters. This was done in the applications of the method because of

the convenience of working directly with the parameters of interest.

3) One-dimensional minimization

A method is given for the minimization of a function f(@) of a
single parameter «. The minimization of fr(a(lr),aér)) is then
achieved by applying the method alternately to f(x) Ef_r(Ot, agr)) and
to f(@) Efr(a(lr ),oz). Notice that the gradient of fl_(agr),agr )) is not
required to determine the direction of the search for the minimum of
fr because this direction is always parallel to one of the axes of the

parameters. A method to minimize f(o) was therefore selected which

only involved evaluating the function.
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The method starts with an initial estimate, Cvo, of the minimum

of f(®), and a step-size 6>0. If f(OtO'— 6)2f(ozo), then o is incre-

mented continually by &, thatis, « :ozo +6, 0'0 +28,..., butif

f(ozo - 6)<f(010), then @ is decremented continually by 6, The value

of f is calculated at each step and the stepping is continued until f{()
no longer decreases, showing the minimwn has been passed. The min-
imizing argument for a parabola through the last three values of f is

then calculated and this is taken as the minimizing argument of f.

A key point is the choice of 6. If it is too large, the estimate of

the minimum of f(«¢) will be poor and an excessive amount of time may

(r) ()

be spent iterating on ay and a, . On the other hand, it if is too
small, too much time may be spent in the stepping required to find the

minimum of f(«). A choice which was found to work well is the follow-

(r)

ing. If the 1-D minimization is with respect to a; ', 0 is taken to be

half the change that occurred in the estimates of a(lr) given by the last

two 1-D minimizations in this direction. A similar choice is made for
the value of 6 for the 1-D minimizations with respect to aér). To

illustrate this choice of §, for the minimization determining a(lr) to

locate point 5 in Fig. 5.1, & would be half the difference between the
(r)
1

values of a at points 1 and 3. To start the process during each

(r)

modal sweep, & is given an initial value 61 while determining point
1 and for point 3, 6§ is set equal to %—6(1r). Sﬁnilarly, an initial value
6(Zr) is used to start the 1-D minimizations with respect to a(zr), For

5(r)

the first modal sweep, 1 and 6;‘1') are prescribed for each mode
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and they are then halved for each successive modal sweep.

4) Evaluation of J

The only calculations required for minimizing J are those

involved in evaluating fr(a(lr), a(zr)). The algorithm used is discussed

briefly here,
At the beginning of the minimization of J with respect to the
th e .
parameters of the r mode, the current contribution of this mode to
the response is added to the current output-error to form whichever
of the quantities in Eqgs. (5. 3. 2) are required. These quantities are

(r)

then kept fixed during the estimation of a' ’.

(r) (r)
1 %2

(x) and a(r), Eqgs.

To evaluate fr(a 1 5

) for a given a
(5. 3.4) to {5.3.6) are first solved. The method used to solve all three
linear equations is the efficient transition-matrix approach introduced

by Nigam and Jennings (1969). This turns out to give the exact solutions
at each time step, apart from the roundoff in the arithmetic calculations,
because of the way the continuous record z(t) is defined as a linear

interpolation of the digitized data. Equations (5. 3.9) are then solved

for a(;), air) and a(sr) using Gaussian elimination, and the new esti-

th
mate of the contribution of the r mode is calculated from (5. 3. 7).

(x) _(x)

The value of fr(a] 5

) is then calculated from (5. 3. 1) using

Simpson's rule for numerical integration. This procedure for evalua-

(r) (r) (r)

1 172 ) arising in the

ting fr(a s afzr)) is repeated for each pair (a
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minimization of fr by the method described in parts 2) and 3).

5.3.1 Comments on Method

The modal minimization method has several advantages in com-
parison with the optimal filter method of Chapter 4. The most impor-
tant advantage is its reliability., Convergence to a local minimum oc-
curred in every application of the method. Another advantage is that its
convergence is easy to examine by assessing J and the current esti-
mates of the parameters of the rth mode every time J, or equiva-
lently, fr(a(lr), a(zr)), is evaluated. In contrast, it is difficult to de-
termine whether the invariant-imbedding filter has given the optimal
estimates of the parameters because the effects of the approximation
in the theory are not easy to assess in a particular case.

Part 2) of the method is similar to the method used by Raggett
(1974). He examines one mode at a time by filtering the response using
a narrow band-pass filter centered on the estimated modal frequency.
A single-degree-of-freedom model is then used to estimate the modal
parameters from the filtered response. The advantage of the present
method in comparison to this approach is that the properties of a num-
ber of modes are estimated simultaneously by the minimization of J,

sothat modal interference can be reduced to an acceptable level.

Raggett's results using simulated data for a linear system with three
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degrees of freedom show that modal interference has a significant ef-
fect on the accuracy of the estimates W‘hen using his approach. Using
a three-degree-of-freedom model, the present approach is capable of
giving the exact values of the parameters from the simulated data used
by Raggett.

An interesting feature of the method for finding the minimum of

(r) _(r)

R ) is that after the first 1-D minimization has

the function fr(a
been performed, it is equivalent to the method of steepest descent,

In the latter approach, the gradient of fr would be evaluated to deter-
mine the direction of steepest descent and then a 1-D minimization would
be performed in this direction. Referring to Fig. 5.1, for the method

of part 2) the line from point 0 to point 1 must be tangential to the

contour of fr at point 1. The next 1-D minimization in the direction

(r)
a

of2

is therefore in a direction normal to the contour of fr at
point 1, which is the direction of steepest descent. All subsequent
directions of search for the minimum also behave in this manner,
proving the original assertion,

It is well known that the rate of convergence of the method of
steepest descent can be very slow if there is significant interaction
between the parameters near the minimum. An illustration of this
problem can be seen in Fig. 5.1, where the interaction, or lack of

() (r)

"orthogonality" (seel2.4.5), between a, and a.2 has been
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exaggerated. In the applications of the method, the interaction between
Tr and gr was not pronounced. The few times that convergence with
respect to Tr and gr was slow were always cases where the model
was having difficulty interpreting the data for the higher modes, which
was reflected in unreasonable values returned for some of the modal
parameters.

(r)

The two parameters az

(r)

(r)

and a would cause slow conver-

gence if Jr(i ) was minimized by applying the method of steepest

(r)

descent to all five parameters in a °, because there is strong inter-

action between these two parameters. The interaction arises because

(r)

and a3

the major effect of both a is to alter the amplitude of the

(r)
2
R th R
contribution of the r  mode to the response. The effect of this inter-
action is reduced by using the explicit method to determine the mini-

mizing value of agr).
Another source of interaction is that between the modes, which
could cause slow convergence during the modal sweeps. However,

this would not be expected to be a problem if the modes have widely-

spaced modal frequencies, The applications support this conclusion.

5.4, Tests with Simulated Data

5,4.1 Single Degree-of-freedom Linear Oscillator

The modal minimization method was first tested using the same
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model and data as in 84,4, 1. The linear oscillator used to generate
the data numerically had values for if;s parameters of T =1.0 sec,
C=5% and p=1.0. It was found that the method gave nearly exact
values for the parameters from two cycles of data, regardless of
whether the displacement, velocity or acceleration of the oscillator
were used in the measure-of-fit J. One cycle and a half-cycle of the
displacement were also used and were found to give nearly exact results.
The final estimates of the parameters are shown in Table 5. 1., to-
gether with the initial estimmates. Because of the way the method works,
initial estimates of the participation factor, initial displacement and
initial velocity were not required. The portions of the excitation and
response which were used can be seen by examining Figs. 4.1 and 4. 3.
Of course, the results are for a special case in which the only source

of error is roundoff in the computations.
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. Estimates of Parameters
Time segment - : _ -
(seconds) T C(%) p
2.0 - 4,0 1.00000 4,9999 1.0000
3.0 - 4.0 1,00000 4.9994 0. 9999
3.0 - 3.5 1. 00000 4,9989 0.9998
Initial estimates [1.12 3.82 -
True values 1.0 5.0 1.0

TABLE 5. 1. Optimal estimates of the parameters
using different pertions of the dig-
placement of the linear oscillator,

5.4.2. Ten Degree-of-freedom Linear Chain System

The next tests of the modal minimization method used the '"roof"
response computed for a ten-degree-of-freedom linear chain system
(Fig. 3. 1) which was initially at rest and then subjected to a base ac-
celeration given by the first 10 seconds of the 1940 El Centro earth-
quake record (Fig. 4. 1). The modal properties of the uniform chain

system are given in Table 5.2. The modal participation factor P is

(r)

the quantity agr) [Eq.(5.2.1)] or B 10

[Eq. (3.2.13)] and it is in-

dependent of the normalization of the modeshapes. If the modeshapes

are normalized to unity at the roof, p is equal to the conventional
xr

participation factor. Also shown in Table 5.2 are some of the peak

modal contributions to the relative displacement, velocity and
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acceleration at the roof.

Some of the results of applying' the modal minimization method
to various portions of the simulated response records are shown in
Table 5.3, 5.4 and 5.5. The parameters and initial conditions were
estimated for each mode included in a model but only the results for
the modal parameters are given. The measure-of-fit J for each
model is also given. Recall that because of the normalization of J
by the Vii in Eq. (5.2.7), Jl represents the ratio of the r. m. s.
output-error to the maximum response.

The errors in the parameters are primarily due to the model
error created by neglecting the higher modes of the chain system in
each model. For a given number of modes and for a given time seg-
ment, this model error is greatest when the acceleration is used and
hence the errors in the estimates tend to be the largest in this case.
There is also ""measurement noise' because the equations of motion
for the uniform chain system were solved only to within an accuracy
of 1% of the exact response. This noise may therefore affect the ac-
curacy of those modes whose signals are relatively small,

Observe that the modal periods are always estimated very ac-
curately, at least for the six modes investigated, and the damping
factor and participation factor are estimated quite accurately for each

mode in a model except for the highest mode, which is most affected by
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Record used to estimate parameters
Modal Velocity Acceleration
parameter 0-10sec| 2-4sec | 0-10sec| 2-6sec | 2-4sec
fl -0.001 0.000 | -0.004 0.001 0.03
2, -0.04 -0.1 -0.2 -0.2 2
f)l -0.05 -0.1 -0,2 -0.2 0.9
T, - o,ooé ‘‘‘‘‘‘ 007 | 0.0z -0.04 0.1
¢, -0.04 0.3 0.2 0. 02 0.2
B, 0.2 1 0.5 ~0.07 0.4
T, 0.01 -0.01 0.01 0.04 -0.01
E3 -1 -3 ) -4 -4
B, -1 -6 -2 -5 -7
T"4 0.2 0.02 0.2 0.1 -0.1
54 -13 -18 -15 -13 -26
P, -10 -9 -11 -10 14
Tx100 2.5 10 140 260 420

TABLE 5, 4. Relative errors (%) in the optimal parameter estimates
using a four-mode model of the uniform chain system
of Table 5. 2.
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the model error. Observe also that there is some interaction between
the estimates of the damping factor and participation factor of each
mode. With few exceptions, they are consistently both too large or
both too small in magnitude, and often by roughly the same percentage.
This might be cxpected since the height of the resonant peaks in the am-
plitude of the transfer function between the base and the roof are con-
trolled by the ratio pr/Z Qr. The difference between the effects of P
and gr is that the former scales the forced vibration component of

the modal response uniformly in time, whereas the latter has an ac-
cumulative effect with time on both the forced and free vibration com-

ponents,

The initial estimates for the results given in the Tables for the
model with (R+1) modes were taken to be the optimal estimates for the
model with R modes, For the new mode, initial estimates are re-
quired only for the period and damping factor if the modal sweeps are
started with this mode instead of with the first mode. The initial esti-
mate for the period of the first mode was 1. 12 sec and the initial esti-
mate for the damping factor of all the modes was 3.82%. These values
were chosen to give unrounded numbers for initial errors. For the
higher modes, the period ratios for a uniform shear beam were used to
give the initial estimates of the periods.

With these choices of the initial estimates, it was found that the

number of modal sweeps required to give convergence of J to within
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0.01% was normally three to five sweeps for displacement matching and
velocity matching and three to seven siveeps for acceleration matching.
The number of modal sweeps required tended to increase as the length
of the record decreased. The computer time per sweep for ten seconds
of data ranged from 4 seconds for a two-mode model to 14 seconds for
a six-mode model, using an IBM 370/158. These times are also rep-
resentative for the applications reported in Chapter 6 which used earth-
quake records from buildings.

Figure 5.2 shows that the plots of the displacement at the roof
of the uniform chain system and the displacement of an optimal model
with two modes are indistinguishable. The optimal model is given by
the parameters in the first column of Table 5.3, Figures 5.3 and 5.4
show a similar match of the velocity and acceleration is achieved by an
optimal model with four modes {see Table 5.4, column 1).

An illustration is given in Fig.5.5 of a profile of the measure-
of-fit J computed for a single-mode model by varying the modal
period T while keeping the damping factor constant at (=5%. The
acceleration record from 2.0 to 4.0 seconds was used in J and the
plot is strictly one of fl(T’ ¢) [Eq.(5.3.12)]. Local minima correspond-
ing to the first four modes can be observed. The local minimum at a
period of about T =0,6 sec is a spurious one due to the interaction of

the first and second modes, that is, a single-mode model with a period
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of about 0.6 sec and a damping factor of 5% is able to cancel enough
of both the first and second mode to prbduce a local minimum in J,
The spurious minimum disappears when the first mode contribution is
subtracted from the acceleration response, as it would be during the
identification of the second mode by the modal minimization method.
Furthermore, when the first mode is subtracted, the local minima
become sharper and another one appears in the plot of the profile of
J which corresponds to the fifth mode,

Encouraged by the results of applying the modal minimization
method to simulated data, the method was applied to earthquake records
from some multi-story buildings. The results are reported in the

next chapter.
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VI, APPLICATIONS TO BUILDINGS

The modal minimization method is used in this chapter to iden-
tity the modal properties of linear models for two multi-story buildings.
The records used were obtained during the 1971 San Fernando earth-

quake, California,

6.1, Union Bank Building, Los Angeles

The Union Bank building is a 42-story steel-frame structure in
downtown Los Angeles which experienced peak accelerations at mid-
height of 20% g (transverse direction) and 13%g (longitudinal direction)
during the 1971 San Fernando earthquake (ML= 6. 3). Only minor
nonstructural damage occurred, Features of the building and its earth-
quake response are discussed by A.C.Martin and Associates (1973)
and by Foutch et al (1975).

At the time of the San Fernando earthquake, strong-motion
accelerographs with synchronized timing were installed in the sub-
basement, on the 19th floor and on the 39th floor, but the instrument
on the 39th floor failed to record. The S38°W components of the
digitized relative acceleration, velocity and displacement at the 19Lh
floor were used as the respoflse data in the analysis . These com-
ponents correspond to the longitudinal direction of the building (Fig.

6.1). The sub-basement absolute acceleration, s38°W component,
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was used as the input to the models (Fig. 6. 2).

The Fourier amplitude spectm;mvfor 40, 96 seconds of the ab-
solute acceleration at the 19th floor is shown in Fig. 6.3 and the am-
plitude of the estimated transfer function is shown in Fig.6.4. The
first five dominant peaks of each plot are given in Tables 6,1 and 6. 2.
Only the frequency range 0.2-2.5Hz was used in constructing the
Tables and the spectral amplitude ratios in Table 6,1 for the absolute
velocity and displacement were deduced by using the simple expression
for transforms of derivatives, The erratic behavior of the unsmoothed
transfer function in Fig. 6. 4 is typical for those estimated from seismic
records,

The interpretation of the peaks in Tables 6.1 and 6. 2 is based
primarily on the period ratios for a uniform shear beam, since past
work with ambient and forced vibration tests has shown that these
ratios serve as a rough guide to identification of the resonant peaks
of the lower modes of tall framed structures. The absence of the
third longitudinal mode in Table 6. 2 might be expected since for this
mode the 19th floor should be close to a node. It appears in Table 6,1
because there is a relatively large peak in the Fourier amplitude spec-
trum of the sub-basement motion at a frequency of about 1 Hz, The

tentative identification of the torsional mode is based on a simple
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Period | Period Ratio of spectral values(%) terpretation
(sec) ratio I Celeration Velocity|Displacement of mode
4.8 1.0 100 100 100 15Y ongitudinal
1.5 3.2 29 9 2.8 anlongitudinal
1.25 3.8 21 5.5 1.5 2262 sional
0.66 | 7.3 17 2.3 0.3 4Mongitudinal
1.0 4.8 15 3.1 0.7 374 ongitudinal

TABLE 6.1. First five éox&unantpeaks of the Fourier amplitude
spectrum of the S38°W component of the absolute
acceleration at the 19th floor of Union Bank building.

Period | Period Amplitude ratio Interpretation
(sec) ratio (%) of mode
4.8 1.0 100 1%%ongitudinal
1.5 3.2 54 2" ongitudinal
1.3 3.7 43 2nd torsional
0.6 8.0 42 4™ ongitudinal
0.4 12.0 30 ?

TABLE 6.2. First five dominant peaks of the amplitude of the

transfer function between the S38°W components
of the absolute acceleration in the sub-basement
and at the 191:}1 floor.
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model of the structure wherein the interstory stiffness of each mo-
ment-resisting frame is replaced by a single spring and the mass and
stifiness properties are assumed to be uniform with height, If it is
assumed that the motion of longitudinal modes is purely in the longi-
tudinal direction and the motion of the torsional modes is purely ro-
tational, and if the experimental observation of equal fundamental

. . . . th .
translational periods is employed, the period of the r torsional mode

th
can be shown to be about 80% of that of the r = longitudinal mode.

6.1.1. Time-invariant Models

The parameters were first estimated for the major segment of
the records, from 5 to 30 seconds, Following the general procedure
described in §3.5, a succession of models was taken in which the
number of modes was increased one at a time and the optimal estimates
from one model were used as the initial estimatcs for the next model,
As discussed in §5. 4,2, when this is done, initial estimates are re-
quired only for the period and damping factor of the new mode. The
initial estimates of the periods were those in Table 6.1 and the ini-
tial estimates of the damping factors were 4%,

The intention was to add the modes to the models in the order
of their dominance in Table 6.1, although some difficulties were en-

countered. The results for the optimal models determined by
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displacement matching and by velocity matching are given in Table
6.3, while those for acceleration matching are given in Table 6. 4.
The p. are the effective participation factors at the 19th floor [Eq.
{3.2.13)]. The measure-of-fit J for each model is also given.
Recall that J% represents the ratio of the r.m. s, output-error to the
maximum response, and the values in the Tables give this ratio as a
percentage. For example, Table 6.3 shows that for a single-mode
model determined by velocity matching, the r.m,s. velocity-error is
9% of the peak velocity.

Only a one-mode model was determined by matching the record-
ed and model displacements because the si‘gnal of the second mode was
so small. The quality of the match is shown in Fig, 6.5, When inter-
preting the Figure, it should be recalled that the initial displacement
and velocity for each modal contribution are estimated along with the
other modal parameters and these initial conditions are used in the
calculations of the response of an optimal model, The calculated
displacement and velocity for the two-mode model determined by
velocity matching are compared with the actual displacement and
velocity in Figs. 6.6a and 6.6b, Figure 6.6.a shows that a good
displacement match is obtained even when the model is determined by

matching velocities,
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Modal Two-mode |Three-mode |Four-mode |Five-mode
parameter| model model model m odel
T, 4. 59 4. 62 4. 62 4.61
¢ 3.5 4.4 4.4 4.2
131 0.74 0. 86 0. 87 0.84
T, 1.50 1.49 1. 49 1.49
§2 4.2 4.6 5.7 5.8
B, 0. 31 0. 39 0. 48 0. 46
f; 1.2
E§ 7.7
By -0.12
T, 0.9 1.1 0.95
23 27 19 13
§3 -0. 4 -0.29 -0.13
T, 0. 66 0. 66
2, 7.2 6.6
fs4 -0.17 -0.15
TE (%) 10. 2 8.8 8.3 8.2
TABLE 6. 4. Optimal estimates of the parameters using the por-

tion from 5 to 30 seconds of the Union Bank accel-

eration record, longitudinal direction.

The tor-

sional mode is distinguished by the superscript t.
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An attempt was made to identify the second torsional mode by
using a three-mode model and veloci(':y matching. However, for the
third dominant mode, the modal minimization method converged to a
period of 1.0 second and a very high damping factor of 35% (Table
6.3). A possible explanation for this behavior is that because the
signals in the velocity record corresponding to the higher modes are
small (Table 6. 1), the method chooses a iocal minimum of J which
arises from partial compensation by the model of up to three of the
higher modes in the velocity record with a period around 1 sec, ‘LI'he
high damping of 35% would allow the identified "mode" to do this be-
cause it produces a resonant peak in the frequency domain with a
broad bandwidth,

The difficulties in identifying the torsional mode also occur-
red when the models were determined from the acceleration record
(Table 6,4). Even though the torsional period was included as an
initial estimate for the new mode for the models with three and four
modes, the modal minimization method converged to one of the less
dominant modes of Table 6,1. It was only when a five-mode model
was taken that the second torsional mode appeared, Furthermore, it
produced only a small change in J. This suggests that the chosen
class of models is not capable of producing a torsional signal of com-

parable strength to that appearing in the actual records, possibly
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because the excitation of the torsional mode by the transverse base
motion is not considered in the modell;'.ng (83.1.1).

The calculated velocity and acceleration for the four-mode
model determined by matching accelerations are compared with the
actual records in Figs.6,7.a and 6, 7.b. The displacement of the
four-mode model was almost identical to the displacement of the two-
mode model determined by velocity matching (Fig. 6.6,a). Also, a
comparison of Figs., 6.6.b and 6,7, a shows that the velocities of the
four-mode model determined by matching accelerations and thé two-
mode model determined by matching velocities produce nearly the
same agreement with the recorded velocity.

It is concluded from the results that a time-invariant linear
model with a small number of modes can reproduce the strong-motion
records at the 19th floor surprisingly well. The number of modes
required to give a very good approximation of the relative displace-~
ment, velocity and acceleration are one, two and four modes respec-
tively. The respective optimal models give calculated response which
haveanr.m,s. error of about 8% or less of the peak response. The
quality of the match of recorded andmodel responses was not expected
prior to the identification; the match given by one of the two-dimen-

sional dynamic models used in the design of the building was not nearly

as good, as seen in Fig. 6,8 [from A, C.Martin and Associates (1973)].
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Figure 6. 8. Absolute response at the 19th floor of Union Bank bujld-
ing during the 1971 San Fernando earthquake compared
with the calculated response of a structural model used
in the design of the building (from A, C. Martin and
Associates, 1973).
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Of course, a better fit of the response histories should be expected for
a model determined from the earthqualée records than for a model
synthesized from structural plans.

The periodic nature of the difference between the displacement
record and the displacement of the optimal model in Fig. 6,5 or 6,.6.a
suggests that the discrepancy between these two histories is primarily
due to long period errors of about 8 to 10 seconds in the record. This
conclusion is also consistent with the large peak in the estimated trans-
fer function in Fig, 6, 4 which is al a lower frequency than the funda-
mental frequency of the building,

An early study of long-period errors in accelerograms sug-
gested that the errors in the derived displacement records should be
relatively small up to a period of about 16 seconds (Trifunac, 1970b),
but a later study, using the large amount of data from the 1971 San
Fernando earthquake, showed that there were significant errors in
some records at periods less than 16 seconds (Hanks, 1973). Thus,
early records processed at the California Institute of Technology,
which include the Union Bank records, were high-pass filtered with a
cut-off frequency corresponding to a period of about 14 seconds,
whereas for most of the later records, the cut-off frequency corre-
sponded to a period of 8 seconds. To remove the long-period compo-

nents, the Union Bank records were filtered with a roll-off
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termination frequency of 0, 125 Hz and a roll-off bandwidth of 0, 05 Hz
and this led to a considerable improvement in the optimal displace-
ment match for a one-mode model, as can be seen by comparing Figs.
6.5 and 6,9. However, the estimates of the parameters using the fil-
tered displacement and a one-mode model changed only slightly from

their values in column 1 of Table 6.3 to the values: T_ = 4,61 sec,

1

~

gl =3, 4%, 131 =0.79. These results suggest that if sufficiently long
segments of the records are taken, the method is not sensitive to mea-
surement noise which is at frequencies significantly different from the
modal frequencies, as might have been anticipated from the least-
squares nature of the approach,

The optimal estimates of the parameters of the four longitudinal
modes determined by matching the acceleration record with a five-
mode model are compared in Table 6.5 with other available values
for these parameters. The participation factors for the synthesized
structural model and for the ambient vibration tests were calculated
from the known mass distribution of the building and the published
modeshapes, There was clearly a reduction in the stiffness of the
structure during the San Fernando earthquake which was only partially
recovered after the earthquake., The degradation in stiffness is thought
to be due to changes in the nonstructural elements such as partitions,

Notice that the period ratios are roughly the same during the
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earthquake as before and after the event, suggesting that the reduc-
tion in stiffness was approximately uniform over the structure. Fur-
thermore, these period ratios are close to those for a uniform shear
beam.

The estimates of the damping factors from the seismic records
are much greater than those for the ambient vibration tests, This is
consistent with experience for other buildings and might be expected in
view of the much larger amplitudes of the structural motion during the
earthquake. The damping factors also increase slightly with the higher
modes for this building.

It is often assumed that the modeshapes, and hence the parti-
cipation factors, will not change appreciably as the amplitude of the
motion increases. This was the case with the participation factor of
the second mode, but the participation factor of the fundamental longi-
tudinal mode during the earthquake was quite different from its value
in the pre-earthquake ambient vibration tests. The corresponding
modeshape in the ambient tests was almost a straight line. The first
two values for Py in Table 6.5 suggest that the fundamental mode-
shape may have been more like that for a uniform shear beam during
the earthquake.

On the basis of all the results, it is believed that the optimal

estimates in Table 6.5 of the parameters for the first, second and
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fourth longitudinal modes are reliable values for the strong-motion
behavior of the building, as interpreted by a time-invariant linear
model, It is more difficult to assess the estimates for the parameters
of the second torsional mode and third longitudinal mode, The periods
appear reasonable but the large damping estimate for the third mode
is questionable, Furthermore, because the estimate of the damping
factor is most probably too large, the magnitude of the participation

factor may also be too large.

6.1,2, Time-varying Models

The results presented in the previous subsection show that
there was a degradation in the stiffness of the Union Bank building
during the 1971 San Fernando earthquake. To furtherinvestigate this
effect, optimal linear models were determined for four successive,
overlapping subintervals in the time interval from 5 to 30 seconds.
The variation of the optimal estimates with each time segment then
shows how the equivalent linear parameters changed during the earth-
quake due to nonlinearities in the structural response,

Time windows of ten seconds were used, moving the window by
five seconds each time. This gives time segments of just over two
cycles of the fundamental mode. This choice, suggested by the results

using simulated data, is a compromise between the desire to take a
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small interval so that the instantaneous structural properties can be
approximated, and the necessity to tak*e a sufficiently large interval
for the parameters to be estimated reliably,

The optimal models were determined by matching displacements
(one mode) and by matching velocities (one and two modes). The rec-
ords used were those discussed above which were high-pass filtered

with a roll-off termination frequency of 0.125 Hz, corresponding toa pe-
riod of 8 seconds. The optimal estimates of themodal parameters and the
correspanding measure-of-fitare presented in Table 6.6. The estimates
of the parameters foragiventime segmentareingood agreement for the
three differentmodels, exceptforthe lowdamping inthe first row of Table
6.6. The reasonfor the latter discrepancy is notclear, althoughitmay be

due partly to th e small signal over half of the interval (see Fig. 6.10.a).
The greater variation in the estimates of Py for the last time segment
in Table 6.6 is to be expected since the determination of P, becomes
ill-conditioned for later portions of the records, This is because the
basement acceleration is small for these time intervals and the struc-
tural motion is dominated by the free-vibration components which do
not depend on the P,.

The results in Table 6.6 and plots of the recorded and model
responses suggest that the lengthening in the period of the fundamental

longitudinal mode during the interval from 5 to 30 seconds was
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progressive rather than abrupt. The change in the fundamental period
from the first to the last time segmenf was 7%‘ %, and the period of the
second mode changed by 7%. For the first three time intervals, the
damping factors of the fundamental and second modes were approxi-
mately 4% and 5% respectively, dropping to about 3% over the last time
interval,

A comparison is given in Figs. 6.10.a, b and c of the recorded
response and the calculated response of the optimmal model with two
modes determined by matching velocities over the interval from 5 to
15 scconds. A similar comparison is given in Figs. 6.11.a,b and ¢
for the optimal model with two modes determined by again matching
velocities, but over the interval from 20 to 30 seconds. The two cases
presented in Figs. 6. 10 and 6. 11 represent respectively the worst and
best match of velocities for a two-mode model. Ignored higher modes
are evident in the velocity and acceleration comparisons in the

Figures.

6.1.3. Sensitivity Analyses, Union Bank Building

The full sensitivity matrix S [ the Hessian matrix, Eq. (2. 3. 8)]
and the reduced sensitivity matrix S [ the partial Hessian matrix,
Eg. (2.3.9)], involving derivatives of J [Eq. (5.2.7)] with respect to
the model coefficients agr), were evaluated in several cases. It was
found that corresponding elements of S and S were similar because
the last term of Eq. (2. 3. 8) was small. Conclusions regarding the

(r)

sensitivity of J with respect to the a, were therefore unchanged
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when S was used instead of S. The reduced sensitivity matrix was
also calculated in several cases by replacing derivatives with respect
to the model coefficients a(lr) and a(zr) [Eq. (5. 2. 3)] with derivatives
with respect to Tr and Qr, since it is the latter parameters which
are of major interest. To calculate the sensitivity matrices, the
derivatives of the model response with respect to the parameters are
required. These are the so-called sensitivity coefficients and they
were determined by computing the response of a number of single-
degree-of-freedom linear systems, which include those given in Eqs.
(5.3.4) to (5. 3.6). Finally, the first derivatives of J were also
evaluated at the optimal estimates as a check, and in each case they
were found to be suitably small.

The sensitivity matrices gave quantitative confirmation of
points which have already been noted and which can be inferred using
other arguments., These points are summearized below.

1) For a given mode, J is much more sensitive to the period
than to the other modal parameters.

2) The interaction between Tr and gr, and between Tr
and P is generally small, but the interaction between gr and 28
is quite pronounced.,

3) The interaction between the parameters of different modes
is generally small,

4) J gets progressively less sensitive to the modal parameters
as the mode number increases. The rate of decrease in the sensitivity

with mode number is greatest for displacement matching and least for
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acceleration matching.

5) For the fundamental mode, ’ J is most sensitive to the
modal parameters when displacement matching is used. For the
second mode, the sensitivity of J is least for displacement match-
ing and about the same for velocity and acceleration matching. For
the third and higher modes, the sensitivity of J is greatest for
acceleration matching.

These conclusions regarding the sensitivity of J can be inter-
preted directly in terms of the expected accuracy of the estimates of
the parameters, as discussed in §2.4.5. For example, points 1 and
2 indicate that the modal periods will be estimated much more ac-
curately than the damping and participation factors.

The diagonal elements of the reduced sensitivity matrix are
presented in (a) of Table 6. 7 for the optimal estimates of the param-
eters given by a three-mode model determined by matching the velocity
record over the interval 5 to 30 seconds (column 5, Table 6. 3). These
values have been normalized by multiplying by the optimal estimates
so that the sensitivities can be directly compared, without regard to
the magnitude of the parameters. For example, Eq. (2.4. 32) and the
values in Table 6.7 (a) show that an €% change in T, {from its op-
timal value will produce a change of 22. 9 X (e:/lOO)2 in J, whereas an
€% change in C’l will produce a change of only 0. 03 X (G/IOO)Z, or
almost -1—61-66— of the previous change. In view of Eqgs. (2.4, 30) and
(2. 4. 34), the square root of the diagonal elements are more indicative

of the accuracy of the estimates. For example, it can be deduced
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from the above that the bound on the relative error in 'I‘1 is about

~

4% and 10%, respectively, of the bounds on the relative error in gl
and f)l.

Also shown in Table 6.7 are the interaction coefficients, which

~

are defined for two parameters a; and a, by the ratio 'gij/(siigjj) .
J

These coefficients are introduced to indicate the extent of the inter-

Wi

action between the two parameters and they are the analog of cor-
relation coefficients in statistical theory. It can be shown that the
magnitude of the interaction coefficients cannot be greater than unity,
and the larger the magnitude, the greater the interaction hetween the
corresponding parameters. If an interaction coefficient has unit
magnitude, there is a straight line in parameter space along which the
two parameters can be varied without changing the value of J, all
other parameters remaining fixed. The values in Table 6. 7 support
point 2 given above,

To illustrate how the sensitivities are affected when the param-
eters are estimated by matching smaller segments of the record,
results for matching velocities over the time intervals from 5 to 15
secs and 20 to 30 secs are also presented in Table 6.7 in (b) and (c)
respectively. As wastobe expected, the sensitivities, and hence the
accuracy of the estimates, aredecreased by taking smallerintervals
of data. Observe from the sensitivities that the parameters T2
and QZ of the second mode should be estimated more accurately
using the first ten-second time segment rather than the last, but the

opposite is true for the fundamental mode. This is because the
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higher-mode signals decrease in time compared with the fundamental
mode. The participation factors are éstimated poorly in the last
time segment because their determination is ill-conditioned (86. 1. 2).
Finally, a profile of the measure-of-fit J, or more strictly
fl(T,C,) [Eq. (5.3.12)], is presented in Fig. 6. 12 for matching of the
acceleration record over 5 to 30 seconds. The damping factor was held
constant at { =4% and the period was incremented in steps of 0. 025 sec.
Observe that the profile is very smooth and that local minima corres-
ponding to the first four longitudinal modes are apparent. The reason
for the spurious minimum at T =3 sec is similar to that given at the
end of Chapter 5. The absence of a minimum corresponding to the
second toréional mode is consistent with the discussion in §6. 1. 1,
A small minimum did appear at 1. 2 seconds when the profile of J
was replotted after subtracting the contributions of the first and

second mode from the acceleration record.

6.2. Buijlding 180, Jet Propulsion Laboratory, Pasadena

Building 180 is a 9-story steel-frame structure on the campus
of the Jet Propulsion Laboratory, Pasadena, California, which is
located approximately 15 miles from the epicenter of the 1971 San
Fernando earthquake. The amplitude of the acceleration response of
the building during the earthquake was about twice that of the Union
Bank building, but damage was limited to minor nonstructural crack-
ing. Features of the design are discussed by Wood (1972) who also

developed two-dimensional models of the building. These analytical
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models suggest that the peak stresses in the structural frame ap-
proached, but did not exceed, the yield point during the San Fernando
earthquake. Building 180 was investigated in this work because Wood's
study was available for comparison and, in addition, the peak accel-
eration was among the largest recorded in a building during the San
Fernando earthquake.

Strong-motionaccelerographs with synchronized timing were
installed in the basement and on the roof (Fig. 6.13). The S82°E com-
ponents of the digitized relative acceleration, velocity and displace-
ment at the roof were used as the response data in the analysis.

These components correspond to the longitudinal direction of the build-
ing. Thepeakacceleration in this direction during the San Fernando
earthquake was about 40%g compared with a peak in the transverse
direction of about 20%g. The basement absolute acceleration in the
longitudinal direction was used as the input to the models (Fig. 6. 14),

The Fourier amplitude spectra for 40. 96 seconds of the ab-
solute acceleration in the basement and at the roof are shown in Figs.
6.15 and 6. 16 respectively, and their ratio is shown in Fig. 6. 17,

The first six dominant peaks in Fig. 6. 16 are presented in Table 6. 8
and the first four dominant peaks over the frequency range 0-4Hz in
Fig.6.17 are presented in Table 6. 9. There are several points to
note in regard to these Tables. First, it will be explained later why
both peaks with a period of about 0. 4 sec are labelled as the second
longitudinal mode. Second, the fourth and fifth peaks listed in Table

6. 8 are not resonant peaks because they essentially vanish in the
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Period |Period Ratio of spectral values(9,)

(sec) ratio Acceleration|Velocity|Displacement Interpretation
1.28 | 1.0 100 100 100 15Y ongitudinal
0. 42 3.0 34 11 4 2™ ongitudinal
0,38 3.4 25 7 2 2™ ongitudinal
1,13 1.1 20 18 17 0 eeaae-
0.90 1.4 16 11 8 | -
0.26 4.9 9 2 0.4 37 ongitudinal

TABLE 6.8. First six dominant peaks of the Fourier amplitude
spectrum of the S820E component of the absolute
acceleration at the roof of Building 180.

Period |Period Amplitude ratio (%) Interpretation
{sec) ratio of mode
1.28 | 1.0 100 1°%ongitudinal
0.43 | 3.0 21 2% ongitudinal
0.39 | 3.3 22 22 ongitudinal
0, 26 4.9 12 3rdlongitudinal

TABLE 6.9. First four dominant peaks of the amplitude of the

transfer function between the S820E components
of the absolute acceleration in the basement and at
the roof,
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transfer function. They apparently come from amplification by the
first mode of peaks in the Fourier aml'oli_tude spectrum of the base
motion. Finally, sharp peaks in the unsmoothed transfer function
associated with near zeros in the basement spectrum were ignored
bhecause the calculation of the ordinate of the amplitude of the transfer

function is ill-conditioned in this case.

6.2.1. Time-invariant Models

The parameters were first estimated for the time segment of
the records from 0 to 20 seconds. The general procedure of succes-
sively adding modes to the models was followed. The initial estimates
of the periods were taken from Table 6. 8 (with I'I\‘Z =0. 42 sec) and the
initial estimates of the damping factors were 4%.

The results for the optimal models determined by matching the
relative displacement, velocity and acceleration records are pre-
sented in Table 6. 10. The p,. are the effective participation factors
at the roof [Eq. (3. 2. 13)], which are equal to the conventional parti-
cipation factors o for modeshapes normalized to unity at the roof.
The values in parentheses are explained later. In marked contrast
to the estimates for the Union Bank building (Tables 6. 3 and 6. 4), the
estimates of the damping factors and participation factors determined
from different response quantities are not in good agreement, Fur-
thermore, for the optimal models determined by matching displace-
ment and velocity, the measure-of-fit J is significantly greater for

a specified number of modes than its counterpart for the Union Bank
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building (Table 6.3). Part of the difference between the recorded
and model displacements appears to bé a long-period error in the
record of period 6 to 7 seconds, which is apparent over the interval
from 10 to 20 seconds in the comparison of displacements. Another
part is due to a significant change in the fundamental period with time
which shows up most clearly in the displacement comparisons (see,
for example, Fig.6.18.a). A surprising result is that for a given
number of modes, the acceleration record can be matched better than
the displacement and velocity records (see J% in Table 6. 10), which
was not the case with the Union Bank building.

Other problems with the estimates in Table 6. 10 are apparent.
For example, the values f)l =0.9 and fSl =1.0 are suspect if judged
on the basis of their values for linear models. An examination of the
expression for oy [Eq. (3. 28)] shows that Py is greater than unity
for a linear model if the modeshape of the fundamental mode has its
greatest value at the roof. In fact, for a uniform shear beam,
Py =1.27. Furthermore, the estimate in Table 6. 10 for the partici-
pation factor of the third dominant mode has the opposite sign to what
would be expected for a third translational mode (for a uniform shear
beam, Ps3 =0.25). A curious result is that the period estimate for the
third dominant mode corresponds to a trough in Figs. 6. 16 and 6,17,
although its large damping would give the corresponding modal peak
a broad bandwidth which could account for contributions in the re-
sponse at nearby frequencies. It is thought that the difficulty in identi-

fying the third longitudinal mode is partially due to its relatively small
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signal in the records (Table 6. 8).

The results in Table 6. 10 suggest strongly that there is a pro-
nounced interaction between ﬁr and ir in the calculations since the
small damping estimates are associated with small participation
factors and the iarge estimates are similarly correlated. This inter-
action could be suppressed by fixing the p,. on the basis of prior
information during the minimization of the measure-of-fit J. Alter-
natively, since there is reason to believe that the interaction is al-
most linear, @r and f)r canbe scaled by the same factor so that ﬁr
is equal to some prior value. For example, if the Er and f’r in
Table 6. 10 are scaled to give the participation factors from one of
Wood's synthesized structural models, the damping estimates are in
much better agreement, as shown by the values in parentheses in
Table 6. 10. The high damping factor for the second mode may be
a consequence of the large change in its period (86. 2.2). In effect,
the method may attempt to include the two broad peaks at 2. 5Hz in
Fig. 6. 16,

A question of considerable interest is why the interaction of
the damping and participation factors is so pronounced compared
with the Union Bank results. A sensitivity analysis similar to §6. 1.3
showed, somewhat unexpectedly, that the sensitivities were almost
the same for the two buildings, regardless of whether displacement,
velocity or acceleration matching were used, The interaction coef- »

ficents involving Tr’ and the interaction coefficient for ¢, and P,
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however, were larger for Building 180, The results are illustrated

in Table 6. 11 which can be compared :»«ith their counterparts in (a)

of Table 6. 7.
Sensitivity Sensitivity Sensitivity
r w.r.t. T w. r.t. C w.r.t. p
r T r
1 67.4 0. 04 0.14
2 0.23 0.004 0. 005
. interaction Interaction Interaction
TI and Ql_ Tr and P Cr and p.
1 0. 04 -0. 42 0.78
2 0.14 -0. 22 0.90
TABLE 6.11. Results corresponding to Table 6.7 but

for the Building 180 velocity record over

the interval from 0 to 20 seconds. The

corresponding optimal estimates are

given in column 5, Table 6. 10.

It is thought that the above difficulties may be associated with

the much stronger respouse of Building 180, It is shown in §6. 2.2
by using time-varying models that the structure exhibited a marked
nonlinear or time-varying behavior during the earthquake. The tem-
poral change of the equivalent linear parameters may possibly allow
more interaction to occur between the damping and participation
factors during the matching of the responses.

Despite the difficulties with the damping and participation

factors, the model responses were in good agreement with the records.
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The calculated response of the optimal model with two modes deter-
mined by matching velocities is con1p'ar¢d in Figs., 6.18.a,b and c
with the recorded response. The optimal estimates of the initial
displacement and velocity arenonzerobecause in the presence of model
error (ignored higher modes and nonlinearities in the structural response),
these values give the smallest value of J, although this is achieved
at the expense of a poor match over the first two seconds. A point
of interest is that the acceleration of this model was very similar to
that of the optimal model with two modes determined by matching ac-
celerations, but the velocities of these Lwo mmodels were significantly
different. The parameters for the two models are given in columns
5 and 6 of Table 6. 10.

The optimal estimates of the parameters of the three longi-
tudinal modes, which were determined from the relative acceleration
record, are compared in Table 6. 12 with values from other sources.
The parameters of the first three modes of Wood's refined model
were determined by Wood (1972) as follows: the participation factors
were determined from a synthesized model; the periods were esti-
mated from the transfer function calculated from the earthquake rec-
ords; and the damping factors were estimated by attempting to match
through trial and error the resonant peaks of the Fourier amplitude
spectra of the recorded and model acceleratiéns. Difficulties were
encountered in the latter approach because the resonant peaks from the
records were much broader than those from the model response; pre-

sumably because of the change in time of the modal frequencies. Wood
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chose to keep the participation factors constant and to vary the damp-
ing until the spectral peaks of the se;ond and third mode were about
30% higher than the corresponding peaks from the records. His
approach suppresses the interaction effects discussed above.

It was mentioned earlier that there are twin peaks in the
Fourier amplitude spectrum of the acceleration record at a period of
about 0. 4 sec (Fig.6.16). Wood chose the spectral peak at 0. 42 sec
as the period of the second longitudinal mode in his refined model,
whereas the modal minimization method chose a second-mode period
corresponding to the peak at 0. 38 sec. It is shown in the next section
that the second-mode period changed considerably during the earth-
quake response and that the value 'i"z =0.38 sec corresponds to the

initial strong-mnotion portion while the valne T, =0. 42 sec corresponds

2
to the later portion of the response, which is almost free vibrations.
The match of the recorded acceleration given by the optimal
model with three modes (Tables 6, 10 and 6. 12) and the corresponding
match for the three lowest modes of Wood's refined model are pre-
sented in Figs. 6.19.a and b respectively. To allow the calculated
responses to be compared on the same basis, both models were
started from rest, although the estimates of the initial conditions for
the contribution of each mode in the optimal model were nonzero. The
calculated velocities for the same models are presented in Figs.
6.20.a and b. The optimal model clearly gives a much better fit to

the recorded response than Wood's model. This is primarily because

the model response is very sensitive to the modal periods and the
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modal minimization method finds the values for the periods which
optimize the response match (accelera'tiqn in this case). It is of
interest that the velocity of this optimal model is also in good agree-
ment with the record.

In conclusion, the time-invariant models for Building 180 did
not perform as well as they did for the Union Bank building. There
are at least two possible reasons for this. First, the earthquake
response of Building 180 was considerably stronger than that of the
Union Bank and so effects not included in the linear models may be
more pronounced. The second rcason rclatcs to the number of cycles
of the record which were used to determine the time-invariant models.
For the Union Bank building, the 25-second portion used is only about
5% cycles of the fundamental longitudinal mode, whereas the 20-second
segment used for Building 180 corresponds to about 16 cycles of the
fundamental mode. Thus, even if the average relative change in the
modal parameters per fundamental cycle was approximately the same
in the two buildings, the overall change would be greater for Building
180. The change in the modal parameters with time is investigated
in the next subsection by determining the optimal estimates for a

succession of short time segments of the records.

6.2.2. Time-varying Models

In the initial investigation into how the equivalent linear param-
eters changed during the earthquake, time-windows of five seconds

were used, which corresponds to about 4 cycles of the fundamental
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mode. Over the first 10 seconds of response, the optimal estimates

of the damping and participation factors exhibited even greatef inter-
action than for the time-invariant models and corresponding estimates
for velocity matching and for acceleration matching were not consist-
ent. However, themodal periods were consistentand gave interesting re-
sults, sothesearepresentedin Table6.13, Itcanbe seenthatover the
first 10 seconds or so of response, the fundamental period changed from

1.1 sectol.3 sec, or by about 20%, and the period of the secondmode chang-
edfrom 0.33 secto0.42 sec, or by about 30%. Thevalue 0.33 sec is the same
asthatdetermined by Nielsen (1964) from forced vibration tests performed

on Building 180 hefore the architectural work was completed (Table 6, 12).

It was found that time-windows of ten seconds produced more
consistency between the various estimates of the damping and parti-
cipation factors. The results for these segments of the records are
presented in Table 6.14. The damping of the fundamental mode ap-
parently decreased from about 5% in the first 10 seconds to about 3%
in the interval from 10 to 20 seconds. The corresponding decrease
in the démping of the second mode was from about 12% to about 4%.
The high damping factor of the second mode in the first time segment
may be a spurious effect due to the considerable change in the period
of the second mode over this interval (Table 6. 13)

The calculated velocity and acceleration of the optimal model
with two modes determined by matching the first ten seconds of the
velocity record are compared with the corresponding recorded re-

sponses in Figs. 6.21.a and b. A similar comparison is given in
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e

inTtZ?fal Rizzgd Tl TZ Tl / TZ
0-5 Velocity 1.09
Acceleration 1.10
Velocity 1.08 0.33 3.3
Acceleration 1.08 0.32 3.4
2-7 Velocity 1.19
Acceleration 1.19
Velocity 1.20 0. 37
Acceleration 1.21 0.37 3.3
4-9 Velocity 1.24
Acceleration 1.25
Velocity 1.25 0.38
Acceleration 1.25 0.38 3.3
6-11 Velocity 1.27
Acceleration 1.28
Velocity 1.29 0. 42 3.1
Acceleration 1,29 0. 42 3.1
10-15 Velocity 1.26
Acceleration 1.26
Velocity 1.26 0. 42
Acceleration 1.26 0.42
15-20 Velocity 1,27
Acceleration 1,27
Velocity 1.27 0.42 3.0
Acceleration 1.27 0. 41 3.1

TABLE 6.13. Optimal estimates of the modal periods for different
segments of the records from JPL Building 180, San
Fernando earthquake. One-mode and two-mode models
were used.
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Figs. 6.22.a and b for the optimal model with two modes determined
by matching the segment of the velocity record from 10 to 20 seconds.
On the basis of all the results, it is thought that the optimal
estimates in Table 6. 12 of the periods of the fundamental and second
modes are reliable values, although it is to he remembered that
these are the best periods for a time-invariant model over most of
the strong-motion portion of the response and that the periods actually
changed considerably during the earthquake. The damping facter of
4% in Table 6. 12 for the fundamental mode is also considered to be
representative for the strong-motion response of Building 180 during
the San Fernando earthquake. There are difficulties in estimating the
damping of the second mode because of the marked change in its period,
which is also thought to have produced the twin peaks in the Fourier
amplitude spectrum of the roofacceleration record. The estimates in
Table 6. 12 for the parameters of the third mode are considered to be
unreliable, This mode has little effect on the response, and for this
building,it is concluded that only two modes are required to give a
good approximation of the rclative velocity and acceleration records,

and one mode is sufficient for the displacement.
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VII. CONCLUSION

*

In this dissertation, a practical strategy has been devised and
implemented for systematically determining best estimates of param-
eters of linear structural models from records of base motion and
response during an earthquake, The investigation was set within the
framework of a general output-error approach (Chapter 2). In this
approach, the model parameters are estimated by using a suitable
computer algorithm which systematically varies the parameters until
some measure-of-fit between the structural output and model output,
such as the integral-squared difference, is minimized. The parameter
values so calculated are called the optimal estimates for the class of
models employed,

The question of whether this approach allows the parameters to
be determined uniquely and reliably was studied for a general class of
linear structural models for which the mass matrix was assumed known
(Chapter 3). It was shown that reliable estimates of the stiffness and
damping matrices for these models usually cannot be made from rec-
ords of the earthquake response of a structure, because of several
basic limitations of the data, It was also sho;;vn that the modal periods,
modal damping factors and the effective participation factors at the

points of measurement give all the information about the stiffness and
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damping distributions that is contained in the structural records.
These modal parameters, .rather than'the. stiffness and damping ma-
trices, should be estimated when identifying a structure from earth-
quake records. Furthermore, in order to obtain reasonable accuracy,
only the parameters of the dominant modes in the records should be
estimated, and this should be done by performing a series of identi-
fications in which modes are successively added to the models until
the measure-of-fit is no longer significantly decreased. Otherwise,
the higher inodes of the modelmay be primarily matching noise in the
records. It is also desirable to estimate the parameters by separate-
ly matching the displacement, velocity and acceleration records, so
that a check can be made on whether the linear models produce con-
sistent results.

It was concluded that the distribution of earthquake forces
throughout the structure generally cannot be estimated reliably from
a few records of the structural motion (§3. 5). If estimates of the
forces experienced by a structure during a particular earthquake are
required, and records of the structural motion are available, the
forces can be estimated by using a synthesized model which has been
modified so that the parameters of its lower modes are equal to the
corresponding values determined from the records.

Two output-error techniques for determining the modal
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parameters from seismic response records were investigated. The
first technique studied was the optima'l filter method (Chapter 4),
Advantages of this method are that it provides sequential estimates of
the parameters, thereby showing how the estimates depend on the
length of record used, and it can also be applied to nonlinear models.
It was found from tests of the method that because of approximations
which must be made in the theory in order to produce a feasible algo-
rithm, the estimates calculated by the filter can be quite different
from the optimal estimates when there is significant measurement
noise or model error. It was concluded after the tests that a more
reliable technique is required when identifying linear models of struc-
tures from earthquake records,

A new output-error technique is introduced for estimating the
modal parameters, which was called the modal minimization method
_(Chapter 5). This method can be relied upon to find the optimal esti-
mates of the modal parameters and it is more efficient numerically
than the optimal filter method, but it is limited to linear structural
models,

The modal minimization method was employed to study the
strong-motion response of two multi-~story buildings during the 1971
San Fernando earthquake (Chapter 6). Within the framework of linear

models, new information was obtained from the records concerning
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the properties of the higher modes and also the time-varying character
of the equivalent linear parameters, ’

The response in the longitudinal direction of a 40-story steel-
frame building was first studied. The building experienced a peak ac-
celeration at midheight of about 20% g but suffered no structural damage.
It was found that a time-invariant linear model with a small number of
modes could reproduce the strong-motion records remarkably well
over the 25-second interval investigated. ‘The matching of the rec-
orded and modcl responses was considerably better than anticipated on
the basis of other studies where less systematic techniques were ap-
plied to attempt to achieve a good match with linear models, The
number of modes required to give a good approximation of the relative
displacement, velocity and acceleration records was one, two and four
modes respectively,

The modal minimization method also gave new information
about the higher-mode damping and participation factors for the build-
ing, as well as more reliable information about the modal periods.
The estimates of the modal damping factors from 25 seconds of the
acceleration record ranged from 4% for the fundamental longitudinal
mode to 7% for the fourth longitudinal mode. Although there was a

reduction in the stiffness of the structure during the earthquake, the

period ratios among the first four longitudinal modes were roughly the
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same as during ambient vibration tests before and after the seismic
shaking. This suggests that the degra:dation in stiffness was approxi-
mately uniform over the structure, Furthermore, the period ratios
during the earthquake remained close to those for a uniform shear
beam,

The other building studied was a 9-story steel-frame structure
which experienced a peak acceleration of about 40% g, one of the
largest recorded in a building during the San Fernando earthquake,
Damage was limaited to minor nonstructural cracking, A time-invar-
iant linear model was again able to match the response well over the
twenty-second interval of the longitudinal records which was studied.
The match was considerably better than that given by a previously
reported model which was essentially based on the traditional fre-
quency-domain approach for determining the modal periods and damp-
ing factors. However, the optimal estimates of the modal damping
and participation factors from records of different response quantities
were less 'consistent than in the first building investigated. It is
thought that this may be due to the stronger nonlinear, or time-varying,
dynamic behavior of the 9-story structure,

The time variation of the structural properties during an earth-

quake can be studied by determining the optimal estimates of the modal

parameters for short time segments of the records. By using
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successive time windows, the results can show how the equivalent
linear parameters change because of n;)nlinear effects.,

This approach was applied to both buildings described above.

It was found that the average increase of the periods per fundamental
cycle for the two lowest modes was about 1% for the taller building and
about 3% for the smaller building. For the latter structure, almost
all of the change occurred in the first 10 or so seconds, during which
the fundamental period increased from 1.1 sec to 1.3 sec, or by about
20%, while the period of the second mode increased from 0. 33 sec to
0.42 sec, or by about 30%. The latter change was thought to have pro-
duced the twin peaks at 0.38 sec and 0. 42 sec in the Fourier amplitude
spectrum of the roof acceleration,

On the basis of the results for the two buildings, it is tentative-
ly concluded that when the optimal estimates of the modal parameters
are used, a time-invariant linear model based on a small number of
modes can adequatelyreproduce a building's strong-motion response if
structural damage does not occur, This is useful information for
structural design employing linear models, even though the best values
for the modal parameters are difficult to determine prior to measuring
the response to the earthquake. From the results ()f.(ﬂ'\apter h, it is

suggested that for design calculations, this difficulty might best be

treated by using typical values for the damping factors obtained from
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studies of the earthquake response of similar structures, and by using
participation factors from a synthesiz'ed' structural model, since the
model response is not particularly sensitive to these parameters,
However, the response is very sensitive to changes in the modal
periods, which are difficult to synthesize accurately. It is therefore
suggested that the overall stiffness of the structural model should be
varied so that the periods of the lowest modes, particularly the funda-
mental, cover a representative range of values.

In continuing research in this area, it is considered that it
would be most fruitful to concentrate on improving features of the
linear models and in applying the approach to records from a wide
variety of buildings., In particular, the models could be modified
to include both horizontal componenvts of the translational motion of
the base because this might allow better modelling of any torsional
response shown during an earthquake. There may also be other appli-
cations in earthquake engineering for which the method could be fruit-
fully employed. For example, the method may be applied to the re-
corded response of soil layers to investigate local site effects, pro-
vided earthquake records, such as those from bore holes, are also
available to serve as input to the linear models. Th.e method may also
be a useful approach to determine the dynamic properties of large

earth dams,
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It is also desirable to investigate the identification of nonlinear
models so that structural properties sﬁch as strength and ductility
during an earthquake can be studied. Some other output-error tech-
nique, such as the Gauss-Newton method, is then required to determine
the optimal estimates of the parameters, but some of the difficulties
discussed in this work for linear models, such as those arising from
lack of identifiability and from limited resolution, will have their
counterparts in structural identification with nonlinear models.
Nonlinear modelling is a particularly challenging area of research
because it is difficult to formulate models which include such
observed phenomena as amplitude-dependent stiffness, hysteresis
and structural deterioration. In addition, the lack of experience in this
area will make it difficult to assess whether the estimates of the param-
eters are reliable. Research is also inhibited by the scarcity of re-
sponse records of structural motions well into the inelastic range or
approaching fajlure, and such data from tests employing large-scale
shaking tables can make a valuable contribution.

In conclusion, it is felt that the modal minimization method has
proven to be a useful technique to investigate the dynamic properties
of buildings from their strong-motion records. In particular, it has
shown that by using the optimal estimates of the modal parameters,
time-invariant linear models of the two buildings studied can reproduce

their strong-motion records surprisingly well.
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APPENDIX A: IDENTIFIABILITY

Consider a class of models M with its associated set of al-
lowable parameter values denoted by (G, and let C be a class of
inputs to the models. The class M is defined by the function m(a, z)
relating the output m of a model with parameters a to the input z
in C. In the following work, z and m will denote the histories of
the input and output over a specified time interval.

Let M* be a model in M given by the parameters a* in q,

then the definitions in §2. 4. 1 may be written as:

(i) M* is globally identifiable for C
® vz€C,
m(a,z) #m(a¥,z) , Va€G with a#a*
(ii) M* is locally identifiable for C
® vz €C, ¥ a neighborhood 7(a™)<G such that:

m(a,z) fm(@’ z), Y2€N@*) with a#a¥

In Fig. A.1, the models corresponding to a,,2, and a, are re-

=1’=2 3
spectively globally identifiable, locally identifiable, and neither
globally nor locally identifiable. In order for the whole class of
models to be globally or locally identifiable, the appropriate definition
above has to hold for each a* in G

The following results have been used in this dissertation.

Recall the definition of JO(_a_,_) given by (2. 3. 5) and (2. 3. 6):
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Figure A. 1. Schematic diagram illustrating identifiability in
terms of the mapping m(a,z) between the set of
allowable parameter values and the set of outputs.
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Jol2) =<y -m(a, z) , z;rz_l(_a_,,Z_)> (A. 1)

where <+*,*> is a scalar product and y is the output to be matched
by minimizing JO' The identifiability of a model can be expressed
in terms of the minimization of JO using the model output for y as

follows:

Theorem A. 1

(i) M* is globally identifiable for C
® vz €C, the global minimum of:

Jo(a) =<m(a*,z) -m(a, z), m(2*, z) -m(a, z)> (A. 2)

occurs only at a =a¥*, that is,

Jo(@)>7,(@"), ¥a€G with a#a®

(ii) M* is locally identifiable for C
® vz€C, Jo(g_) has a strict local minimum at g_:g._*, that
is, ¥ a neighborhood 7’2(_@__*) such that:

Jo@)>J,(@%), va€n(a™) with ata*

The proof is given for (ii). It is easily modified for (i).

(a) Necessity: By hypothesis, M* is locally identifiable, so
there is a neighborhood 7(a*) of a™ such that m(a,z) #m(a*,z) for
each i;‘_a__* in 7?(9»_*). Notice that Jo(g_)ZJo(g_*) =0. Supposethere
exists g_'ii*'in 72(_@._’::) such that JO(i,) 230(3*), then Jb(iI)zo and hence,

by the positive-definite property of <¢,>, rl.’_l(il,-z_):lll(i*,g), which is
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a contradiction. Thus, JO(:’:}_)> JO(-a:::)’ Vae??(g_*) such that i#i*-
(b) Sufficiency: By hypothesis;

J,(a)>7,(2%) =0, Va€Na¥) with a#a®
Suppose there exists a#£a™® in 7(a*) such that m(a,z)=m(a¥,z),
then JO(?_._) =0, which is a contradiction. Thus, M¥* is locally identi-
fiable.

The results proved in Theorem A.1l are used as definitions by
Bellman and Astrdm (1970) except that they omitted to state in their
version of (i) that the globél minimum must occur at only one point.
The advantage of the definitions given in §2. 4. 1 are that they make it
clear that identifiability is a property of the model and it is inde-

pendent of the particular scalar product chosen for J For example,

0
with continuous data, <e¢, *> in Theorem A.1l could be defined in
terms of the quantities in the time domain or in terms of their trans-
forms in the frequency domain.

Another result related to identifiability which has been stated

in this dissertation is the following:

Theorem A. 2

omi(a, z)

The sensitivity coefficients —=5=-= are linearly independent
k
over the data interval if and only if the reduced sensitivity matrix

g(g,_, z) is positive definite.

Proof

From (2.3.9), for an arbitrary vector \ of appropriate
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dimension:
om (A. 3)

Thus, g is always positive semi-definite. Furthermore, using the
positive-definite property of a scalar product:

'3

e om
(a,z)A=0® Z )\J. o =0 over the date interval, from which

the desired result follows.
The first part of the statement in Theorem A.Z2 is used as a
definition of identifiability by Beck and Arnold (1977). Itis a stronger

statement than local identifiability, as the following result shows:

Theorem A. 3

I
The sensitivity coefficients 5| . 2F° linearly independent
kla™

= M¥ is locally identifiable for z

Proof
First, from Eq. (A.2):
Jo(g._"‘) =0 and Jo(g._)EO .

Thus, J, bhas a local minimum at a*, From (2.3.8) and (2.3.9),

£V, (%) =S@*,2)

since here y_(g,_*) =m(a™, z) - I_I_l(g*,g_) =0, Thus, by hypothesis and
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and Theorem A. 2, VVJO(E.*) is positive definite. From a result in

advanced calculus, this ensures that T  has a strict local minimum

0

at 2" and hence the desired result follows from Theorem A. 1, paft
(ii).

The converse of the theorem is not true in general. However.
it can be shown that the two statements in Theorem A. 3 are equivalent
in the special case where m(a,z) is a linear function of the param-
eters a. In this case, each statement is a necessary and sufficient
condition for uniqueness of the optimal estimates of the model param-

eters,
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APPENDIX B: PROOF OF THEOREM IN §3. 4. 3

Theorem

Consider a controllable and observable model in mN whose
output for a known input is measured. Let J be the output set defin-
ing the coordinates at which the response is measured. Let @ be
a transformed modeshape matrix of the observed model. The number
of models in mN which are consistent with the observed data is equal
to the number of solutions of the following matrix problem:

Find a nonsingular, real matrix B such that:

(i) Ble =e, , Vi€d (3. 4.7)
(ii) Bp=p (3. 4. 8)
(i) Be™)iBe ) =0 , r#s (3. 4. 9)

where & is the unit vector given by (Si)k =6i k and p is a known

vector of dimension N with elements given by:

L
2

Pk =bkmk (3.4.10)

Furthermore, for each solution B, the transformed mode-
shapes ’i(r) of the model in mN which has the same output as the

observed model are given by:

o) $—Bse(r) (3.4.11)

xr

where yi - BTt Bo( Ty (3. 4.12)
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Proof
Let £NC mN denote the set of all models which are consistent

with the observed data and let BN denote the set of all matrices B

which satisfy the matrix problem given by Eqgs. (3.4.7), (3.4.8) and
(3.4.9). To prove the theorem, it is shown that a one-to-one onto

mapping f can be constructed between fBN and £N' This also

handles the case where the number of solutions is infinite. The proof
is in three steps: (a) f is defined, (b) f is shown to be onto, (c) f
is shown to be one-to-one.

(a) There are two preluninaries. First, the g°) defined by

(3.4.11) and (3. 4. 12) are possible transformed modeshapes since:

SENE ls) 1 po ()t po(s),
@) 7% = e B! =,

r's
using (3. 4. 9) in addition to (3. 4. 11) and (3. 4. 12). Notice that yr¢0

since if Y, =0, then Bg(r)zO; since B is nonsingular, this implies

cp(r)zg,

which is a contradiction. Second, by Proposition 1, or

Proposition 2 with CL, a model in mN is consistent with the mea-

sured input and output if and only if it has the same values of w_ Cr

and ﬁér) as the observed model, ¥V r=1,...,N and Vi€J,

Define a mapping f from BN to SN as follows. Let BE€®B

then define f(B) as that model in mN which has the transformed

N’

modeshapes rt_b_l(r) given by (3.4.11) and (3. 4. 12), and the modal
frequencies and damping factors W and gr of the observed model.

From (3. 4. 5) and §3. 2. 2, the model is defined uniquely. Furthermore,
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the fact that the sign of Y, is arbitrary is consistent with the result

stated in §3. 2.1 that the modeshapes of a model are only unique to

within a change of sign.

To show {(B)€ SN, it remains to prove that it has the correct

values of Bgr), vr=1,...,N and Vi€d,
From (3. 2. 13) and (3. 4. 5)

-m TGN
i "ior

3o

Consider first $(r) where i isin J. From (3.4.7):

i

(E(r))t Btgf(cg_(r))t e,
and thus from (3. 4. 11):
~r)t _ 1 ()t
@ Ve =y
or '@gr):;—rwér)

Consider next Zr. Define a diagonal matrix A by:

- -

then from (3. 4.9) and (3. 4. 12):

s* mt R3-AZ

Using the fact that ¢ is unitary:

(B. 1)

(B. 2)

(B. 3)

(B. 4)
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@t Bt B :Azét
which, together with (3. 4. 8) leads to:
2
A @tp,: @t Bt Bg=@t Bt 3

Thus, from (3.4.11):

v @) e =@ p
or “oa'r =y o (B. 5)

since from (3. 2. 8), (3. 4. 5) and (3. 4, 10):
N
(r) _

L oL
k=1

(r) fo

=@ ) e (B. 6)

with a similar expression for ,&r. Substituting (B. 5) and (B. 2) into

(B. 1) leads to:

’E‘”—m cp() zﬁir),Vrzl,,..,NandViEJ (B.7)

r
(b) It is now shown that f is onto, thatis, given any model

in £N, there exists B in (BN such that the model is equal to £(B).

Let the model in SN have a transformed modeshape matrix

~

%, then ¥ r=l,...,N and Vi€d

2~(r)’v ._.5( 2 (r)O.’ (B. 8)

m. .
lcpl r lq)l r

Define - 2’51_/0‘1. (B.9)

and define a matrix A by (B.3). kach ratio Y, is well-defined

since ozr#O, otherwise pf’):o, vi€d, which contradicts an original
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hypothesis. Similarly, yr;EO and so the matrix A 1is nonsingular,
Define B-8Ad" - (B. 10)
then the aim is to show that B belongs to IBN

to the given model in £N' First, B is real and nonsingular. Also

and that £(B) is equal

from (B. 8) and (B. 9)

~ (r)_ (r)
& =Y %y and P TEY LY

Ar)t (r)t (r)t  _, &)t
@ )=y (@ ) and (P ) e =y (@ )e
In matrix form, they become:
Ftp=asty ana 8te =a%le , vied (B. 11)
- - =i =i

In view of the definition of B in Eq. (B.10), and the fact that & and

~o

® are unitary, (B.1ll) leads to (3. 4.7) and (3. 4. 8). Furthermore,

from the definition of B:

E :B@A—I
or ) - L pyl®) (B. 12)

Applying the unitary property (3. 4. 6) for the h_c_b:(r):

(Bg(r))t(B_cg(s)) =5 (B. 13)

rs

YV

This shows (3. 4.9) holds and, together with the earlier results,proves
that B belongs to ﬂ3N.

Finally, from (B.12) and (B. 13), the matrix B and the trans-
(r)

formed modeshapes Eé of the given model in SN satisfy (3. 4.11)
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and (3. 4.12). Thus, £(B) is equal to the given model.
(c) The final result is to show fhajc f is one-to-one, that is,

if Bl’ B2 in BN are such that f(Bl):f(B then BI:B

2
Since f(Bl) and f(BZ) are the same model in £

2
N’ the trans-
formed modeshapes corresponding to B; and B, can be made equal

by an approﬁriate choice of sign for Yil) and Y(rz). Thus:

1 (r) _~(r) 1 (r)
B 0 = = e B ® . (B, 14

r r

y

where the Eé(r) are the transformed modeshapes of the model

f(Bl) =f(B The results in (a) show that:

Z)'

L, v _ @),
YI’ T r r r

and so yil):yf) because & #0. Simplifying (B. 14):

(r) (r)
B.gp'" =B, o
1= e (B. 15)

or Blé =B2§

Since ¢ is nonsingular, B, =B,.



