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Chapter 2

Projection Filters

Dynamics of open quantum systems take place in the space of density matrices, which can be a

very high dimensional space, particularly when photon fields are involved. Strictly speaking, density

matrices including photons are infinite, but it is common in practice to introduce a cutoff at some

high Fock state, and work with finite, but large, density matrices. In simulations of cavity QED

with the Jaynes-Cummings model, desired accuracy commonly requires one to keep track of 100

or more Fock states, in addition to the two-level atom. This results in a density matrix that is

at least 200 × 200, indicating that the dynamics take place in a space that is nominally 39,999-

dimensional (an N × N density matrix has N2 − 1 real degrees of freedom, taking Hermiticity into

account). However, we know that the dynamics of a particular system do not fully explore this

space, and as a result we would like to define a smaller (lower-dimensional) space, and study the

system dynamics within that space alone. To do this, we project the equations of motion onto the

lower-dimensional space. In this chapter I give a short overview of how to calculate these projected

equations of motion, put this projection in the context of stochastic filtering equations, and then

derive the form of the projected equations for the cavity QED master equation for a particular form

of the lower-dimensional space: a linear density matrix space.

2.1 Filter projection in general

In this section, I will give a brief overview of the process of projecting equations of motion from a high-

dimensional manifold onto a lower-dimensional one. I draw heavily upon the excellent description of

this process given by van Handel and Mabuchi [11], adapting their derivation to the case of density

matrices (instead of Q functions). Let us denote the space of all possible density matrices for a

quantum system of interest by M , and the smaller subspace by S. Let our example stochastic

dynamical system take the form

dρt = A [ρt] dt + B [ρt] dWt. (2.1)
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From a geometric standpoint, we would like to think of the right-hand side of this equation as a

vector in the tangent space to M at a particular point θM . When we project the equation onto S,

we would like to keep the components which are in the tangent space to S at θ, denoted TθS, and

discard the components in the orthogonal complement to this tangent space, denoted TθS
⊥. For the

right-hand side of Eqn. (2.1) to be treated as a vector, it must transform like one, which means we

must interpret it as a Stratonovich stochastic differential equation, rather than an Itô equation. For

now I will simply change the notation to reflect this, but in a practical situation (like that following,

in Sec. 2.2), one would calculate the appropriate Itô correction term, which would change the forms

of A and B. The new equation takes the form

dρt = A [ρt] dt + B [ρt] ◦ dWt. (2.2)

If we assume that we have a local coordinate system on S so that θ = (θ1, θ2, . . .), then we can write

TθS = Span

[

∂ρ(θ)

∂θ1
,
∂ρ(θ)

∂θ2
, · · ·

]

. (2.3)

We define an inner product on the space of density matrices

〈ρA, ρB〉 = Tr[ρAρB ], (2.4)

which allows us to calculate the metric tensor in this basis:

〈

∂ρ(θ)

∂θi
,
∂ρ(θ)

∂θj

〉

= Tr

[

∂ρ(θ)

∂θi

∂ρ(θ)

∂θj

]

= gij(θ). (2.5)

If the basis defined in Eqn. (2.3) is orthonormal, g will simply be the Identity; otherwise it accounts

for the non-orthonormality. With an inner product and a metric, we can define orthogonal projection

of a vector field X[θ]:

ΠθX[θ] =
∑

i

∑

j

gij(θ)

〈

X[θ],
∂ρ(θ)

∂θj

〉

∂ρ(θ)

∂θi
, (2.6)

where gij denotes the (i, j) component of the inverse of the metric g defined in Eqn. (2.5).

We now wish to constrain the dynamics of Eqn. (2.2) to evolve on S:

dρ(θt) = Πθt
A [ρ(θt)] dt + Πθt

B [ρ(θt)] ◦ dWt, (2.7)

which is just a stochastic differential equation for the parameters θt. Next, note that, in the

Stratonovich calculus,

dρ(θt) =
∑

i

∂ρ(θt)

∂θi
t

◦ dθi
t. (2.8)
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If we insert the definition of the orthogonal projection into Eqn. (2.2), we see that

dρ(θt) =
∑

i

∑

j

gij(θ)

〈

A [ρ(θt)] ,
∂ρ(θ)

∂θj

〉

∂ρ(θ)

∂θi
dt

+
∑

i

∑

j

gij(θ)

〈

B [ρ(θt)] ,
∂ρ(θ)

∂θj

〉

∂ρ(θ)

∂θi
◦ dWt. (2.9)

Comparing this expression with Eqn. (2.8), we can pull out the equations for dθi
t:

dθi
t =

∑

j

gij(θ)

〈

A [ρ(θt)] ,
∂ρ(θ)

∂θj

〉

dt +
∑

j

gij(θ)

〈

B [ρ(θt)] ,
∂ρ(θ)

∂θj

〉

◦ dWt. (2.10)

Note that in order to apply this procedure, we need to know a functional form for ρ(θ), meaning

we need a map from the smaller space (spanned by θ) to the larger space (where ρ lives). This is

in addition to knowing the form of the projection from the larger space to the smaller, facilitated

by Eqn. (2.6) and the like. (The manifold learning algorithms discussed in Chapter 4 provide only

point-wise maps, so projecting the filters onto them will be a challenge.)

When we want to use these projected equations as a filter, the measurement photocurrent driving

them is still the same as that which drives the full-space SME (thought of as a filter). The innovation

process, dW , however, is different because it is defined as the difference between the measurement

result and the filter’s current estimate, which differs for each filter. Assuming that we can construct

the map which reverses the projection Π, giving us a θM from each θ, we can directly compare the

state generated by the projected equations of motion (2.10) with the corresponding trajectory. We

should be careful to note that the projected equations will often be generated from an SME which

does not correspond to measuring every output from the system, whereas a quantum trajectory

simulation necessarily requires measurement of all outputs so as to allow the creation of a stochastic

Schrödinger equation. In order to reduce the difference between these two cases for cavity QED, in

trajectory simulations I have consciously chosen to measure the atomic spontaneous emission in the

quadrature which gives the least additional information about the system in its measurement record

(for both absorptive and phase bistability, this is the σy quadrature). It is possible that differences

persist, but they ought to be minor because the trajectories are required to average (over long times

or many runs) to the same mean as for the unmeasured-atom situation reflected in Eqn. (1.3).

2.2 Projecting onto a linear density matrix space

2.2.1 The stochastic master equation

The stochastic master equation we are concerned with is, as before, that for a two-level atom

interacting with a single harmonic mode in an optical cavity, with measurement performed on the
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field leaking out of the cavity. This is the normalized Itô form of the equation, for homodyne

measurement of the phase quadrature:

D[ρ] = −i[H, ρ]dt + κ
(

2aρa† − a†aρ − ρa†a
)

dt

+γ
(

2σρσ† − σ†σρ − ρσ†σ
)

dt

+
√

2κ
(

ρa† − aρ − iTr[ρ
(

a† − a
)

]ρ
)

dW. (2.11)

If we wanted to measure the amplitude quadrature instead, we would replace a with ia everywhere

outside of the Hamilitonian. If we removed the nonlinear term Tr[ρ
(

a† − a
)

]ρ, we would have the

un-normalized version of the SME. It has the distinct advantage of being linear, but will allow the

trace of the density matrix to differ from 1. In a stochastic simulation, we can use the unnormalized

equation, and simply renormalize ρ after each time step. However, for completeness, and because

the filters from the normalized equation seem to be better “behaved,” I chose to use the normalized

form, with its attendant complications resulting from nonlinearity.

In order for the geometry of projection to make sense, we need the components in this equation

to transform like vectors, which means it needs to be a Stratonovich equation. We have two options

for undertaking this transformation: 1) calculate the Itô correction term for Eqn. (2.11) or 2)

use the much simpler (linear) un-normalized equation, transform it to Stratonovich form, and then

normalize. I choose to do the first. This is the correct normalized Stratonovich form of the equation,

calculated directly from Eqn. (2.11), for homodyne measurement of the phase quadrature:

D[ρ] = −i[H, ρ]dt + κ
(

2aρa† − a†aρ − ρa†a
)

dt

+γ
(

2σρσ† − σ†σρ − ρσ†σ
)

dt

−κ
(

2aρa† − a2ρ − ρ
(

a†
)2

+ 2Tr[(a† − a)ρ](ρa† − aρ)

−2ρ
(

Tr[(a† − a)ρ]
)2

+ ρ
[

Tr[(a† − a)(ρa† − aρ]
]

)

dt

+i
√

2κ
(

ρa† − aρ − Tr[ρ
(

a† − a
)

]ρ
)

◦ dW, (2.12)

where the Hamiltonian H is as in Eqn. (1.1), and dW is the innovation.

2.2.2 The density matrix

With a master equation in hand, we now turn to the possible forms of the space onto which we

would like to project it. The dynamics of Eqn. (2.12) take place in the space of all density matrices

(positive Hermitian operators with trace 1), but we expect that the dynamics of the system limit

the fraction of this space which a physical system will explore. Proper Orthogonal Decomposition

(see Chapter 3) generates a linear subspace directly from the dynamics, so we will now examine the
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detailed form of such a space and the mechanics of the projection.

Imagine an N-dimensional linear density matrix space. Density matrices in this space have the

following form:

ρ(v) = ρ0 +

N
∑

i=1

viρi (2.13)

where the ρis are trace-0 Hermitian matrices (directions in density-matrix space), and ρ0 is a positive,

trace-1 Hermitian matrix (a valid density matrix), which serves as the origin in our linear space.

The coefficients vi are real, to maintain Hermiticity. There is nothing that forces ρ(v) to remain

positive, so it might cease to be a valid density matrix. However, when acting as part of a filter we

expect it to stay positive almost all the time, except when presented with a measurement record

which it is unable to do a good job of accommodating.

The partial derivatives of ρ are
∂ρ(v)

∂vi
= ρi. (2.14)

We recall the definition of the inner product between matrices/operators as the trace of the product,

and so we define the metric in this space

gij = Tr[ρiρj ] (i, j > 0). (2.15)

We assume that the ρis have been orthonormalized so that gij = gij = δij (g = Id).

If we had not used the normalized form of the stochastic master equation, we would have extended

the dimension of the linear space by 1 to include a coefficient on ρ0. Then we would redefine the

state to be the ratio of each coefficient to v0, which would complicate the equations to be evolved.

Alternatively, in simulations, we would simply rescale all of the coefficients at each time step, setting

vi = ṽi/ṽ0, i ≥ 0. In practice, filtering using the normalized equations seems to be somewhat more

robust, and it has the advantage of providing us with exact, nonlinear equations directly.

2.2.3 Projection

Following the general derivation given in Section 2.1, and specializing to our particular space S,

spanned by the states ρi, we have that the orthogonal projection of (2.12) is

ΠvD[ρ(v)] =
N

∑

i=1

N
∑

j=1

gij

〈

D[ρ(v)],
∂ρ(v)

∂vj

〉

∂ρ(v)

∂vi
. (2.16)

Simplifying because we know that gij = gij = δij , we see that

ΠvD[ρ(v)] =

N
∑

i=1

〈D[ρ(v)], ρi〉 ρi. (2.17)
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For an arbitrary filtering SME of the form (2.2), we constrain the filter to evolve in our space of

density matrices, and combine Eqn. (2.17) with Eqn. (2.7) to find that

dvi = 〈A[ρ(v)], ρi〉 dt + 〈B[ρ(v)], ρi〉 ◦ dW. (2.18)

We have split the master equation, Eqn. (2.12), into deterministic and stochastic parts, as in

Eqn. (2.2), to clarify calculation:

A[ρ] = −i[H, ρ] + κ
(

2aρa† − a†aρ − ρa†a
)

+γ
(

2σρσ† − σ†σρ − ρσ†σ
)

−κ
(

2aρa† − a2ρ − ρ
(

a†
)2

+ 2Tr[(a† − a)ρ](ρa† − aρ)

−2ρ
(

Tr[(a† − a)ρ]
)2

+ ρ
[

Tr[(a† − a)(ρa† − aρ)]
]

)

(2.19)

B[ρ] = i
√

2κ
(

ρa† − aρ − Tr[ρ
(

a† − a
)

]ρ
)

. (2.20)

We will now project each of these terms, in order to derive the detailed form of Eqn. (2.18).

2.2.4 The deterministic terms A[ρ]

Let us start calculating the terms in (2.18). First, we define

LH(ρ) ≡ −i[H, ρ] (2.21)

La(ρ) ≡ κ
(

2aρa† − a†aρ − ρa†a
)

(2.22)

Lσ(ρ) ≡ γ
(

2σρσ† − σ†σρ − ρσ†σ
)

(2.23)

LISL(ρ) ≡ κ
(

2aρa† − a2ρ − ρ
(

a†
)2

)

(2.24)

LISN (ρ) ≡ κ
(

2Tr[(a† − a)ρ](ρa† − aρ) − 2ρ
(

Tr[(a† − a)ρ]
)2

+ρ
[

Tr[(a† − a)(ρa† − aρ)]
]

)

. (2.25)

Then

〈A[ρ(v)], ρi〉 = 〈LH(ρ(v)) + La(ρ(v)) + Lσ(ρ(v))

−LISL(ρ(v)) − LISN (ρ(v)), ρi〉 (2.26)

= 〈LH(ρ(v)), ρi〉 + 〈La(ρ(v)), ρi〉 + 〈Lσ(ρ(v)), ρi〉

− 〈LISL(ρ(v)), ρi〉 − 〈LISN (ρ(v)), ρi〉 . (2.27)
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Expanding the form of ρ(v), we have

〈LH(ρ(v)), ρi〉 =

〈

LH(ρ0 +

N
∑

j=1

vjρj), ρi

〉

(2.28)

= 〈LH(ρ0), ρi〉 +

N
∑

j=1

vj 〈LH(ρj), ρi〉 , (2.29)

and the same for La, Lσ, and LISL, because they are all linear in ρ.

In fact, if we define

L ≡ LH + La + Lσ − LISL (2.30)

then we have

〈L(ρ(v)), ρi〉 = 〈L(ρ0), ρi〉 +
N

∑

j=1

vj 〈L(ρj), ρi〉 . (2.31)

Plugging this into Eqn. (2.18), we see that the linear, deterministic part of dv is

dvi(lindet) = 〈L(ρ0), ρi〉 +

N
∑

j=1

vj 〈L(ρj), ρi〉 dt. (2.32)

If we think of dv as a vector, we see that this is just a matrix multiplication, where each entry in

the matrix L is simply

Lij = 〈L(ρj), ρi〉 + 〈L(ρ0), ρi〉 δij . (2.33)

Now we need to take a look at LISN , the nonlinear terms from the Itô to Stratonovich conversion.

LISN (ρ) ≡ κ
(

2Tr[(a† − a)ρ](ρa† − aρ) − 2ρ
(

Tr[(a† − a)ρ]
)2

+ρ
[

Tr[(a† − a)(ρa† − aρ)]
]

)

. (2.34)

Let us start with the first term, and plug in the approximate form of ρ for our linear space.

Tr



(a† − a)



ρ0 +
N

∑

j=1

vjρj















ρ0 +
N

∑

j=1

vjρj



 a† − a



ρ0 +
N

∑

j=1

vjρj









= Tr[(a† − a)ρ0](ρ0a
† − aρ0) + Tr[(a† − a) (ρ0) ]









N
∑

j=1

vjρj



 a† − a





N
∑

j=1

vjρj









+Tr



(a† − a)





N
∑

j=1

vjρj







 ((ρ0) a† − a (ρ0))

+Tr



(a† − a)





N
∑

j=1

vjρj

















N
∑

j=1

vjρj



 a† − a





N
∑

j=1

vjρj








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= Tr[(a† − a)ρ0](ρ0a
† − aρ0) + Tr[(a† − a)ρ0]

N
∑

k=1

vk(ρka† − aρk)

+

N
∑

j=1

vjTr[(a† − a)ρj ](ρ0a
† − aρ0) +

N
∑

j=1

vjTr[(a† − a)ρj ]

N
∑

k=1

vk(aρk + ρka†)

=



Tr[(a† − a)ρ0] +
N

∑

j=1

vjTr[(a† − a)ρj ]



 ×
(

(ρ0a
† − aρ0) +

N
∑

k=1

vk(ρka† − aρk)

)

.(2.35)

Now, let us do the inner product with ρi, noting that the traces are things we have calculated

anyway, because they’re just the expectation values of −2iy for each ρj :



Tr[(a† − a)ρ0] +

N
∑

j=1

vjTr[(a† − a)ρj ]





×
〈

(ρ0a
† − aρ0) +

N
∑

k=1

vk(ρka† − aρk), ρi

〉

= −2i



〈y0〉 +
N

∑

j=1

vj 〈yj〉



 ×
(

〈

(ρ0a
† − aρ0), ρi

〉

+
N

∑

k=1

vk

〈

(ρka† − aρk), ρi

〉

)

.

(2.36)

It doesn’t simplify much because we can’t use the orthogonality of the ρis once the as are present.

For simulations, however, we can pre-calculate the values of everything in the angle brackets.

Let us take the third term, the other quadratic term:



ρ0 +
N

∑

j=1

vjρj



 Tr



(a† − a)







ρ0 +
N

∑

j=1

vjρj



 a† − a



ρ0 +
N

∑

j=1

vjρj













= ρ0Tr[(a† − a)(ρ0a
† − aρ0)] + ρ0

N
∑

k=1

vk

[

Tr[(a† − a)(ρka† − aρk)]
]

+

N
∑

j=1

vjρj

[

Tr[(a† − a)(ρ0a
† − aρ0)]

]

+

N
∑

j=1

vjρj

N
∑

k=1

vk

[

Tr[(a† − a)(ρka† − aρk)]
]

=

(

Tr[(a† − a)(ρ0a
† − aρ0)] +

N
∑

k=1

vk

[

Tr[(a† − a)(ρka† − aρk)]
]

)

×



ρ0 +

N
∑

j=1

vjρj



 . (2.37)
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This does simplify once we do the inner product with ρi:

〈ρ0, ρi〉 +

N
∑

j=1

vj 〈ρj , ρi〉 = Gi + vi (2.38)

where

Gi ≡ 〈ρ0, ρi〉 . (2.39)

And now for the cubic term:



ρ0 +

N
∑

j=1

vjρj





(

Tr

[

(a† − a)

(

ρ0 +

N
∑

k=1

vkρk

)])2

. (2.40)

Noting the above simplification, we see that after we do the inner product, we have this:

(Gi + vi)
(

Tr
[

(a† − a)ρ0

]2
+ 2

N
∑

k=1

vkTr
[

(a† − a)ρ0

]

Tr
[

(a† − a)ρk

]

+

N
∑

j=1

N
∑

k=1

vjvkTr
[

(a† − a)ρj

]

Tr
[

(a† − a)ρk

]

)

= −4 (Gi + vi)
(

〈y0〉2 + 2

N
∑

k=1

vk 〈y0〉 〈yk〉 +

N
∑

j=1

N
∑

k=1

vjvk 〈yj〉 〈yk〉
)

. (2.41)

Assembling all of the parts of LISN (ρ) together, we have:

dvi(ISN) = −〈LISN (ρ), ρi〉 dt

= −κ

(

− 4i



〈y0〉 +
N

∑

j=1

vj 〈yj〉



 ×
(

〈

(ρ0a
† − aρ0), ρi

〉

+
N

∑

k=1

vk

〈

(ρka† − aρk), ρi

〉

)

+8 (Gi + vi)

(

〈y0〉 +
N

∑

k=1

vk 〈yk〉
)2

+(Gi + vi)

(

Tr[(a† − a)(ρ0a
† − aρ0)] +

N
∑

k=1

vk

[

Tr[(a† − a)(ρka† − aρk)]
]

) )

dt.

(2.42)

2.2.5 The stochastic terms B[ρ]

Recall that

B[ρ] = i
√

2κ
(

ρa† − aρ − Tr[ρ
(

a† − a
)

]ρ
)

. (2.43)
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The linear portion of this [LS(ρ) ≡ i
√

2κ
(

ρa† − aρ
)

] is just like the deterministic case, with

dvi(lin) = 〈LS(ρ0), ρi〉 +

N
∑

j=1

vj 〈LS(ρj), ρi〉 ◦ dW, (2.44)

and will work out to a simple, constant over time, matrix multiplication by a matrix LS:

LSij = i
√

2κ
(〈

ρja
† − aρj , ρi

〉

+
〈

ρ0a
† − aρ0, ρi

〉

δij

)

, (2.45)

Now let us turn to the nonlinear term:

i
〈

Tr[ρ(v)
(

a† − a
)

]ρ(v), ρi

〉

= i

〈

Tr







ρ0 +

N
∑

j=1

vjρj





(

a† − a
)





(

ρ0 +

N
∑

k=1

vkρk

)

, ρi

〉

. (2.46)

This breaks out into 4 chunks: A constant (independent of vi),

i
〈

Tr[ρ0

(

a† − a
)

]ρ0, ρi

〉

, (2.47)

two linear terms:

i

〈

Tr[ρ0

(

a† − a
)

]

(

N
∑

k=1

vkρk

)

, ρi

〉

and (2.48)

i

〈

Tr









N
∑

j=1

vjρj





(

a† − a
)



 ρ0, ρi

〉

, (2.49)

and one quadratic term:

i

〈

Tr









N
∑

j=1

vjρj





(

a† − a
)





(

N
∑

k=1

vkρk

)

, ρi

〉

. (2.50)

Many of the components of these terms are constants.

The constant term is

2Gi 〈y0〉 , (2.51)

and the two linear terms are

2 〈y0〉
N

∑

k=1

vk 〈ρk, ρi〉 = 2 〈y0〉
N

∑

k=1

vkδik = 2 〈y0〉 vi (2.52)

and

2Gi

N
∑

j=1

vj 〈yj〉 . (2.53)
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The quadratic term is

2

N
∑

j=1

N
∑

k=1

vkvj 〈yj〉 〈ρk, ρi〉 = 2

N
∑

j=1

N
∑

k=1

vkvj 〈yj〉 δki = 2vi

N
∑

j=1

vj 〈yj〉 . (2.54)

The stochastic part of Eqn. (2.18) from the nonlinear (trace) term is therefore

dvi(trace) = −
√

8κ



〈y0〉Gi + 〈y0〉 vi + Gi

N
∑

j=1

vj 〈yj〉 + vi

N
∑

j=1

vj 〈yj〉



 ◦ dW

= −
√

8κ



〈y0〉Gi + 〈y0〉 vi + (Gi + vi)

N
∑

j=1

vj 〈yj〉



 ◦ dW. (2.55)

So, putting all of Eqn. (2.18) together we have

dvi =



〈L(ρ0), ρi〉 +
N

∑

j=1

vj 〈L(ρj), ρi〉



 dt + dvi(ISN)

+



〈LS(ρ0), ρi〉 +

N
∑

j=1

vj 〈LS(ρj), ρi〉



 ◦ dW

−
√

8κ (Gi + vi)



〈y0〉 +

N
∑

j=1

vj 〈yj〉



 ◦ dW. (2.56)

2.2.6 Stratonovich back to Itô

For numeric simulation with an Itô-Euler integrator, we require Itô equations, so we need to trans-

form our Stratonovich equations back into Itô. Currently our equations of motion for the projected

filter have the form

D[v] = Av[v]dt + Bv[v] ◦ dW. (2.57)

The correction term has the form
1

2
(DBv[v]) Bv[v] (2.58)

where D(·) is the derivative.

The LS part of the stochastic term is just matrix multiplication by LS, so its derivative is just

LS.
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The part of B that comes from the normalizing term in the SME has a derivative of

DBv(trace)[v]ij = − ∂

∂vj

√
8κ

(

〈y0〉Gi + 〈y0〉 vi + (Gi + vi)

N
∑

k=1

vk 〈yk〉
)

= −
√

8κ

(

〈y0〉 δij + (Gi + vi)
N

∑

k=1

〈yk〉 δjk + δij

N
∑

k=1

vk 〈yk〉
)

= −
√

8κ

((

〈y0〉 +

N
∑

k=1

vk 〈yk〉
)

δij + (Gi + vi) 〈yj〉
)

. (2.59)

For notational simplicity, let us call this matrix DB. Let us call the part of B that comes from the

normalizing term, which is a vector, Bn (you can read its elements off of Eqn. (2.55)). Then the full

correction term to take us back to Itô form is

1

2
(DBv[v])Bv[v] =

1

2
(LS + DB) (LS + LSv + Bn) (2.60)

where

LSi = 〈LS(ρ0), ρi〉 . (2.61)

Applying this term, we now have the complete Itô stochastic differential equation for the dynamics

of the projected filter:

dv =

(

L + Lv + dvISN +
1

2
(LS + DB) (LS + LSv + Bn)

)

dt

+(LS + LSv + Bn) dW (2.62)

where

Li = 〈L(ρ0), ρi〉 . (2.63)

With the machinery in place, we can now turn to generating linear density matrix spaces by

Proper Orthogonal Decomposition of quantum trajectories, project the filter onto them, and evaluate

their performance.


