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Abstract

Let M be a motive that is defined over a number field and admits an action of

a finite dimensional semisimple Q-algebra T . David Burns and Matthias Flach

formulated in [B-F3] a conjecture, which depends on a choice of Z-order T in

T , for the leading coefficient of the Taylor expansion at 0 of the T -equivariant

L-function of M . For primes ` outside a finite set we prove the `-primary

part of this conjecture for the specific case where M is the trace zero part

of the adjoint of H1(X0(N)) for prime N and where T is the (commutative)

integral Hecke algebra for cusp forms of weight 2 and the congruence group

Γ0(N), thus providing one of the first nontrivial supporting examples for the

conjecture in a geometric situation where T is not the maximal order of T .

We also compare two Selmer groups, one of which appears in Bloch-Kato

conjecture and the other a slight variant of what is defined by A. Wiles. A

result on the Fontaine-Laffaille modules with coefficients in a local ring finite

free over Z` is obtained.

2000 Mathematics Subject Classifications: Primary 11F67, 11F80, 11G40;

Secondary 14G10, 19F27 Key word and phrases: Burns-Flach conjecture,

modular forms, adjoint motives.
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Chapter 1

Introduction to Burns-Flach
conjecture

In this chapter we introduce explicitly Burns-Flach conjecture given in [B-F3,

§4.3] (which uses the language of perfect complexes and their determinants to

virtual objects) for the interested motive here.

1.1 From history to this article

For simplicity, a motive always means the collective data of its various standard

realizations and standard compatibility isomorphisms among them, which are

essential in order to define its L-function and to state certain conjectures. It

also goes by the name “motivic structure” in [F-P2] or “(S-integral) premotivic

structure” in [D-F-G2, §1]. The special values of L-functions of motives at

integers have long been an inspiring source of number theory.

A recurring phenomenon is that the values of L-functions at integers reflect

arithmetic properties of the objects used to define the motives. Two prominent

examples are Dirichlet’s class number formula and Birch and Swinnerton-Dyer
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conjecture on elliptic curves.

There are vast amount of work, to compute and various conjectures to

predict the value of a general L-function at zero for motive over Q. Conjectures

of Deligne [De1] and of Beilinson [Be] achieve that up to a rational factor. Then

the seminal conjecture of Bloch-Kato in [B-K] describes the precise value up to

sign using cohomological data. Its refinements and reformulations by Fontaine,

Kato and Perrin-Riou [Fo1, Ka2, F-P2] are further refined and generalized to

a (non-commutative) equivariant version, namely, the equivariant Tamagawa

number conjecture of Burns-Flach [B-F3, Conjecture 4], which shall be called

“Burns-Flach conjecture” for brevity. For more history of, evidence for and

relations among these conjectures and the Iwasawa main conjecture, see [B-F3],

[B-F4] and [Hu-Ki].

While the title of this thesis is still paying tribute to Bloch and Kato, its

emphasis is on the phrase “with the integral Hecke algebra,” indicating that

we are actually dealing with Burns-Flach conjecture. A complete title should

read as “proof of Bloch-Kato conjecture as refined by Burns-Flach except at

finitely many places in the case of the trace zero part of the adjoint motive

of H1(X0(N)) for prime N with the action of integral Hecke algebra for cusp

forms of weight 2 and the congruence group Γ0(N).” The upshot here is that

the integral Hecke algebra is strictly contained in the maximal order of its

maximal quotient, thus our proof can be viewed as one of the first examples

where Burns-Flach conjecture is finer than previous conjectures. It is expected
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that Burns-Flach conjecture, will remain open in general for years to come to

challenge mathematicians.

We assume that readers are familiar with the standard symbols in number

theory and cohomology theory such as Z, Q, R, C, Fp, Zp, GK for a field K,

H i(·, ·). In particular, H i(K,V ) for a fieldK and a continuousGK-module V is

the i-th continuous cohomology of GK with coefficient in V . OR is the maximal

order of a commutative algebra R over a number field. We use the notation of

[D-F-G2, §1] for the various realizations of these motives, as well as for their

integral versions by respective Gothic letters. For example, a motive M over

a number field K contains M∗ for ∗ = B, dR and λ (a place of K), which

denotes its Betti, de Rham, λ-adic and `-crystalline realization respectively,

and correspondingly, its integral version M contains M∗. We often use “=” to

denote the canonical or understood identification between two objects.

1.2 Motives with action of Hecke algebra

Let M be a motive over a number field with an action of a finite dimensional

semisimple Q-algebra T . Let T ⊂ T be a Z-order such that there is a projec-

tive T-lattice in the realizations of M . The meaning of “projective” is given

in [B-F3, Defintion 1 of §3.3]. Conjecture 4 of loc. cit. concerns the leading

coefficient at s = 0 of the T -equivariant L-function L(M, s) of M . This is the

aforementioned Burns-Flach conjecture, which depends not only on M and T

but also on the choice of T. Roughly speaking, Burns-Flach conjecture spe-
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cializes to Bloch-Kato conjecture when T is commutative with maximal order

T.

Let f(τ) =
∑
ane

2πinτ be a (normalized) newform of congruence group

Γ0(N), weight k ≥ 2. The number field Kf/Q is generated by the Fourier

coefficients ai of f . We can attach a motive Mf over Kf and its integral

version Mf to f as given in [D-F-G2, §5.4], thanks for the most part to Eich-

ler, Shimura, Deligne, Jannsen, Scholl and Faltings. We reiterate here that a

motive is treated naively as the collective data of its realizations and various

compatibility isomorphisms among them. We take the trace zero endomor-

phisms of Mf to obtain the self-dual motive Af = ad0Mf = HomKf
(Mf ,Mf )

0.

(The upper index 0 denotes endomorphisms of trace 0.)

In [D-F-G2, Theorem 8.10] the `-primary part of Bloch-Kato conjecture

for Af , or equivalently, of Burns-Flach conjecture for M = Af , T = Kf and

T = OKf
, was proven with ` outside a certain finite set Sf of primes. See §1.4

for the definition of Sf . Instead of one newform, let us consider a finite set I

of newforms f and put

MI =
⊕
f∈I

Mf

T =
∏
f∈I

Kf

AI = HomT (MI ,MI)
0 =

⊕
f∈I

Af

BI = AI(1)
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This will be our basic setting, upon which much more symbols will be intro-

duced along the way. Note that the above definitions of Af , MI , AI and BI are

kind of symbolic definitions that abstract the natural construction of various

components of a motive and also its integral version.

MI , AI and BI are motives with the natural action of the semisimple Q-

algebra T as Kf acts on Mf canonically for all f ∈ I. If we take direct product

over I, the result of [D-F-G2, Theorem 8.10] also gives the Burns-Flach con-

jecture for M = AI , BI and T = OT =
∏

f∈I OKf
. However, in many natural

cases we have the following finer structure. There is an appropriate integral

Hecke algebra T that is generated by Hecke operators over Z, or equivalently,

by Hecke correspondences over Z. The motive MI carries a lattice, also called

the integral version of MI , which is projective over T. We have a canonical

map T → T : t 7→ (a1(t(f))f∈I , where a1(g) is the first Fourier coefficient of

the q-expansion of a newform g and which is consistent with their action on

the motive MI , AI and BI . Hence T may be (considered as) contained in, but

generally different from, the maximal order of T . This difference will be seen

to be a key fact that the importance of this article relies on.

A typical example, which we actually work on in Chapter 3 and Chapter

4, is where I is a complete set of orbit representatives for the action of GQ

on newforms of weight 2 and congruence group Γ0(N) with prime N . Then

MI = H1(X0(N)), and the integral Hecke algebra T generated by Hecke cor-

respondences of X0(N) over Z is well known to be an order in T , which can
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be identified with the set of all correspondences over Q, or with the rational

Hecke algebra for cusp forms of weight 2 and the congruence group Γ0(N).

Mazur proved in [Ma1, II, (14.2), (16.3), (15.1)] that the integral cohomology

H1(X0(N),Z) of X0(N) is locally free (i.e., projective) over T except possibly

at maximal ideals containing 2. (Just for the record, this exception at the

place over 2 might be necessary as indicated by [Ki].) In this case T also

coincides with the full endomorphism ring of the Jacobian J0(N) of X0(N),

which is proven in [Ri, Corollary 3.3], and so it is the natural ring to consider

when studying the motive H1(X0(N)) = H1(J0(N)).

We will formulate Burns-Flach conjecture for BI with the action of T with

the choice of projective T[1/2]-structure B that comes from the projective

T[1/2]-moduleH1(X0(N)(C),Z[1/2]), or more explicitly, from the integral pre-

motivic structure of level N and trivial character in [D-F-G2, $4.5]. We shall

focus on BI rather than AI because the methods there apply more directly to

BI (see in particular [D-F-G2, Lemma 8.11]). Once we proved the case on BI ,

the desired result on AI can be formulated similarly and can be seen along the

same line of arguments.

1.3 Explicit Deligne’s conjecture

To prepare for the statement of the Burns-Flach conjecture in $1.4, we in-

troduce in this section Theorem 8.5 of [D-F-G2] that is an explicit form of

Deligne’s conjecture.
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With the index set I implicitly understood, we will write M, A, B, T

instead of MI , AI , BI , TI . Throughout this article the L-functions of A and

B, L(A, s) and L(B, s), are their T -equivariant L-functions, whose definition

is given in [D-F-G2, §4] and in particular, its Remark 7.

Recall that IKf
was defined in [D-F-G2, §1.2] as the set of embeddings

Hom(Kf ,C). We let IT = Hom(T,C) denote the set of ring homomorphisms

T → C and we then have IT =
∐

f∈I IKf
. We view L(Af , s) as the tuple of

functions L(Af , τ, s)τ∈IK
, i.e., as a holomorphic function with values in

(Kf )C := Kf ⊗Q C = CIKf .

Similarly we view L(A, s) as a function with values in TC := T ⊗Q C ∼= CIT .

The special values L(A, 0) and L(B, 0) = L(A, 1) then lie in TR := T ⊗Q R.

We revert M temporarily to mean a motive with coefficients in K so as to

introduce several symbols the last of which is Deligne’s period c+(M). The

fundamental line for M is the K-line defined by

∆(M) = homK(det
K
M+

B , det
K
tM)

where + indicates the subspace fixed by F∞, the action of complex conjuga-

tion, and tM = MdR/Fil0MdR. Furthermore the composition of

R⊗M+
B → (C⊗MB)+ (I∞)−1

−→ R⊗MdR → R⊗ tM
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is an R⊗K-linear isomorphism. Its determinant over R⊗K, called Deligne’s

period of M and denoted by c+(M), defines a basis for R⊗∆(M).

Now we quote verbatim Theorem 8.5 of [D-F-G2], which is an explicit form

of Deligne’s conjecture in the cases of Af and Bf for a newform f of weight k,

conductor Nf , character ψ, and field of definition Kf .

Theorem 1.3.1. Let b(Af ) ∈ ∆(Af ) be defined by the formula

〈f, b(Af )(f⊗F∞)〉 =
ik−η((k − 2)!)2ε(Mf ⊗Mψ−1)

∏
p∈Σe(f)(1 + 1

p
)

2ε(Mψ−1)ε(Af )
(bdR⊗ιk−1),

and b(Bf ) ∈ ∆(Bf ) by the formula

b(Bf ) = (1− k)ε(Af )tw(b(Af )). (1.1)

Then L(Af , 0)(1⊗ b(Af )) = c+(Af ) and L(Bf , 0)(1⊗ b(Bf )) = c+(Bf ).

We explain very briefly the content of this theorem below. Readers are

advised to check the original paper for a full explanation. The fundamental

line ∆(Af ) is identified with

homK(Filk−1Mf,dR ⊗Q · F∞,Mf,dR/Filk−1Mf,dR).

There is also a perfect alternating pairing induced from the Poincaré duality

for X1(N),

〈·, ·〉 : Mf ⊗Kf
Mf →Mψ(1− k),
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where Mψ(1− k) denotes the (1− k)-Tate twist of the Dirichlet motive asso-

ciated to ψ. F∞ is naturally viewed as a basis of A+
f,B.

η = 0 or 1 so that η ≡ k mod 2. ε(M) is the well-known epsilon factor

appearing in the functional equation of a motive M defined in [De2] or [Ta,

Theorem 3.4.1].

Σe(f) is the set of primes p such thatM
Ip
f,λ = 0 for any λ - p and Lp(Af , s) =

(1 + p−s)−1. A basis of Mψ,dR is

bdR =
∑

a∈(Z/Nf Z)×

ψ(a)⊗ e2πia/Nf ∈ OKf
⊗ OQ[e

2πi/Nf ]
)[1/Nf ],

ι is the canonical basis of TdR, where T is the “dual of integral Tate motive.”

Identifying ∆(Bf ) with

homK(Filk−1Mf,dR ⊗Q(2)B, (Mf,dR/Filk−1Mf,dR)⊗Q(2)dR),

we define the isomorphism of K-lines

tw : ∆(Af )→ ∆(Bf ) (1.2)

so that tw(φ)(x⊗ y) = φ(x⊗F∞)⊗ β(y), where the basis β of ∆(Q(2)) sends

(2πi)2 to ι−2. This ends our explanation of Theorem 1.3.1.
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The fundamental line ∆(A) is a free rank one T -module with basis

b(A) =
∏
f∈I

b(Af ).

We also have c+(A) =
∏

f∈I c
+(Af ). In general, by taking the direct prod-

uct over I, all computations in [D-F-G2, §8.2] immediately carry over from

Af , Bf , Kf etc. to AI , BI , TI etc.

Remark 1.3.2. Deligne’s conjecture predicts that L(Af , 0)−1c+(Af ) ∈ R ⊗

∆(Af ) is an element in its T -rational subspace 1 ⊗ ∆(Af ) = ∆(Af ). The

above theorem computes explicitly that this value is b(Af ) ∈ ∆(Af ). The same

applied to Bf . Taking direct product over I, we obtain the later equality in

(1.9).

1.4 The Burns-Flach conjecture in our case

Our choice of integral version M of M comes from [D-F-G2]. Specifically, Mf

is the integral premotivic structure associated to f defined in §5.4 of loc. cit.

We construct M from all Mf , f ∈ I and then A and B from M naturally.

Note that this choice is the same as in the typical example mentioned in §1.2.

We denote by SI the set of prime numbers ` so that there exists an

f ∈ I and λ ∈ Sf with λ | `. Here Sf is the finite set of primes λ in Kf

such that either λ | Nk! or the two-dimensional residual Galois representa-

tion Mf,λ/λMf,λ is not absolutely irreducible when restricted to GF , where
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F = Q(
√

(−1)(`−1)/2`) and λ | `. Clearly, we only expect to prove the Burns-

Flach conjecture for primes ` /∈ SI as our result will be built on the result of

[D-F-G2, §8].

Recall M means MI . M`, a Galois stable lattice inside M`, is assumed to

be free of rank two over the semilocal finite flat Z`-algebra T` := T⊗Z Z`. We

have B` = HomT`
(M`,M`)

0(1) is a free T`-module of rank 3.

Let

D` := Dcrys(B`) := H0(Q`, Bcrys,` ⊗Q`
B`),

which is free of rank 3 over T` and

tB ⊗Q Q`
∼= tB`

:= D`/Fil0D`, (1.3)

which is free of rank 2 over T`. For each place v of Q Iv is a fixed choice of

inertia group and φv is the geometric Frobenius. We define a perfect complex

of T`-modules

RΓf (Qv, B`) :=


H0(Iv, B`)

1−φv−−−→ H0(Iv, B`) for v 6= `,

D`
(1−φv ,π)−−−−−→ D` ⊕ tB`

for v = `.
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So we have a canonical isomorphism of (graded) invertible T`-modules

DetT`
RΓf (Qv, B`)

:=


DetT`

H0(Iv, B`)⊗Det−1
T`
H0(Iv, B`) ∼= T` for v 6= `

DetT`
D` ⊗Det−1

T`
D` ⊗Det−1

T`
tB`
∼= Det−1

T`
tB`

for v = `.

(1.4)

For the usage of the determinant functor Det here, readers may see [K-M]. For

the importance of keeping gradation data, see [B-F3, Remark 9].

As explained in [B-F3, §3.2] one can construct a natural morphism

RΓf (Qv, B`)→ RΓ(Qv, B`), (1.5)

the mapping cone of which we denote by RΓ/f (Qv, B`).

The comparison isomorphism between etale and singular cohomology in-

duces an isomorphism

RΓ(R, B`) ∼= Q` ⊗Q B
+
B . (1.6)

Let Sbad be the set of places v of Q where M has bad reduction (i.e., where

M Iv
` 6= M`) and put S = Sbad ∪ {`,∞}. Define

RΓf (Q, B`) = Cone(RΓet(ZS, B`)→
⊕

v∈Sbad∪{`}

RΓ/f (Qv, B`))[−1]. (1.7)
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Then there is an exact triangle (of perfect complexes of T`-modules)

RΓet,c(ZS, B`)→ RΓf (Q, B`)→
⊕

v∈Sbad∪{`}

RΓf (Qv, B`)⊕RΓ(R, B`). (1.8)

By [B-F3, Lemma 19] and [D-F-G2, Theorem 8.2] the complex RΓf (Q, B`) is

acyclic. So the triangle (1.8) together with (1.3), (1.4) and (1.6) induces an

isomorphism of (graded) determinants

ϑ` : DetT`
RΓet,c(ZS, B`) ∼=

⊗
v∈Sbad∪{`}

Det−1
T`
RΓf (Qv, B`)⊗Det−1

T`
RΓ(R, B`)

∼= DetT`
(Q` ⊗Q tB)⊗Det−1

T`
(Q` ⊗Q B

+
B).

Conjecture 1.4.1. (The `-primary part of Burns-Flach conjecture for the

motive B with the action of T and ` /∈ SI) there is an identity of invertible

T`-modules

ϑ`(DetT`
RΓet,c(ZS,B`)) = T` · b(B) = T` · L(B, 0)−1c+(B). (1.9)

Remark 1.4.2. The conjecture can be formulated and expected to hold for all

`. The restriction on ` is only to emphasize our inability to prove the excluded

cases because our proof relies on [D-F-G2].

By its totality Burns-Flach conjecture means the Conjecture 4 in [B-F3],

which consists of four parts. For motive B, part (i), (ii) and (iii) can be es-

tablished readily. What we have (re)formulated here is actually the Conjecture
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6 in loc. cit., whose validity for all primes is equivalent to part (iv).

Remark 1.4.3. [F-P1] shows that the `-primary part of Bloch-Kato conjec-

ture is equivalent to the equality ϑ`(DetOT`
RΓet,c(ZS,B` ⊗T`

OT`
)) = OT`

·

L(B, 0)−1c+(B), which determines `-primary parts of L(Bf , 0)−1 · c+(Bf ) up

to multiplication by an element in (OKf
⊗ Z`)

× for all f ∈ I once we decom-

pose each sides into its components. The equality (1.9) further reduces the

uncertainty of determining the `-primary parts of the special values by an al-

gebraic formula, which is the main point of Burns-Flach conjecture compared

to Bloch-Kato conjecture in this simplest non-trivial case. The exact extent to

which this `-primary part of Burns-Flach conjecture for BI is finer than the

combination of those of Bloch-Kato conjecture for all Bf , f ∈ I, is measured

by (the cardinality of) the finite group

O×T`
/T×` .
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Chapter 2

An isomorphism between
tangent space and Selmer group

In the deformation theory of Galois representations there is a standard isomor-

phism between the relative Zariski tangent space of the universal deformation

ring with a Selmer group, (i.e., a subspace of a global Galois cohomology group

cut out by local conditions). This chapter is to prove in detail a variant of

that isomorphism as shown in equality (2.1), which appears in [Ma2] with

incomplete proof. This will be used in the next chapter. This variant, while

of interest by itself, will be one of the critical steps in proving our case of

Burns-Flach conjecture.

2.1 Notation

Maps between objects that are naturally topological spaces are continuous.

Galois groups are topological spaces with the canonical profinite topology.

Any module that is a Z`-module by restriction of scalars is equipped with the

`-adic topology. When we refer to an RG- module M , where M is a topological
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space, R a ring and G a topological group, we mean an R-module M with an

R-linear continuous G-action. H i(G, V ) is the continuous cochain cohomology

group of G with coefficients in a continuous G-module V .

First, we introduce the common setting of both sides of the isomorphism.

Let GQ be the absolute Galois group after we fix an algebraic closure of Q. Fix

a decomposition group Gp⊂ GQ for all primes p in Z and Ip⊂ Gp its inertia

group. Let ` be a fixed odd prime so that our representation spaces will be

`-adic and Σ a finite set of rational primes different from `. A is a commutative

complete local ring that is finite free over Z` and whose residue field is k. Let

L be a (continuous) AGQ-module that is free of rank two over A.

Let FR be the full subcategory of finite Z`G`-modules whose objects are

quotients of G`-stable lattices in short crystalline Q` representations of G`,

where short representation V means that Fil`D(V ) = 0 and Fil0D(V ) =

D(V ), where D(V ) = (Bcrys,` ⊗Q`
V )G` and that V has no nonzero subrepre-

sentation V ′ so that V ′(`− 1) is unramified. FR is stable under taking finite

direct sums, subobject and quotients in the category of finite Z`G`-modules,

and that it is equivalent to the category MF0
tor that is defined in §5.1. We

assume that L⊗Z`
Q` is a short crystalline representation.

Now we introduce the objects related to the right hand side of the isomor-

phism (i.e., the Selmer group side).

W= End0
A(L) ⊗Z`

Q`/Z`, where End0
A(L) denotes the kernel of the trace

map EndA(L) → A. Note that W is an AGQ-module as the trace map is
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an AGQ-module homomorphism. Wn = W [`n] = End0
A(L) ⊗Z`

(`−nZ`)/Z` =

End0
A(L/`nL) ⊂ EndA(L/`nL) where the last equality is given by f ⊗Z`

(`−n

mod Z`) 7→ f ⊗Z`
idZ`/`n ∈ EndA⊗Z`

Z`
(L ⊗Z`

Z`/`
n) = EndA(L/`nL). Here we

use that A is finite free over Z`. Note that W = ∪nWn = lim
−→
Wn. W and Wn

for all n have the (natural) discrete topologies.

For p 6= `, H1
f (Gp,Wn) = ker(H1(Gp,Wn)→ H1(Ip,Wn)). For p = `, recall

there is a canonical A/`n-linear isomorphism between H1(G`,EndA(L/`nL))

and the A/`n-module of Yoneda extensions of A/`nG`-modules 0→ L/`nL→

E → L/`nL→ 0 as L/`nL is a free A/`n-module. H1
f (G`,Wn) ⊂ H1(G`,Wn)

is the set of elements that corresponds to extensions E in FR when mapped

into H1(G`,EndA(L/`nL)). One checks that H1
f (G`,Wn) is an A-submodule

of H1(G`,Wn). H
1
f (Gp,W ) = lim

−→
H1
f (Gp,Wn) for every prime p. In particular,

for p 6= `, H1
f (Gp,W ) = ker(H1(Gp,W )→ H1(Ip,W )) = H1(GFp ,W

Ip).

We note that lim
−→
H1(Gp,Wn) = H1(Gp,W ) because of the compactness

of Gp and the discreteness of the topology of W . So H1
f (Gp,W ) is a subset

of H1(Gp,W ). H1
Σ(GQ,W ) ⊂ H1(GQ,W ) is the set of elements that are in

H1
f (Gp,W ) when restricted to H1(Gp,W ) for every p 6∈ Σ . H1

Σ(GQ,Wn)

⊂ H1(GQ,Wn) is the set of elements that are in H1
f (Gp,Wn) when restricted

to H1(Gp,Wn) for every p 6∈ Σ.

All of above cohomology groups are naturally A-modules. The Selmer

groups H1
Σ(GQ,W ) and H1

Σ(GQ,Wn) depend on L as a GQ-module, not on the

choice of Gp of any p.
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Finally, we come to the setting of the left hand side of the isomorphism

(i.e., the deformation theory side). Let k be the finite residue field of A whose

characteristic is `. Fix a basis of L over A so that the action of GQ on L has

a matrix representation

ρ : GQ → GL2(A)

and its residual matrix representation

ρ̄ : GQ → GL2(k).

Let O be a complete local noetherian ring with residue field k. Let CO = C

denote the category whose objects are complete local noetherian O-algebras

and whose morphisms are local O-algebra homomorphisms. Hence k and O

are objects of C. There is a canonical map from Z` to any object of C. We

require that A is an object in C and hence that O has the same characteristic

0 as A. For example, we can take O to be A, or the canonical subring W (k)

of A, which is the ring of Witt vectors with coefficients in k.

Recall that if R is an object of C, then an R-deformation of ρ̄ is a strict

equivalence class of liftings of ρ̄ to GL2(R) [Ma3, §8].

We say that an R-deformation is of type Σ if a lifting representing that de-

formation, whose representation space is M , satisfies the following conditions,

which will be referred to individually by the phrases in the parenthesis:

• the RGQ-moduleM is minimally ramified outside Σ∪{`}, where minimal
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ramification is defined in [Di], (minimal ramification);

• for every n > 0, the Z`G`-module M/MnM is an object of the category

FR, where M is the maximal ideal of R, (crystalline ramification);

• ∧2
RM is the one dimensional representation over R whose character is

the `-cyclotomic character composed with the canonical map from Z` to

R, (fixed determinant).

Assume ρ̄ itself is a deformation of type Σ so that we can consider the

functor DΣ on C that associates to R the set of R-deformations of ρ̄ of type

Σ. Assume further that ρ̄ is absolutely irreducible. By the results of Mazur

[Ma3] and Ramakrishna [Ra], this functor is representable by an object of C

that is called the universal deformation ring attached to ρ̄ with base ring O of

type Σ. We denote this object Rρ,O,Σ or simply RΣ.

If ρ is a deformation of type Σ, the universality of RΣ induces a ring

homomorphism θΣ
ρ : RΣ → A, by which A becomes an RΣ-algebra.

2.2 The isomorphism

The standard isomorphism mentioned in the beginning of this chapter is, in

our context, of the form homA(ΩRΣ/O ⊗RΣ A,A) = H1
Σ(GQ,End0

A(L)), where

the right hand side is a suitable subset of H1(GQ,End0
A(L)). However, what

we will need is the following variant:

Proposition 2.2.1. With the notation and assumptions of previous para-
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graphs, we have a canonical A-module isomorphism:

homA(ΩRΣ/O ⊗RΣ A,A⊗Z`
Q`/Z`) ∼= H1

Σ(GQ,W ), (2.1)

where ΩRΣ/O is the topological RΣ-module of relative continuous Kähler differ-

entials of O-algebra RΣ that represents the functor M 7→ DerO(RΣ,M) for a

topological RΣ-module M .

Proof. It suffices to show the following three claims.

• H1
Σ(GQ,W ) ∼= lim

−→
H1

Σ(GQ,Wn).

• homA(ΩRΣ/O ⊗RΣ A,A ⊗Z`
Q`/Z`) ∼= lim

−→
homA(ΩRΣ/O ⊗RΣ A, `−nA/A),

where `−nA/A is a shorthand for A⊗Z`
`−nZ`/Z`.

• There exists a canonical A-module isomorphism

homA(ΩRΣ/O ⊗RΣ A, `−nA/A)→ H1
Σ(GQ,Wn)

that makes the following diagram commute,

homA(ΩRΣ/O ⊗RΣ A, `−nA/A) → H1
Σ(GQ,Wn)

↓ ↓

homA(ΩRΣ/O ⊗RΣ A, `−n−1A/A) → H1
Σ(GQ,Wn+1).

Proof of the first claim.
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There is a natural map from the right hand side to the left hand side

induced by the inclusion Wn → W . That map is injective because of the com-

pactness of GQ and the discreteness of the topology of W since a (continuous)

map from a compact space to a discrete space has only finitely many values.

Now we prove surjectivity. Take any c̄ ∈ H1
Σ(GQ,W ), which is represented

by a cocycle c : GQ → W , whose restriction to Gp, name it cp, represents an

element in H1
f (Gp,W ) = lim

−→
H1
f (Gp,Wn) for all p 6∈ Σ. As no confusion can

arise, we will also use the same symbol for a cocycle if we restrict its domain

and/or its codomain to a smaller one. As we have just said, c has only finitely

many values. Suppose these values are in Wm for some m. By the deformation

condition of minimal ramification, ρ is unramified at a prime when so is ρ̄.

Since the image of ρ̄ is finite, ρ̄ is unramified outside a set S of finitely many

primes and hence so is ρ. For all primes p 6∈ S ∪ Σ,

H1
f (Gp,W ) = lim

−→
ker(H1(Gp,Wn)→ H1(Ip,Wn))

= ker(H1(Gp,W )→ H1(Ip,W )),

where H1(Ip,W ) = hom(Ip,W ) as Ip acts trivially on W . So, c is trivial on

Ip. Hence cp represents an element in H1
f (Gp,Wn) for all n. For all primes p in

the finite set S − Σ, cp represents an element in H1
f (Gp,Wn0) simultaneously

for a n0 ≥ m that is large enough. Hence, c also represents an element in

H1
Σ(GQ,Wn0). This means the surjectivity we want.

Proof of the second claim.
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Since A ⊗Z`
Q`/Z` = ∪n`−nA/A, it suffices to prove ΩRΣ/O ⊗RΣ A is a

finitely generated A-module, or, equivalently, ΩRΣ/O is a finitely generated

RΣ-module. By Cohen structure theorem on complete local Noetherian rings

of unequal characteristics as discussed after [Ei, Theorem 7.8] we have

RΣ ∼= T/I,

where T = W (k)[[x1, · · · , xr]] for an integer r, I an ideal of T. Recall there is a

canonical homomorphism from W (k) to any complete local ring with residue

field k, which manifests in the isomorphism above. Thus O can be viewed

as a sub-W (k)-algebra of RΣ via the structure map O → RΣ. We have two

canonical RΣ-module surjections:

RΣ⊗̂TΩT/W (k) → ΩRΣ/W (k) → ΩRΣ/O,

where ⊗̂ denotes completed tensor product. See §5.2.3 of [Hi2]. Since ΩT/W (k)

is a free T -module of rank r, ΩRΣ/O is a finitely generated RΣ-module.

Proof of the third claim.
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The method is explained partially by B. Mazur in [Ma2]. We have

homA(ΩRΣ/O ⊗RΣ A, `−nA/A)

= homRΣ(ΩRΣ/O, homA(A, `−nA/A))

= homRΣ(ΩRΣ/O, A/`
n)

= DerO(RΣ, A/`n)

= {φ ∈ homO−algebra(R
Σ, A/`n[ε]) : φ(r) ≡ (θΣ

ρ (r) mod `n) mod ε}

= {ρ-relative deformation of ρ̄ to A/`n[ε] of type Σ},

where A/`n[ε] = A/`n[X]/(X2) with ε = X mod (X2) so A/`n[ε] is an object

in C with the square zero idea (ε). Also the second equality from the bottom

is given by d 7→ (r 7→ (θsρ(r) mod `n+d(r)ε)). From now on, we view A/`n as

a subset of A/`n[ε] and GL2(A/`
n) as a subset of GL2(A/`

n[ε]) in the natural

way whenever necessary.

We say a lifting of ρ̄ to A/`n[ε] is ρ-relative if its reduction module (ε)

is ρL mod `n. A deformation of ρ̄ to A/`n[ε] is said to be ρ-relative if it is

represented by a ρ-relative lifting of ρ̄. We will produce a bijection from the

set in the last row of above array, name it tρ,n, to H1
Σ(GQ,Wn).

Let θ : GQ → GL2(A/`
n[ε]) be a ρ-relative lifting of ρ̄. There is a canonical

such lifting, call it θ0: namely, the composition of ρL mod `n and the nat-

ural embedding GL2(A/`
n) ↪→ GL2(A/`

n[ε]). We associate to θ the difference

cocycle

cθ : GQ →M2(A/`
n) ∼= EndA(L/`nL)
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by 1 + ε · cθ(g) = θ(g) · θ0(g)
−1 for g ∈ GQ, where M2(A/`

n) denotes the

underlying additive group of the A/`n-algebra of 2 × 2 matrices with entries

in A/`n and where the latter isomorphism is induced by the fixed basis of

L. cθ is well defined, i.e., θ(g) ·θ0(g)
−1 ∈ 1 + ε · M2(A/`

n), because θ is ρ-

relative. This construction is independent of the choice of the basis of L. In

fact, we can make each step of the construction coordinate free. Check that

this construction provides a bijection between the set of ρ-relative liftings of ρ̄

to A/`n[ε], and the set Z1(GQ,EndA(L/`nL)) of 1-cocycles. Then check that

under this bijection, two liftings are strictly equivalent if and only if their

associated cocycles are cohomologous.

A straightforward reduction of definitions shows that θ satisfies the defor-

mation condition of fixed determinant if and only if the values of cθ reside in

Wn = End0
A(L/`nL), a direct summand of AGQ-module EndA(L/`nL). Com-

bining with the previous paragraph, we see that the map

the A/`n[ε]-deformation class of θ 7→ the cohomology class of cθ (2.2)

is a bijection between the set of ρ-relative A/`n[ε]-deformations of ρ̄ with fixed

determinant and H1(GQ,Wn).

Now we will check that θ is minimally ramified at any prime p outside

Σ and different from ` if and only if the restrictions of θ and θ0 to Ip can be

brought one into another by conjugation by elements in the kernel of reduction

GL2(A/`
n[ε]) → GL2(A/`

n), which in turn if and only if the cocycle cθ is co-
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homologous to zero when restricted to Ip ⊂ Gp. A straightforward calculation

shows the second “if and only if.” Now we will prove the first “if and only if.”

There are three cases according to the ramification of ρ̄. In each case, the “if”

part is trivial. So we will write only the proof of “only if” part, assuming that

θ is minimally ramified at a prime p outside Σ and different from `. We use ˜
to denote composition with the Teichmüller lift

k× → W (k)× → A/`n,

(or its further composition with A/`n ↪→ A/`n[ε]) as in [Di], where all three

cases of minimal ramification are given.

Case 1. ρ̄|Ip ∼

ξ1 0

0 ξ2

 . Then after a suitable choice of basis of Vθ0 and

a corresponding choice of basis of Vθ, we may assume θ0|Ip =

ξ̃1 0

0 ξ̃2

 and

θ|Ip = θ0 + ε ·m ∼

ξ̃1 0

0 ξ̃2

 for a map m =

m1 m2

m3 m4

 : Ip → M2(A/`
n).

Assume ξ̃1 6= ξ̃2, otherwise θ0|Ip = θ|Ip already. We know

(a+ εb)θ|Ip(a+ εb)−1 =

ξ̃1 0

0 ξ̃2

 ,
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for some a =

a1 a2

a3 a4

 , b =

b1 b2

b3 b4

 ∈M2(A/`
n). Expanding the equality,

we find it is equivalent to

a =

a1 0

0 a4

 , and

m1 m2

m3 m4

 =

 0 b2a
−1
4 (ξ̃1 − ξ̃2)

b3a
−1
1 (ξ̃2 − ξ̃1) 0

 .

Hence θ|Ip is brought to θ0|Ip by conjugation by

 1 ε · b2a−1
4

εb3a
−1
1 1


Case 2. ρ̄|Ip ∼ ξ ⊗

1 ∗

0 1

 . Then after suitable choices of bases, we may

assume θ0|Ip = ξ̃⊗

1 ∗

0 1

 and θ|Ip = θ0 + ε ·m ∼ ξ̃⊗

1 ∗

0 1

. After twisting

θ and θ0 with ξ̃−1, this case is explained in [Ma3, §29].

Case 3. ρ̄|Ip ∼ IndIPIM ξ, whereM is a ramified quadratic extension of Qp and

ξ is a character of IM that is not equal to its conjugate ξ′ under the action of a

lift σ of the nontrivial element in Gal(M/Qp) to Ip. Note that Ip = IM ∪ σIM .

Then after suitable choices of bases, we may assume θ0|IM =

ξ̃ 0

0 ξ̃′

 and

θ0(σ) =

0 1

1 0

 as θo|Ip ∼ IndIPIM ξ̃ and that θ|Ip = θ0 +ε ·m ∼ IndIPIM ξ̃. So, for

some a ∈ GL(A/`n[ε]), aθ|IMa−1 =

ξ̃ 0

0 ξ̃′

 and aθ(σ)a−1 =

0 1

1 0

 . Write

ā for the reduction of a to GL2(A/`
n). Then āθ0(τ)ā

−1 = θ0(τ) for τ ∈ Ip.
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Check that this implies ā is a scalar matrix. Hence, θ|Ip is brought to θ0|Ip by

conjugation by ā−1a, which reduces to the identity matrix of GL(A/`n).

Now we deal with the deformation condition of crystalline ramification at

`. We naturally identify the representation space of θ, Vθ with A/`n-module

L/`nL ⊕ ε ·L/`nL as θ is a ρ-relative lifting. Then we have an extension of

(A/`n)GQ-modules

0→ ε·L/`nL→ Vθ → L/`nL→ 0,

which, by the canonical isomorphism mentioned when defining H1
f (G`,Wn),

corresponds to the elements in H1(G`,Wn) represented by cocycle c′θ given by

ε ·(c′θ(g)(e)) = θ(g)(α(θ(g)−1e))− e

for g ∈ GQ and e ∈ L/`nL, where α : L/`nL → Vθ is any fixed A/`n-module

splitting of the above extension. Choosing α to be the natural splitting, we

find that c′θ is none other than cθ restricted to G`. [La, Chapter 10, Corollary

5.7], or the Krull intersection theorem as stated in [Ei, Corollary 5.4], tells that

the maximal ideal of the finite local ring A/`n[ε] is nilpotent. So θ satisfies the

deformation condition of crystalline ramification if and only if Vθ is an object

in FR, i.e., if and only if the cocycle cθ restricted to G` represents an element

in H1
f (G`,Wn). Just tautology.

Pulling together the conclusions of above paragraphs on local ramification
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restrictions and the definition of H1
Σ(GQ,Wn), we see that the map (2.2) is a

bijection between tρ,n and H1
Σ(GQ,Wn). So we have constructed a bijection

between homA(ΩRΣ/O ⊗RΣ A,Q`/Z`) and H1
Σ(GQ,Wn). It is straightforward

to verify that the bijection is actually an A-module isomorphism. It is much

more tedious to check the diagram in the third claim is commutative.

Remark: The isomorphism is functorial in an obvious way if we shrink the

set Σ.

Remark: Suppose we choose O to be A. Let η be the kernel of θΣ
ρ :

RΣ,A → A. Then RΣ = A⊕ η as A-module. We have a topological A-module

isomorphism

ΩRΣ/O ⊗RΣ A = η/η2.

This is proved by showing directly that the obvious homomorphism from the

left hand side to the right hand side is an isomorphism.
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Chapter 3

Reduction and proof of
ad0(H1(N))(1)

We shall focus on BI rather than AI because the methods of [D-F-G2] apply

more directly to BI (see in particular its Lemma 8.11). Once we proved the

case on BI , the desired result on AI can be formulated similarly and can be

seen along the same line of arguments.

3.1 A reformulation in classical terms

In this section we transform the left equality of (1.9) into a concrete identity

of elements in T×` /T
×
` .

In order to do that, or what amount to the same thing, reformulate the

Burns-Flach conjecture 1.4.1 in classical terms such as the Fitting ideal of H1
Σ,

one needs to construct the triangle (1.8) with B` replaced by B`.

Assumption: The submodule Fil0(B`-crys) is a T`-direct summand of B`-crys.

Readers are cautioned that a general motive does not determine its integral

version(s) in any canonical way. We can use the notation B, B`-crys and B`
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as we have specified B explicitly in §1.4. In our case of M = H1(X0(N))

we know by Mazur’s results [Ma1] that Fil0 M`-crys
∼= H0(X0(N)/Z`,Ω

1) is a

free T`-module of rank 1. Since T` is Gorenstein the Z`- dual M`-crys/Fil0 ∼=

H1(X0(N)/Z`,O) is also free of rank 1 over T` and hence M`-crys is free over

T`. By linear algebra the Fili(B`-crys) = Fili HomT`
(M`-crys,M`-crys(1))0 is then

also free over T`.

The assumption still needs to be verified, however, in more general sit-

uations. Ideally the only thing we’d like to assume is that M` is free over

T`. Proposition 5.1.2 implies M`-crys is free over T` if V(M`-crys) ∼= M` and

Proposition 5.1.1 and remark 5.1.3 imply that Fili M`-crys is also free over T`.

Under the assumption we can define a perfect complex RΓf (Q`,B`) of T`-

modules by

RΓf (Q`,B`) = Fil0 B`-crys
1−φ0

−−−→ B`-crys

and a map (in the derived category) RΓf (Q`,B`) → RΓ(Q`,B`) as follows.

There is a commutative diagram of GQ`
-modules (with B`-crys having trivial

action)

Fil0 B`-crys
1−φ0

−−−→ B`-crysy y
B` ⊗Z`

Fil0Acrys,`[−k](−k)
1⊗(1−φ0)−−−−−→ B` ⊗Z`

Acrys,`[−k](−k)

‖ ‖

B` ⊗Z`
Filk Acrys,`(−k)

1⊗(1−p−kφ)−−−−−−−→ B` ⊗Z`
Acrys,`(−k)

(3.1)

where [k] (resp. (k)) denotes filtration shift (resp. Tate twist) and Acrys,` is
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the ring defined by Fontaine. The lower row is a resolution of the GQ`
-module

B` obtained by tensoring the exact sequence [B-K, (2.5.1)]

0→ Zp(k)→ Filk Acrys,`
1−p−kφ−−−−→ Acrys,` → 0,

with B`(−k).

Denoting the lower row in (3.1) by E•(B`) and the standard continuous

cochain resolution by C•(GQ`
,−) we have maps

RΓf (Q`,B`)
(3.1)−−→ E•(Bλ)→ C•(GQ`

, E•(B`))← C•(GQ`
,B`) = RΓ(Q`,B`)

as desired. Tensoring with Q`, we obtain the map RΓf (Q`, B`)→ RΓ(Q`, B`)

defined in [B-F3, §3.2].

We are lucky that the complex RΓf (Q`,B`) already turns out to be perfect

over T`. This is not necessarily the case for the complex

RΓf (Qv,B`) = H0(Iv,B`)
1−φv−−−→ H0(Iv,B`)

for v ∈ Sbad since the submodule H0(Iv,B`) of B` is not always T`-free. There-

fore when defining the global complex RΓf (Q,B`) we do not follow (1.7) but

we choose a set Σ ⊆ Sbad so that RΓf (Qv,B`) is T`-perfect for v /∈ Σ and
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define

RΓf ,Σ(Q,B`) = Cone(RΓet(ZS,B`)→
⊕
v∈Σ′

RΓ/f (Q`,B`)⊕
⊕
v∈Σ

RΓ(Qv,B`)[−1]

(3.2)

where Σ′ = Sbad ∪ {`} \ Σ. With this definition there is an exact triangle of

perfect complexes of T`-modules

RΓet,c(ZS,B`)→ RΓf ,Σ(Q,B`)→
⊕
v∈Σ′

RΓf (Qv,B`)⊕RΓ(R, B`). (3.3)

and a map of triangles of perfect complexes of B`-modules

RΓet,c(ZS, B`) −−−→ RΓf ,Σ(Q, B`) −−−→
⊕
v∈Σ′

RΓf (Qv, B`)⊕RΓ(R, B`)y y y
RΓet,c(ZS, B`) −−−→ RΓf (Q, B`) −−−→

⊕
v∈Sbad∪{`}

RΓf (Qv, B`)⊕RΓ(R, B`),

(3.4)

where the upper row is (3.3) tensored with Q`.

If ω is a T -basis of detT (tB) and h a T -basis of detT B
+
B , then h−1 ⊗ ω

is a T -basis of ∆(B). If b is any other T -basis of ∆(B) we denote by b ·

h ⊗ ω−1 the unique scalar λ ∈ T× so that b = λ · h−1 ⊗ ω. Denote by

W∨ = Homcont(W,Q`/Z`) the Pontryagin dual of a profinite or discrete Z`-

module W .

Lemma 3.1.1. Let ω be T -basis of detT (tB) that is also a T`-basis of the T`-

lattice detT`
(B`-crys/Fil0 B`-crys), and let h be a T -basis of detT B

+
B that is also
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a T`-basis of detT`
(B+

` ). Put

LΣ(B, 0) = L(B, 0)
∏
v∈Σ

Lv(B, 0)−1

and

bΣ(B) = LΣ(B, 0)−1c+(B).

For any prime ` /∈ SI the Burns-Flach conjecture 1.4.1 is equivalent to the

identity

T` · bΣ(B) · h⊗ ω−1 = #H1
Σ(Q, A`/A`)

∨, (3.5)

where #W denotes the Fitting ideal of a finite T`-module W of finite projective

dimension (i.e., the class of W in the relative algebraic K-group K0(T`,Q`) ∼=

T×` /T
×
` ).

Proof. Noting that the vertical maps in (3.4) are quasi-isomorphisms we obtain
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a commutative diagram of isomorphisms of (graded) invertible T`-modules

DetT`
RΓet,c(ZS, B`) DetT`

RΓet,c(ZS, B`)y y
DetT`

RΓf (Q, B`)⊗⊗
v∈Sbad∪{`}

Det−1
T`
RΓf (Qv, B`)⊗

Det−1
T`
RΓ(R, B`)

α−−−→

DetT`
RΓf ,Σ(Q, B`)⊗⊗

v∈Σ′

Det−1
T`
RΓf (Qv, B`)⊗

Det−1
T`
RΓ(R, B`)

β

y y
DetT`

(Q` ⊗Q tB)

⊗Det−1
T`

(Q` ⊗Q B
+
B)

∏
v∈Σ

Lv(B,0)

−−−−−−−→
DetT`

(Q` ⊗Q tB)

⊗Det−1
T`

(Q` ⊗Q B
+
B)

(3.6)

where the left hand vertical map is ϑ` and all unspecified tensor product are

over T`. The factor Lv(B, 0) appears because for v ∈ Σ the isomorphism

DetT`
RΓf (Qv, B`) ∼= T` (3.7)

given in (1.4) (which is used for β) differs from the isomorphism (3.7) induced

by the quasi-isomorphism RΓf (Qv, B`)→ 0 (which is used for α) by precisely

this factor (see [B-F2, Lemma 1]). So conjecture 1.4.1 is equivalent to

∏
v∈Σ

Lv(B, 0)ϑ`(DetT`
RΓet,c(ZS,B`)) = T` · bΣ(B) = T` · LΣ(B, 0)−1c+(B).
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Using the commutativity of (3.6) together with (3.3) this is equivalent to

DetT`
RΓf ,Σ(Q,B`)⊗Det−1

T`
RΓf (Q`,B`)⊗Det−1

T`
RΓ(R,B`) = T` · bΣ(B)

or

DetT`
RΓf ,Σ(Q,B`) = T` · bΣ(B) · h⊗ ω−1.

It remains to compute the cohomology of RΓf ,Σ(Q,B`) and this can be done

along the lines of [B-F1, (1.35)-(1.37)]. We have

H0
f ,Σ(Q,B`) = H0(Q,B`) = 0,

where the last equality holds as Mf,λ is absolutely irreducible and not isomor-

phic to Mf,λ(1) for λ | ` a place of Kf . We also have

H3
f ,Σ(Q,B`) ∼= H0(Q, A`/A`)

∨ = 0,

where the last equality is equivalent to the assumption on ` that Mf,λ/λMf,λ is

absolutely irreducible when restricted to GQ
(√

(−1)(`−1)/2`
). Moreover we know

H1
f ,Σ(Q, B`) = H1

f (Q, B`) = 0 and hence H1
f ,Σ(Q,B`) = H0(Q, B`/B`) = 0

since ` /∈ SI . Finally using Tate-Poitou duality, we have an exact sequence

0→ H2
f ,Σ(Q,B`)

∨ → H1(ZS, A`/A`)→
⊕
v∈Σ′

H1(Qv, A`/A`)

H1
f (Qv, A`/A`)

,
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which identifies H2
f ,Σ(Q,B`) with H1

Σ(Q, A`/A`)
∨.

3.2 Reduction to a concrete problem

From now on we shall focus on our case of M = H1(X0(N)) with N prime,

since we can not prove the conjecture in its full generality. We recall the

restriction on `: ` 6∈ SI , which enable us to use many facts in [D-F-G2]. We

note that the reformulation in the previous section is valid.

Let T` =
∏

m Tm be the decomposition of T` into complete local O`-

algebras, where m runs through all maximal ideals of T containing `. For

each m we denote by RΣ
m the universal deformation ring attached to the Galois

representation Mf,λ/λMf,λ over the finite field Tm/m of type Σ, where f is a

newform associated to the maximal ideal m of T (that is, m is the kernel of the

algebra homomorphism T→ C, t 7→ a1(t(f))) and λ is the place of Kf whose

valuation ring contains m ∩Kf . Note Mf,λ is short crystalline as ` - 2N . Put

RΣ
` =

∏
mR

Σ
m, so that there is a natural surjection RΣ

` → T` that comes from

the surjection RΣ
m → Tm for all m.

We know by equality (2.1) that there is a canonical isomorphism of T`-

modules

HomT`
(ΩRΣ

` /Z`
⊗RΣ

`
T`, T`/T`) ∼= H1

Σ(Q, A`/A`).

The powerful method of Diamond-Taylor-Wiles that is implemented in [D-F-G2,

§7.2 and §7.3] leads to the fact RΣ
m is a local complete intersection over Tm. So
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for each m there is an integer rm and power series g1, ..., grm ∈ Z`[[X1, ...Xrm ]]

such that

RΣ
m
∼= Z`[[X1, ...Xrm ]]/(g1, ..., grm).

In particular,

ΩRΣ
` /Z`
⊗RΣ

`
T`

is a finite T`-module of finite projective dimension whose Fitting ideal is gen-

erated by the element

∆Σ = π

(
det

(
∂gi
∂Xj

)
1≤i,j≤rm

)
m

,

where π :
∏

m Z`[[X1, ...Xrm ]]→
∏

mR
Σ
m = RΣ

` →
∏

m Tm = T` is the composite

ring homomorphism.

Assuming that T` is Gorenstein we have

H1
Σ(Q, A`/A`)

∨ ∼= ΩRΣ
` /Z`
⊗RΣ

`
T`

so that we need to show

T` · bΣ(B) · h⊗ ω−1 = T` ·∆Σ.

The restriction on ` at the beginning of this chapter ensure us to use the

explanation in [D-F-G2, §8.2] so that we know the element bΣ(B) is uniquely
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determined by the scalar λ(bΣ(B)) ∈ T× such that

< f, bΣ(B)(f ⊗ (2πi)2)⊗ ι2 >= λ(bΣ(B)) · bdr ⊗ ι1

and similarly for h⊗ ω−1. Hence we have

bΣ(B) · h⊗ ω−1 =
λ(bΣ(B))

λ(h⊗ ω−1)
.

Note that we are only interested in λ(bΣ(B)) up to factors in T×` , hence we

can forget the factor ik−η((k − 2)!)2/2 occurring in Theorem 8.5. This factor

is the same for all f ∈ I hence lies in the diagonally embedded Z×` ⊂ T×` .

In our case of M = H1(X0(N)) with N prime, we can take Σ = ∅ because

we have

Lemma 3.2.1. RΓf (Qv,B`) is T`-perfect for all v - `.

Proof. This is clear if v - N as then M` is unramified due to the good reduction

of X0(N) at primes other than N .

Now suppose v = N . Then then action of Iv on the M` is unipotent and
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T`-equivariant but nontrivial on any constituent of M`. Then

BIN
` = HomT`

(M`,M`(1))
IN

= {

 a b

c −a

 ∈M2(T`) |

 a b

c −a


 1 φ(σ)

0 1

 =

 1 φ(σ)

0 1


 a b

c −a

}

= {

 a b

c −a

 ∈M2(T`) | φ(σ)a = 0, φ(σ)c = 0}

= {

 0 b

0 0

 ∈M2(T`)},

where σ runs through IN , acting on M` by

 1 φ(σ)

0 1

. Hence BIN
` is a free T`

module.

We also know that Mf,λ for f ∈ I is minimally ramified at all maximal

ideals of OKf
not containing `. From now on, we replace Σ by ∅ or do not

write it at all. By the results of Chapter 7 of [D-F-G2] the map R∅` → T` is

an isomorphism.

Now let us look at Theorem 1.3.1 for each f ∈ I. We have k = 2, η = 0.

Moreover, the character ψ for f is trivial so we can forget the degenerated

Dirichlet motive Mψ−1 = Kf . There is no exceptional primes as we know an

exceptional prime p must be N since p must divide the level prime number N .

However, [Hi3, Theorem 4.2.4] says that decomposition group at p acting on

Mf,λ for a prime λ | ` in Kf is equivalent to a diagonal representation:

σ 7→

η(σ)χ`(σ) ∗

0 η(σ),
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where χ` : GQ → Z×` is the `-adic cyclotomic character and η is an unramified

character. Hence the dimension of M
Ip
f,λ is not zero so p is not exceptional.

ε(Mf ) equals ±N whereas ε(Af ) = N2. The sign of ε(Mf ) depends on f .

It coincides, however, with the eigenvalue of the endomorphism of J0(N) on

f induced by the conjugation on Γ0(N) by wN = ( 0 −1
N 0 ) . Hence the tuple of

ε(Mf ) for f ∈ I is an element of T× by [Ri, Corollary 3.3]. So we can forget all

factors in Theorem 1.3.1, where we have trivial character ψ and no exceptional

primes, in the sense that λ(b(B)) ∈ T×` .

In order to make further progress, we also fix a number fieldK large enough

to contain all complex embeddings of all fields Kf for f ∈ I and replace M

by M ⊗K, T by T ⊗Q K ∼=
∏

IT
K, T by T ⊗Z O and A by A ⊗K. Here O

denotes the ring of integers of K. Then we have T` = T` ∩ (T` ⊗Z`
O`). By

Theorem 4.1 and Lemma 11 of [B-F3] Burns-Flach conjecture for this scalar

extended motive implies the one for the original motive.

Now we analyze λ(h ⊗ ω−1). The invertible T`-module detT`
(B+

` ) can be

analyzed as in [D-F-G2, §8.2] and we find that the isomorphism detT B
+
B
∼=

T (2)B can be chosen to induce an isomorphism detT`
(B+

` ) ∼= T`(2) under which

h maps to (2πi)2. The isomorphism of [D-F-G2, equation (43)]

det
T
tB ∼= HomT (Fil1MdR,MdR/Fil1)⊗Q Q(2)dR
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likewise induces an isomorphism

detT`
(B`-crys/Fil0 B`-crys) ∼= HomT`

(Fil1 M`-crys,M`-crys/Fil1)⊗Z`
Z(2)`-crys.

Hence we can view ω ⊗ ι2 as a basis of HomT`
(Fil1 M`-crys,M`-crys/Fil1).

Now note that the pairing <,> is induced by a perfect (Poincare duality)

pairing on M. In particular it induces isomorphisms of free rank 1 T`-modules

M`
∼= HomO`

(M`,O`)

(see the axioms in [D-F-G2, §7.2]) and

M`-crys
∼= HomO`

(M`-crys,O`).

Note that T` is a finite flat Gorenstein O`-algebra contained in the maximal

O`-order ∏
IT

O`

of T`. By definition λ(h ⊗ ω−1) is the element (λτ )τ∈IT
of this product given

by

< f τ , (h⊗ ω−1)(f τ ⊗ (2πi)2)⊗ ι2 >=< f τ , (ω ⊗ ι2)(f τ ) >= λτ · bdR ⊗ ι,

where we view τ as an embedding Kf → K.
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3.3 Differ by a unit in T`

At this point we have nearly reduced the problem to an algebraic one. We are

given

• A local complete intersection R∅`
∼= T` finite flat over O` so that T` ⊗Z`

Q`
∼=
∏

IT
K`.

• A free T`-module M`-crys of rank two with a perfect O`-linear T`-balanced

alternating pairing <,>. M`-crys contains a totally isotropic free rank 1

T`-submodule Fil1 M`-crys so that M`-crys/Fil1 is also T`-free. Hence we

can pick a T`-isomorphism ω : Fil1 M`-crys →M`-crys/Fil1.

• For each τ ∈ IT we are given a O`-generator f τ of

{x ∈ Fil1 M`-crys|tx = πτ (t)x}

(the πτ -eigenspace) where πτ : T` → O` is the O`-algebra homomorphism

given by projection onto the component indexed by τ ∈ IT .

• Some knowledge of the modular forms, especially that all f τ are new-

forms, i.e., having first Fourier coefficient equal to 1.

The final problem: Show that the elements

(
< f τ , ω(f τ ) >

)
τ
∈
∏
IT

O`
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and

∆∅ ∈ T` ⊂
∏
IT

O`

differ by an element in T×` (in particular this implies that
(
< f τ , ω(f τ ) >

)
τ

lies in T`). Note that this problem does not depend on the choice of ω. Any

other choice is of the form λω with λ ∈ T×` and we have

< f τ , λω(f τ ) >=< f τ , ω(λ·f τ ) >=< f τ , ω(πτ (λ)f τ ) >= πτ (λ) < f τ , ω(f τ ) > .

Hence we only change the element
(
< f τ , ω(f τ ) >

)
τ

by λ ∈ T×` .

In any case, the problem is now sufficiently concrete. We exploit the fact

that T`, being a complete intersection over O` , is Gorenstein. In particular one

can choose a Gorenstein trace φ : T` → O`, i.e., a T`-basis of HomO`
(T`,O`).

This choice induces an isomorphism

HomO`
(M`-crys,O`) ∼= HomT`

(M`-crys,T`),

in other words there is a unique T`-bilinear pairing << −,− >> on M`-crys so

that φ(<< x, y >>) =< x, y >. Since πτ are O`-linear there are also unique

elements eτ ∈ T` so that πτ (x) = φ(eτ · x) for all x ∈ T`.

Proof of the final problem:

Since φ is a T`-basis of HomO`
(T`,O`), we can define a T`-isomorphism

γ : HomO`
(T`,O`)→ T` so that tφ 7→ t for t ∈ T`.
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From [M-R, Appendix A.13], we know that there exists some element µ in

T×` so that the first of the following equalities holds.

(µ∆∅)φ = trT`/O`
=
∑
τ∈IT

πτ =
∑
τ∈IT

eτφ = (
∑
τ∈IT

eτ )φ,

where eτ = γ(πτ ). (The second equality can be explained if we realize that

trT`/O`
= trT`⊗K/K |T`

and T` ⊗K =
∏

IT
K). Since γ is an isomorphism, we

have

µ∆∅ =
∑
τ∈IT

eτ .

We have a T`-module isomorphism

κ : Fil1M`-crys = S2(Γ0(N),O`)→ HomO`
(T`,O`)

defined by κ(f) = (t 7→ (a1(Tf))). See [D-I, §12.3], [D-D-T, lemma 1.34 ] or

[Hi2, Theorem 3.17].

Proposition 3.3.1. κ−1(πτ ) = f τ .

Proof. : for all t ∈ T`,

t(κ−1(πτ )) = κ−1(t(πτ )) = κ−1(πτ (t)πτ ) = πτ (t)κ
−1(πτ ),
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where the middle equality is justified by

t(πτ )(x) = πτ (tx) = πτ (x)πτ (x) = (πτ (x)πτ )(x).

So k−1(πτ ) is in the πτ -eigenspace of Fil1 M`-crys, which is generated by f τ . So

k−1(πτ ) = cf τ for some c ∈ O`. Then

c = a1(cf
τ ) = a1(1 · (cf τ )) = κ(cf τ )(1) = πτ (1) = 1,

where in the first equality we use the fact that f τ is a newform, i.e., its first

Fourier coefficient is equal to 1. Other equalities are formal.

Now note the perfect pairing (Poincare duality) on M induces an isomor-

phism of free rank 1 T`-modules

β : M`-crys
∼= HomO`

(M`-crys,O`),

β(x)(y) = < x, y >,

where the T`-module structure of HomO`
(M`-crys,O`) is induced by that of

M`-crys. β is T`-linear as

β(tx)(y) =< tx, y >=< x, ty >= (tβ(x))y,
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where the central equality results from the fact that Hecke operators are self-

adjoint with respect to the pairing.

Define

α : HomT`
(M`-crys,T`)→ HomO`

(M`-crys,O`),

by α(f) = φ ◦ f . To see that α is an isomorphism, we assume that M`-crys =

T` ⊕ T` without loss of generality. Then we have commutative diagram:

HomT`
(M`-crys,T`) ∼= HomT`

(T`,T`)⊕ HomT`
(T`,T`)

↓ α ↓ α1 ⊕ α1

HomO`
(M`-crys,O`) ∼= HomO`

(T`,O`)⊕ HomO`
(T`,O`),

where α1(f) = φ ◦ f. Note that α1 = γ ◦ (f 7→ f(1)) is an isomorphism. Hence

so is α. More over, α is T`-linear.

Consider T`-isomorphism α−1 ◦β. It corresponds to the T`-bilinear pairing

<< −,− >> on M`-crys defined by << x, y >>= ((α−1 ◦ β)(x))(y). Then

φ(<< x, y >>) = (φ ◦ (α−1 ◦ β(x)))(y) = β(x)(y) =< x, y > .

Let Fil1 be a shorthand for Fil1 M`-crys. Since M`-crys/Fil1 is T` free, we

can pick a T`-submodule Comp of M`-crys so that M`-crys = Fil1⊕ Comp. We

identify M`-crys/Fil1 with Comp. Note that Fil1 and Comp are free rank 1

T`-modules.
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Proposition 3.3.2. << Fil1,Fil1 >>= 0

Proof. For all x, y ∈ Fil1,

πτ << x, y >>= φ(eτ << x, y >>) = φ << eτx, y >>=< eτx, y >= 0.

The last equality holds as Fil1 is a totally isotropic T`-submodule of M`-crys.

Since τ is arbitrary, << x, y >>= 0.

We have T`-isomorphism α−1β : M`-crys
∼= HomT`

(M`-crys,T`), or more

explicitly, α−1β : Fil1⊕ Comp ∼= HomT`
(M`-crys,T`)⊕HomT`

(Comp,T`.) Once

we choose a T`-base for each of the four free rank 1 T`-modules in the last

congruence, the matrix of α−1β is of the form

0 ∗

∗ ∗

 ,

where the upper left 0 is implied by the claim above. Since α−1β is an isomor-

phism, the above matrix is invertible. In particular, the lower left element of

the matrix must be a unit in T`. That is, if we let

θ = α−1β|Fil1→HomT`
(Comp, T`)

,

θ is a T`-isomorphism.
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By slight abuse of notation, let the same symbol α denote the map

HomT`
(Comp,T`)→ HomO`

(Comp,O`)

such that α(f) = φ ◦ f. As before, α is a T`-isomorphism. Let v = α ◦ θ :

Fil1 → HomO`
(Comp,O`), still a T`-isomorphism. Check that v(x)(y) = φ <<

x, y >>. On the other hand, fixing a T`-basis {b} for Comp thereafter, we can

define

v0 : Fil1 → HomO`
(Comp,O`)

by v0(f)(tb) = κ(f)(t). Since v0 and v are isomorphisms between free rank 1

T`-modules, we have v = εv0 for some ε ∈ T×` .

Since the desired result does not depend on the choice of ω, we will prove

the result by choosing a particular ω and showing that
(
< f τ , ω(f τ ) >

)
τ

and

µ∆∅ are actually equal for this choice. In fact, we choose ω : Fil1 → Comp

such that ω(x) = ((γκ(x))ε−1)b. It is seen that ω is a T`-isomorphism.

So

< f τ , ω(f τ ) >

= φ << f τ , ω(f τ ) >>

= v(f τ )(ω(f τ ))

= ((εv0)f
τ )(((γκ(f τ ))ε−1)b)

= κ(f τ )(ε(γκ(f τ ))ε−1)

= πτ (eτ ).
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Hence to prove that
(
< f τ , ω(f τ ) >

)
τ

and µ∆∅ are equal, is equivalent to

showing that for all τ ∈ IT ,

πτ (eτ ) = πτ (
∑
σ∈IT

eσ).

Now we prove the following proposition, thus ending the whole proof.

Proposition 3.3.3. πτ (eσ) = 0 for σ 6= τ .

Proof. Since eσ = γ(κ(fσ)), where γ and κ are T` linear, the fact that fσ is in

the πσ-eigenspace of Fil1 is translated to be that eσ is in the πσ-eigenspace of

T`. Choose some element t ∈ T` such that πσ(t) 6= πτ (t). Then teσ = πσ(t)eτ .

Apply πτ to both sides. As πτ is an algebra homomorphism, left side becomes

πτ (t)πτ (eσ). As πτ is O`-linear, the right side becomes πσ(t)πτ (eσ). Now

comparing both sides leads to the desired claim.
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Chapter 4

A non-trivial example

Remark 1.4.3 says that the exact extent to which the conjecture of Burns-Flach

is finer than that of Bloch-Kato in our case is measured by the group O×T`
/T×` .

To show that what we have proved is not vacuous, it is imperative that we

have a concrete example for which our proof of the conjecture of Burns-Flach

works and that this group is nontrivial.

We recall or introduce a few symbols first. T is the integral Hecke algebra

generated over Z by the Hecke operators on S2(Γ0(N)), the vector space of

cusp forms of weight 2, level prime number N and trivial character. Since N is

prime, S2(Γ0(N)) is generated by newforms as there is no forms in S2(Γ0(1)) =

S2(SL2(N)). T = T ⊗Z Q =
∏

f Kf , where f runs through non-conjugate

newforms in S2(Γ0(Z)) and where Kf is the field of definition of f . SI is the

set of prime number ` such that either:

• λ | 2N , or

• there exist a newform f and a prime λ | ` in Kf such that the two-

dimensional residual Galois representation Mf,λ/λMf,λ is not absolutely
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irreducible when restricted to GF , where Mf is the premotivic structure

associated to f defined in [D-F-G2, §5.4] and F = Q(
√

(−1)(`−1)/2`) and

λ | `.

We want to choose N and ` to satisfy

• condition 1: ` 6∈ SI , and

• condition 2: (T`)
× is a proper subgroup of O×T`

.

We set the first condition as we use the result of [D-F-G2, §8.2] to prove Burns-

Flach conjecture in our case while the second condition is the requirement of

non-trivial refinement.

Example: The above two conditions are satisfied for N = 89 and ` = 5.

S2(Γ0(89)) contains 7 (normalized) newforms, 5 of which are Galois conju-

gate to each other. Let f1, f2, f3 be three non-Galois-conjugate (normalized)

newforms in S2(Γ0(89)). We list in table 4.1 the eigenvalues of the first 15

Hecke operators acting on them, or equivalently, the first 15 coefficients of

their q-expansions, which can be found by [St3] or in [St1].

Now let us check condition 1. Suppose it is not satisfied. Since 5 - 2 · 89,

there is a prime λ | 5 in Sf where f = fi for some i ∈ 1, 2, 3 such that the

two-dimensional residual Galois representation Mf,λ/λMf,λ is not absolutely

irreducible when restricted to GF . By [D-F-G2, Lemma 7.14], the original

representation is not absolutely irreducible either. By the proof of [D-F-G2,
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Lemma 7.13] , we must have

ap(f) ≡ p+ 1 mod λ (4.1)

for all primes p ≡ 1 mod N. Choose p = 2 ∗ 89 + 1 = 179. Then p + 1 ≡ 0

mod λ. The following values of a179’s can be found the same way as above.

a179(f1) = 14 6≡ 0 mod λ

a179(f2) = 4 6≡ 0 mod λ

a179(f3) = (−4a4 + 4a3 + 32a2 − 16a− 42) 6≡ 0 mod λ.

The last inequality comes from the fact that the norm of a179(f3) is 413408,

which is not divisible by 5 and which is obtained by software package Pari as

follows:

?norm(Mod(-4*a^4+4*a^3+32*a^2-16*a-42,a^5+a^4-10*a^3-10*a^2+21*a+17))

\%1=413408

Hence, (4.1) is not true for any f . So condition 1 is satisfied.

Now let us check condition 2. By [A-S], the integral Hecke algebra T is

generated (as an abelian group) inside Q×Q×Q(a) by the operators Tn with

n ≤ 2 · 89/12 · (1 + 1/89) = 15, i.e., generated by the rows of table 4.1 (of

course not considering the first row and first column). By row operations, we
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n an(f1) an(f2) an(f3)
1 1 1 1
2 -1 1 a
3 -1 2 −a4/2 + a3/2 + 7a2/2− 5a/2− 4
4 -1 -1 a2 − 2
5 -1 -2 −a2 + 4
6 1 2 a4 − 3a3/2− 15a2/2 + 13a/2 + 17/2
7 -4 2 a4/2− 4a2 − a+ 13/2
8 3 -3 a3 − 4a
9 -2 1 a2 − a− 4
10 1 -2 −a3 + 4a
11 -2 -4 −a3 + 5a+ 2
12 1 -2 −3a4/2 + 3a3/2 + 19a2/2− 15/2a− 9
13 2 2 −a4 + a3 + 8a2 − 5a− 11
14 4 2 −a4/2 + a3 + 4a2 − 4a− 17/2
15 1 -4 a4/2− a3/2− 5a2/2 + 5a/2 + 1

Table 4.1: Hecke operator Tn on newforms in S2(Γ0(89))

Here a is a root of a5 + a4 − 10a3 − 10a2 + 21a+ 17 = 0.

find that T is also generated by 7 linearly-independent elements

(1, 0, 5)

(0, 1, −4)

(0, 0, (a4 + 1)/2− 1)

(0, 0, (a3 + a2 + a+ 1)/2 + 3)

(0, 0, a2 − 1)

(0, 0, a− 1)

(0, 0, 10)

in OT
∼= Z× Z× OKf3

. Note that {(a4 + 1)/2, (a3 + a2 + a + 1)/2, a2, a, 1} is

a Z-basis of OKf3
as shown by the following Pari session:
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? nfinit(a^5+a^4-10*a^3-10*a^2+21*a+17).zk

%1 = [1, a, a^2, 1/2*a^3 + 1/2*a^2 + 1/2*a + 1/2, 1/2*a^4 + 1/2]

The set of 7 elements above also generates T5 = T⊗Z Z5 as a Z5-module.

Since the unit (1, 1,−1) ∈ OT5 is not in T5, we have verified condition 2.

For completeness, let us determine the quotient O×T`
/T×` in this case.

As 2 is invertible in Z5, OKf3
,5 as a Z5-module is generated by {a4−1, a3−

1, a2 − 1, a − 1, 1}, or equivalently, by {b4, b3, b2, b, 1} with b = a − 1. The

ideal (5, b) in OKf3
,5 is generated by {b4, b3, b2, b, 5} as a Z5-module as b5 =

−6b4 − 4b3 + 24b2 + 20b − 20. Hence the map α : Z5/(5) → OKf3
,5/(5, b)

induced by the inclusion Z5 → OKf3
,5 is a ring isomorphism.

T5 is generated by (1, 0, 0), (0, 1, 1), (0, 0, 5), (0, 0, b), (0, 0, b2), (0, 0, b3),

and (0, 0, b4), while OT5 is generated by the same set except that (0, 0, 5) is

replaced by (0, 0, 1). So, T5 is exactly the elements (x1, x2, x3) in OT5 such that

α(x2) = x3. As OT5 is an integral extension of T5, T×5 = O×T5
∩T5. Hence, T×5 is

exactly the elements (x1, x2, x3) in O×T5
such that α(x2) = x3, or, equivalently,

the kernel of the homomorphism

O×T5
= Z×5 × Z×5 × O×Kf3

,5 → (Z5/5Z5)
×

(x1, x2, x3) 7→ x2 α
−1(x3).

Since this homomorphism is surjective, O×T5
/T×5

∼= (Z5/5Z5)
×. Its order, 4,

indicates that all we have done is a small refinement indeed. We wonder if
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there is an easier way to achieve it.
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Chapter 5

An isomorphism of two Selmer
groups

One type of Selmer groups is defined by Bloch and Kato and employed in their

conjecture while another type is given in [D-F-G2, §7.1] and reintroduced in

2.1. This chapter presents in proposition 5.3.4 an isomorphism between these

two types under some conditions, which can be viewed as a kind of global

version of the isomorphism in [D-F-G2, §7.1], whose statements and proofs are

followed quite closely here. The comparison of Selmer groups is considered

one of the first steps to understand these groups. In the course of proving

the isomorphism, we also obtain proposition 5.1.1 on the A-linear Fontaine-

Laffaille theory, where A is a commutative complete local noetherian ring finite

over Z`.

This chapter is independent of the other chapters except that proposition

5.1.1 is mentioned in §3.1.
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5.1 The theory of Fontaine and Laffaille

We introduce some of the theory of Fontaine and Laffaille in [F-L] in a way that

fits for later use. The main point here is to extend the coefficients of various

modules to A or A/`, where A is a commutative complete local noetherian

ring finite over Z`.

By common abuse of notation, we use the same symbol to denote an object

of a category or its image under a forgetful functor when it is clear which one

we refer to.

Let Z`-MF, or simply MF, denote the category whose object X is a finitely

generated Z`-module equipped with

• a decreasing filtration such that FilaX = X and FilbX = 0 for some

a, b ∈ Z, and for each i ∈ Z, FiliX is a Z`-module direct summand of X;

• Z`-linear maps φi : FiliX → X for i ∈ Z satisfying φi|Fili+1X = `φi+1 and

X =
∑

Imφi,

and whose morphisms are Z`-module homomorphisms respecting filtration and

commuting with φi for all i. MF is naturally a Z`-linear category. It follows

from [F-L, 1.8] that MF is an abelian category such that the forgetful functor

from it to the category of Z`-modules is exact.

For any subcategory C of MF, let C0 denote its full subcategory of objects

X satisfying Fil0X = X and Fil`X = 0 and having no non-trivial quotients

X ′ such that Fil`−1X ′ = X ′. Also, let MFtor denote its full subcategory of
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objects of finite length, i.e., objects that are torsion Z`-modules. It follows from

[F-L, 6.1] that MF0
tor is an abelian category, stable under taking subobjects,

quotients, finite direct products and extensions in MF.

Now we extends the coefficients to A or A`. Let A-MF denote the category

any of whose object is an object X in MF equipped with a ring homomorphism

A → EndMF(X), a 7→ aX for all a ∈ A, which becomes the structure map

Z` → EndMF(X) if composed with the natural map Z` → A, and whose

morphisms should be compatible with the extra structure, namely, for X and

X ′ in A-MF, a morphism f : X → X ′ in Z`-MF is also a morphism in A-MF

if and only if f · aX = aX′ · f for all a ∈ A. Explicitly, an object of A-MF is a

finitely generated A-module X equipped with

• a decreasing A-module filtration such that FilaX = X and FilbX = 0 for

some a, b ∈ Z, and for each i ∈ Z, FiliX is a Z`-module direct summand

of X;

• A-linear maps φi = φiX : FiliX → X for i ∈ Z satisfying φi|Fili+1X =

`φi+1 and X =
∑

Imφi,

and a morphism is an A-module homomorphism respecting filtration and com-

muting with φi for all i.

Substituting A/` for A in the previous paragraph, we obtain the cate-

gory A/`-MF. A-MF0 and A/`-MF0 are the full subcategories of A-MF and

A/`-MF respectively whose objects are actually in MF0.

We note that the description of an object in A-MF is the same as the
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description of an object in Z`-MF with Z` replaced by A everywhere with

one exception. The following proposition reveals that under a mild condition,

there is no exception. The proposition still holds with almost the same proof

even if A is not commutative. However, this is irrelevant to this article.

Proposition 5.1.1. Let X be an object of A-MF whose underlying module is

a free A-module. Then FiliX is in fact an A-module direct summand of (the

underlying module of) X and a free A-module for all i.

Proof. We do induction on the nontrivial filtration length n of X. If n = 0,

i.e., X = 0, it is trivial. Suppose it is true if the nontrivial filtration length is

less than n. Let X ∈ A-MF whose non-trivial filtration length is n. Shifting

the filtration indices if necessary, we can assume X = Fil0X ⊃ Fil1X · · · ⊃

Filn = 0.

We first deal with Fil1X. Let M be the matrix representation of φ0 with

respect to a basis of X over A. Since A is a local ring, using elementary row

and column operations, we know that there exist two invertible matrices Mα

and Mβ such that

MαMMβ =

I 0

0 M1

 ,

where I is the identity matrix and M1 is a square matrix whose entries are in

M, the maximal ideal of A. Let Mα and Mβ correspond to A-linear isomor-

phisms α and β respectively. We identify the domain of β with the codomain

of α in such a way that the bases for them coincide. Replacing FiliX by
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β−1(FiliX) and φi by α ◦ φi ◦ β for all i, we can assume from now on that M

has the block diagonal form of the right hand side of above equality.

LetX = X0⊕X1 such that it corresponds to the block form ofM . Consider

x ∈ N = X0 ∩ Fil1X. Then x = φ0(x) = `φ1(x). Since X0 and Fil1X are Z`-

module direct summands of X, φ1(x) ∈ N . So x ∈ `N, i.e., N ⊂ `N. Note

that ` ∈M. By Nakayama’s lemma, N = 0. Hence,

rankZ`
X0 + rankZ`

Fil1X = rankZ`
(X0 + Fil1X) ≤ rankZ`

X. (5.1)

We have X =
∑

i≥0 Imφi. Then

X1 =
Imφ0

X0

+
X0 +

∑
i≥1 Imφi

X0

.

Note that Imφ0/X0 = φ0(X1) ⊂MX1. By Nakayama’s lemma,

X = X0 +
∑

i≥1Imφ
i. (5.2)

So we have the first inequality of the following:

rankZ`
X ≤ rankZ`

X0 + rankZ`

∑
i≥1 Imφi

= rankZ`
X0 + rankZ`

Imφ1

≤ rankZ`
X0 + rankZ`

Fil1X,

(5.3)

where the second equality is ensured by the fact that φi|Fili+1X = `φi+1 for all
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i.

Combining (5.1) with (5.3), we see that all inequalities must be equalities

and hence,

rankZ`
X = rankZ`

X0 + rankZ`
Fil1X, (5.4)

which leads to equality:

dimF`

X

`X
= dimF`

X0

`X0

+ dimF`

Fil1X

`Fil1X
, (5.5)

where we can naturally identify each quotient on the right hand side with an

F`-vector subspace of the quotient on the left hand side as X0 and Fil1X are

Z`-module direct summands of X.

The intersection of those two quotients on the right is zero. To prove this

claim, let us take an arbitrary element in the intersection, which is x0 + `X

for some x0 ∈ X0 and x1 + `X for some x1 ∈ Fil1X. So x0 = x1 mod `X.

Applying the natural projection π : X → X0 to this congruence equality, we

have

x0 = π(x1) mod `X0,

because π(`X) ∩X0 = `X0. On the other hand,

π(x1) = φ0(π(x1)) = πφ0(x1) = π`φ1(x1) ∈ π(X) ∩ `X = `X0.

So x0 = 0 mod `X0 and the claim is established. Then from (5.5), we see
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that

X

`X
=

X0

`X0

+
Fil1X

`Fil1X
.

Nakayama’s lemma tells us that X = X0 + Fil1X. Then by (5.4), we must

have X = X0 ⊕ Fil1X. So Fil1X is an A-module direct summand of X. Since

a projective module over a local ring is free, Fil1X is a free A-module. So the

desired conclusion is true for Fil1X.

(5.2) and the first inequality in (5.3), where all inequalities are actually

equalities as shown before, imply that X = X0 ⊕
∑

i≥1 Imφi. Thus being a

projective module over a local ring,
∑

i≥1 Imφi is a free A-module. It has the

same rank over A as Fil1X as shown by the last (in)equality in (5.3). Let γ

be an A-linear isomorphism from
∑

i≥1 Imφi to Fil1X.

Construct an object Y of A-MF from X as follows. Y is Fil1X equipped

with extra structure:

• FiliY = Fil1X for all i ≤ 1, FiliY = FiliX for all i ≥ 1,

• φi−1
Y = `φiY for all i ≤ 1, φiY = γ ◦ φiX for all i ≥ 1.

Then Y is an object of A-MF whose nontrivial filtration length is less than n.

By induction assumption, FiliY is an A-module direct summand of Fil1Y and

a free A-module for all i. In other words, FiliX is an A-module direct summand

of Fil1X and a free A-module for all i ≥ 1. Since Fil1X is an A-module direct

summand of X, FiliX is an A-module direct summand of X. So the desired

conclusion for FiliX is true if i ≥ 1, while it is trivially true if i ≤ 0. Thus we
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conclude our induction.

Let Z`-GR, or simply GR, be the full subcategory of Z`G`-modules whose

objects are isomorphic to quotients of the form L1/L2, where L2 ⊂ L1 are

finitely generated G`-stable Z`-submodules in short crystalline representations.

In the same way as we define A-MF and A/`-MF from MF, we define category

A-GR and category A/`-GR from GR.

The category MF0
tor is Z`-linearly equivalent, via the functor, also men-

tioned at §1.2,

X 7→ V(X) := hom(US(X),Q`/Z`),

to FR, where US(X) = hom(some appropriate category)(X,Acrys,` ⊗Z`
Q`/Z`), and

FR, already introduced in §2.1, is the full subcategory of GR of objects of

finite length [F-L, 6.1]. Extend V to a fully faithful functor on MF0 by setting

V(X) = proj lim V(X/`nX). Then V defines an equivalence between MF0

and GR. By functoriality, the functor V also defines an A-linear equivalence

between A/`-MF0 and A/`-GR and between A-MF0 and A-GR.

We know GR and FR are abelian categories. Note that we can describe

A-GR (resp. A/`-GR) as the full subcategory of the abelian category of

finitely–generated–over–Z` AG`-modules, consisting of objects that fall into

GR (resp. FR) under the exact forgetful functor to the abelian category of

finitely–generated–over–Z` Z`G`-modules. (The condition of being finite Z`-

modules is to guarantee that the categories are abelian so that the argument
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right below would work. Note that the modules here are, by the conven-

tion throughout this article, modules with continuous G` action on its Z`-adic

topology.) Therefore A-GR and A/`-GR are abelian categories. By equivalence

of categories, so are A/`-MF0 and A-MF0.

Note that the forgetful functor from A/`-GR to GR is exact. By equivalence

of categories, the forgetful functor from A/`-MF0 to MF0 is exact. Hence, the

forgetful functor from A/`-MF0 to the category of A-modules is exact. The

same arguments exist for A-MF0.

In a word, A-MF0, A/`-MF0, A-GR and A/`-GR are A-linear abelian cate-

gories such that the forgetful functors from them to the category of A-modules

are exact.

Now we state a proposition that applies to V. We know that V, as a functor

on MF0, preserves the lengths of underlying Z`-modules. For any A-module,

its length as a Z`-module is [k : F`] times its length as an A-module, where

k is the residue field of A. So V, as a functor on A-MF0, also preserves the

lengths of underlying A-modules.

Proposition 5.1.2. Let A be a commutative complete local noetherian ring.

Suppose we are given two A-linear abelian categories such that there exist exact

forgetful functors from them to the category of A-modules, where the A-module

structure of an object is provided by its original A-linear structure. Then an

equivalence between them that preserves lengths of the underlying A-modules

also preserves the freeness and ranks of the underlying A-modules (of objects
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whose underlying A-modules are free).

Proof. Let Θ : E → F be the equivalence in the proposition and M be the

maximal ideal of A. Suppose Θ(E) = F , where F is a free A-module of rank

r.

For any ideal I of A generated by a1, · · · , an, we have an exact sequence

in the category of A-modules:

En β→ E → E/IE → 0,

where β((x1, · · · , xn)) =
∑
aixi, xi ∈ E. β is, in fact, in E because E is an

A-linear abelian category. The exact forgetful functors of E to the category of

A-modules ensures that E/IE, the cokernel of β in the category of A-modules,

must be (the underlying A-module of) the cokernel of β in E. So we can view

the above sequence as exact in E. Applying Θ, we get an exact sequence in

F :

F n Θ(β)→ F → Θ(E/IE)→ 0,

where Θ(β) has the same definition as β. Since the cokernel of F n Θ(β)→ F in

F is F/IF for the same reason as above, we obtain that Θ(E/IE) ∼= F/IF.

Hence as A-modules,

length(E/IE) = length(Θ(E/IE)) = length(F/IF ) = r · length(A/I), (5.6)
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where lengths might be infinity.

Let M take the place of I. Then (5.6) becomes

dimA/M(E/ME) = dimA/M(F/MF ) = r.

By Nakayama’s lemma, we have a surjection of A-modules: Ar → E, which is

completed to an exact sequence:

0→ K → Ar → E → 0.

Tensoring it with A/Mk over A for an integer k, we get an exact sequence

K ⊗A A/Mk → (A/Mk)r → E/MkE → 0.

So we have

length( image of K ⊗A A/Mk) = r · length(A/Mk)− length(E/MkE).

One can show that length(A/Mk) is finite by induction as A is noetherian.

Hence, (5.6) says that the right hand side of the above equality is 0. Then

K ∈Mk ·Ar. Let k goes to infinity, we see that K = 0 as A is complete with

respect to M. So Ar ∼= E.

Remark 5.1.3. All propositions still holds if we change A to be a finite product

of commutative complete noetherian local rings finite free over Z`, or, what is
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exactly the same, a commutative semi-local ring finite free over Z`. This can

be seen by decomposing into or taking product over components indexed by the

Wedderburn factors of A for various concepts.

5.2 Notation

We continue to use the notation of §2.1. Fix an odd prime `, a commutative

complete local ring A finite free over Z` , a continuous AGQ-module L free of

rank two over A and W = End0
A(L)⊗Z`

Q`/Z`, where the superscript 0 means

endomorphisms of trace 0. Let T=End0
A(L), B = A ⊗Z`

Q`, V1 = L ⊗Z`
Q`,

and V = T ⊗Z`
Q` = End0

B(V1). So we have an exact sequence

0→ T → V → W → 0. (5.7)

We assume that V1 is a short crystalline representation of G`, where the mean-

ing of short is defined in §2.1.

Bloch and Kato define a divisible B-submodule H1
f (Gp,W ) ⊂ H1(Gp,W )

for each p. Explicitly,

H1
f (Gp, V ) :=


ker(H1(Gp, V )→ H1(Ip, V )) = H1(GFp , V

Ip) for p 6= `,

ker(H1(G`, V )→ H1(G`, Bcrys ⊗Q`
V )) for p = `,

whereBcrys is the ringBcrys,` defined by Fontaine [F-P2, I.2.1]. ThenH1
f (Gp,W )
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is the image of H1
f (Gp, V ) under the natural map. Their Selmer group

H1
f (GQ,W ) ⊂ H1(GQ,W )

is the A-submodule of elements with restrictions in H1
f (Gp,W ) for all primes

p.

5.3 The isomorphism of two Selmer groups

We first prepare two isomorphisms in the next two propositions.

Proposition 5.3.1. Let p 6= ` and suppose W Ip is divisible. Then

H1
f (Gp,W ) = H1

f (Gp,W ),

where H1
f (Gp,W ) is defined in §2.1.

Proof. We have a long exact sequence:

0→ T Ip → V Ip → W Ip δ→ H1(Ip, T )→ · · · .

Im(δ) is divisible as so is W Ip . But H1(Ip, T ) has no nontrivial `-divisible

subgroups by [N-S-W, Proposition 2.3.7]. So Im(δ) = 0. Replacing H1(Ip, T )

by 0 in the above sequence, we have a short exact sequence of Gp/Ip = GFp-
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modules, which induces a long exact sequence:

· · · → H1(GFp , V
Ip)

α→ H1(GFp ,W
Ip)

β→ H2(GFp , T )→ · · ·

What we want to prove is none other than that α is surjective. So it suffices

to show H2(GFp , T ) = 0. We have

H2(GFp , T ) = lim
←−

H2(GFp , T/`
nT ) = 0.

The first equality holds by [N-S-W, Corollary 2.3.5] and the second by Propo-

sition 1.6.13(ii) of loc. cit.

Proposition 5.3.2. H1
f (G`,W ) = H1

f (G`,W ) is divisible of Z`-corank

d = dimQ`
H0(G`, V ) + dimQ`

V − dimQ`
Fil0Dcrys(V ).

Here Dcrys(V )= (Bcrys ⊗Q`
V )G` . The Z`-corank of a Z`-module M is the

rank of M∨/(M∨)tor over Z`, where M∨ = homZ`
(M,Q`/Z`).

Proof. First we show H1
f (G`,W ) ⊂ H1

f (G`,W ). Let α ∈ H1
f (G`,W ) be the

image of some class c̄ ∈ H1
f (G`, V ) represented by cocycle c ∈ Z1(G`, V ),

which corresponds to a BG`-module extension

0→ V → E → B → 0, (5.8)
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where B has trivial G` action and E = V ⊕ B with G` action g(v, b) =

(g(v) + bc(g), b). We construct a commutative diagram of exact rows

0 → V ⊗B V1 → E ⊗B V1 → B ⊗B V1 → 0

↓ push-out ↓ ↓

0 → V1 → E ′ → V1 → 0

↑ ↑ ↑

0 → L → L′ → L → 0

↓ ↓ ↓

0 → L/`nL → L′/`nL′ → L/`nL → 0

as follows. The first row, (5.8)⊗BV1, is exact as V1 is free over B. The

upper left vertical arrow is the evaluation map. Then we make the upper left

square a BG`-module push-out diagram and complete first two rows so that it

commutes and that the second row is exact. See [Ei, A3.26c]. We require that

the third row be exact and the arrows from it to the second row are natural

injections. Then L′ is a uniquely determined free A-module. The arrows to

the fourth row are natural projections. Then the fourth row is also exact. We

pick n large enough so that Im(c) ⊂ T ⊗Z`
`−nZ`/Z`. Then the map from c̄ to

α factors through the image of c in H1(G`,Wn). Call this image β.

(By the way, if we know E ′, we can get E by constructing the following
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commutative diagram with exact rows:

0 → V ⊕B → F → B · idV1 → 0

↓ ↓ (pull-back) ↓

0 → V ⊕B → homB(V1, E
′) → V ⊕B → 0,

where V ⊕B = EndB(V1). Then E = F/B.)

We have defined H1
f (G`,Wn) using the one-one correspondence between el-

ements of H1(G`,Wn) and Yoneda extensions of L/`nL by itself in the category

of Z`/`
nG`-modules. A long but routine check demonstrates that the fourth

row and β corresponds to each other under that correspondence. Hence, to

show α ∈ H1
f (G`,W ), it is enough to show β ∈ H1

f (G`,Wn), or equivalently by

definition, that E ′ is a short crystalline representation since L′ is a G`-stable

Q`-lattice in E ′. By the following lemma, we see that E ′ is crystalline if E is

crystalline, a fact which we will prove right after the proof of the lemma. Since

V1 is short, so is E ′.

Lemma 5.3.3. Crystalline representations (over Q) are stable under taking

finite direct sum, subobject, quotient object, internal homomorphism and tensor

product over B in the category of (finitely generated) BG`-modules.

Proof. We know that crystalline representations are stable under taking fi-

nite direct sum, subobject, quotient object, internal homomorphism and tensor

product in the category of Q`G`-modules. So they are also stable under taking

finite direct sum, subobject, quotient object in the category of BG`-modules
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as the forgetful functor from this category to the category of Q`G`-modules is

exact. The internal homomorphisms of two objects in the category of BG`-

modules is a subobject of the internal homomorphisms of these two object in

the category of Q`G`-modules. The tensor product of two objects in the cat-

egory of BG`-modules is a quotient object of the tensor product of these two

objects in the category of Q`G`-modules. Hence, crystalline representations

are also stable under taking internal homomorphism and tensor product in the

category of BG`-modules. Now the lemma is proved.

So V is also crystalline. We have a commutative diagram with exact rows:

0 → V → E → B → 0

↓ ↓ ↓

0 → Bcrys ⊗Qp V → Bcrys ⊗Qp E → Bcrys ⊗Qp B → 0,

which induces a commutative diagram of cohomology groups with exact rows:

0 → V G` → EG` → BG`
r→ H1(G`, V ) →

↓ ↓ ↓ ↓ s

0 → Dcrys(V ) → Dcrys(E) → Dcrys(B)
t→ H1(G`, Bcrys ⊗Q`

V ) →,
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where the third vertical arrow is just the identity map of B. So

dimQ`
(Dcrys(E)) = dimQ`

(Dcrys(V )) + dimQ`
(Dcrys(B))− dimQ`

(Im(t))

= dimQ`
V + dimQ`

B − dimQ`
(< t(1⊗Q`

1) >B−module)

= dimQ`
E − dimQ`

(< s(r(1)) >B−module)

Note that r(1) = c̄. By definition of H1
f (G`, V ), s(c̄) = 0. So E is crystalline.

The divisibility of H1
f (G`,W ) follows from its definition, and its Z`-corank

is equal to the dimQ`
H1

f (G`, V ), which is computed to be d in [B-K, §3.8.4]

or [F-P2, §3.3 of Chapter 3]. We explain why the corank is equal to the

dimQ`
H1

f (G`, V ). We have a commutative diagram

H1(G`, T )⊗Z`
Q`

∼= H1(G`, V )

↓ ↓

0 → H1(G`, T )⊗Z`
Q`/Z` → H1(G`,W ) → H2(G`, T )tor → 0

↑ ↑ ↑

0 → H1(G`, T )/`m → H1(G`, T/`
m) → H2(G`, T )[`m] → 0,

where the third row is exact and the second row, as the direct limit of the

third row, is also exact. The group H2(G`, T )tor is finite. See [N-S-W, §2.3.7-

to §2.3.10] for all non-trivial facts in the diagram. The first two rows show

H1(G`,W ) is nearly a co-lattice in H1(G`, V ) in a sense that can be made

clear and hence so is H1
f (G`,W ) in H1

f (G`, V ).
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To finish the whole proof, it suffices to prove that

dimF`
H1
f (G`,W )[`] ≤ d.

Recall that finite AG`-module W1 is defined by the exact sequence

0→ W1 → W
`→ W → 0,

which induces the exact sequence

0→ F` ⊗Z W
G` → H1(G`,W1)→ H1(G`,W )[`]→ 0.

Since H1
f (G`,W1) is the preimage of H1

f (G`,W ) of map H1(G`,W1) →

H1(G`,W ), we derive another exact sequence

0→ F` ⊗Z W
G` → H1

f (G`,W1)→ H1
f (G`,W )[`]→ 0.

So we have the first equality of the following:

dimF`
H1
f (G`,W )[`] = dimF`

H1
f (G`,W1)− dimF`

(F` ⊗Z`
WG`)

= dimF`
H1
f (G`,W1)− dimF`

WG`
1 + dimQ`

H0(G`, V ).

The second equality holds as once we write WG` ∼= (Q`/Z`)
m ⊕ U with U a

finite torsion Z`-module, then dimF`
(F` ⊗Z`

WG`) = dimF`
U/`U = dimF`

U [`],

dimF`
WG`

1 = dimF`
(`−1Z`/Z`)

m⊕U [`] = m+dimF`
U [`] and dimQ`

H0(G`, V ) =
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m. The last equality can be proved as in the following paragraph.

As H0(G`, V ) = H0(G`, T ) ⊗Z`
Q`, dimQ`

H0(G`, V ) = dimZ`
H0(G`, T ).

It is clear that dimZ`
H0(G`, T ) ≤ m. Suppose we are given wi ∈ WG` [`i]

corresponding to (1/`i, 0, · · · , 0; 0). Then wi = w′i ⊗ 1/`i for wi ∈ T. If j > i,

pj−iwj = wi. Hence, (w′j − w′i) ⊗ 1/`i = 0, i.e., w′j − w′i ∈ `iT . Hence limiw
′
i

converges to some element w in T . w is in TG` as action by G` is continuous

on T. Continuing in this way, we can construct m elements in TG` that are

Z`-linear independent. So dimZ`
H0(G`, T ) ≥ m. Hence the desired equality.

Therefore it suffices to prove that

dimF`
H1
f (G`,W1)− dimF`

H0(G`,W1) = dimQ`
V − dimQ`

Fil0Dcrys(V ). (5.9)

Choosing an object D in A-MF0 such that V(D) ∼= L ∈ A-GR. Proposition

5.1.2 shows that D is a free A-module. Proposition 5.1.1 tells further that

FiliD is an A-module direct summand of D and a free A-module for all i.

Let D/` be the cokernel of multiplication by ` on D. By the equivalence

of the categories, V(D/`) ∼= L/`L. We have FiliD/` = FiliD/(FiliD ∩ `D) =

FiliD/`FiliD, the latter equality ensured by the fact that FiliD is a Z`-module

direct summand of D.

We now construct the following exact sequence

0 → homA/`-MF(D/`,D/`) → homA/`,Fil(D/`,D/`)

1−φ→ homA/`(D/`,D/`)
π→ Ext1

A/`-MF(D/`,D/`) → 0,

(5.10)
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where Ext1 is the abelian group of Yoneda extensions in an abelian category

with enough objects, like push out, pull back, etc.

The first nonzero map is a part of the forgetful functor. Since each filtration

of D is an A-module direct summand of D, each filtration of D/` is also an A/`-

module direct summand of D/`. Hence we have FiliD/` = Di/i+1 ⊕ Fili+1D/`

for some choice of an A/`-module Di/i+1. Note that D/` = ⊕Di/i+1 and that

φi(Fili+1D/`) = 0. Define φ ∈ EndA/`(D/`) such that φ|Di/i+1
= φi. Then

φ(D/`) = ΣIm(φi) = D/`. So φ is an isomorphism as D/` has finite length

as Z`-modules. By abuse of notation, let φ also denote its adjoint action on

EndA/`(D/`) so that the second nonzero map is defined. Now we explain the

construction of π. For η ∈ homA/`(D/`,D/`) we define an extension Eη of D/`

by itself in A/`-MF with underlying A/`-module D/` ⊕D/`, filtration

FiliEη := FiliD/` ⊕ FiliD/`

and Frobenius map φi : FiliEη → Eη

φi(x, y) = (φi(x) + ηφi(y), φi(y)).

Then π(η) is the class of the Yoneda extension Eη in Ext1 . The verification

of the exactness of the sequence (5.10) is straightforward. (To show π is a

surjection, we use the fact that D/` is free over A/`, which is true as D is free

over A.)
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Here comes a small twist of proof. We can redo the proof from the very

beginning up to now with trivial modifications if we consider EndA(L) instead

of End0
A(L), i.e., consider T̃ = EndA(L), W̃ = T̃ ⊗ /Z`, and Ṽ = T̃ ⊗Z`

Q`, etc

while `, A, L,D are the same as before. Now we verify (5.10) implies (5.9).

H1
f (G`, W̃1) = {Yoneda extensions of L/` by itself in A/`-GR}

= {Yoneda extensions of D/` by itself in A/`-MF0}

= Ext1
A/`-MF(D/`,D/`)

H0(G`, W̃1) = (homA/`(L/`L, L/`L))G`

= homA/`G`
(L/`L, L/`L)

= homFR(A/`)(L/`L, L/`L)

= homA/`-MF(D/`,D/`)

dimQ`
Ṽ = dimQ`

homB(V1, V1)

= dimZ`
homA(L,L)

= dimZ`
homA(D,D)

= dimF`
homA/`(D/`,D/`)

The second last equality holds because L and D are free over A of the same
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rank by Proposition 5.1.2.

dimQ`
Fil0Dcrys(Ṽ ) = dimQ`

Fil0(Bcrys ⊗Q`
(Q` ⊗Z`

EndA(L))G`

= dimQ`
Fil0(Q` ⊗Z`

EndA(D))

= dimZ`
Fil0(EndA(D))

= dimZ`
homA,Fil(D,D)

= dimF`
homA/`,Fil(D/`,D/`)

The last equality holds as FiliD/` are free over A/` of the same rank as Fili D

over A.

The fourth equality from the bottom requires more explanation. One sees

from [F-L, 8.4] that for X ∈MF, the natural map of filtered Galois φ-modules

Bcrys ⊗Z`
X → Bcrys ⊗Z`

V(X)

is an isomorphism, which leads to isomorphism of filtered φ-modules:

Q` ⊗Z`
X → (Bcrys ⊗Z`

V(X))G` . (5.11)

So we need to show that V(EndA L) = EndA D, which can be proved by tracing

the definition of V. Note that EndA L is indeed an object of A-MF0.

So we have proved the equality H1
f (G`, W̃ ) = H1

f (G`, W̃ ) holds. If we

change W̃ back to W , the equality still holds as W̃ = W ⊕ (A ⊗Z`
Q`/Z`),

H1
f (G`,W ) ⊂ H1

f (G`,W ), H1
f (G`, A⊗Z`

Q`/Z`) ⊂ H1
f (G`, A⊗Z`

Q`/Z`), H
1
f (G`,
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W̃ ) = H1
f (G`,W ) ⊕ H1

f (G`, A ⊗Z`
Q`/Z`), and H1

f (G`, W̃ ) = H1
f (G`,W ) ⊕

H1
f (G`, A⊗Z`

Q`/Z`), where A is identified with the maps from L to itself that

are multiplication by elements of A.

Combining Propositions 5.3.1 and 5.3.2, we arrive at the following desired

equality .

Proposition 5.3.4. If W Ip is divisible for all p 6= `, then

H1
∅ (GQ,W ) = H1

f (GQ,W ).
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