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Abstract

In the last several years, significant progress has been made in modelling the Internet con-

gestion control using theories from convex optimization and feedback control. In this dis-

sertation, the equilibrium and dynamics of various congestion control schemes are rigor-

ously studied using these mathematical frameworks.

First, we study the dynamics of TCP/AQM systems. We demonstrate that the dynamics

of queue and average window in Reno/RED networks are determined predominantly by the

protocol stability, not by AIMD probing nor noise traffic. Our study shows that Reno/RED

becomes unstable when delay increases and more strikingly, when link capacity increases.

Therefore, TCP Reno is ill suited for the future high-speed network, which has motivated

the design of FAST TCP. Using a continuous-time model, we prove that FAST TCP is

globally stable without feedback delays and provide a sufficient condition for local stability

when feedback delays are present. We also introduce a discrete-time model for FAST TCP

that fully captures the effect ofself-clockingand derive the local stability condition for

general networks with feedback delays.

Second, the equilibrium properties (i.e., fairness, throughput, and capacity) of TCP/AQM

systems are studied using the utility maximization framework. We quantitatively capture

the variations in network throughput with changes in link capacity and allocation fairness.

We clarify the open conjecture of whether a fairer allocation isalwaysmore efficient. The

effects of changes in routing are studied using a joint optimization problem over both source

rates and their routes. We investigate whether minimal-cost routing with proper link costs

can solve this joint optimization problem in a distributed way. We also identify the tradeoff

between achievable utility and routing stability.

At the end, two other related projects are briefly described.
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Chapter 1

Introduction

1.1 Challenges of developing theories for the Internet

The Internet is a worldwide-interconnected computer network that transmits data by packet

switching based on the TCP/IP protocol suite. Originated from the NSFnet with a hand-

ful of nodes, it has undergone explosive growth during the last two decades. Today, it

connects hundreds of millions of machines, reaches billions of people, and forms a glob-

ally distributed information-exchanging system. With services provided by the Internet,

encyclopedic information on every subject can be easily searched and accessed, millions

of people from every corner of the world can interact with each other via e-mail and in-

stant messengers, and businesses can be conducted in new and more efficient ways. As the

most important innovation of the last century, the Internet has fundamentally changed our

lifestyle.

The huge success of the Internet is achieved with improving designs and enriching pro-

tocols. While keeping pace with the advances in communication technology and non-stop

demand for additional bandwidth and connectivity, the Internet continuously experiences

changes and updates in almost all aspects; see [165] for well-documented details. Now,

the Internet has evolved into a large-scale, heterogeneous, distributed system with com-

plexity unparalleled by any other engineering system. For example, its scale, measured by

the number of connected hosts, has grown from two thousand at the end of 1985 to over

three hundred million in 2005 with a growth rate of 80% per year. Its heterogeneity ex-

ists and increases at almost every layer. In the link layers, there are wired, wireless, fiber,
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and satellite links with bandwidths ranging from several Kbps to 10Gbps, and there are

propagation delays from nanoseconds to hundreds of milliseconds. Different networking

technologies such as Ethernet LANs, token ring, FDDI, ATM, and SONET are used simul-

taneously, while most of them did not even exist when the original Internet architecture

was conceived. In the application layer, new applications are continuously emerging, such

as multi-player network gaming, World Wide Web, streaming multimedia, peer-to-peer file

sharing, etc. Accompanying this increasing complexity is the decentralizing control of the

Internet. With the decommissioning of the NSFnet in 1995, large commercial ISPs began

to build and operate their own backbones. The Internet topology and inter-domain routing

became much more complex and hard to understand while every ISP is driven by profit.

As an evolving complex system with unprecedented scale and great heterogeneity, the

Internet presents an immense challenge for networking researchers to model and analyze

how it works. The innovation and development of the Internet are the results of an engi-

neering design cycle largely based on intuitions, heuristics, simulations, and experiments.

Formulating theories for such a complex heuristic system afterwards seems infeasible at the

first glance, which is partly the reason why theories for the Internet are lagging far behind

of its applications. However, in recent years large steps have been taken to build rigor-

ous mathematical foundations of the Internet in several areas, such as Internet topology

[92, 93], routing [51, 135], congestion control [98, 138], etc.

Previous Internet research has been heavily based on measurements and simulations,

which have intrinsic limitations. For example, network measurements cannot tell us the ef-

fects of new protocols before their deployment. Simulations only work for small networks

with simple topology due to the constraints of the memory size and processor speed. We

cannot assume that a protocol that works in a small network will still perform well in the

Internet. Furthermore, it is easier to verify the correctness of a mathematical analysis than

to check the feasibility of protocols in large-scale complex networks.

A theoretical framework can greatly help us understand the advantages and shortcom-

ings of current Internet technologies and guide us to design new protocols for identified

problems and future networks. Papachristodoulou et al. [128] also argued that protocol

design should be based on rigorous repeatable methodologies and systematic evaluation
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frameworks. Design based on intuition can easily underestimate the importance of certain

system features and lead to a suboptimal solution, or even disastrous implementation. One

such example is the original design of HTTP protocol quoted from Floyd and Paxson [42]:

“The HTTP protocol used by the World Wide Web is a perfect example of a success

disaster. Had its designers envisioned it in use by the entire Internet, and had they

explored the corresponding consequences with analysis or simulation, they might have

significantly improved its design, which in turn could have led to a more smoothly

operating Internet today.”

In summary, developing theories for the Internet is very important and challenging,

as the design and analysis of protocols need rigorous frameworks. Recently, a unified

framework to study Internet congestion control has been proposed and will be described

in Section 2.3. We will study the equilibrium and dynamics of TCP systems based on this

framework.

1.2 Related work in congestion control

In recent years, large steps have been taken in bringing analytical models into Internet

congestion control. We survey some important work in this subsection.

The steady-state throughput of TCP Reno has been studied based on the stationary dis-

tribution of congestion windows, e.g., [38, 90, 122, 109]. These studies show that the TCP

throughput is inversely proportional to end-to-end delay and to the square root of packet

loss probability. Padhye et al. [124] refined the model to capture the fast retransmit mech-

anism and the time-out effect, and achieved a more accurate formula. This equilibrium

property of TCP Reno is used to define the notion ofTCP–friendlinessand motivates the

equation based congestion control TFRC [54].

Misra et al. [114, 115] proposed an ordinary differential equation model of the dynam-

ics of TCP Reno, which is derived by studying congestion window size with a stochastic

differential equation. This deterministic model treats the rate as fluid quantities (by assum-

ing that the packet is infinitely small) and ignores the randomness in packet level, in contrast

to the classical queueing theory approach, which relies on stochastic models. This model



4

has been quickly combined with feedback control theory to study the dynamics of TCP

systems, e.g., [60, 100], and to design stable AQM algorithms, e.g.,[8, 61, 82, 166, 133].

Similar flow models for other TCP schemes are also developed, e.g., [24, 101] for TCP

Vegas, and [69, 157] for FAST TCP. We will study the dynamics of TCP Reno and FAST

TCP with these models in Chapter 3 and 4.

The analysis and design of protocols for large-scale network have been made possible

with the optimization framework and the duality model. Kelly [77, 80] formulated the

bandwidth allocation problem as a utility maximization over source rates with capacity

constraints. A distributed algorithm is also provided by Kelly et al. [80] to globally solve

the penalty function form of this optimization problem. This algorithm is called the primal

algorithm where the sources adapt their rates dynamically, and the link prices are calculated

by a static function of arrival rates.

Low and Lapsley [97] proposed a gradient projection algorithm to solve its dual prob-

lem. It is shown that this algorithm globally converges to the exact solution of the original

optimization problem since there is no duality gap. This approach is called the dual algo-

rithm, where links adapt their prices dynamically, and the users’ source rates are determined

by a static function.

There is a large body of research in congestion control based on this utility maximiza-

tion framework. Local stability with feedback delay is studied for the primal algorithm in

[106, 71, 151]. For more results on global stability and stability of other algorithms, please

see [161, 134, 158, 127]. For discussion on implementation of such algorithms in the In-

ternet with ECN, see [6, 5, 89, 102, 125]. Mehyar et al. [112] analyzed converge regions

when there are price estimation errors. The extension of this framework into multi-cast and

multi-path routing is provided in [75, 74, 95]. The joint optimization over both routing and

source rates is studied in [78, 154].

Low [96] provided a duality model that leads to a unified framework to understand and

design TCP/AQM algorithms. This framework viewed the TCP source rates as primal vari-

ables and congestion measures as the dual variables, and interpreted the congestion control

as a distributed primal-dual algorithm over the Internet to solve the utility maximization

problem. The existing TCP/AQM protocols can be reverse-engineered to determine the
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underlying utility functions. The equilibrium properties of a TCP/AQM system, such as

throughput and fairness, can be readily understood by studying the corresponding opti-

mization problems with these utility functions. We can also start with a general utility

function and design TCP/AQM to achieve this utility, e.g., FAST TCP [69]. The details of

this duality model will be briefly covered Section 2.3.

The optimization framework can not be used in certain situations, e.g., networks with

heterogeneous protocols [147]. It is worth noting that there are some other approaches to

studying Internet congestion control. For example, non-cooperative game theory is used in

[164, 49, 4, 32], and stochastic models are used in [148, 9] with large number flows.

1.3 Summary of main results

The main results of this dissertation are summarized in this subsection. There are two fun-

damental topics in this thesis: equilibrium and dynamics. First, we are concerned with

the dynamics of existing TCP algorithms and examine in particular the local and global

stabilities of the postulated equilibria using feedback control theory. Second, we study the

equilibrium properties such as fairness, throughput, and routing using the utility optimiza-

tion framework. At the end of the dissertation, we briefly describe two related projects:

equilibrium of heterogeneous protocols and characteristics of CHOKe. The existing opti-

mization framework is not applicable in these two cases, and new tools are introduced to

study them.

1.3.1 Dynamics and stability

Stability is an important property of congestion control systems. There is currently no

unified theory to understand the behavior of a distributed nonlinear feedback system with

delay when the system loses stability. It is therefore undesirable to let TCP/AQM systems

operate in an unstable regime, and unnecessary if stability can be maintained without sac-

rificing performance. In fact, instability can cause three problems. First, it increases jitters

in source rate and delay and can be detrimental to some applications. Second, it subjects
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short-duration connections, which are typically delay and loss sensitive, to unnecessary

delay and loss. Finally, it can lead to under-utilization of network links if queues jump

between empty and full. The studies of TCP Reno and FAST TCP are shown bellow.

1.3.1.1 Local stability of TCP/RED

TCP Reno and its variants are the only congestion control schemes deployed in the Internet.

It has been observed that TCP/RED may oscillate wildly, and it is difficult to reduce the

oscillation by tuning RED parameters [110, 26]. Although the AIMD strategy employed

by TCP Reno and noisy link traffic certainly contribute to the oscillation, we show that

their effects are small in comparison with protocol instability. We demonstrate that this

oscillation behavior of queue and average window is determined predominantly by the

instability of TCP Reno/RED.

We provide a general nonlinear model of Reno/RED systems, and study the local sta-

bility of Reno/RED with feedback delays. We also validate the model with simulations

and illustrate the stability region of TCP Reno–RED. It turns out that Reno/RED becomes

unstable when delay increases and more strikingly when network capacity increases! This

work is published in [99, 100] and will be presented in Chapter 3 of this dissertation.

1.3.1.2 Modelling and dynamics of FAST TCP

The oscillation persists in TCP/RED systems, even if we smooth out AIMD. Our research

suggests that Reno/RED is ill suited for future high-speed networks, which motivates the

design of new distributed algorithms for large bandwidth-delay product networks. The re-

cent development in optimization and control theory for Internet congestion control played

an important role in the design of new TCP algorithms. It provides a framework to un-

derstand and design protocols with the desired equilibrium and dynamic properties. FAST

TCP [69] is one of such algorithms that are designed based on this theoretical framework.

The modelling and dynamics of FAST TCP is studied in this dissertation. Based on

the existing continuous–time flow model, we prove that FAST TCP is globally stable for

arbitrary networks when there is no feedback delay. However, this model predicts insta-
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bility for homogeneous sources sharing a single link when feedback delay is large, while

experiments suggest otherwise. We conjecture that this inconsistence is partly due to the

self–clockingeffect, which is not captured by this model. A discrete–time model is intro-

duced to fully capture the effects. Using this discrete-time model, we derive a sufficient

condition for local asymptotic stability for general networks with feedback delay. The con-

dition says that local stability depends on delays only through their heterogeneity, which

implies in particular that FAST TCP is locally asymptotically stable when all sources have

the same delay no matter how large the delay is. We also prove global stability for a single

bottleneck link in the absence of feedback delay. The techniques developed in this work

are new and applicable to other protocols. These results have been published in [156, 157]

and will be presented in Chapter 4.

1.3.2 Equilibrium and performance

Recent studies have shown that any TCP congestion control algorithm can be interpreted

as carrying out a distributed primal-dual algorithm over the Internet to maximize aggregate

utility, and a user’s utility function is implicitly defined by its TCP algorithm [80, 97, 101,

96]. The equilibrium properties of TCP/AQM systems such as throughput, performance,

and fairness can be studied via the corresponding convex optimization problem.

1.3.2.1 Relations among throughput, fairness, and capacity

The relations among these equilibrium quantities are studied under the optimization frame-

work in this dissertation. More specifically, we try to answer whether a fair allocation is

always inefficient and whether increasing capacity always raises throughput. We are espe-

cially interested in a class of utility functions [116]

U(xi, α) =





(1− α)−1 x1−α
i if α 6= 1

log xi if α = 1
, (1.1)

whereα is a non-negative parameter. This utility function is special because it includes all

the previously considered allocation policies: maximum throughput (α = 0), proportional
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fairness (α = 1, achieved by TCP Vegas and FAST), minimum potential delay (α = 2,

approximately achieved by TCP Reno), and max–min fairness (α = ∞ ). The parameterα

can be interpreted as a quantitative measure of fairness [107, 16]. An allocation isfair if α

is large andefficientif aggregate throughput is large.

All examples in the literature suggest that a fair allocation is necessarily inefficient.

We derive explicit expressions for the changes in throughput when the parameterα or the

capacities change. We characterize exactly the tradeoff between fairness and throughput

in general networks. This characterization allows us both to produce the first counter-

example and trivially explain all the previous supporting examples. Surprisingly, the class

of networks in our counter-example is such that a fairer allocation isalwaysmore efficient.

In particular it implies that max–min fairness can achieve a higher aggregate throughput

than proportional fairness.

Intuitively, we might expect that increasing link capacities always raises aggregate

throughput. We show that not only can throughput be reduced when some link increases

its capacity, but more strikingly, it can also be reduced whenall links increase their ca-

pacities by the same amount. If all links increase their capacities proportionally, however,

throughput will indeed increase. These examples demonstrate the intricate interactions

among sources in a network setting that are missing in a single-link topology. This work is

published in [144, 146].

1.3.2.2 Joint utility optimization over TCP/IP

The previous subsection studies the effects of changes in fairness and link capacity. In this

section, we will study the effects of routing changes by investigating the joint utility maxi-

mization over source rates and their routes and try to understand the cross-layer interaction

of TCP-AQM, minimum-cost routing, and resources allocation.

Routing in the current Internet within an Autonomous System is computed by IP and

uses single-path, minimum-cost routing, which generally operates on a slower time scale

than TCP/AQM. The joint utility maximization over both source rates and their routes can
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be formulated as

max
R∈R

max
x≥0

∑
i

Ui(xi) s. t.Rx ≤ c, (1.2)

whereR is the set of all feasible single-path routing matrices. Its Lagrangian dual is

min
p≥0

∑
i

max
xi≥0

(
Ui(xi)− xi min

Ri∈Ri

∑

l

Rlipl

)
+

∑

l

clpl, (1.3)

whereRi denotes the set of available routes for sourcei. A striking feature of the associated

dual problem is that the maximization over routes takes the form of minimal-cost routing

with prices as link costs. This raises the question whether TCP/IP might turn out to be a

distributed primal-dual algorithm to solve this joint optimization with proper choice of link

costs.

We show that the primal problem (1.2) is NP-hard and in general can not be solved by

minimal-cost routing. When the congestion prices generated by TCP–AQM are used as

link costs, TCP/IP indeed solves the dual problem (1.3) if it converges to an equilibrium.

However, this utility optimization problem is non-convex, and a duality gap generally exits

between (1.2) and (1.3). Equilibrium of TCP/IP exists if and only if there is no such gap.

We also show that this gap can be described as the penalty for not splitting traffic across

multiple paths in single-path routing.

When such equilibrium exists, it is generally unstable under pure dynamic routing. It

can be stabilized by adding a static component to the link costs, but at the expense of a

reduced achievable utility in equilibrium. We demonstrate this inevitable tradeoff between

utility maximization and routing stability with a simple ring network. We also present

numerical results to validate this tradeoff in a general network topology. These results also

suggest that routing instability can reduce aggregate utility to less than that achievable by

pure static routing.

We show that if the link capacities are optimally provisioned, thenpure staticrouting

is enough to maximize utility even for general networks. Moreover single-path routing

achieves the same utility as multi-path routing at optimality. This work is presented in
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[153, 154].

1.3.3 Other related results

The following two projects are studied outside the optimization framework. We will briefly

describe the model, approach, and results in Chapter 7. See [147, 142, 155, 143, 145] for

details of these two projects.

1.3.3.1 Network equilibrium with heterogeneous protocols

An important assumption in the duality model is that all the TCP sources are homogeneous,

that means that they all adapt to the same type of congestion signals, e.g., loss probability

in TCP Reno and queueing delay in FAST [69]. During the incremental deployment of

new congestion control protocols such as FAST, there is an important and inevitable phase

where heterogeneous TCP algorithms reacting to different congestion signals coexist in the

same network. In this situation, the current optimization framework breaks down, and the

resulting equilibrium can no longer be interpreted as a solution to a utility maximization

problem. Characterizing the equilibrium of a general network with heterogeneous protocols

is substantially more difficult than in the homogeneous case.

We prove that, under mild assumptions, equilibrium still exists despite the lack of an

underlying optimization problem using the Nash theorem in game theory. In contrast to

the homogeneous protocol case with a unique equilibrium, there can be uncountably many

equilibria with heterogeneous protocols as illustrated by our examples. However, we can

also show that almost all networks have finitely many equilibria, and they are necessarily

locally unique. Multiple locally unique equilibria can arise in two ways. First, the set of

bottleneck links can be non-unique. The equilibria associated with different sets of bottle-

neck links are necessarily distinct. Second, even when there is a unique set of bottleneck

links, network equilibrium can still be non-unique, but is always finite and odd in number.

They cannot all be locally stable unless the equilibrium is globally unique. We also provide

various sufficient conditions for global uniqueness. This work also appears in [147, 142].
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1.3.3.2 Control unresponsive flow–CHOKe

All our previous studies have assumed that all sources utilize a certain TCP scheme to adapt

their rates based on network congestion. The number of non-rate-adaptive (e.g., UDP-

based) applications is growing in the Internet. Without a proper incentive structure, these

applications may result in more severe congestion by monopolizing the network bandwidth

to the detriment of rate-adaptive applications. This has motivated a new AQM algorithm

CHOKe [126], which is stateless, simple to implement, and yet surprisingly effective in

protecting TCP from unresponsive UDP flows.

We present a deterministic fluid model that explicitly models both the feedback equilib-

rium of the TCP/CHOKe system and the spatial characteristics of the queue. We prove that,

provided the number of TCP flows is large, the UDP bandwidth share peaks at(e+1)−1 =

0.269 when UDP input rate is slightly larger than link capacity and drops to zero as UDP

input rate tends to infinity. We clarify the spatial characteristics of the leaky buffer under

CHOKe that produce this throughput behavior. Specifically, we prove that, as UDP input

rate increases, even though the total number of UDP packets in the queue increases, their

spatial distribution becomes more and more concentrated near the tail of the queue and

drops rapidly to zero toward the head of the queue. In stark contrast to a non-leaky FIFO

buffer where UDP bandwidth share would approach 1 as its input rate increases without

bound, under CHOKe, UDP simultaneously maintains a large number of packets in the

queue and receives a vanishingly small bandwidth share, the mechanism through which

CHOKe protects TCP flows. This work is published in [155, 143, 145].

1.4 Organization of this dissertation

The rest of this dissertation is organized as follows:

Chapter 2 provides background information in congestion control research. First, var-

ious existing Transmission Control Protocols and Active Queue Management schemes are

briefly described. Then a general network model of TCP/AQM systems is presented. We

also review the resource allocation problem based on utility maximization. The duality
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model, which interprets the TCP/AQM as a distributed primal–dual algorithm, is presented

with details. These models form the basis of our studies on network dynamics and equilib-

ria in the following chapters.

Chapter 3 and 4 include our studies on the dynamics of TCP/AQM systems. We show

that Reno/RED becomes unstable when delay increases and when network capacity in-

creases. This motivated the design of FAST. The modelling of FAST and several stability

results are presented.

Chapter 6 presents our research on the equilibrium properties of TCP systems. The

relation between fairness and efficiency, and the relation between link capacity and source

throughput are studied in an analytical way.

Chapter 5 describes the joint utility maximization problem over both source rates and

their routes, and tries to answer whether TCP/IP with minimal-cost routing distributedly

solves this problem by proper choice of link costs.

Chapter 7 briefly covers two other related projects. In Section 7.1, we study the equi-

librium structures of networks with heterogeneous congestion control protocols that react

to different congestion signals. In Section 7.2, we analyze CHOKe, which is a new AQM

that aims to protect TCP sources from unresponsive flows. Both the feedback equilibrium

of the TCP/CHOKe system and the spatial characteristics of the leaky queue are studied.

Chapter 8 concludes this dissertation and points out several future research directions.
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Chapter 2

Background and Preliminaries

Internet congestion occurs when the aggregate demand for certain resources (e.g., link

bandwidth) exceeds the available capacity. Results of this congestion include long trans-

fer delay, high packet loss, constant packet retransmission, and even possible congestion

collapse [63], in which network links are fully utilized, but the throughput, which an ap-

plication obtains, is close to zero. It is clear that in order to maintain good network perfor-

mance, certain mechanisms must be provided to prevent the network from being severely

congested for any significant period of time.

One intuitive solution is to use network provision to provide more resources. However,

Jain [66] had shown that large memory, high-speed links, and fast processors would not

solve the congestion problem in computer networks. Although the bandwidth exponen-

tially increased in the last decade, the request for additional bandwidth remained, and new

applications consumed much more bandwidth than expected, e.g., peer-to-peer file sharing

[52, 43]. The need for good congestion control schemes has been intensified by the increas-

ing capacity of the Internet instead of being alleviated, while what we want to achieve is

performance, stability, and fairness in a more heterogeneous environment [66]. Therefore,

congestion control is still a very important subject even in the future high-speed network.

Congestion control studies the design and analysis of distributed algorithms to share

network resources among competing users. The goal is to match the demand with available

resources to reduce congestion and under-utilization and to allocate the resources fairly.

There are two components in Internet Congestion Control. The first is a source algorithm

implemented in Transmission Control Protocol to dynamically adjust the sending rate based
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on congestion along its path. The other is the Active Queue Management algorithm running

on the routers, which updates the congestion information and feeds it back to sources im-

plicitly or explicitly in the form of packet loss, delay, or marking. We will briefly describe

several such algorithms in the following subsections.

2.1 Transmission Control Protocol (TCP)

The early version of TCP used for the Internet before 1988 did not have a proper conges-

tion control scheme built in, and its main purpose was to guarantee reliable data transfer

across the unreliable best-effort network. This resulted in frequent congestion collapses

throughout the mid-1980s until the algorithm to dynamically adapt source rate based on

packet loss was introduced by Jacobson [63]. The algorithm has undergone many minor,

but important changes, e.g., [64, 140, 108, 3, 40, 57]. It has several slightly different im-

plemented versions such as TCP Tahoe, Reno, NewReno, and SACK, which have similar

essential features of additive increase and multiplicative decrease. We will not distinguish

them and will refer to them as TCP Reno in this dissertation.

2.1.1 TCP Reno

TCP Reno has performed remarkably well and has prevented severe congestion as the In-

ternet expanded by five orders of magnitude in size, speed, load, and connectivity. Mea-

surements in core routers have indicated that about 90% of all the traffic is generated by

TCP Reno sources [137]. TCP Reno is the only deployed congestion control scheme in

the current Internet, and it is very important for us to have a solid understanding of how

it works. In this subsection, we will describe the congestion control mechanism of TCP

Reno.

A TCP Reno source sends packets using a sliding window algorithm, see [129] for

details. Its sending rate is controlled by the congestion window size, which is the maxi-

mum number of packets that have been sent, yet not acknowledged. When the congestion

window is exhausted, the source must wait for an acknowledgement before sending a new
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packet. This is the ”self-clocking” feature [98], which automatically slows down the source

when a network becomes congested and round-trip time (RTT) increases. Since there is

roughly one window of packets sent out for every RTT, the source rate is controlled by

the window size divided by RTT. The key idea in this algorithm is to additively increase

congestion window size for additional bandwidth and multiplicatively decrease it while

network congestion is detected.

A connection starts with a small window size of one packet, and the source increments

its window by one every time it receives an acknowledgement. This doubles the window

every RTT and is calledslow start, see Figure 2.1. In this phase, the source exponentially

increases its rate and can grab the available bandwidth quickly. (It isslow compared to

the old design where the source sends as many packets as the receiver’s advertised window

size.) When the window size reaches the slow-start threshold (ssThreshold), the source

enters thecongestion avoidancephase, where it increases its window by the reciprocal

of the current window size for each acknowledgement (ACK). This increases the window

by one in each round-trip time and is referred to as additive increase. When a loss is

detected through duplicate ACKs, the source halves its window size, updates the value of

ssThreshold, and performs afast recoveryby retransmitting the lost packets. When a loss is

detected through timeout expiration, the congestion window is reset to one, and the source

re-enters theslow-startphase. The mathematical model and dynamics of TCP Reno will

be studied in detail in Chapter 3.

cwnd

TimeTime

Slow Start

W Congestion Avoidance

RTT

1

W/2

ssThreshold

1

Timeout

Figure 2.1: Congestion window of TCP Reno.
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There are some drawbacks in using packet loss as an indication of congestion. First,

high utilization can be achieved only with full queues, i.e., when the network operates at the

boundary of congestion [98]. This is ill-suited to the heavy-tailed TCP traffic, as observed

in [162, 91, 167]. While most TCP connections are “mice” (small, requiring low latency

[53]), a few “elephants” (long TCP connections, tolerating large latency) generate most of

the traffic. First, operating around a state with full queue, the mice suffer unnecessary loss

and queuing delay. Second, the performance of a loss-based TCP source will be degraded

in the situation where losses are due to other effects (e.g., wireless links).

There are also some other TCP alternatives we will briefly describe below.

2.1.2 TCP Vegas

Instead of using packet loss as a measure of congestion, there is another class of congestion

control algorithms that adapt their congestion window size based on end-to-end delay. This

approach is originally described by Jain [65] and is represented by TCP Vegas [19, 20] and

FAST TCP [69].

There are several key differences between TCP Vegas and TCP Reno. In slow-start

phase, TCP Vegas incorporates its congestion detection mechanism into slow-start with

minor modifications to grow the window size more cautiously. When packet loss is de-

tected, TCP Vegas uses a new retransmission mechanism and treats the receipt of certain

ACKs as a trigger to check if a timeout should happen [19]. The most important difference

between them is that TCP Vegas updates its congestion window size based on end-to-end

delay.

TCP Vegas source estimates its round-trip propagation delay as the minimal RTT, mea-

suring the current RTT for each ACK received. Then, it can figure out the number of its

own packets buffered along the path as the product of end-to-end queueing delay and its

sending rate. The source will try to keep this number in a region, specified by two param-

etersα andβ. The window size linearly increases, decreases, or maintains the same by

comparing this number withα andβ. The aim is to maintain a small number of packets in

the buffer to fully utilize the link and experience a small queueing delay.
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Low et al. [101] provided a duality model for TCP Vegas and studied its equilibrium in

detail. It is shown that TCP Vegas achieves weighted proportional fairness at the equilib-

rium when there is sufficient buffer. Choe and Low [24] studied the dynamics of the TCP

Vegas algorithm, showing that it can become unstable in the presence of network delay,

and provided modification for better stability.

2.1.3 FAST TCP

It is shown [100, 59] that the current congestion control algorithms, TCP Reno, and its

variants do not scale with bandwidth-delay products of the Internet as it continues to grow,

and will eventually become performance bottlenecks. This has motivated the design of

FAST TCP [69, 70], which targets high-speed networks with long latency. Unlike other

congestion control algorithms, it is designed based on a theoretical framework [98, 102]

and aims to achieve high throughput while maintaining a stable and fair equilibrium.

FAST TCP adjusts its congestion window size based on queueing delay instead of

packet loss. In networks with large bandwidth-delay products, packet losses are rare events,

and each packet loss only provides one bit of information. The queueing delay can be mea-

sured for each ACK packet, and the results provide multi-bit information. The measured

queueing delay is processed with a low-pass filter to provide more accurate and smooth

information about the congestion in the networks. This measured queueing delay is fed

into an equation to decide the changes in the congestion window size. In the congestion

avoidance phase, FAST periodically updates the congestion window according to [69]:

w ←− min

{
2w, (1− γ)w + γ

(
baseRTT

RTT
w+ α

) }

whereγ ∈ (0, 1], baseRTT is the minimum RTT observed so far, andα is a constant.

Although FAST TCP and TCP Vegas have different window update algorithms and dy-

namics, they share the same equilibrium properties. Similar to TCP Vegas, FAST achieves

weighted proportional fairness, and the constantα is also the number of packets a flow

attempts to maintain in the network buffers at equilibrium.

There are some other important implementation features of FAST that are not described
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here, for example, burst control and window pacing. The details of the architecture, algo-

rithms, extensive experimental evaluations of FAST TCP, and comparison with other TCP

variants can be found in [68]. I will provide mathematical models of FAST TCP, and will

study its dynamics in detail in Chapter 4.

There are also some other TCP congestion control proposals for high-speed networks,

which will not be covered in detail here. The eXplicit Congestion control Protocol (XCP)

[76], proposed by Katabi et al., is designed based on control theory and requires explicit

feedback from the routers to achieve stability and fairness. The High Speed TCP (HSTCP)

[39], proposed by Floyd, is a modification of current TCP to increase more aggressively and

decrease more cautiously in large congestion window situations. The scalable TCP [81],

proposed by Kelly, uses multiplicative increase and multiplicative decease instead of TCP

Reno’s AIMD. The BIC TCP [163], proposed by Xu et al., uses binary search increase and

additive increase. See [21, 118] for experiments and performance comparisons between

these new proposals.

2.2 Active Queue Management (AQM)

The AQM algorithm runs on a router, which updates and feedbacks congestion information

to end-users. The feedback is usually in the form of packet loss, delay, or marking. There

is a very large body of AQMs proposed, and I will just describe few common AQMs in this

subsection.

2.2.1 Droptail

Droptail is the simplest AQM scheme in the current Internet. It is just a first-in-first-

out(FIFO) queue with limited capacity, and it simply drops any incoming packets when

the queue is full. Since it is simple and easy to implement, Droptail is the dominant AQM

in the current Internet. This FIFO queue helps to achieve better link utilization and absorbs

the bursty traffic.

The congestion information in a Droptail queue is updated by the queueing process and
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is represented by the size of the backlog buffer. The delay-based TCP algorithms, e.g.,

TCP Vegas and FAST, receive this information by sensing the changes in the round-trip

delay. The dynamics of FAST TCP will be studied in Chapter 4 using Droptail routers with

sufficient buffer.

For loss-based sources, the Droptail queue sends back one bit of information by a packet

drop, which indicates that the router buffer is full and the network is congested. When

working with TCP Reno, Droptail routers have two drawbacks: thelock-outand thefull-

queuephenomena, which are pointed out in Braden et al. [17]. Thelock–outphenomenon

involves a single or a few sources that monopolize the bandwidth. This situation is usually

the result of synchronization [55, 117]. Thefull-queuephenomenon refers to the effect

that the queue can be full (or almost full) for long periods of time, which produces large

end-to-end delays.

One possible solution to overcome these problems is to detect congestion early and to

convey congestion notification to sources before queue overflow. We describe one such

solution below.

2.2.2 Random Early Detection (RED)

The Random Early Detection algorithm, or RED, is proposed by Floyd and Jacobson [41] to

solve the synchronization and full queue problems of Droptail. In contrast to Droptail that

drops packets deterministically when the buffer is full, the RED algorithm drops arriving

packets probabilistically based on average queue size. The packet is dropped randomly to

break up synchronized processes that lead to the lock-out phenomenon, and RED controls

the average queue size to avoid queue overflow.

There are two components in the RED algorithm. The first is the estimation of average

queue size using the exponential weighted average, which can also be interpreted as a low

pass filter to get rid of noise. The other part of the algorithm decides whether to drop an

incoming packet. There are three RED parametersminth , maxth , andmaxp controlling

the dropping probability as shown in Figure 2.2. When the average queue size is less

than the minimum thresholdminth , the dropping probability is zero. When it exceeds
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the maximum thresholdmaxth , all the incoming packets will be dropped. When it is in

between, packets will be dropped with a probability that varies linearly from 0 tomaxp.

maxth avg. queue size

p

minth

maxp

Figure 2.2: RED dropping function.

The RED can also mark the incoming packets instead of dropping them with the deploy-

ment of Explicit Congestion Notification (ECN) [131] to prevent packet loss and improve

throughput. The basic idea of ECN is to give the network the ability to explicitly signal

TCP sources of congestion using one additional bit in the IP packet header and to have the

TCP sources reduce their transmission rates in response to the marked packets.

The dynamics of Reno/RED systems will be studied in details in Chapter 3. It is shown

that the system becomes unstable when the delay increases or when the link capacity in-

creases. It is very difficult to configure the RED parameters to achieve better performance.

There has been a large body of AQM schemes proposed recently. Some notable exam-

ples include, Stabilized RED [123], PI controller [58], REM [5] , AVQ [86], BLUE [35],

etc.

2.2.3 CHOKe

CHOKe [126], which stands for “CHOose and Keep for responsive flows, CHOose and

Kill for unresponsive flows”, is proposed by Pan et al. in 2001. It aims to penalize the un-

responsive flows (e.g., UDP sources), to protect the rate-adaptive flows (e.g., TCP sources),

and to ensure fairness.

The scheme, CHOKe, is particularly interesting in that it does not require any state

information and yet can provide a minimum throughput to TCP flows. The basic idea of
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CHOKe is explained in the following quote from [126]:

When a packet arrives at a congested router, CHOKe draws a packet at random from

the FIFO (first-in-first-out) buffer and compares it with the arriving packet. If they both

belong to the same flow, then they are both dropped; else the randomly chosen packet

is left intact and the arriving packet is admitted into the buffer with a probability that

depends on the level of congestion (this probability is computed exactly as in RED).

The surprising feature of this extremely simple scheme is that it can bind the bandwidth

share of UDP flows regardless of their arrival rate.

Its queue characteristics and the maximum throughput of unresponsive flows is studied

in [143, 155, 145]. These results will be briefly covered in Section 7.2.

2.3 Unified frameworks for TCP/AQM systems

In this subsection, we will review the general frameworks for studying the equilibrium and

dynamics of TCP/AQM systems. These models will be used throughout this dissertation.

2.3.1 General dynamic model of TCP/AQM

A network is modelled as a set ofL links with finite capacitiesc = (cl, l ∈ L). They are

shared by a set ofN sources indexed byi. Each sourcei uses a subsetLi ⊆ L of links.

The setsLi define anL×N routing matrix

Rli =





1 if l ∈ Li

0 otherwise
. (2.1)

We use the deterministic flow model developed in [115, 99] to describe transmission

rates. Two assumptions are made when using this model. First, the packets are infinitely

small and the sending rate is differentiable (like fluid flow). Second, the congestion signal

is fed back continuously.
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Each sourcei has an associated transmission ratexi(t), and each linkl has an aggregate

incoming flow rateyl(t). Since all sources whose paths include linkl contribute toyl(t),

we have the equation:

yl(t) =
∑

i

Rlixi(t− τ f
li), (2.2)

whereτ f
li denotes the forward transmission delay from sourcei to link l.

Each link l has an associatedcongestion measure(or price) pl(t), which is a non-

negative quantity maintained by AQM algorithms. The sources are assumed to have access

to the aggregate price of all links in their route1,

qi(t) :=
∑

l

Rlipl(t− τ b
li), (2.3)

whereτ b
li denotes the backward transmission delay from linkl to sourcei. The total round-

trip time τi for sourcei thus satisfies

τi = τ f
li + τ b

li

for every linkl in its path.

As shown in [96], this model includes, to a good approximation, the mechanism present

in existing protocols with a different interpretation for price in different protocols (e.g.,

marking or dropping probability in TCP Reno, queueing delay in TCP Vegas).

In this framework, a complete feedback-control system is specified by supplying two

additional blocks: the source rates change according to aggregate prices in the TCP algo-

rithm and the link prices update based on link utilization. The complete system determines

both the equilibrium and dynamic characteristics of the TCP/AQM network.

Since the TCP/AQM is decentralized, the sources only have access to their local in-

formation. Therefore, the key restriction in the above control laws is that they must be

1This is true when delay is used as congestion price. It is approximately true for random marking and
dropping when the probability is small.
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decentralized. Therefore, we can model the dynamics of TCP in a general form

ẋi(t) = Fi(xi(t), qi(t)). (2.4)

Similarly, the dynamics at links can be written as2

ṗl(t) = Gl(pl(t), yl(t)). (2.5)

The overall structure of this congestion control system is shown in Figure 2.3.
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Figure 2.3: General congestion control structure.

We will study the dynamics of TCP within this general framework in Chapter 3 and 4.

The equilibrium properties will be studied with the duality model introduced in the next

subsection.

2.3.2 Duality model of TCP

In this section, it will be shown that the above feedback-control system solves a utility

maximization problem at its equilibrium.

Suppose that the equilibrium rates and prices are given byx∗, y∗, p∗, andq∗. Based on

2A more accurate formulation is given in [96] that includes the internal variables of AQM in the parameters
of Gl.
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(2.3) and (2.2), we have following equilibrium relationships

y∗ = Rx∗, q∗ = RT p∗. (2.6)

Assume that equilibrium rates satisfy

x∗i = fi(q
∗
i ), (2.7)

wherefi(·) is implicitly defined byFi(x
∗, q∗i ) = 0 or given by the source static law, e.g.,

[97]. fi(·) is usually a positive, strictly monotonic decreasing function, since the source

decreases its rate with increasing congestion.

Let f−1
i (xi) be the inverse function of (2.7), and let a utility functionUi(xi) be its

integral

Ui(xi) :=

∫
f−1

i (xi)dxi. (2.8)

This relation implies thatUi(xi) is a monotonic increasing and strictly concave function. It

is easy to check that the equilibrium ratex∗i uniquely solves

max
xi≥0

Ui(xi)− xiq
∗
i . (2.9)

We interpretUi(xi) as the benefit the source receives by transmitting at ratexi andq∗i as the

price per unit. Then (2.9) is a maximization of the source’s profit. This interpretation makes

few assumptions regarding TCP and AQM and can be used for various TCP schemes.

The global optimization problem to maximize aggregate utility with capacity con-

straints is formulated by Kelly in [77, 80],

max
x≥0

∑
i

Ui(xi) (2.10)

subject to Rx ≤ c. (2.11)

It has a unique solution, since it is maximizing a concave function over a convex set. Now
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we interpret the equilibrium price as the dual variables (or as the Lagrange multipliers) for

the problem (2.10-2.11). Then its Lagrangian is

L(x, p) =
∑

i

Ui(xi)−
∑

l

pl(yl − c) =
∑

i

(Ui(xi)− qixi) +
∑

l

plcl. (2.12)

The dual problem is

min
p≥0

∑
i

Bi(qi) +
∑

l

plcl, (2.13)

where

Bi(qi) = max
xi≥0

Ui(xi)− xiqi. (2.14)

Convex duality implies that at the optimump∗, the correspondingx∗, which maximizes

individual optimality (2.9), is exactly the unique solution to the primal problem (2.10-2.11)

since (2.14) is identical to (2.9). Therefore, provided the equilibrium pricesp∗ can be made

to align with the Lagrange multipliers, the equilibrium ratex∗ solves the primal problem in

a distributed way. It is proven in [96] that any link algorithm that satisfies

y∗l ≤ cl with equality ifp∗ > 0 for anyl (2.15)

will guarantee this alignment. In this case,x∗ is the unique primal optimal solution, and

p∗ is a dual optimal solution. It has been argued [96] that the condition (2.15) is satisfied

by any AQM that stabilizes the queue, e.g., RED, REM, and Droptail. Therefore, various

TCP/AQM protocols can be interpreted as different distributed primal-dual algorithms to

solve the global optimization problem (2.10-2.11) with different utility functions.

The equilibrium structures of different congestion control schemes are characterized by

their corresponding utility functions. This model provides us with a rigorous framework

in which to study various equilibrium properties such as fairness, efficiency, and effects of

different network parameters. In Chapter 6, I will present the methods and results following

this approach.
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This optimization framework can also be extended to study the interaction of TCP at a

fast timescale and IP routing at a slow timescale. See Chapter 5 for details.
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Chapter 3

Local Dynamics of Reno/RED

3.1 Introduction

It is well known that TCP Reno/RED can oscillate wildly and it is extremely hard to reduce

the oscillation by tuning RED parameters, e.g., [110, 25]. This oscillation could be the

outcome of the AIMD bandwidth probing strategy employed by TCP Reno and noise-like

traffic that are not effectively controlled by TCP (e.g., short lived TCP source). Recent

models e.g., [36, 59], imply however that oscillation is an inevitable outcome of the pro-

tocol itself. We present more evidence to support this view. We argue that Reno/RED

oscillates not only because of the AIMD probing and noise traffic, but more fundamentally,

it is due to instability. Therefore, even if there is no AIMD, and the congestion window is

periodically adjusted by the average of AIMD based on loss probability, the oscillation per-

sists. We illustrate usingns-2simulations that, after smoothing out the AIMD component

of the oscillation, the average behavior can either be steady with small random fluctuations

(when the protocol is stable), or exhibit limit cycles of amplitude much larger than ran-

dom fluctuations (when it is unstable). Moreover, this qualitative behavior persists even

when a large amount of noise traffic is introduced, and even when sources have different

delays. We conclude that it is the protocol stability that largely determines the dynamics of

Reno/RED.

This motivates the stability characterization of Reno/RED. In Section 3.3 we develop a

general nonlinear model of Reno/RED. The equilibrium structure of this system is analyzed

using duality model, and a unique equilibrium exists because it is the unique solving of the
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underling utility maximization problem, see [96] for details. Here, we study local stability

by linearizing the model around this equilibrium. The linear model generalizes the single

link identical source model of [59]. We validate our model with simulations and illustrate

the stability region of Reno/RED. We derive a sufficient stability condition for the special

case of a single link withheterogeneoussources. It shows that Reno/RED becomes unstable

when delay increases, or more strikingly, when link capacity increases!

In the linearized model, the gain introduced by TCP Reno increases rapidly with delay

and link capacity. This induces instability and makes compensation by RED extremely

difficult. In particular, RED parameters can be tuned to improve stability, but only at the

cost of a large queue, even when they are dynamically adjusted. Our results suggest that

Reno/RED is ill suited for future high-speed networks, which motivates the design of new

distributed algorithms for high speed long latency networks.

3.2 Motivation

Why does Reno/RED oscillate? What is the effect of AIMD probing, noise traffic, and

heterogeneity of delays on average congestion window and instantaneous queue size? In

this section, we show that their effect is insignificant in comparison with that of protocol

instability. This protocol instability is the dominant reason for oscillation in the Reno/RED

system. Therefore, it is very important to study the protocol stability of Reno/RED system.

We simulate a single bottleneck network usingns-2. The bottleneck link has a capacity

9 pkts/ms with a constant packet size of 1000 bytes. The AQM running on this link is RED

with ECN marking inbytemode (i.e., ACK packets are marked with negligible probability).

The RED parameters aremaxp = 0.1,minth = 50 pkts,maxth = 550 pkts, and weight

for queues averagingα = 10−4. The link is shared by 50 persistent TCP Reno sources.

We have run simulations with both one-way and two-way traffic, and the behavior is very

similar. The results in Figures 3.1 and 3.2 are for two-way traffic, and those in Figure 3.3

are for one-way traffic. The measurements on the Internet [2] show that most connections

have round-trip delays between 15-500ms. We perform simulations within this range of

delays.
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(b) Queue (delay = 40ms)
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(c) Window (delay = 200ms)

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

In
st

a
n
e
o
u
s 

q
u
e
u
e
(p

kt
s)

time(s) 

(d) Queue (delay = 200ms)

Figure 3.1: Window and queue traces without noise traffic.

Figure 3.1 gives the result of two cases where connections have identical roundtrip

propagation delay and generate traffic in both directions. Figure 3.1(a) shows an individual

window and the average window that is mean window size of all 50 sources, as a function

of time. They are typical traces when round-trip propagation delay is small (40ms in this

case). Oscillations due to AIMD are prominent in the individual window, but disappear

in the average window. Since the queue averages individual windows, it also displays a

smooth trace with small random fluctuations, as shown in Figure 3.1(b). We consider the

averagebehavior of the protocol stable (non-oscillatory) in this case.
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Figures 3.1(c) and (d) show the corresponding windows and queue when round-trip

propagation delay is increased to 200ms. Not only does the individual window oscillate

with a larger amplitude, more importantly, its average displays a deterministic limit cycle.

This also shows up in the queue trace. We say the protocol is in anunstableregime.

What is the effect of noise-like mice traffics that are not effectively controlled by

Reno/RED? To get a qualitative understanding, we add additional short HTTP sources to

the 50 persistent bi-directional TCP flows. Each HTTP source sends a single-packet request

to its destination, which then replies with a file of size that is exponentially distributed. Af-

ter the source completely receives the data, it waits for a random time that is exponentially

distributed with a mean of 500 milliseconds and repeats the process. Both the request and

the response are carried over TCP connections. Two sets of simulations are conducted:

the first with 60 http sources generating 10% noise (i.e., persistent TCP sources occupied

90% of bottleneck link capacity), and the second set with 180 http sources generating 30%

noise.

The queue traces when propagation delays are 40ms (stable) and 200ms (unstable),

respectively, are shown in Figures 3.2(a) and (b) for a noise intensity of 10% and in Figure

3.2(c) and (d) for a noise intensity of 30%. The behavior of the queue is dominated by the

stability of the protocol, not by noise-like mice traffic (compare with Figures 3.1(b) and

(d)). In the stable regime (40ms delay), the noise traffic increases the average queue length

slightly. This increases the marking probability and reduces the average window of the

persistent TCP sources.

All our previous simulations are for sources with identical propagation delay. Will the

dynamic behavior be very different when sources have different delays? We repeat the

previous experiments, without noise, with 50 persistent connections having delays ranging

from 40ms to 64ms at 1ms increments, with 2 sources to each delay value. We study their

dynamic behavior when all delays are scaled up, or down, over a wide range. The behavior

is qualitatively similar to the case of identical delay, with more severe queue oscillation.

Figure 3.3(a) shows the instantaneous queue when the scaling factor is0.3 (delays range

from 12ms to19.2ms), with an average delay of15.6ms, averaged over all sources. Figure

3.3(b) shows the queue when the scaling factor is 4, with an average delay of 208ms.



31

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

In
st

a
n
e
o
u
s 

q
u
e
u
e
(p

kt
s)

time(s) 

(a) Queue (delay = 40ms, 10% noise)
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(b) Queue (delay = 200ms, 10% noise)
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(c) Queue (delay = 40ms, 30% noise)
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(d) Queue (delay = 200ms, 30% noise)

Figure 3.2: Queue traces with noise traffic.

Hence it is protocol stability that largely determines the dynamics of Reno/RED. We

now characterize when Reno/RED is stable.

3.3 Dynamic model

In this section we develop a model of Reno/RED and use it to study the local dynamics

of Reno/RED. We start with a nonlinear model, make a few remarks about its equilibrium

properties, and then linearize the model around the equilibrium. We validate our linear
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(a) Queue (delays from 12ms to 19ms)
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(b) Queue (delays from 160ms to 254ms)

Figure 3.3: Queue traces with heterogeneous delays.

model withns-2simulations and illustrate the stability region of Reno/RED. Finally we

derive a stability condition for the special case of a single link with heterogeneous sources.

3.3.1 Nonlinear model of Reno/RED

The general nonlinear model for TCP/AQM systems has been presented in Section 2.3.

Here more details are given in order to study Reno/RED systems.

A network is modelled as a set ofL links with finite capacitiesc = (cl, l ∈ L). They

are shared by a set ofN sources. The interactions between them are specified by a routing

matrixR whereRli = 1 if link l is in the path of sourcei, andRli = 0 otherwise.

Denoteτi(t) as the round-trip time of sourcei at time t; it is the sum of round-trip

propagation delaydi and the round-trip queueing delay
∑

l Rlibl(t)/cl. Sourcei’s sending

ratexi(t) can be formulated as

xi(t) =
wi(t)

τi(t)
, (3.1)

wherewi(t) denotes the congestion window size. The aggregate flow rate at linkl is

yl(t) =
∑

i

Rlixi(t− τ f
li(t)), (3.2)
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whereτ f
li(t) is the forward delay from sourcei to link l.

The link congestion pricepl(t) in the general model corresponds to the packet marking

(or loss) probability in TCP Reno. The end-to-end marking probability observed at sourcei

is actuallyqi(t) = 1−∏
l∈Li

(1−pl(t−τ b
li(t))) whereτ b

li(t) is the backward delay from link

l to sourcei. We assume thatpl(t) is small for allt so that, approximately, the end-to-end

probability is

qi(t) =
∑

l

Rlipl(t− τ b
li(t)). (3.3)

The forward and backward delays are related to the round-trip time through

τi(t) = τ f
li(t) + τ b

li(t)

for all l ∈ Li.

We now model TCP Reno and RED to provide the(F, G) functions in the general

framework. We focus on the AIMD algorithm of TCP Reno at thecongestion avoidance

phase. The congestion window change in this phase has been described in Section 2.1. At

time t, sourcei transmits at ratexi(t) packets/second; hence, it receives acknowledgments

at ratexi(t− τi(t)), assuming every packet is acknowledged. A fraction(1−qi(t)) of these

acknowledgments are positive, each incrementing the windowwi(t) by 1/wi(t); hence the

windowwi(t) increases, on average, at the rate ofxi(t− τi(t))(1− qi(t))/wi(t). Similarly

negative acknowledgments are received at an average rate ofxi(t−τi(t))qi(t), each halving

the window, and hence the windowwi(t) decreases at a rate ofxi(t − τi(t))qi(t)wi(t)/2.

Hence, the window evolves under Reno according to

ẇi(t) = xi(t− τi(t))(1− qi(t))
1

wi(t)
− xi(t− τi(t))qi(t)

wi(t)

2
, (3.4)

whereqi(t) is given by (3.3).

To model RED, letbl(t) denote the instantaneous queue length at timet that evolves
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according to

ḃl(t) = yl(t)− cl, (3.5)

whereyl(t) is the flow rate given by (3.2) andcl is the link capacity. Define the average

queue length asrl(t). It is updated according to

ṙl(t) = −αlcl (rl(t)− bl(t)), (3.6)

whereα is the averaging weight. Given the average queue lengthrl(t), the marking proba-

bility is given by

pl(t) =





0 rl(t) ≤ bl

ρl(rl(t)− bl) bl < rl(t) < bl

1 rl(t) ≥ bl

, (3.7)

wherebl, bl, andpl are RED parameters, andρl = pl/(bl − bl).

In summary, Reno/RED is modelled by (3.4–3.7), and their interconnection through the

network is modelled by (3.2–3.3).

The equilibrium of this system is studied in [96, 101]. The Reno/RED model is inter-

preted as carrying out a distributed, primal-dual algorithm to maximize the aggregate utility

over the Internet. The utility function of TCP Reno is derived to be

Ui(xi) =

√
2

τi

tan−1

(
τixi√

2

)
.

The equilibrium properties can be studied by solving the underlying convex program. It

also implies that the Reno/RED system has a unique equilibrium.

3.3.2 Linear model of Reno/RED

We linearize the Reno/RED equations (3.4-3.7) to study its stability around equilibrium.

We make several simplifying assumptions. First we assume that the routing matrixR has
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full row rank so there is a unique equilibrium loss probability vectorp. Second, only

congested links at the equilibrium are considered in the linear model. Moreover we assume

that the system operates in regionbl < rl(t) < bl, so that the marking probability is affine

in the average queue length,pl(t) = ρl(rl(t)− bl).

We make a key assumption on the time-varying, round-trip delay. Round-trip delay ap-

pears in two places: first, in the relation between windowwi(t) and ratexi(t), as expressed

in (3.1), and second, in the time argument of flow rateyl(t), as expressed in (3.2), and

the end-to-end marking probabilityqi(t), as expressed in (3.3). Inclusion of instantaneous

queueing delay in the first place yields a qualitatively different model than if queueing de-

lay is ignored or assumed constant. It means that the queue is not an integrator but has more

complicated dynamics; see (3.9) below. As the proof of Theorem 3.1 shows, this dynamic

is critical to the stability of Reno/RED. The resulting linear model matches simulations

significantly better than if queueing delay is assumed constant. Time-varying delay in the

second place makes linearization difficult, and we replace it by its (constant) equilibrium

value (including equilibrium queueing delay). We approximate the delaysτi(t), τ f
li(t), and

τ b
li(t) by their equilibrium values in (3.2) and (3.3). With these assumptions, we linearize

Reno/RED around the unique equilibrium. From (3.4), Reno becomes

ẇi(t) =

(
1−

∑

l

Rlipl(t− τ b
li)

)
wi(t− τi)

τi(t− τi)

1

wi(t)
− 1

2

∑

l

Rlipl(t− τ b
li)

wi(t− τi) wi(t)

τi(t− τi)
.

Let w∗
i , p

∗
l , . . . be equilibrium quantities andδwi(t) = wi(t)− w∗

i , . . . . be the small varia-

tions near the equilibrium. Linearization yields

δẇi(t) = − 1

τiq∗i

∑

l

Rliδpl(t− τ b
li) −

q∗i w
∗
i

τi

δwi(t).

Around the equilibrium, the buffer process under RED evolves according to

ḃl(t) =
∑

l

Rli
wi(t− τ f

li)

τi(t− τ f
li)

− cl =
∑

l

Rli
wi(t− τ f

li)

di +
∑

k Rkibk(t− τ f
li)/ck

− cl.

Let τi = di +
∑

k Rkib
∗
k/ck be the equilibrium round-trip time (including queueing delay).
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Linearizing, we have

δḃl(t) =
∑

i

Rli
δwi(t− τ f

li)

τi

−
∑

k

∑
i

RliRki δbk(t− τ f
li)

w∗
i

τ 2
i ck

.

The second term above is ignored if we have neglected or assumed constant the queueing

delay in round-trip time. The double summation sums over all linksk that share any source

i with link l. It says that the link dynamics in the network are coupled through shared

sources. The termδbk(t − τ f
li)w

∗
i /(τick) is roughly the backlog at linkk due to packets of

sourcei, under FIFO queueing. Hence the backlogbl(t) at link l decreases at a rate that

is proportional to the backlog of this shared sourcei at another linkk. This is because

backlog in the path of sourcei reduces therate at which sourcei packets arrive at linkl,

decreasingbl(t).

Putting everything together, Reno/RED is described by, in Laplace domain,

δw(s) = −(sI + D1)
−1D2R

T
b (s)δp(s),

δp(s) = (sI + D3)
−1D4δb(s),

δb(s) = (sI + Rf (s)D5R
T D6)

−1Rf (s)D7δw(s),

where the diagonal matrices areD1 = diag (q∗i w
∗
i /τi), D2 = diag (1/(τiq

∗
i )), D3 =

diag (αlcl), D4 = diag (αlclρl), D5 = diag (w∗
i /τ

2
i ), D6 = diag (1/cl), andD7 =

diag (1/τi), andRf (s) and Rb(s) are delayed forward and backward routing matrices,

defined as

[Rf (s)]li =





e−τf
lis if l ∈ Li

0 otherwise
, and [Rb(s)]li =





e−τb
lis if l ∈ Li

0 otherwise.
.(3.8)

This model generalizes the single-link, identical-source model of [59] to multiple links

with heterogeneous sources.
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3.3.3 Validation and stability region

We present a series of experiments to validate our linear model when the system is stable

or barely unstable, and to illustrate numerically the stability region.

We consider a single link of capacityc pkts/ms shared byN sources with identi-

cal round-trip propagation delayd ms. ForN = 20, 30, . . . , 60 sources, capacityc =

8, 9, . . . , 15 pkts/ms, and propagation delayd = 50, 55, . . . , 100 ms, we examine the

Nyquist plot of the loop gain of the feedback system (L(jω) in (3.9) below). For each

(N, c) pair, we determine the delaydm(N, c), at5ms increments, at which the smallest in-

tercept of the Nyquist plot with the real axis is closest to−1. This is the delay at which the

system(N, c) transits from stability to instability according to the linear model. For this

delay, we compute the critical frequencyfm(N, c) at which the phase ofL(jω) is−π. Note

that the computation ofL(jω) requires equilibrium round-trip timeτ , the sum of propa-

gation delaydm(N, c), and equilibrium queueing delay. The queueing delay is calculated

from the duality model [96]. Hence, for each(N, c) pair that becomes barely unstable at

a delay between 50ms and 100ms, we obtain the critical (propagation) delaydm(N, c) and

the critical frequencyfm(N, c) from the analytical model. For all experiments, we have

fixed the parameters atα = 10−4, ρ = 0.1/(540− 40) = 0.0002.

We repeat these experiments inns-2, using persistent TCP sources and RED with ECN

marking. The RED parameters are (0.1, 40pkts, 540pkts,10−4), corresponding to theα and

ρ values in the model. For each(N, c) pair, we examine the queue and window trajectories

to determine the critical delaydns(N, c) when the system transits from stability to insta-

bility. We measure the critical frequencyfns(N, c), the fundamental frequency of queue

oscillation, from the fast fourier transform of the queue trajectory. Thus, corresponding

to the linear model, we obtain the critical delaydns(N, c) and frequencyfns(N, c) from

simulations.

We compare model prediction with simulation. Figure 3.4(a) plots the critical delay

dns(N, c) from ns-2simulations versus the critical delaydm(N, c) computed from the lin-

ear model. Each data point corresponds to a particular(N, c) pair. The dashed line is where

all points should lie if the linear model agrees perfectly with the simulation. Figure 3.4(b)
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Figure 3.4: Linear model validation.

gives the corresponding plot for critical frequenciesfns(N, c) versusfm(N, c). The agree-

ment between model and simulation seems quite reasonable (recall that delay values have

a resolution of 5ms).

Consider a static link model where marking probability is a function of link flow rate

pl(t) = fl(yl(t)).

Then the linearized model is

δpl(t) = f ′l (y
∗
l ) δyl(t),

wheref ′l (y
∗
l ) is the derivative offl evaluated at equilibrium. Also shown in Figure 3.4(b)

are critical frequencies predicted from this static-link model (withf ′l (y
∗
l ) = ρ = 0.0002;

this does not affect the critical frequency), using the same Nyquist plot method described

above. It shows that queue dynamics are significant at the time-scale of interest.

Figure 3.5 illustrates the stability region implied by the linear model. For eachN ,

it plots the critical delaydm(N, c) versus capacityc. The curve separates stable (below)

from unstable regions (above). The negative slope shows that Reno/RED becomes unstable
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Figure 3.5: Stability region.

when delay or capacity is large. AsN increases, the stability region expands, i.e., small

load induces instability. Intuitively, a larger delay or capacity, or a smaller load, leads to

a larger equilibrium window; this confirms the folklore that TCP behaves poorly at large

window size.

3.4 Local stability analysis

We now characterize the stability region in the case of a single link withN heterogeneous

sources. Writing forward delay as a fractionβi ∈ (0, 1) of round-trip time,τ f
i = βiτi, and

dropping link subscriptl, the open-loop transfer function is

L(s) = Rf (s)D7(sI + D1)
−1D2R

T
b (s)(sI + D3)

−1D4(sI + Rf (s)D5R
T D6)

−1

=
∑

i

1

τip∗(τis + p∗w∗
i )
· αcρ

s + αc
· 1

s + 1
c

∑
n

x∗n
τn

e−βiτns
· e−τis. (3.9)

The first term on the right-hand side describes Reno dynamics, the second term describes

RED averaging, the third term is the buffer process, and the last term represents network

delay. The special case where all sources have identical round-trip times,τi = τ , and

forward delays are zero,βi = 0, is analyzed in [59]. They provide sufficient conditions for

closed-loop stability and use them to tune RED parametersα andρ.
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We start with a lemma that collects some equilibrium properties. It can be proved di-

rectly from the fixed point of (3.4)–(3.7). Letτ := maxi τi, τ := mini τi, τ̂ := (
∑

i 1/τi)
−1,

andβ := maxi βi.

Lemma 3.1.Letp∗ be the equilibrium loss probability, and letw∗
i andx∗i be the equilibrium

window and rate respectively. Thenp∗ = 2/(2 + (cτ̂)2), w∗
i = cτ̂ for all sourcesi, x∗i =

w∗
i /τi and

∑
i x

∗
i /c = 1.

A sufficient condition for local stability is provided by the following theorem.

Theorem 3.1.The closed-loop system described by (3.9) is stable if

ρ
τ 2

τ̂ τp∗2w∗
1

(
1 +

1

cτα
+

1

p∗w∗
1

)
<

π(1− β)2

√
4β

2
+ π2(1− β)2

.

Proof. See [100] for detailed proof.

The left-hand side of the (sufficient) stability condition depends on network parameters

(c and τi) as well as RED parameters (α and ρ). The right-hand side is a property of

the network node that is independent of these parameters. For stability, the left-hand side

must be small. This requires small capacityc and delaysτi and largeN , confirming the

simulation results of the last section. To understand this, note thatcτ̂ is the equilibrium

window size of all sources. Assumingw∗
1 = cτ̂ À 2 so thatp = 2/w∗2

1 , then the stability

condition can be re-written as

ρ
w∗3

1 N

4

(
w∗

1

2
+ 1 +

N

w∗
1α

)
<

π(1− β)2

√
4β

2
+ π2(1− β)2

.

This suggests that the system becomes unstable when window sizew∗
1 becomes large,

agreeing with our empirical experience that TCP behaves poorly at large window size.

Roughly, whenc doubles, the equilibrium rate doubles, and hence the window is halved

with twice the magnitude at twice the frequency, resulting in a quadratic increase in control

gain and pushing the system into instability.

The dependence of the stability condition onc, τ , andN is most clearly exhibited in

the case of identical sources, withτ = τi = τ = τ = Nτ̂ .
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Corollary 3.1. Supposep = 2/w∗2
1 . Then the stability condition in Theorem 3.1 becomes

ρ
c3τ 3

4N2

(
cτ

2N
+ 1 +

1

αcτ

)
<

π(1− β)2

√
4β

2
+ π2(1− β)2

.

The stability condition also suggests that a smallerρ and a largerα enhance stability.

A smallerρ implies a larger equilibrium queue length [96]. A largerα incorporates the

current queue length into the marking probability more quickly. See [100] for proofs of

this Corollary.

3.5 RED parameter setting

It is suggested in [34] that the RED parametermaxp be dynamically adjusted: reduce

maxp asN decreases and raise it otherwise. Raisingmaxp, or reducingmaxth-minth ,

is equivalent to increasingρ ( = maxp/(maxth-minth) ) in the direction consistent

with the stability condition in Theorem 3.1. Theorem 3.1 sets an upper bound onρ,

given N, c, andτ , and hence a lower bound on equilibrium queue length, to ensure sta-

bility. Adapting RED parameterscannotprevent the inevitable choice between stability

and performance: eitherρ is set small to stabilize the queue, around a large value, or,

alternatively, it is set large to reduce the queue, at the risk of violent oscillation. What

adaptation can hope to achieve is to dynamically find a good compromise when network

condition changes.

The same stability analysis can also be applied to other AQM schemes, such as Virtual

Queue [50, 85, 87] and REM/PI [5, 59], and clarifies the role of AQM. The stability proof

relies on bounding a set of the formK · co{h(v, θ)} to the right of(−1, 0). The gainK

and the trajectoryh depend on TCP as well as AQM. For instance, for the case of a single

link with capacityc shared byN identical sources with delayτ , TCP and network delay

contribute a factor

htcp =
e−jv

jv + p∗w∗
1
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to the trajectoryh and a factor

Ktcp =
c2τ 2

2N
(3.10)

to the gainK, assuming the equilibrium window is large so thatp∗ = 2/w2
i = 2N/cτ .

AQM compensates for the high gain introduced by TCP by shapingh and reducingK.

With RED, for instance,

h(v, θ) =
1

jv + αcτ

e−jθ

v
· htcp, and K =

cταρ

1− β
·Ktcp.

The first term inh is due to RED averaging, the second term is due to queue dynamics that

also boundsθ ≤ θ0. Hence both the queue and RED add phase lag toh. More importantly,

RED adds anothercτ to the gainK, necessitating a smallαρ for stability and leading to

sluggish response and large equilibrium queue. The factorτ/(1− β) in K comes from the

queue.

The high gainKtcp in (3.10) is mainly responsible for instability at high delay, high

capacity or low load. It makes it difficult for any AQM algorithm to stabilize the current

TCP.

3.6 Conclusion

We have presented simulation results to demonstrate that it is protocol stability more than

other factors that determine the dynamics of TCP/RED. We have developed a multi-link,

multi-source model that can be used to study the stability of general TCP/AQM. We have

presented a sufficient stability condition for the case of a single link with heterogeneous

sources and illustrated the form of Reno/RED’s stability region. It implies that Reno/RED

becomes unstable when the network scales up in delay or capacity. Our analysis indicates

the role, and the difficulty, of RED in stabilizing Reno.
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Chapter 4

Modelling and Dynamics of FAST

4.1 Introduction

Congestion control is a distributed feedback algorithm to allocate network resources among

competing users. The algorithms in the current Internet, TCP Reno and its variants, have

prevented severe congestion while the Internet underwent explosive growth during the last

decade. In the previous chapter, we have shown that TCP Reno is ill suited for the future

high-speed networks. It is well known that it does not scale as the bandwidth-delay product

as the Internet continues to grow [59, 100]. This has motivated several recent proposals for

congestion control of high-speed networks, including HSTCP [39], Scalable TCP [81],

FAST TCP [69], and BIC TCP [163] (see [69] for extensive references). We have briefly

described the motivation, background theory, and congestion window update functions of

FAST TCP in Chapter 2. The details of the architecture, algorithms, extensive experimental

evaluations of FAST TCP, and comparison with other TCP variants can be found in [69].

Local stability of FAST TCP in the absence of feedback delay is proved in [69] for the case

of a single link. We extend the analysis to local stability with feedback delay and global

stability without feedback delay, both for general networks.

Most of the stability analysis in the literature is based on the fluid model introduced in

[59] (see surveys in [98, 79, 138] for extensions and related models). Key features of many

of these models are that a source controls its sending rate directly1 and that the queueing

1Even when the congestion window size is used as the control variable, sending rate is often taken to be
the window normalized by aconstantround-trip time, and hence a source still controls its rate directly.
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delay at a link is proportional to the integral of the excess demand for its bandwidth.

In reality, a source dynamically sets its congestion window rather than its sending rate.

These models do not adequately capture the self-clocking effect where a packet is sent only

when an old one is acknowledged, except briefly and immediately after the congestion win-

dow is changed. This automatically constrains the inputrate at a link to the link capacity,

after a brief transient, no matter how large the congestion windows are set. Recently, a

new discrete-time link model was proposed in [160, 69] to capture this effect, and detailed

experimental validations have been carried out in [160]. While the traditional continuous-

time link model does not consider self-clocking, the new discrete-time link model ignores

the fast dynamics at the links. We first present both models of FAST TCP in Section 4.2.

Experimental results are provided to show that, despite errors in these models, both of them

track queueing delays reasonably well.

In Section 4.3, we prove that FAST TCP is globally stable for arbitrary networks when

there is no feedback delay using the continuous-time model. We also derive a sufficient

condition for local asymptotic stability for arbitrary networks with feedback delay, using

the techniques developed in [125, 152]. This condition is also necessary when the sources

are homogeneous with a single bottleneck link. We compare the predictions of stability

based on this condition to experiments on the Dummynet Testbed with such topology. Our

experiments suggest that FAST TCP is always stable for homogeneous sources with a sin-

gle link, while the model with delay predicts instability when the delay is large. We conjec-

ture that this conflict maybe due to the self-clocking effect ignored in the continuous-time

model.

In Sections 4.4, we analyze the stability of FAST TCP using the discrete-time model.

First, we prove that local asymptotic stability of FAST TCP in arbitrary networks in the

presence of delay depends on feedback delays only through their heterogeneity. It implies

in particular that a network where all sources have the same delay is always stable, no

matter how large the delay is. It also confirms the common belief that a slower update

enhances stability. Then we restrict ourselves to a single link without feedback delay and

prove the global stability of FAST TCP. The techniques developed for this discrete-time

model are new and applicable to analyzing other protocols.
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Finally, we conclude in Section 4.5 with limitations of this work.

4.2 Model

4.2.1 Notation

A network consists of a set ofL links indexed byl with finite capacitycl. It is shared by a

set ofN flows identified by their sources indexed byi. Let R be the routing matrix where

Rli = 1 if sourcei uses linkl, and0 otherwise.

We uset for time in the continuous model, and for time step in the discrete-time model.

The meaning oft should be clear from the context. FAST TCP updates its congestion

window every fixed time period, which is used as the time unit.

Let di denote the round-trip propagation delay of sourcei, andqi(t) denote the round-

trip queueing delay. The round-trip time is given byTi(t) := di + qi(t). We denote the

forward feedback delay from sourcei to link l by τ f
li and the backward feedback delay

from link l to sourcei asτ b
li. The sum of forward delay from sourcei to any link l and

the backward delay from linkl to sourcei is fixed, i.e.,τi := τ f
li + τ b

li for any link l on

the path of sourcei. We make a subtle assumption here. In reality, the feedback delays

τ f
li , τ b

li include queueing delay and are time-varying. We assume for simplicity that they

are constant, and mathematically unrelated toTi(t). Later, when we analyze linear stability

around the network equilibrium in the presence of feedback delay, we can interpretτi as

the equilibrium value ofTi.

Let wi(t) be sourcei’s congestion window at timet (discrete or continuous time). The

sending rate of sourcei at timet is defined as

xi(t) =
wi(t)

Ti(t)
, (4.1)

whereTi(t) = di + qi(t). The aggregate rate at linkl is

yl(t) =
∑

i

Rlixi(t− τ f
li). (4.2)
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Let pl(t) be the queueing delay at linkl. The end-to-end queueing delayqi(t) observed by

sourcei is

qi(t) =
∑

l

Rlipl(t− τ b
li). (4.3)

4.2.2 Discrete and continuous-time models

FAST TCP source periodically updates its congestion windoww based on the average RTT

and estimated queueing delay. The pseudo-code is

w← (1− γ)w + γ

(
baseRTT

RTT
w+ α

)
,

whereγ ∈ (0, 1], baseRTT is the minimum RTT observed, andα is a constant. We model

this by the following discrete time equation

wi(t + 1) = γ

(
diwi(t)

di + qi(t)
+ αi

)
+ (1− γ)wi(t), (4.4)

wherewi(t) is the congestion window of theith source,γ ∈ (0, 1], andαi is a constant for

sourcei. The corresponding continuous-time model is

ẇi(t) = γ

(
diwi(t)

di + qi(t)
+ αi − wi(t)

)
, (4.5)

where the time is measured in the unit of update period in FAST TCP.

For the continuous-time model, queueing delay has been traditionally modelled with

ṗl(t) =
1

cl

(yl(t)− cl). (4.6)

However, TCP uses self-clocking: the source always tries to maintain that the number

of packets in fly equals to the congestion window size. When the congestion window is

fixed, the source will send a new packet exactly after it receives an ACK packet. When the

congestion window changes, the source sends out bulk traffic in burst, or sends nothing in

a short time period. Therefore, one round-trip time after a congestion window is changed,

packet transmission will be clocked at the same rate as the throughput the flow receives.
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We assume that the disturbance in the queues due to congestion window changes settles

down quickly compared with the update period of the discrete-time model; see [160] for

detailed justification and validation experiments for these arguments. A consequence of this

assumption is that the link queueing delay vector,p(t) = (pl(t), for all l), is determined

implicitly by sources’ congestion windows in a static manner

∑
i

Rli
wi(t− τ f

li)

di + qi(t− τ f
li)





= cl if pl(t) > 0

≤ cl if pl(t) = 0
, (4.7)

where theqi is the end-to-end queueing delay given by (4.3).

In summary, the continuous-time model is specified by (4.5) and (4.6), and the discrete-

time model is specified by (4.4) and (4.7), where the source rates and aggregate rates at

links are given by (4.1) and (4.2), and the end-to-end delays are given by (4.3). While

the continuous-time model does not take self-clocking into full account, the discrete-time

model ignores the fast dynamics at the links. Before comparing these models, we clarify

their common equilibrium structure by the following theorem cited from [69].

Theorem 4.1. Suppose that the routing matrixR has full row rank. A unique equilibrium

(x∗, p∗) of the network exists, andx∗ is the unique maximizer of

max
x≥0

∑
i

αi log xi s.t. Rx ≤ c (4.8)

with p∗ as the corresponding optimum of its Lagrangian dual. This implies in particular

that the equilibrium ratex∗ is αi-weighted proportionally fair.

4.2.3 Validation

The continuous-time link model implies that the queue takes an infinite amount of time

to converge after a window change. In the other extreme, the discrete-time link model

assumes that the queue settles down in one sampling time. Neither is perfect, but we now

present experimental results that suggest both track the queue dynamics well.

All the experiments reported in this paper are carried out on the Dummynet Testbed
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[132]. A FreeBSD machine is configured as a Dummynet router that provides different

propagation delays for different sources. It can be configured with different capacity and

buffer size. In our experiments, the bottleneck link capacity is800Mbps, and the buffer size

is 4000 packets with a fixed packet length of1500 bytes. A Dummynet monitor records

the queue size every0.4 second. The congestion window size and RTT are recorded at the

host every 50ms. TCP traffic is generated usingiperf. The publicly released code of FAST

[33] is used in all experiments involving FAST. We present two experiments to validate the

model, one closed-loop and one open-loop.

In the first (closed-loop) experiment, there are 3 FAST TCP sources sharing a Dum-

mynet router with a common propagation delay of 100ms. The measured and predicted

queue sizes are given in Figure 4.1. In the beginning of the experiment, the FAST sources

are in the slow start phase, and none of the models gives accurate prediction. After the

FAST TCP enters the congestion avoidance phase, both models track the queue size well.
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Figure 4.1: Model validation–closed loop

To eliminate the modelling error in the congestion window adjustment algorithm itself

while validating the link models, we decouple the TCP and queue dynamics by using open-

loop, window control. The second experiment involves three sources with propagation

delays 50ms, 100ms, and 150ms sharing the same Dummynet router.

We changed the Linux 2.4.19 kernel so that the sources vary their window sizes ac-
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cording to the schedules shown in Figure 4.2(a). The sequences of congestion window

sizes are then used in (4.1)–(4.2) and (4.6) to compute the queueing delay predicted by the

continuous-time model. We also use them in (4.1)–(4.2) and (4.7) to compute the predic-

tions of the discrete-time model. The queueing delay measured from the Dummynet and

those predicted by these two models are shown in Figure 4.2(b), which indicates that both

models track the queue sizes well. We next analyze the stability properties of these two

models.
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Figure 4.2: Model validation–open loop.

4.3 Stability analysis with the continuous-time model

We present the stability analysis of the continuous model in general networks with and

without feedback delays.

4.3.1 Global stability without feedback delay

In this subsection, we show that FAST is globally stable for general networks by designing a

Lyapunov. When there is no feedback delay, the equations (4.2) and (4.3) can be simplified
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as

yl(t) =
∑

i

Rlixi(t) and qi(t) =
∑

l

Rlipl(t). (4.9)

Suppose thatR is full row rank, and the system has unique equilibrium source rates

and link prices. Letwi, pl, . . . be the equilibrium quantities, and denoteδwi(t) := wi(t)−
wi, δpl(t) = pl(t)− pl, . . . . From (4.5) we can formulate the equilibrium window as

wi =
αiTi

qi

, (4.10)

whereTi is the equilibrium round-trip delayTi = di + qi.

Based on (4.5) and (4.10), we can write the derivative ofwi(t) as

1

γ
ẇi(t) = αi − qi(t)wi(t)

Ti(t)
,

= αi − qi(t)

Ti(t)
(wi + δwi(t)),

= − qi(t)

Ti(t)
δwi(t) + αi

Ti(t)qi − qi(t)Ti

Ti(t)qi

,

= − qi(t)

Ti(t)
δwi(t)− αi

diδqi(t)

Ti(t)qi

.

Therefore, we have

1

γ
δẇi(t) = − qi(t)

Ti(t)
δwi(t)− αidi

Ti(t)qi

δqi(t). (4.11)

Based on (4.1) and (4.10) we have

δxi(t) =
wi + δwi(t)

Ti(t)
− wi

Ti

=
δwi(t)

Ti(t)
− (

1

Ti

− 1

Ti(t)
)wi =

δwi(t)

Ti(t)
− δqi(t)

Ti(t)Ti

αiTi

qi

.

Therefore, we have

δxi(t) =
1

Ti(t)
δwi(t)− αi

Ti(t)qi

δqi(t). (4.12)



51

Based on (4.12) and (4.9), the derivative of link price is

ṗl(t) =
1

cl

(
∑

i

Rlixi(t)− cl) =
1

cl

∑
i

Rliδxi(t). (4.13)

From (4.12) and (4.13), we have

δṗl(t) =
1

cl

∑
i

Rli

(
1

Ti(t)
δwi(t)− αi

Ti(t)qi

δqi(t)

)
. (4.14)

With the preliminary results, we present and prove the following theorem.

Theorem 4.2. The continues-time model of FAST TCP is globally asymptotically stable

when there is no feedback delay andR is full row rank.

Proof: Considering the functionV (w(t), p(t)) defined as

V (w(t), p(t)) =
1

2γ

∑
i

qi

αidi

(wi(t)− wi)
2 +

1

2

∑

l

cl(pl(t)− pl)
2. (4.15)

Clearly, the functionV (w, p) is non-negative for all(w(t), p(t)). It is zero if and only if

w(t) = w andp(t) = p, where the system is at its equilibrium. DifferentiatingV (w(t), p(t))

with respect to the solution trajectory using (4.14) and (4.11) yields

V̇ (w(t), p(t)) =
∑

i

qi

γαidi

δwi(t)δẇi(t) +
∑

l

clδpl(t)δṗl(t),

=
∑

i

qi

αidi

δwi(t)

(
− qi(t)

Ti(t)
δwi(t)− αidi

Ti(t)qi

δqi(t)

)

+
∑

l

∑
i

Rli

(
1

Ti(t)
δwi(t)− αi

Ti(t)qi

δqi(t)

)
δpl(t),

= −
∑

i

qiqi(t)

Ti(t)αidi

δwi(t)
2 −

∑
i

1

Ti(t)
δwi(t)δqi(t)

+
∑

i

1

Ti(t)
δwi(t)

∑

l

Rliδpl(t)−
∑

i

αi

Ti(t)qi

δqi(t)
∑

l

Rliδpl(t),

= −
∑

i

q∗i qi(t)

Ti(t)αidi

δwi(t)
2 −

∑
i

αi

Ti(t)qi

δqi(t)
2

From the above equation,V̇ (w(t), p(t)) ≤ 0. Sinceα > 0, qi > 0 andTi(t) > di > 0, if the
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equality holds,δqi(t) = 0, which also implies thatδwi(t) = 0. ThereforeV̇ (w(t), p(t)) =

0, if and only if the source rates are at equilibrium. Therefore, the system is at its unique

equilibrium under our assumption thatR is full row rank.

From the above argument,V (w(t), p(t)) is a system Lyapunov function, and the system

is globally asymptotically stable.

From the proof, it is clear thaṫV (w(t), p(t)) = 0 only implies that the source rates

are in equilibrium. WhenR is not full rank, the source rates still globally converge to

their equilibrium values, but the equilibrium link pricep is no longer unique and may not

converge to a fixed value.

In our continuous model, we ignored that positive projection in the link price updates

(i.e., the link prices have to be non-negative). This is equivalent to assuming that the bot-

tleneck link is unchanged in this dynamical system. We need to consider this saturation

problem in our future research.

4.3.2 Local stability with feedback delay

When feedback delays are present, the global stability analysis for FAST TCP in general

networks is still open. In this section, we try to provide a condition to ensure local stability.

Since there exists a unique equilibrium as described in Theorem 4.1, we can linearize

the model (4.5) and (4.6) around this equilibrium. Define routing matrices with feedback

delay in frequency domain as

(Rf (s))li :=





e−τf
lis if Rli = 1

0 if Rli = 0
(Rb(s))li :=





e−τb
lis if Rli = 1

0 if Rli = 0
.

Let xi, qi, andTi be the corresponding equilibrium values associated with sourcei. The

following Lemma provides the open-loop transfer function.

Lemma 4.1. The open-loop transfer function of the linearized FAST TCP system is

L(s) = D3Rf (s)Λ(s)XRT
f (−s), (4.16)
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where

D3 := diag

(
1

cl

)
, X := diag(xi), and Λ(s) := diag(

e−τis

Tis

Tis + γTi

Tis + γqi

).

Proof. See Appendix 4.6.1.

The following theorem provides a sufficient condition for local stability.

Theorem 4.3.The FAST TCP system described by (4.5) and (4.6) is locally stable if

M

φ

√
φ2 + γ2T 2

max

φ2 + γ2q2
min

< 1, (4.17)

whereM is the maximal number of links in the path of any source,qmin = mini qi, Tmax =

maxi Ti and

φ := min
i

(
π

2
− tan−1 1− qi/Ti

2
√

qi/Ti

)
. (4.18)

Proof. See the Appendix 4.6.2.

This is actually a very weak theorem. The condition (4.18) can hardly be satisfied when

M is large. But it can provide us with some information about the effect of various param-

eters on the stability. For example, this condition suggests that the equilibrium queueing

delay should be large to guarantee stability. In general, this condition is only sufficient.

When there is only one link and all sources have the same feedback delays, it becomes

necessary as well. Our numerical simulations for this model validate this.

4.3.3 Numerical simulation and experiment

The condition in Theorem 4.3 implies that FAST TCP may become unstable in a single

bottleneck network with homogeneous sources. However our experiments with FAST TCP

on the Dummynet Testbed have always been stable.

We now present an experiment that violates the local stability condition. Moreover, nu-

merical simulation of the continuous-time model exhibits instability. Yet, the same network
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on Dummynet is clearly stable. This suggests that the discrepancy is not in the stability the-

orem but rather in the continuous-time model.

In our experiment, the sources have identical propagation delay of100ms with a con-

stantα value of70 packets. They share a bottleneck with capacity of800Mbps. The simu-

lations and experiments consist of three intervals. The interval length is10 seconds for the

continuous-time model simulation and 100 seconds for the experiment2. Three sources are

active from the beginning of the experiment, seven additional sources activate in the sec-

ond interval, and in the last interval, all sources become inactive except five of them. The

simulation and experimental results are shown in Figure 4.3 and Figure 4.4, respectively.

10 12 14 16 18 20 22 24 26 28 30
0

500

1000

1500

2000

2500

3000

3500

4000

Simulation time (sec)

Q
u
e
u
e
 s

iz
e
 (

p
k
ts

)

(a) Queue size

10 12 14 16 18 20 22 24 26 28 30
0

500

1000

1500

2000

2500

3000

C
o
n
g
e
s
ti
o
n
 w

in
d
o
w

(p
k
t)

Simulation time (sec)

Flow 1
Flow 4
Flow 10

(b) Window size

Figure 4.3: Numerical simulations of FAST TCP.

The stability condition in Theorem 4.3 is not satisfied and, as expected, the numerical

simulation based on the continuous-time model exhibits periodic oscillation. However, in

the Dummynet experiment, FAST TCP is actually stable (see Figure 4.4).3

We believe that the discrepancy is largely due to the fact that the continuous-time model

does not capture the self-clocking effect accurately. Self-clocking ensures that packets are

2We use a long duration in the Dummynet experiment because a FAST TCP source takes longer to con-
verge due to slow-start, which is not included in our model.

3The regular spikes every 10 seconds in the queue size are probably due to a certain background task in
the sending host.
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Figure 4.4: Dummynet experiments of FAST TCP.

sent at the same rate as the goodput the source receives, except briefly when the window

size changes. This self-clocking feature can actually help the system approach an equi-

librium. Indeed, for the case of one source for one link, a discrete-event model is used

in [160] to prove that TCP FAST and Vegas are always stable regardless of the feedback

delay. It also provides justification for the discrete-time models in (4.4) and (4.7) based on

the self-clocking feature introduced in the last section.

4.4 Stability analysis with the discrete-time model

We now analyze the stability of this model. We will see that the discrete-time model pre-

dicts that a network of homogeneous sources with the same feedback delay is locally stable

no matter how large the delay is, agreeing with our experimental experience. In the follow-

ing subsection, we study the local stability of FAST TCP using the discrete-time model for

arbitrary networks with feedback delays.
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4.4.1 Local stability with feedback delay

A network of FAST TCP sources is modelled by equations (4.3), (4.4), and (4.7). This

generalizes the model in [69] by including feedback delay. When local stability is studied,

we ignore all un-congested links (links where prices are zero in equilibrium) and assume

that equality always holds in (4.7).

The main result of this section provides a sufficient condition for local asymptotic sta-

bility in general networks with common feedback delay.

Theorem 4.4. FAST TCP is locally stable for arbitrary networks ifγ ∈ (0, 1] and if all

sources have the same round-trip feedback delayτi = τ for all i.

The stability condition in the theorem does not depend on the value of the feedback

delay, but only on the heterogeneity among them. In particular, when all feedback delays

are ignored,τi = 0 for all i, then FAST TCP is locally asymptotically. This generalizes the

stability result in [69].

Corollary 4.1. FAST TCP is locally asymptotically stable in the absence of feedback delay

for general networks with anyγ ∈ [0, 1).

The rest of this subsection is devoted to the proof of Theorem 4.4.

We applyZ-transform to the linearized system and use the generalized Nyquist criterion

to derive a sufficient stability condition. Define the forward and backwardZ-transformed

routing matricesRf (z) andRb(z) as

(Rf (z))li :=





z−τf
li if Rli = 1

0 if Rli = 0
and (Rb(z))li :=





z−τb
li if Rli = 1

0 if Rli = 0
.

The relationτ f
li + τ b

li = τi gives

Rb(z) = Rf (z
−1) · diag(z−τi). (4.19)

DenoteW (z), Q(z), andP (z) as the correspondingZ-transforms ofδw(t), δq(t), andδp(t)

for the linearized system. Letq andw be the end-to-end queueing delay and congestion
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window at equilibrium. Linearizing (4.7) yields

∑
i

Rli

(
δwi(t− τ f

li)

di + qi

− wi
δqi(t− τ f

li)

(di + qi)2

)
= 0,

where the equality is used in (4.7). The correspondingZ-transform in matrix form is

Rf (z)D−1MW (z)−Rf (z)BQ(z) = 0, (4.20)

where the diagonal matricesB, D, andM are

B := diag

(
wi

(di + qi)2

)
,M := diag

(
di

di + qi

)
, andD := diag(di).

SinceRf (z) is generally not a square matrix, we cannot cancel it in (4.20).

Equation (4.3) is already linear, and the correspondingZ-transform in matrix form is

Q(z) = Rb(z)T P (z). (4.21)

By combining (4.20) and (4.21), we obtain


 I −RT

b (z)

Rf (z)B 0





 Q(z)

P (z)


 =


 0

Rf (z)D−1M


 W (z).

Solving this equation with block matrix inverse gives the transfer function fromW (z) to

Q(z)

Q(z)

W (z)
= RT

b (z)(Rf (z)BRT
b (z))−1Rf (z)D−1M.

TheZ-transform of the linearized, congestion window update algorithm is

zW (z) = γ (MW (z)−DBQ(z)) + (1− γ)W (z).

By combining the above equations, we get the open-loop transfer functionL(z) from W (z)
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to W (z) as

L(z) = − (
γ

(
M −DBRT

b (z)(Rf (z)BRT
b (z))−1Rf (z)D−1M

)
+ (1− γ)I

)
z−1.

A sufficient condition for local stability can be developed based on the generalized Nyquist

criterion [23, 31]. Since the open-loop system is stable, if we can show that the eigenvalue

loci of L(ejw) does not enclose−1 for ω ∈ [0, 2π), the closed-loop system is stable.

Therefore, if the spectral radius ofL(ejw) is strictly less than 1 forω ∈ [0, 2π), the system

will be stable.

Whenz = ejw, the spectral radii ofL(z) and−zL(z) are the same. Hence, we only

need to study the spectral radius of

J(z) : = γ(M −DBRT
b (z)

(
Rf (z)BRT

b (z)
)−1

Rf (z)D−1M + (1− γ)I.

Clearly, the eigenvalues ofJ(z) are dependent onγ. For any givenz = ejω, let the eigen-

values ofJ(z) be denoted byλi(γ), i = 1 . . . N , as functions ofγ ∈ (0, 1]. It is clear

that

|λi(γ)| = |γλi(1) + (1− γ)| ≤ γ|λi(1)|+ (1− γ).

Hence ifρ(J(z)) < 1 for any z = ejω for γ = 1, it will also hold for all γ ∈ (0, 1].

Therefore, it suffices to study the stability condition forγ = 1.

Let µi be theith diagonal entry of matrixM with µi = di/(di + qi). Denoteµmax :=

maxi µi. Since the end-to-end queueing delayqi cannot be zero at equilibrium (otherwise

the rate will be infinitely large), we haveqi > 0 andµmax < 1. The following lemma

characterizes the eigenvalues ofJ(z) with γ = 1.

Lemma 4.2. Whenz = ejω with ω ∈ [0, 2π) andγ = 1, the eigenvalues ofJ(z) have the

following properties:

1. There areL zero eigenvalues with the corresponding eigenvectors as the columns of

matrixM−1DBRT
b (z).
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2. The nonzero eigenvalues have moduli less than1 if τmax− τmin < 1/4, whereτmax =

maxi τi andτmin = mini τi .

Proof: At γ = 1, the matrixJ(z) is

M −DBRT
b (z)(Rf (z)BRT

b (z))−1Rf (z)D−1M.

It is easy to check that

J(z)M−1DBRT
b (z) = DBRT

b (z)−DBRT
b (z) = 0.

SinceM−1DBRT
b (z) has full column rank, it consists ofL linearly independent eigenvec-

tors ofJ(z) with corresponding eigenvalue 0. This proves the first assertion.

For the second assertion, suppose thatλ is an eigenvalue ofJ(z) for a givenz. Define

matrixA as

A : = J(z)− λI = (M − λI)−DBRT
b (z)(Rf (z)BRT

b (z))−1Rf (z)D−1M,

which is singular by definition. Based on the matrix inversion formula (see, e.g., [62])

(J + EHS)−1 = J−1 − J−1E(H−1 + SJ−1E)−1SJ−1,

if J + EHS is singular, then eitherJ or H−1 + SJ−1E is singular. We can let

J := M − λI, E := −DBRT
b (z), H := (Rf (z)BRT

b (z))−1, andS := Rf (z)D−1M.

SinceA = J + EHS is singular, eitherJ = M − λI or H−1 + SJ−1E is singular. The

second term can be reformulated intoRf (z)(B −M(M − λI)−1B)RT
b (z).

Case 1:M − λI is singular. SinceM is diagonal, then

0 < λ =
di

di + qi

= µi ≤ µmax < 1.

Case 2:Rf (z)(B −M(M − λI)−1B)RT
b (z) is singular.
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It is clear that

B −M(M − λI)−1B = diag
(
1− µi(µi − λ)−1βi

)
= −λdiag

(
βi

µi − λ

)
,

whereβi is the ith diagonal entry of matrixB. Hence,λ = 0 is always an eigenvalue,

which is claimed before. Ifλ is nonzero, it has to be true that

det

(
Rf (z)diag

(
βi

µi − λ

)
RT

b (z)

)
= 0. (4.22)

Whenz = ejω, we havez−1 = z. Hence, equation (4.19) can be rewritten as

RT
b (z) = diag(z−τi)RT

f (z) = diag(z−τi)R∗
f (z).

Substituting the above equation into (4.22) withz = ejω yields

det

(
Rf (z)diag

(
e−jωτiβi

µi − λ

)
R∗

f (z)

)
= 0. (4.23)

Therefore, the following formula is also zero

e−j(ωτmax+ψ) det

(
Rf (z)diag

(
ej(θi+ψ)βi

µi − λ

)
R∗

f (z)

)
= 0.

whereθi = (τmax − τi)ω, andψ can be any value. Whenτmax − τmin < 1/4, we have

0 ≤ θi = (τmax − τi)ω ≤ π/2.

Suppose that there is a solution such that|λ| ≥ 1. Based on Lemma 4.3, which will be

presented later, there exists aψ s.t. Im(diag
(
ej(θi+ψ)βi/(µi − λ))

)
is a positive diagonal

matrix. Therefore the imaginary part of matrixRf (z)diag
(
ej(θi+ψ)βi/(µi − λ))

)
R∗

f (z)

is positive definite, and the real part is symmetric. From Lemma 4.4 below, it has to be

nonsingular. This contradicts the equation

det

(
Rf (z)diag

(
ej(θi+ψ)βi

µi − λ

)
R∗

f (z)

)
= 0.
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Hence, we have|λ| < 1.

The proof of Theorem 4.4 will be complete after the next two lemmas.

Lemma 4.3. Suppose that0 < µi < 1 and0 ≤ θi < π/2. If |λ| ≥ 1 , there exists aψ such

that

Im

(
ej(θi+ψ)βi

µi − λ

)
> 0 for i = 1 . . . N.

Proof: See Appendix 4.6.3.

Lemma 4.4. If the real part of a complex matrix is symmetric, and the imaginary part is

positive definite, then the matrix is nonsingular.

Proof: See Appendix 4.6.4.

4.4.2 Global stability for one link without feedback delay

In the absence of feedback delay, when there is only one link, the FAST TCP model can be

simplified into

wi(t + 1) = γ

(
diwi(t)

di + q(t)
+ αi

)
+ (1− γ)wi(t), (4.24)

∑
i

wi(t)

di + q(t)
≤ c with equality if q(t) > 0, (4.25)

whereq(t) is the queueing delay at the link (subscript is omitted). The main result of this

section proves that the above system (4.24)–(4.25) is globally asymptotically stable and

converges to the equilibrium exponentially fast starting from any initial value.

Theorem 4.5. On a single link, FAST TCP converges exponentially to the equilibrium, in

the absence of feedback delay.

In the rest of this section, we prove the theorem in several steps. The first result is that

after finite stepsK1, equality always holds in (4.25) andq(t) > 0 for any t > K1. Define
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the normalized congestion window sum asY (t) :=
∑

i wi(t)/di. From (4.25), it is clear

thatq(t) > 0 if and only if Y (t) > c.

Lemma 4.5. There existsK1 > 0 such that the following claims are true for allt > K1:

1. q(t) > 0.

2. ν(t + 1) = (1− γ)ν(t) whereν(t) := Y (t)− c−∑
i αi/di .

Proof: If initially q(t) = 0, which also meansY (t) ≤ c, from (4.24) we haveY (t + 1) =

Y (t) + γ
∑

i αi/di, which linearly increases witht. ThenY (t) > c after some finite steps.

Therefore, there exists aK1 such thatY (t) > c andq(t) > 0 at t = K1.

We will show thatY (t) > c impliesY (t + 1) > c. Henceq(t) > 0 for all t > K1.

Moreover,ν(t) converges exponentially to 0.

SupposeY (t) > c. From
∑

i wi(t)/(di + qi(t)) = c, we have

ν(t + 1) =
∑

i

wi(t + 1)

di

−
∑

i

αi

di

− c,

= (1− γ)
∑

i

wi(t)− αi

di

+ γ
∑

i

wi(t)

di + q(t)
− c,

= (1− γ)

(∑
i

wi

di

− c−
∑

i

αi

di

)
= (1− γ) ν(t).

This proves the second assertion. Moreover it implies

Y (t + 1) = (1− γ)Y (t) + γ

(∑
i

αi

di

+ c

)
.

Hence,Y (t) > c impliesY (t + 1) > c andq(t + 1) > 0. This completes the proof.

For the rest of this subsection, we pick a fixedε with 0 < ε <
∑

i αi/di. Define

qmin :=
dmin

c

(∑
i

αi

di

− ε

)
, and qmax :=

dmax

c

(∑
i

αi

di

+ ε

)
,

wheredmin := mini di anddmax := maxi di.

Thenq(t) is bounded by these two values after finite steps.
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Lemma 4.6. There exists a positiveK2 such thatqmin ≤ q(t) ≤ qmax for anyt ≥ K2.

Proof: From Lemma 4.5, after finite stepsK1, ν(t + 1) = (1 − γ)ν(t). Therefore, there

exists aK2 such that|ν(t)| < ε for all t ≥ K2. It implies

∑
i

αi

di

<
∑

i

wi(t)

di

− c + ε =
∑

i

(
wi(t)

di

− wi(t)

di + q(t)

)
+ ε,

≤
∑

i

q(t)wi(t)

dmin(di + q(t))
+ ε =

q(t)c

dmin

+ ε.

.

Therefore,

q(t) ≥ dmin

c

(∑
i

αi

di

− ε

)
= qmin.

The proof forqmax is the same.

Define µi(t) := di/(di + q(t)), and denoteµmax := maxi di/(di + qmin), µmin :=

mini di/(di + qmax). Based on Lemma 4.6, we have1 > µmax ≥ µi(t) > µmin > 0 for any

t ≥ K2. Define

ηi(t) :=
wi(t)− αi

αidi

− 1

q(t)
, (4.26)

and denoteηmax(t) := maxi ηi(t), ηmin(t) := mini ηi(t). We will show that the window

update for sourcei is proportional toηi(t), and the system is at equilibrium if and only if

all ηi(t) are zero. The next lemma gives bounds onηi(t).

Lemma 4.7. There exist two positive numbersδ1 andδ2 such that for allt ≥ K2

ηmax(t) > −δ1(1− γ)t and ηmin(t) < δ2(1− γ)t.

Proof: From (4.26), it is easy to check thatY (t + 1) − Y (t) = −γν(t). By Lemma 4.5,

whent ≥ K2 we have

Y (t + 1)− Y (t) = −γν(t) ≤ γ(1− γ)t−K2|ν(K2)| = κ(1− γ)t, (4.27)
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whereκ := γ(1− γ)−K2|ν(K2)|.
The update of sourcei’s congestion window is

wi(t + 1)− wi(t) = γ

(
diwi(t)

di + q(t)
+ αi − wi(t)

)
=

γq(t)

di + q(t)

(
αidi

q(t)
− (wi(t)− αi)

)
,

= −γαidiq(t)

di + q(t)

(
wi(t)− αi

αidi

− 1

q(t)

)
= −γαiq(t)µi(t)ηi(t).

Chooseδ1 large enough such thatδ1Nγαminqminµmin/dmax > κ whereαmin := mini αi.

We now proveηmax(t) > −δ1(1 − γ)t for all t ≥ K2 by contradiction. Suppose that

there is a timet ≥ K2 such thatηmax(t) ≤ −δ1(1 − γ)t. Then all theηi(t) are negative,

which implies

Y (t + 1)− Y (t) =
∑

i

(wi(t + 1)− wi(t))/di =
∑

i

−γαiq(t)µi(t)ηi(t)/di,

≥ N(−ηmax)γαminqminµmin/dmax,

≥ δ1N(1− γ)tγαminqminµmin/dmax > κ(1− γ)t.

This contradicts equation (4.27), which proves the claim. The proof forηmin(t) is similar.

DefineL(t) as:

L(t) := ηmax(t)− ηmin(t). (4.28)

The following lemma implies that the difference between differentηi(t) goes to zero expo-

nentially fast.

Lemma 4.8. There are two positive numbersδ3 andδ4, such that fort ≥ K2 we have

1. L(t) ≥ 0.

2. L(t + 1) ≤ (1− γ + γµmax)L(t) + δ3(1− γ)t.

3. L(t) ≤ δ4(1− γ + γµmax)
t.

Proof: See Appendix 4.6.5.
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Lemma 4.9. Bothηmax(t) andηmin(t) exponentially converge to zero.

Proof: Whent ≥ K2, combining Lemma 4.7 and Lemma 4.8 yields an upper bound for

ηmax(t),

ηmax(t) = L(t) + ηmin(t) ≤ δ4(1− γ + γµmax)
t + δ2(1− γ)t.

The lower bound ofηmax is−δ1(1−γ)t ≤ ηmax(t). Since both the upper and lower bounds

of ηmax(t) converge to zero exponentially fast, it exponentially goes to zero. The proof for

ηmin(t) is similar.

Proof of Theorem 4.5: The system is at equilibrium if and only ifwi(t) = wi(t + 1) for

all i. This is equivalent toηi(t) = 0 for all i because of the equation

wi(t + 1)− wi(t) = −γαiq(t)µi(t)ηi(t).

Since bothηmax(t) andηmin(t) converge to zero exponentially from any initial value, the

system converges to the equilibrium defined byηi(t) = 0 globally.

4.5 Conclusion

We have introduced the traditional continuous-time model for FAST TCP. We analyze its

stability for general networks. We prove that the FAST TCP system is globally stable

without feedback delay. When the feedback delays are present, a sufficient condition is

provided for local stability. However, there are certain inconsistencies between this model

and our experiments, which maybe due to the self-clocking effects.

We present a new discrete-time link model that fully captures the effect of self-clocking.

Using this discrete-time model, we have derived a sufficient condition for local asymptotic

stability for general networks in the presence of feedback delay. The condition states that

the system is stable if the difference among delays of the sources is small. This implies, in

particular, that a network with homogeneous sources is always stable, consistent with our
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experimental experience so far. We also prove that FAST TCP is globally stable on a single

link in the absence of feedback delay.

This work can be extended in several ways. First, the condition for local asymptotic

stability derived appears more restrictive than our experiments suggest. Moreover, we have

also found scenarios where predictions of the discrete-time model disagree with experi-

ment. These discrepancies should be clarified. Second, it will be interesting to extend

the global stability analysis to general networks with feedback delays. Finally, the new

model and the analysis techniques here can be applied to analyze other congestion control

algorithms.

4.6 Appendix

4.6.1 Proof of Lemma 4.1

The FAST TCP model (4.1, 4.3, 4.5, 4.2, and 4.6) can be linearized into

δqi(t) =
∑

l

Rliδpl(t− τ b
li), δxi(t) =

δwi(t)

di + qi

− wiδqi(t)

(di + qi)2
,

δẇi(t) = γ

(−qiδwi(t)

di + qi

− diwiδqi(t)

(di + qi)2

)
, δyl(t) =

∑
i

Rliδxi(t− τ f
li),

δṗl(t) = δyl(t)/cl,

wherewi andqi are the equilibrium values. Sinceτi = τ f
li + τ b

li for all link l on the path of

sourcei, the following equation holds

RT
b (s) = diag(e−τis)RT

f (−s). (4.29)
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The Laplace transform of the linearized system in matrix form is





Q(s) = Rb(s)
T P (s),

X(s) = D1W (s)−BQ(s, )

sW (s) = γ ((DD1 − I)W (s)−DBQ(s)) ,

Y (s) = Rf (s)X(s),

sP (s) = D3Y (s),

where the diagonal matrices are

D := diag(di) , D1 := diag

(
1

di + qi

)
,

B := diag

(
wi

(di + qi)2

)
, D3 := diag

(
1

cl

)
.

The open-loop transfer function fromP (s) to P (s) can be derived based on the above

equations as

1

s
D3Rf (s)

(
γDD1(sI − γ(DD1 − I))−1 + 1

)
D2R

T
b (s).

By using the fact thatTi = di + qi, xi = wi/Ti and (4.29), we can simplify the open loop

transfer functionL(s) into (4.16).

4.6.2 Proof of Theorem 4.3

It is sufficient to show that the eigenvalues of the open-loop transfer function do not encircle

−1 in the complex plain fors = jω, ω ≥ 0 when the condition is satisfied. Since both

X andΛ(s) are diagonal matrices, by using the similar technique in [24], it is not difficult

to check that whens = jω, the set of eigenvalues ofL(s) is same as that ofL(jω) =

Λ(s)R̂T (−jω)R̂(jω) except for some zero eigenvalues whereR̂(jω) is defined as

R̂(jω) := diag(
1√
cl

)Rf (jω)diag(
√

xi).
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Following the argument of [152], we study the convex hull as a function ofjω formed by

N Nyquist trajectories. More specifically, the spectrum ofL(jω) satisfies

σ(L(jω)) = σ
(
Λ(s)R̂T (−jω)R̂(jω)

)
⊆ ρ

(
R̂T (−jω)R̂(jω)

)
· co(0 ∪ {Λi(jω)}) ,

wherei = 1 . . . N , co(·) denotes the convex hull, and

Λi(jω) :=
e−jωTi

jωTi

jωTi + γTi

jωTi + γqi

,

where theτi is replaced withTi sinceτi = Ti at equilibrium. Similar to [24], the spectral

radius ofR̂T (−jω)R̂(jω) is less thanM , which is the maximal number of links in the path

of any source,M = maxi

∑
l Rli. It implies

σ(L(jω)) ⊆ M · co(0 ∪ {Λi(jω), i = 1 . . . N}) .

Therefore a sufficient condition for local stability is thatMΛi(jω) does not encircle−1 for

any i.

It is a standard control theory result that the largest phase lag of(jωTi + γTi)/(jωTi +

γqi) is produced whenωTi =
√

γTi · γqi , which is

∠j
√

γTi · γqi + γTi

j
√

γTi · γqi + γqi

= − tan−1 1− qi/Ti

2
√

qi/Ti

.

The above equation yields

∠Λi(jω) ≥ −ωTi − π

2
− tan−1 1− qi/Ti

2
√

qi/Ti

.

Suppose that at frequencyωi the phase lag ofΛi(jω) is−π. Hence,

−π = Λi(jωi) ≥ −ωiTi − π

2
− tan−1 1− qi/Ti

2
√

qi/Ti

.
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Based on (4.18) we have

ωiTi ≥ φ for i = 1 . . . N.

It is easy to check that the magnitude ofΛi(jω) is a decreasing function ofω. Therefore,

M |Λi(jωi)| ≤ M |Λi(j
φ

Ti

)| = M

φ

√
φ2 + γ2T 2

i

φ2 + γ2q2
i

≤ M

φ

√
φ2 + γ2T 2

max

φ2 + γ2q2
min

< 1,

andMΛ(jωi) can not encircle−1. Based on the above argument, the system is locally

stable if (4.17 ) is satisfied.

4.6.3 Proof of Lemma 4.3

O 

Z 

Re

Im

A B

λ

λ

Figure 4.5: Illustration of Lemma 4.3.

Proof: There is a complex plane in Figure 4.5. Let the pointsA, B, andλ represent the

value ofµmin, µmax, andλ, respectively.Z is the intersection of segmentAλ and the unit

circle, andλ stands for the complex conjugate ofλ.

Let φi ∈ [0, 2π) be the phase of1/(µi − λ). Clearly, φi ∈ [0, π) if Im(λ) ≤ 0,

andφi ∈ (π, 2π) otherwise. Denoteφmax := maxi φi andφmin := mini φi, then0 ≤
φmax − φmin ≤ π. Since everyµi is in the range[µmin, µmax], it is easy to check that every
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φi is in the range formed by the phases of1/(µmin − λ) and1/(µmax − λ). This implies

φmax − φmin ≤ |∠ 1

µmin − λ
− ∠ 1

µmax − λ
| = ∠AλB = ∠AλB < ∠OZB < π/2.

Let ε > 0 be small enough such thatφmax − φmin < π/2 − ε. Choosingψ = −φmin + ε

gives us

∠ej(ψ+θi)βi

µi − λ
= φi + ψ + θi,

= φi − φmin + ε + θi, (greater than 0)

< φmax − φmin + ε + π/2 < π.

The fact that its phase is in(0, π) implies that

Im

(
ej(ψ+θi)βi

µi − λ

)
> 0.

4.6.4 Proof of Lemma 4.4

Suppose thatA = Ar + jAi whereAr = AT
r andAi is positive definite. IfA is singular,

there exists a nonzero vectorv such thatAv = 0. Suppose thatv = α + jβ. ThenAv = 0

gives

Arα− Aiβ = 0, (4.30)

Arβ + Aiα = 0. (4.31)

Multiplying βT to equation (4.30) yields

βT Arα = βT Aiβ ≥ 0. (4.32)
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Multiplying αT to equation (4.31) gives us

αT Arβ = −αT Aiα ≤ 0. (4.33)

SinceβT Arα = αT AT
r β = αT Arβ, both (4.32) and (4.33) must hold with equality. This

means that bothα andβ are zero. It contradicts the assumption thatv is nonzero.

4.6.5 Proof of Lemma 4.8

It is obvious thatL(t) ≥ 0 because of its definition in (4.28). We start with the update of

ηi(t)

ηi(t + 1)− ηi(t) =
wi(t + 1)− wi(t)

αidi

− 1

q(t + 1)
+

1

q(t)
,

= −γαiq(t)µi(t)ηi(t)

αidi

− 1

q(t + 1)
+

1

q(t)
,

= −γq(t)ηi(t)

di + q(t)
− 1

q(t + 1)
+

1

q(t)
,

= −γ(1− µi(t))ηi(t)− 1

q(t + 1)
+

1

q(t)
.

For simplicity, we letai(t) := 1 − γ + γµi(t) and denoteamax := 1 − γ + γµmax, then

ai(t) ≤ amax. This definition simplifies the above equation into

ηi(t + 1) = ai(t)ηi(t)− 1

q(t + 1)
+

1

q(t)
. (4.34)

By comparing equation (4.34) for sourcei andj, we obtain

ηi(t + 1)− ηj(t + 1) = ai(t)ηi(t)− aj(t)ηj(t). (4.35)

Without loss of generality, suppose that at timet + 1, the largest and smallest values ofη

are achieved at sourcesi andj, respectively. This assumption implies

L(t + 1) = ηi(t + 1)− ηj(t + 1).
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The upper bound ofL(t+1) is derived by considering the following three cases separately.

Case 1:ηi(t) andηj(t) have different signs. It is easy to see that

L(t + 1) = ai(t)ηi(t)− aj(t)ηj(t) ≤ amax(ηi(t)− ηj(t)),

≤ amax(ηmax(t)− ηmin(t)) = amaxL(t).

Case 2:Bothηi(t) andηj(t) are positive. It yields

L(t + 1) = ai(t)µi(t)ηi(t)− aj(t)ηj(t) ≤ amaxηmax(t),

= amaxL(t) + amaxηmin(t) ≤ amaxL(t) + amaxδ2(1− γ)t,

≤ amaxL(t) + δ3(1− γ)t,

where the last step is choosingδ3 larger thanamaxδ2.

Case 3:Bothηi(t) andηj(t) are negative. The proof is similar to that for Case 2.

Summarizing all the above cases, we have provedL(t+1) ≤ amaxL(t)+ δ3(1−γ)t for

all t ≥ K2. Denoteb := 1 − γ, then1 > amax > b ≥ 0. For anyt ≥ K2, an upper bound

of L(t) is

L(t) ≤ amaxL(t− 1) + δ3b
t−1 ≤ at−K2

max L(K2) + δ3(b
t−1 + bt−2amax + · · ·+ bK2at−K2−1

max ),

=

(
a−K2

max L(K2)− δ3
bK2a−K2

max

b− amax

)
at

max +
δ3

b− amax

bt.

Note that the coefficient ofbt is negative. By choosingδ4 as the coefficient ofat
max, we get

L(t) ≤ δ4a
t
max = δ4(1− γ + γµmax)

t.
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Chapter 5

Cross-Layer Optimization in TCP/IP
Networks

5.1 Introduction

Recent studies have shown that any TCP congestion control algorithm can be interpreted

as carrying out a distributed primal-dual algorithm over the Internet to maximize aggregate

utility, and a user’s utility function is defined by its TCP algorithm, see, e.g., [80, 97, 116,

107, 101, 88, 96] for unicast, [75, 30] for multi-cast, and [98, 79, 138] for recent surveys

and further references. All of these works assume that routing is given and fixed at the

timescale of interest, and TCP, together with active queue management (AQM), attempts

to maximize aggregate utility over source rates. In this chapter, we study the cross-layer

utility maximization at the timescale of route changes.

We focus on the situation where a single minimum-cost route (shortest path) is selected

for each source-destination pair. This models IP routing in the current Internet within an

Autonomous System using common routing protocols such as OSPF [119]1 or RIP [56].

Routing is typically updated at a much slower timescale than TCP–AQM. We model this

by assuming that TCP and AQM converge instantly to equilibrium after each route update

to produce source rates and “congestion prices” for that update period. These congestion

prices may represent delays or loss probabilities across network links. They determine

the next routing update in the case of dynamic routing, similar to the system analyzed in

1Even though OSPF implements a shortest-path algorithm, it allows multiple equal-cost paths to be uti-
lized. Our model ignores this feature.
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[48]. Thus TCP–AQM/IP forms a feedback system where routing interacts with congestion

control in an iterative process. We are interested in the equilibrium and stability properties

of this iterative process. To simplify notation, we will henceforth use TCP–AQM/IP and

TCP/IP interchangeably.

Here are our main results. In the case of pure dynamic routing, i.e., when link costs are

the congestion prices generated by TCP–AQM, it turns out that we can interpret TCP/IP

as a distributed primal-dual algorithm to maximize aggregate utility overbothsource rates

(by TCP–AQM) and routes (by IP) if TCP/IP converges. We consider the problem, and its

Lagrangian dual, of maximizing utility over source rates and over routing that use only a

singlepath for each source-destination pair. Unlike the TCP-AQM problem or the multi-

path routing problem that are convex optimizations with no duality gap, the single path

TCP/IP problem is non-convex and generally has a duality gap. Equilibrium of the TCP/IP

system exists if and only if this problem has no duality gap. In this case, TCP/IP equilibrium

solves both the primal and the dual problem. Moreover, it incurs no penalty for not splitting

traffic across multiple paths: optimal single-path routing achieves the same aggregate utility

as optimal multi-path routing. Multi-path routing can achieve a strictly higher utility only

when there is a duality gap between the single-path primal and dual problems, but in this

case, the TCP/IP iteration does not even have an equilibrium, let alone solving the utility

maximization problem.

Even when the single-path problem has no duality gap and TCP/IP has an equilibrium,

the equilibrium is generally unstable under pure dynamic routing. It can be stabilized by

adding a sufficiently large static component to the definition of link cost. The existence

and characterization of TCP/IP equilibrium when the link costs are not pure congestion

prices, however, are open problems. To proceed, we specialize to a ring network with a

common destination and demonstrate an inevitable tradeoff between utility maximization

and routing stability (Section 5.5). Specifically, we show that the TCP/IP system over the

special ring network is indeed unstable when link costs are pure prices. It can be stabilized

by adding a static component to the link cost, but at the expense of a reduced utility in

equilibrium. The loss in utility increases with the weight on the static component. Hence,

while stability requires a small weight on prices, utility maximization favors a large weight.
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We present numerical results to validate these qualitative conclusions in a general network

topology. These results also suggest that routing instability can reduce aggregate utility to

less than that achievable by (the necessarily stable) pure static routing.

Indeed we show that if the link capacities are optimally provisioned, thenpure static

routing is enough to maximize utility even for general networks (Section 5.6). Moreover,

it is optimal within the class of multi-path routing: again, there is no penalty at optimality

in not splitting traffic across multiple paths.

Finally, we discuss some implications and limitations of these results (Section 5.7).

5.2 Related work

Our goal is to understand equilibrium and stability issues in cross-layer optimization of

TCP/IP networks. Another approach to joint routing and congestion control is to allow

multi-path routing, i.e., a source can transmit its data along multiple paths to its destination.

In this formulation, a source’s decision is decomposed into two: how much traffic to send

(congestion control) and how to distribute it over the available paths (multi-path routing

or load balancing) in order to maximize aggregate utility. This has been analyzed in, e.g.,

[46, 80, 74]. The general intuition is that, for each source-destination pair, only paths with

the minimum, and hence equal, “congestion prices” will be used, and this minimum price

determines the total source rate as in the single-path case. In contrast to TCP/IP networks,

this formulation assumes that both decisions operate on the same timescale. However, it

provides an upper bound to the problem TCP/IP attempts to solve (see Section 5.4).

The multi-path problem is equivalent to the multicommodity flow problem which has

been extensively studied; see, e.g., [1, 13]. The standard formulation is to maximize aggre-

gate throughput, corresponding to a common and linear utility function. It is then a linear

program and therefore can be solved in polynomial time, though there are combinatorial

algorithms for this class of problems that are more efficient. Recently, fast approxima-

tion algorithms and their competitive ratios have been developed for network flow, and

other, problems, e.g., [130, 48, 7]. Since the multi-path problem upper bounds the TCP/IP

problem, the work on network flow problems provides insight to the performance limit of
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TCP/IP. There are however differences. First, our single-path routing problem is NP-hard

(see Section 5.4) and generally has a duality gap, whereas the network flow problem is gen-

erally a linear program that is in P and has no duality gap. Second, the utility functions that

correspond to common TCP algorithms are strictly concave whereas they are typically lin-

ear, in fact, identity, functions in network flow problems. Third, the algorithms developed

for network flow problems are typically centralized and therefore cannot model TCP/IP

iterations or be carried out in a large network where they must be decentralized.

Instability of single-path routing is not surprising as it is well known that stability gen-

erally requires that the relative weight on the dynamic (traffic-sensitive) component of the

link cost be small. Indeed, our conclusions are similar to those reached in [12, 103] that

study the same ring network for routing stability using different link costs. Here, since the

dynamic component is the dual-optimal price for the utility maximization problem com-

puted by TCP–AQM, this implies a tradeoff between routing stability and utility maxi-

mization.

5.3 Model

In general, we use small letters to denote vectors, e.g.,x with xi as itsith component;

capital letters to denote matrices, e.g.,H,W,R, or constants; e.g.,L,N, K i; and script

letters to denote sets of vectors or matrices, e.g.,Ws,Wm,Rs,Rm. Superscript is used to

denote vectors, matrices, or constants pertaining to sourcei, e.g.,yi, wi, H i, K i.

A network is modelled as a set ofL uni-directional links with finite capacitiesc =

(cl, l = 1, . . . , L), shared by a set ofN source-destination pairs, indexed byi (we will also

refer to the pair simply as “sourcei”). There areKi acyclic paths for sourcei represented

by aL×K i 0-1 matrixH i where

H i
lj =





1, if path jof sourcei uses linkl

0, otherwise.

Let Hi be the set of all columns ofH i that represents all the available paths toi under
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single-path routing. Define theL×K matrixH as

H = [H1 . . . HN ],

whereK :=
∑

i K
i, andH defines the topology of the network.

Let wi be aK i × 1 vector where thejth entry represents the fraction of sourcei on its

jth path such that

wi
j ≥ 0 ∀j, and 1T wi = 1,

where1 is a vector of an appropriate dimension with the value1 in every entry. We require

wi
j ∈ {0, 1} for single-path routing and allowwi

j ∈ [0, 1] for multi-path routing. Collect

the vectorswi, i = 1, . . . , N , into aK ×N block-diagonal matrixW . LetWs be the set of

all such matrices corresponding to single-path routing defined as

{W |W = diag(w1, . . . , wN) ∈ {0, 1}K×N , 1T wi = 1 }.

Define the corresponding setWm for multi-path routing as

{W |W = diag(w1, . . . , wN) ∈ [0, 1]K×N , 1T wi = 1 }. (5.1)

As mentioned above,H defines the set of acyclic paths available to each source and rep-

resents the network topology.W defines how the sources load balance across these paths.

Their product defines aL × N routing matrixR = HW that specifies the fraction ofi’s

flow at each linkl. The set of all single-path routing matrices is

Rs := { R | R = HW,W ∈ Ws }, (5.2)

and the set of all multi-path routing matrices is

Rm := { R | R = HW,W ∈ Wm }. (5.3)
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The difference between single-path routing and multi-path routing is the integer constraint

onW andR. A single-path routing matrix inRs is an 0-1 matrix

Rli =





1, if link l is in a path of sourcei

0, otherwise.

A multi-path routing matrix inRm is one whose entries are in the range[0, 1]

Rli





> 0, if link l is in a path of sourcei

= 0, otherwise.

The path of sourcei is denoted byri = [R1i . . . RLi]
T , the ith column of the routing

matrixR.

We consider the situation where TCP–AQM operates at a faster timescale than routing

updates. We assume asinglepath is selected for each source-destination pair that mini-

mizes the sum of the link costs in the path, for some appropriate definition of link cost. In

particular, traffic is not split across multiple paths from the source to the destination even

if it is available. This models, for example, IP routing within an Autonomous System. We

focus on the timescale of the route changes and assume TCP–AQM is stable and converges

instantly to equilibrium after a route change. As in [96], we will interpret the equilibria of

various TCP and AQM algorithms as solutions of a utility maximization problem defined

in [80]. Different TCP algorithms solve the same prototypical problem (5.4) with different

utility functions [96, 101].

Specifically, suppose each sourcei has a utility functionUi(xi) as a function of its total

transmission ratexi. We assumeUi is strictly concave increasing (which is the case for

common TCP algorithms [96]). LetR(t) ∈ Rs be the (single-path) routing in periodt. Let

the equilibrium ratesx(t) = x(R(t)) and pricesp(t) = p(R(t)) generated by TCP–AQM

in periodt, respectively, be the optimal solutions of the constrained maximization problem

max
x≥0

∑
i

Ui(xi) s. t. R(t)x ≤ c, (5.4)
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and its Lagrangian dual

min
p≥0

∑
i

max
xi≥0

(
Ui(xi)− xi

∑

l

Rli(t)pl

)
+

∑

l

clpl. (5.5)

The prices,pl(t), l = 1, . . . , L, are measures of congestion, such as queueing delays or loss

probabilities [96, 101]. We assume the link costs in periodt are

dl(t) = apl(t) + bτl, (5.6)

wherea ≥ 0, b ≥ 0, andτl > 0 are constants. Based on these costs, each source computes

its new routeri(t + 1) ∈ Hi individually that minimizes the total cost on its path

ri(t + 1) = arg min
ri∈Hi

∑

l

dl(t)r
i
l . (5.7)

In (5.6),τl are traffic insensitive components of the link costdl(t), e.g.,τl = 1/cl. If τl

represent the fixed propagation delays across linksl andpl(t) the queueing delays at link

l, thendl(t) represent total delays across linkl. The protocol parametersa andb determine

the responsiveness of routing to network traffic:a = 0 corresponds to static routing,b = 0

corresponds to purely dynamic routing, and the larger the ratio ofa/b, the more responsive

routing is to network traffic. As we will see below, they determine whether an equilibrium

exists and whether it is stable, and the achievable utility at equilibrium.

An equivalent way to specify the TCP–AQM/IP system as a dynamical system, at the

timescale of route changes, is to replace (5.4)–(5.5) by their optimality conditions. The

routing is updated according to

ri(t + 1) = arg min
ri∈Hi

∑

l

(apl(t) + bτl)r
i
l , for all i, (5.8)
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wherep(t) andx(t) are given by

∑

l

Rli(t)pl(t) = U ′
i(xi(t)) for all i (5.9)

∑
i

Rli(t)xi(t)




≤ cl if pl(t) ≥ 0

= cl if pl(t) > 0
for all l (5.10)

x(t) ≥ 0, p(t) ≥ 0. (5.11)

This set of equations describe how the routingR(t), ratesx(t), and pricesp(t) evolve.

Note thatx(t) andp(t) depend only onR(t) through (5.9)–(5.11), implicitly assuming that

TCP–AQM converges instantly to an equilibrium given the new routingR(t).

We say that(R∗, x∗, p∗) is an equilibrium of TCP/IPif it is a fixed point of (5.4)–

(5.7), or equivalently, (5.8)–(5.11), i.e., starting from routingR∗ and associated(x∗, p∗),

the above iterations yield(R∗, x∗, p∗) in the subsequent periods.

5.4 Equilibrium of TCP/IP

In this section, we study the condition under which TCP/IP as modelled by (5.4)–(5.7) or

(5.8)–(5.11) has an equilibrium and characterize the equilibrium as the optimal solution

of an optimization problem. Since (5.8)–(5.11) is a system of mixed integer nonlinear

inequalities, characterization of its equilibrium, even the basic question of existence and

uniqueness, is in general difficult to determine. The case of pure dynamic routing,a > 0

andb = 0, is the simplest and most instructive.

We completely characterize the case of pure dynamic routing,a > 0 andb = 0 in this

section. Without loss of generality, we seta = 1 in (5.7) and (5.8) whenb = 0.

Consider the joint optimization problem

max
R∈Rs

max
x≥0

∑
i

Ui(xi) s. t.Rx ≤ c, (5.12)
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and its Lagrangian dual

min
p≥0

∑
i

max
xi≥0

(
Ui(xi)− xi min

ri∈Hi

∑

l

Rlipl

)
+

∑

l

clpl, (5.13)

whereri is the ith column ofR with ri
l = Rli. While (5.4)–(5.5) maximize utility over

source rates only, problem (5.12) maximizes utility over both rates and routes. While (5.4)

is a convex program without duality gap, problem (5.12) is non-convex because the variable

R is discrete and generally has a duality gap.2 The interesting feature of the dual problem

(5.13) is that the maximization overR takes the form of minimum-cost routing with prices

p generated by TCP–AQM as link costs. This suggests that TCP/IP might turn out to be

a distributed algorithm that attempts to maximize utility, with proper choice of link costs.

This is indeed true when equilibrium of TCP/IP exists.

Theorem 5.1.Under pure dynamic routing, that is,a = 1 andb = 0.

1. An equilibrium(R∗, x∗, p∗) of TCP/IP exists if and only if there is no duality gap

between (5.12) and (5.13).

2. In this case, the equilibrium(R∗, x∗, p∗) is a solution of (5.12) and (5.13).

Hence, one can regard the layering of TCP and IP as a decomposition of the utility

maximization problem over source rates and routes into a distributed and decentralized

algorithm, carried out on two different timescales, in the sense that an equilibrium of the

TCP/IP iteration (5.8)–(5.11), if it exists, solves (5.12) and (5.13). An equilibrium may not

exist. Even if it does, it may not be stable–an issue we address in Section 5.5.

Example 1: Duality gap

A simple example, where there is a duality gap and equilibrium of TCP/IP does not exist,

consists of a single source-destination pair connected by two parallel links each of capacity

1, as shown in Figure 5.2 (takeN = 1). Clearly, under pure dynamic single-path routing,

equilibrium of TCP/IP does not exist, because the TCP/IP iteration (5.8)–(5.11) will choose

2The nonlinear constraintRx ≤ c can be converted into a linear constraint–see proof of Theorem 5.2–so
integer constraint onR is the real source of difficulty.
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one of the two routes in each period to carry all traffic. TCP–AQM will generate positive

price for the chosen route and zero price for the other route, so that in the next period, the

other route will be selected, and the cycle repeats. The proof that there is a duality gap

between the primal problem (5.12) and the dual problem (5.13) is given in Appendix 5.8.1

(takeN = 1). Intuitively, either path is optimal (both for primal and for dual problem). For

the primal problem the optimal rate isx∗ = 1, constrained by link capacity, whereas for

the dual problem, the optimal rate isx∗ = 2, primal infeasible. Hence the primal optimal

value isU(1), strictly less than the dual optimal value ofU(2).

The duality gap is a measure of “cost of not splitting”. To elaborate, define the La-

grangian [14, 104]

L(R, x, p) =
∑

i

(
Ui(xi)− xi

∑

l

Rlipl

)
+

∑

l

clpl.

The primal (5.12) and dual (5.13) can then be expressed respectively as

Vsp = max
R∈Rs,x≥0

min
p≥0

L(R, x, p)

Vsd = min
p≥0

max
R∈Rs,x≥0

L(R, x, p).

If we allow sources to distribute their traffic among multiple paths available to them, then

the corresponding problems for multi-path routing are

Vmp = max
R∈Rm,x≥0

min
p≥0

L(R, x, p)

Vmd = min
p≥0

max
R∈Rm,x≥0

L(R, x, p). (5.14)

Theorem 5.2.The relations among these four problems areVsp ≤ Vsd = Vmp = Vmd.

According to Theorem 5.1, TCP/IP has an equilibrium exactly when there is no dual-

ity gap in the single-path utility maximization, i.e., whenVsp = Vsd. Theorem 5.2 then

says that in this case, there is no penalty in not splitting the traffic, i.e., single-path routing

performs as well as multi-path routing,Vsp = Vmp. Multi-path routing achieves a strictly
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higher utilityVmp precisely when TCP/IP has no equilibrium, in which case the TCP/IP it-

eration (5.8)–(5.11) cannot converge, let alone solving the single-path utility maximization

problem (5.12) or (5.13). In this case the problem (5.12) and its dual (5.13) do not charac-

terize TCP/IP, but their gap measures the loss in utility in restricting routing to single-path

and is of independent interest.

Even though minimum-cost routing is polynomial, it is shown in [153] that single-path

utility maximization is NP-hard. This is not surprising since, e.g., a related problem on

load balancing on a ring has been proved to be NP-hard in [29].

Theorem 5.3.The primal problem (5.12) is NP-hard.

Theorem 5.3 shows that the general problem (5.12) is NP-hard by reducing all instances

of the integer partition problem to some instances of the primal problem (5.12). Theorem

5.2 however implies that the sub-class of the utility maximization problems with no duality

gap are polynomial-time solvable, since they are equivalent to multi-path problems that are

concave programs and hence polynomial-time solvable. It is a common phenomenon for

sub-classes of NP-hard problems to have polynomial-time algorithms. Informally, the hard

problems are those with nonzero duality gap.

The rest of this section is devoted to the proofs for Theorems 5.1–5.3. We will first

prove Theorem 5.2. Then we show that an equilibrium of TCP/IP must solve the dual

problem (5.13). This together with Theorem 5.2 implies Theorem 5.1. Finally, we present

a proof for Theorem 5.3.

Proof of Theorem 5.2. The inequality follows from the weak duality theorem [14]. We

now proveVsd = Vmd andVmp = Vmd. We formulateVsd as

Vsd = min
p≥0

max
R∈Rs,x≥0

(∑
i

Ui(xi)− pT Rx

)
+ pT c,

= min
p≥0

max
x≥0

(∑
i

Ui(xi)− min
W∈Ws

pT HWx

)
+ pT c,
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whereR = HW with W ∈ Ws from (5.2). Similarly, from (5.3) we have

Vmd = min
p≥0

max
x≥0

(∑
i

Ui(xi)− min
W∈Wm

pT HWx

)
+ pT c.

Define functionsfs(x, p) andfm(x, p) as

fs(x, p) := min
W∈Ws

pT HWx, fm(x, p) := min
W∈Wm

pT HWx.

In order to show thatVsd = Vmd, we only need to show thatfs(x, p) = fm(x, p). Clearly

fs(x, p) ≥ fm(x, p) sinceWs ⊆ Wm. From (5.1), noting thatW = diag(wi), we have

fm(x, p) = min
W

pT HWx

s. t. 1T wi = 1, 0 ≤ wi
j ≤ 1.

Since this is a linear programming for givenx andp, at least one of the optimal points lies

on the boundary, i.e.,wi
j = 0 or 1 for all i andj, and hence is inWs ⊆ Wm. Such a point

solves bothfs(x, p) andfm(x, p), i.e.,fs(x, p) = fm(x, p).

To showVmd = Vmp, transformVmp into a convex optimization with linear constraints,

which hence has no duality gap; see, e.g., [14]. Now,Vmp is equivalent to the problem

max
R∈Rm,x≥0

∑
i

Ui(xi) s.t. Rx ≤ c. (5.15)

Note that this is not a convex program since the feasible set specified byRx ≤ c is generally

not convex. Define theKi × 1 vectorsyi in terms of the scalarxi and theKi × 1 vectors

wi as the new variables

yi = xiw
i. (5.16)

The mapping from(xi, w
i) to yi is one-to-one: the inverse of (5.16) isxi = 1T yi and

wi = yi/xi. Now change the variables in (5.15) and (5.14) from(W,x) to y by substituting
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xi = 1T yi andRx = HWx = Hy into (5.15) and (5.14). We obtain an equivalent problem

max
y≥0

∑
i

Ui(1T yi) s.t. Hy ≤ c

and its Lagrangian dual. This is a convex program with linear constraint and hence has no

duality gap. This provesVmp = Vmd.

Proof of Theorem 5.1. It is easy to show that optimal solutions exist for both the primal

problem (5.12) and its dual (5.13), so the issue is whether there is a duality gap. We will

prove the theorem in two steps. First, given an equilibrium(R̃, x̃, p̃) of TCP/IP, we will

show that it solves both the primal (5.12) and the dual (5.13), and hence there is no duality

gap. Then, given a solution(R∗, x∗, p∗) of the primal and the dual problems, we will show

that it is an equilibrium of TCP/IP.

Step 1: Necessity.Let (R̃, x̃, p̃) be an equilibrium of TCP/IP, i.e., a fixed point of (5.4)–

(5.7) witha = 1, b = 0. Then

p̃T r̃i = min
ri∈Hi

p̃T ri for all i, (5.17)

(p̃, x̃) = arg min
p≥0

max
x≥0

(∑
i

U(xi)− pT R̃x

)
+ pT c, (5.18)

whereri are theith columns of routing matrixR ∈ Rs.3 We will show that(R̃, x̃, p̃) solves

the dual problem (5.13). Then, since the dual problem (5.13) upper bounds the primal

problem (5.12) by Theorem 5.2, and̃R ∈ Rs is a single-path routing and hence primal

feasible,(R̃, x̃, p̃) also solves the primal (5.12).

To show that(R̃, x̃, p̃) solves the dual problem, we use the fact that the dual problem

has an optimal solution, denoted by(R∗, x∗, p∗) and show that both achieve the same dual

3One can exchange the order of min and max in (5.18) since givenR̃, there is no duality gap in
maxx≥0

∑
i Ui(xi) s. t. R̃x ≤ c.
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objective value, i.e.,L(R̃, x̃, p̃) = L(R∗, x∗, p∗). Now

(p∗, x∗, R∗) = arg min
p≥0

max
x≥0

(∑
i

U(xi)− min
R∈Rs

pT Rx + pT c

)
. (5.19)

Let

f(p) := max
x≥0

(∑
i

U(xi)− pT R̃x

)
+ pT c,

g(p) := max
x≥0

(∑
i

U(xi)− min
R∈Rs

pT Rx

)
+ pT c.

Then (5.18) impliesf(p̃) = minp≥0 f(p) and (5.19) impliesg(p∗) = minp≥0 g(p). Since

R̃ ∈ Rs, we have

f(p) ≤ g(p) for all p ≥ 0,

and hence

f(p̃) = min
p≥0

f(p) ≤ min
p≥0

g(p) = g(p∗).

On the other hand

f(p̃) = max
x≥0

∑
i

U(xi)− p̃T R̃x + p̃T c

= max
x≥0

∑
i

U(xi)−
∑

i

xi

(
p̃T r̃i

)
+ p̃T c

= max
x≥0

∑
i

U(xi)−
∑

i

xi

(
min
ri∈Hi

p̃T ri

)
+ p̃T c

= g(p̃)

≥ g(p∗),

where the third equality follows from (5.17). Therefore,f(p̃) = g(p∗) = g(p̃) and

L(R̃, x̃, p̃) = L(R∗, x∗, p∗). Moreover,(R̃, x̃, p̃) is an optimal solution of the dual prob-

lem.
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Step 2: Sufficiency. Assume that there is no duality gap and(R∗, x∗, p∗) is an optimal

solution for both the primal problem (5.12) and its dual (5.13). We claim that it is also an

equilibrium of (5.4)–(5.7) witha = 1 andb = 0, i.e., we need to show that

(p∗)T (ri)∗ = min
ri∈Hi

(p∗)T ri, (5.20)

(p∗, x∗) = arg min
p≥0

max
x≥0

L(R∗, x, p) = arg max
x≥0

min
p≥0

L(R∗, x, p), (5.21)

where(ri)∗ are theith columns ofR∗. The second equality in (5.21) follows from the fact

that there is no duality gap for the TCP–AQM problem.

Since(R∗, x∗, p∗) solves the dual problem (5.13), the optimal routing matrixR∗ satisfies

(5.20) by the saddle point theorem [14]. But(R∗, x∗, p∗) also solves the primal problem

(5.12). In particular,(x∗, p∗) solves the utility maximization problem over source rates and

its Lagrangian dual, withR∗ as the routing matrix, i.e.,(x∗, p∗) satisfies (5.21).

Proof of Theorem 5.3.We describe a polynomial time procedure that reduces an instance

of integer partition problem [47, pp. 47] to a special case of the primal problem. Given a

set of integersc1, . . . , cN , the integer partition problem is to find a subsetA ⊂ {1, . . . , N}
such that

∑
i∈A

ci =
∑

i 6∈A

ci.

Given an instance of the integer partition problem, consider the network in Figure 5.1, with

N sources at the root, two relay nodes, andN receivers, one at each of theN leaves. The

two links from the root to the relay nodes have a capacity of
∑

i ci/2 each, and the two links

from each relay node to receiveri have a capacity ofci. All receivers have the same utility

function that is increasing. The routing decision for each source is to decide which relay

node to traverse. Clearly, maximum utility of
∑

i Ui(ci) is attained when each receiveri

receives at rateci, from exactly one of the relay nodes, and the links from the root to the

two relay nodes are both saturated. Such a routing exists if and only if there is a solution to

the integer partition problem.
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Figure 5.1: Network to which integer partition problem can be reduced.

Comment: The case ofb > 0 for general network is completely open. Ifa = 0 and

b > 0, routingR(t) = R, for all t, is the static minimum-cost routing withτl as the link

costs. An equilibrium(R, x(R), p(R)) always exists in this case. Even thoughR minimizes

routing cost and(x(R), p(R)) solves (5.4)–(5.5), it is not known if(R, x(R), p(R)) jointly

solves any optimization problem.

For the case ofa > 0 andb > 0, even the existence of equilibrium is unknown for

general networks. In the following section, we will study the dynamics of TCP/IP under

the assumption that such an equilibrium of TCP/IP exists.

5.5 Dynamics of TCP/IP

Theorem 5.1 suggests using pure congestion pricesp(t) generated by TCP–AQM as link

costs. In this case, an equilibrium of TCP/IP, when it exists, maximizes aggregate utility

over both rates and routes. We show in this section however that the equilibrium may not

be unstable. Routing can be stabilized by including a strictly positive traffic-insensitive

(static) component in link costs (b > 0), but at a reduced achievable utility. There thus

seems to be an inevitable tradeoff between achievable utility and routing stability.

To make this precise, we start with analysis of a special ring network with a common
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destination. As remarked in the last section, for a general network, we do not even know if

an equilibrium exists whenb > 0, let alone characterizing it. For the ring network, however,

not only does equilibrium always exists, but we can also study rigorously its stability and

achievable utility, as well as their tradeoff under minimum-cost routing. We also illustrate

through a numerical example that the qualitative conclusions derived from this network

seem to generalize to a general network.

5.5.1 Simple ring network

Consider a ring network withN + 1 nodes, indexed byi = 0, 1, . . . , N . Nodesi ≥ 1 are

sources and their common destination is node 0; see Figure 5.2. For notational convenience

r

2

0

N 1

Figure 5.2: A ring network.

we will also refer to node0 as nodeN + 1. Each pair of nodes is connected by two links,

one in each direction. We will refer to the two uni-directional links between nodei − 1

and i as link i; the direction should be clear from the context. The fixed delay on linki

is denoted asτi > 0, i = 1, . . . , N + 1, in each direction. We construct the cost on link

i in periodt asdi(t) = api(t) + bτi, wherepi(t) is the price on linki. At time t, source

i routes all of its traffic in the direction, counterclockwise or clockwise, with the smaller

cost. The ring network is particularly simple because the routing of the whole network

can be represented by a single numberr. Note that under minimum-cost routing, if node

i sends in the counterclockwise direction, so must nodei − 1, and if nodei sends in the

clockwise direction, so must nodei + 1. Hence, we can represent routing on the network
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by r ∈ {0, . . . , N} with the interpretation that nodes1, . . . , r send in the counterclockwise

direction and nodesr + 1, . . . , N send in the clockwise direction.

For this special case, we now show that the duality gap is trivial, that minimum-cost

routing based just on prices (b = 0) indeed solves the primal and dual problems as Theorem

5.1 guarantees, but that the equilibrium is unstable. Using a continuous model, we then

show that routing can be stabilized if the weightb on the fixed delay is nonzero and the

weighta on price is small enough. The maximum achievable utility however decreases with

smallera. There is thus an inevitable tradeoff between utility maximization and routing

stability.

5.5.2 Utility and stability of pure dynamic routing

Suppose all sourcesi have the same utility functionU(xi), and all links have the same

capacity ofc = 1 unit. We assume thatU is strictly concave increasing and differen-

tiable. Then at any time, only link 1, in the counterclockwise direction, and linkN + 1,

in the clockwise direction, can be saturated and have strictly positive price. The utility

maximization problem (5.12) reduces to the following simple form

max
r∈{0,...,N}

max
xi

∑
i

U(xi) (5.22)

subject to
r∑

i=1

xi ≤ 1, and
N∑

i=r+1

xi ≤ 1. (5.23)

When routing isr, nodesi = 1, . . . , r see pricep1(r) on their paths while nodesi =

r + 1, . . . , N see pricepN+1(r) on their paths. Since these ratesxi(r) and pricespi(r) are

primal and dual optimal, they satisfy [97]

U ′(xi(r)) = p1(r) for i = 1, . . . , r, (5.24)

U ′(xi(r)) = pN+1(r) for i = r + 1, . . . , N. (5.25)

This implies thatx1(r) = · · · = xr(r) andxr+1(r) = · · · = xN(r).

It is easy to see that the optimal routingr∗ 6= 0 or N . Hence both constraints are active
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at optimality, implying that (from (5.23))

x1(r) = · · · = xr(r) = 1
r
, (5.26)

xr+1(r) = · · · = xN(r) = 1
N−r

. (5.27)

The problem (5.22)–(5.23) thus becomes

max
r∈{1,...,N−1}

r U

(
1

r

)
+ (N − r) U

(
1

N − r

)
.

Dividing the objective function byN and using the strict concavity ofU , we have

r

N
U

(
1

r

)
+

N − r

N
U

(
1

N − r

)
≤ U

(
2

N

)
,

with equality if and only ifr = N/2. This implies that the optimal routing is

r∗ := bN/2c (5.28)

and the maximum utility is

V ∗ :=

⌊
N

2

⌋
U

(
1

bN/2c
)

+

⌈
N

2

⌉
U

(
1

dN/2e
)

, (5.29)

wherebyc is the largest integer less or equal toy anddye is the smallest integer greater or

equal toy.

It can be shown that there is no duality gap for the ring network considered here

whenN is even, by verifying that routingr∗ in (5.28), ratesxi(r
∗) in (5.27), and prices

p1(r
∗), pN+1(r

∗) in (5.24)–(5.25) are indeed primal-dual optimal.4 WhenN is odd, there

is generally a duality gap due to integral constraint onr; see Appendix 5.8.1 for a proof.

This duality gap disappears in the convexified problem when routing is allowed to take

real value in[0, N ], a model we consider in the next subsection. This suggests that TCP

together with minimum-cost routing based on prices can potentially maximize utility for

4This also follows from Theorem 5.1 and the fact thatr = N/2 is by symmetry the equilibrium routing
whenN is even.
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this ring network. We next show, however, that minimum-cost routing based only on prices

is unstable.

Given routingr, we can combine (5.24)–(5.25) and (5.27) to obtain the pricesp1(r) and

pN+1(r) on links 1 andN + 1

p1(r) = U ′
(

1

r

)
andpN+1(r) = U ′

(
1

N − r

)
. (5.30)

The path cost for nodei in the counterclockwise direction is

D−(i; r) =
i∑

j=1

bτj + ap1(r) = b

i∑
j=1

τj + aU ′
(

1

r

)
, (5.31)

and the path cost in the clockwise direction is

D+(i; r) =
N+1∑

j=i+1

bτj + apN+1(r) = b

N+1∑
j=i+1

τj + aU ′
(

1

N − r

)
. (5.32)

In the next period, each nodei will choose the counterclockwise or clockwise direction

accordingly asD−(i; r) or D+(i; r) is smaller. Definef(r) as

f(r) := max {i | D−(i; r) ≤ D+(i; r)}. (5.33)

Then the resulting routing satisfies the recursive relation

r(t + 1) =





0 if D−(1; r(t)) > D+(1; r(t))

N if D−(N ; r(t)) < D+(N ; r(t))

f(r(t)) otherwise.

Theorem 5.4. If b = 0 anda > 0, then, starting from any routingr(0) except the equilib-

rium N/2 whenN is even, the subsequent routing oscillates between 0 andN .
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Proof. For anyr(0) ∈ {0, . . . , N}, we have

D−(1; r(0))−D+(1; r(0)) = D−(N ; r(0))−D+(N ; r(0)),

= a

(
U ′

(
1

r(0)

)
− U ′

(
1

N − r(0)

))
.

If N is even, thenN/2 is the unique equilibrium routing that solvesD−(i; N/2) = D+(i; N/2).

Supposer(0) 6= N/2. If r(0) > N/2, then1/r(0) < 2/N < 1/(N − r(0)). SinceU ′ is

strictly decreasing,U ′(1/r(0)) > U ′(1/(N − r(0)) and henceD−(1; r(0)) > D+(1; r(0))

andr(1) = 0. Similarly, if r(0) < N/2, thenD−(N ; r(0)) < D+(N ; r(0)) andr(1) = N .

Hencer oscillates between 0 andN henceforth.

Even though purely dynamic routing based on prices(b = 0) maximizes utility, The-

orem 5.4 says that it is unstable. We will henceforth, without loss of generality, setb = 1

and consider the effect ofa on utility maximization and stability.

5.5.3 Maximum utility of minimum-cost routing

As mentioned above, the duality gap for the ring network we consider is of a trivial kind

that disappears when integer constraint on routing is relaxed. For the rest of this section,

we consider a continuous model where every point on the ring is a source. A point on the

ring is labelled bys ∈ [0, 1], and the common destination is the point0 (or equivalently 1).

The utility maximization problem becomes

max
r∈[0,1]

max
x(·)

∫ 1

0

U(x(u))du (5.34)

subject to
∫ r

0

x(u)du ≤ 1, and
∫ 1

r

x(u)du ≤ 1. (5.35)

As in the discrete case, both constraints are active at optimality, and hence the problem

reduces to

max
r∈(0,1)

rU

(
1

r

)
+ (1− r)U

(
1

1− r

)
,
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which, by concavity, yields the optimal routingr∗ and maximum utilityV ∗

r∗ =
1

2
, and V ∗ = U(2). (5.36)

To see that there is no duality gap, note that the problem (5.34)–(5.35) is equivalent to

max
r∈[0,1]

max
x−,x+≥0

rU(x−) + (1− r)U(x+),

subject to rx− ≤ 1, (1− r)x+ ≤ 1.

Define the Lagrangian as

L(r, x−, x+, p−, p+) = rU(x−) + (1− r)U(x+) + p−(1− rx−) + p+(1− (1− r)x+).

It is easy to verify that

r∗ =
1

2
, x−∗ = x+∗ = 2, p−∗ = p+∗ = U ′(2) (5.37)

are primal-dual optimal and there is no duality gap; see Appendix 5.8.2.

We now look at the maximum utility achievable by the equilibrium of minimum-cost

routing. Let the delay froms to the destination in the counterclockwise direction be

T (s) :=

∫ s

0

τ(u)du,

and the delay in the clockwise direction be

T (1)− T (s) =

∫ 1

s

τ(u)du,

whereτ(u), u ∈ [0, 1], is given. Here,τ(u) corresponds to link cost in the discrete model.

Given routingr ∈ [0, 1], the price in the counterclockwise direction isU ′(1/r), and the

price in the clockwise direction isU ′(1/(1− r)). Then the cost of sources in the counter-
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clockwise direction is

D−(s; r) = T (s) + aU ′
(

1

r

)
, (5.38)

and the cost in the clockwise direction is

D+(s; r) = T (1)− T (s) + aU ′
(

1

1− r

)
. (5.39)

A routing r is in equilibrium if the costs of sourcer in both directions are the same.

Definition 5.1. A routingr is called anequilibrium routingif D−(r; r) = D+(r; r). It is

denoted byra or r(a).

By definition,ra is the solution of

g(r) := 2T (r)− T (1) + a

(
U ′

(
1

r

)
− U ′

(
1

1− r

))
= 0. (5.40)

Sinceg(0) < 0, g(1) > 0 andg′(r) > 0, the equilibriumra is in (0, 1) and is unique. Given

a routingr, its utility is

V (r) := rU

(
1

r

)
+ (1− r)U

(
1

1− r

)
.

The maximum utility achieved by minimum-cost routing, with parametera, is thenV (ra) ≤
V (r∗) = V ∗.

The next result implies thatra varies betweenr0 andr∗ and converges monotonically to

r∗ asa →∞. As a result, the lossV ∗ − V (ra) ≥ 0 in utility also approaches0 asa →∞.

Denote the interval in which1/ra and1/(1− ra) vary asI := [2, 1/ min{r0, 1− r0}].

Theorem 5.5.SupposeU ′′ exists and is bounded onI. For all a ≥ 0, |ra − r∗| is a strictly

decreasing function ofa. Moreover, asa →∞, |ra − r∗| andV ∗ − V (ra) approach 0.

Proof. The equation (5.40) defines the equilibrium routingr(a) := ra as an implicit func-
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tion of a. By the implicit function theorem,r′(a) satisfies

1

r′(a)

[
U ′

(
1

1− ra

)
− U ′

(
1

ra

)]
= 2τ(ra)− a

r2
a

U ′′
(

1

ra

)
− a

(1− ra)2
U ′′

(
1

1− ra

)
.

The right-hand side is positive sinceU is strictly concave. Hencer′(a) has the same sign

as the term in the square bracket, i.e., sinceU ′ is decreasing,

r′(a) =





> 0 if ra < r∗

< 0 if ra > r∗

= 0 if ra = r∗

. (5.41)

This implies that|ra − r∗| is a strictly decreasing function ofa; see Figure 5.3.

Hence|ra − r∗| converges to a limit asa → ∞. SinceU ′′ is bounded on the closed

intervalI, so isU ′. Hence, from (5.40), we must have

U ′(1/ra)− U ′(1/(1− ra)) → 0, or U ′(1/ lim
a→∞

ra) = U ′(1/(1− lim
a→∞

ra)).

SinceU ′ is strictly decreasing, this implies thatlima→∞ ra = 1− lima→∞ ra = r∗.

To show thatV ∗ − V (ra) ≥ 0 also converges to 0, note thatV ′(r∗) = 0 and hence we

have, by Taylor expansion,

V (ra)− V ∗ =
1

2
V ′′(u)(ra − r∗)2

for someu betweenra andr∗. Here

V ′′(u) =
1

u3
U ′′

(
1

u

)
+

1

(1− u)3
U ′′

(
1

1− u

)
≥ − 2µ

(min{r0, 1− r0})3

whereµ is the upper bound ofU ′′ on I. Hence

0 ≤ V ∗ − V (ra) ≤ µ(ra − r∗)2

(min{r0, 1− r0})3
.

Since|ra − r∗| → 0, the proof is complete.
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The shape ofr′(a) in (5.41) implies that, ifr(0) > r∗ thenr(a) ≥ r∗ for all a but r(a)

decreases tor∗ asa →∞, and ifr(0) < r∗ thenr(a) ≤ r∗ for all a butr(a) increases tor∗

monotonically, as illustrated in Figure 5.3. This is a consequence of the continuity ofr(a).

r(0)

r*

r(0)

Figure 5.3: The routingr(a).

5.5.4 Stability of minimum-cost routing

We now turn to the stability ofra. For simplicity, we will takeU(x) = log x, the utility

function of TCP Vegas [101] and FAST [69]. With this logarithm utility,V ′(ra) = log(1−
r)/r and hence Theorem 5.5 can be strengthened to show thatV ∗ − V (ra) is a strictly

decreasing function ofa, and hence converges monotonically to 0 asa →∞.

Givenr, let f(r) denote the solution of

D−(s; r) = D+(s; r).

It is in the range[0, 1] if and only if 0 ≤ T (s) ≤ T (1), or if and only if

r∗ − T (1)

2a
≤ r ≤ r∗ +

T (1)

2a
.
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We will assume thatminu∈[0,1] τ(u) > 0. ThenT−1 exists and

f(r) = T−1

(
1

2
(T (1) + a)− ar

)
. (5.42)

The routing iteration is

r(t + 1) = [f(r(t))]10 , (5.43)

where[r]10 = max{0, min{1, r}}.

Definition 5.2. The equilibrium routingra is (globally) stable, if starting from any routing

r(0), r(t) defined by (5.42)–(5.43) converges tora ast →∞.

Example 2: Uniform τ

Suppose delay is uniform on the ring,τ(u) = τ for all u ∈ [0, 1], so thatT (r) = rτ . From

(5.40), the equilibrium routing is

ra =
1

2
= r∗, ∀a ≥ 0

coinciding with the utility-maximizing routingr∗.

Supposea < τ . Then the routing iteration becomes

r(t + 1) =
1

2τ
(τ + a)− a

τ
r(t) = f(r(t)).

Since|f(s)− f(r)| = (a/τ)|s− r| < |s− r|, f(r) is a contraction mapping and hencera

is globally stable for all0 ≤ a < τ .

Hence for the uniform delay case, adding a static component to link cost stabilizes

routing provided the weight on prices is smaller than link delay. Moreover, the static com-

ponent does not lead to any loss in utility (ra = r∗). The stability condition generalizes to

the general delay case. The following theorem says that ifa is smaller than the minimum

“link delay,” thenra is globally stable; ifa is bigger than the maximum “link delay,” then it
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is globally unstable (diverge from any initial routing exceptra); otherwise, it may converge

or diverge depending on initial routing.

Theorem 5.6.The stability is affected by parametera such that

1. If a < minu∈[0,1] τ(u) thenra is globally stable.

2. Supposea ≥ T (1). Then there existsr < ra < r such that

(a) If r(0) = r or r(0) = r then subsequent routings oscillate betweenr andr.

(b) If r(0) < r or r(0) > r then subsequent routings after a finite number of

iterations oscillate between 0 and 1.

(c) If r < r(0) < r thenr(t) converges tora provideda < minu∈(r,r) τ(u).

3. If a > maxu∈[0,1] τ(u) then starting from any initial routingr(0) 6= ra, subsequent

routings after a finite number of iterations oscillate between 0 and 1.

Proof. 1. We show that the routing iteration (5.43) is a contraction mapping ifa <

minu∈[0,1] τ(u). Now

∣∣[f(s)]10 − [f(r)]10
∣∣ ≤ |f(s)− f(r)| ,

=

∣∣∣∣T−1

(
T (1) + a− 2as

2

)
− T−1

(
T (1) + a− 2ar

2

)∣∣∣∣ ,

=

∣∣∣∣
1

T ′(u)
(as− ar)

∣∣∣∣ ,

≤ a

minu∈[0,1] τ(u)
|s− r|,

for someu betweenr and s, by the mean value theorem. Henceh(r) is a contraction

mapping and starting from anyr(0) ∈ [0, 1], r(t) converges exponentially tora.

2. Defineh(r) = (T (1) + a)/2− ar. The routing iteration can be written as

T (r(t + 1)) = [h(r(t))]10. (5.44)
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Define the following sequences

a0 = 0, b0 = T (0),

an+1 = h−1(bn), bn+1 = T (an+1).

Note that(an, n ≥ 0) is a routing sequence going backward in time. The following lemma

is proved in the appendix, following [103].

Lemma 5.1. LetTa = T (ra) = h(ra). Then

0 = a0 < a2 < · · · < ra < · · · < a3 < a1 < 1,

T (0) = b0 < b2 < · · · < Ta < · · · < b3 < b1 < T (1).

Since the sequences are monotone, the lemma implies that there arer andr with 0 <

r < ra < r < 1 such that

lim
n→∞

a2n = r, and lim
n→∞

a2n+1 = r.

By continuity ofT andh, we have

T (r) = h(r), and T (r) = h(r).

This implies that starting fromr(0) = r or r(0) = r, the subsequent routings oscillate

betweenr andr.

To show the second claim, supposer(0) < r. Specifically, supposea2n−2 < r(0) < a2n

for somen. If h(r(0)) > T (1) (possible sincea ≥ T (1)), thenr(1) = 1 and subsequent

routings oscillate between 0 and 1. Otherwise, from (5.44),r(0) = h−1(T (r(1))), and

hencea2n−2 < h−1(T (r(1))) < a2n. Sinceh is strictly decreasing, we haveb2n−1 <

T (r(1)) < b2n−3 by definition ofbn. Hence, sinceT is strictly increasing,a2n−1 < r(1) <

a2n−3. The same argument then shows thata2n−4 < r(2) < a2n−2. Hence we have shown

thatr(0) < a2n impliesr(2) < a2n−2. This proves the second claim. The proof of the third
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claim follows the same argument of part 1.

3. By the mean value theorem, we have, for allα, α′ in [0, 1],

|h−1(T (α))− h−1(T (α′))| =
T ′(u)

a
|α− α′|,

for someu betweenα andα′. Hence the iteration map

an+1 = h−1(T (an))

is a contraction provideda > maxu∈[0,1] τ(u). This implies that the sequence(an, n ≥ 0)

converges and, sincera is the unique fixed point ofh−1(T (·)), r = r = ra. The assertion

then follows from part 2(b).

5.5.5 General network

It is difficult to derive an analytical bound ona to guarantee routing stability or to compute

optimal routing for general networks. In this section, we present numerical results to illus-

trate that the intuition from the simple ring network analyzed in the previous subsections

extends to general topology.

We generate a random network based on Waxman’s algorithm [159]. The nodes are

uniformly distributed in a two-dimensional plane. The probability that a pair of nodesu, v

are connected is given by

Prob(u, v) = α exp

(
d(u, v)

βL

)
,

where the maximum probabilityα > 0 controls connectivity,β ≤ 1 controls the length of

the edges with a largerβ favoring longer edges,d(u, v) is the Euclidean distance between

nodesu andv, andL is the maximum distance between any two nodes. In our example, we

set the number of nodesN = 30, α = 0.8, β = 0.3, which generated 90 bidirectional links;

see Figure 5.4. The fixed delayτl of each linkl is randomly chosen according to a uniform

distribution over [100, 400]ms. The link capacities are randomly chosen from the interval
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random network with N=30,α=0.8,β=0.3

Figure 5.4: A random network.

[1000, 4000] packets/sec, also with uniform distribution. There are 60 flows on the network

with randomly chosen source and destination nodes. Routing on this network is computed

using the Bellman-Ford minimum-cost algorithm, with link costdl(t) = τl +apl(t) in each

update periodt, on a slower timescale than congestion control. In each routing periodt,

we first solve the link prices based on the current routing, using the gradient projection

algorithm of [97]. We iterate the source algorithm to update rates and the link algorithm to

update prices, until they converge. The link prices are then used to compute the minimum-

cost for the next period.

We measure the performance of the scheme at differenta by the sum of all of the

source’s utilities. If the routing is stable (at smalla), the aggregate utility is computed using

the equilibrium routing. Otherwise, the routing oscillates and the time-averaged aggregate

utility is used. The result is shown in Figure 5.5.

As expected, whena is small, routing is stable and the aggregate utility increases with

a, as in the ring network analyzed in Section 5.5.3 (Theorem 5.5). Whena < 4, the static

delayτl dominates the link cost, and the routes computed withdl(t) remain the same as

with static routing (a = 0), and hence the aggregate utility is independent ofa. Routing
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Figure 5.5: Aggregate utility as a function ofa for random network

becomes unstable at arounda = 10. Even though the time-averaged utility continues to

rise after routing instability sets in, eventually it peaks and drops to a level less than the

utility achievable by the necessarily stable static routing.

5.6 Resource provisioning

Results in the previous sections show that even though an equilibrium of TCP/IP, when

it exists, maximizes utility under pure dynamic routing, it can be unstable and hence not

attainable by the TCP/IP system. In this section, we show that if the link capacities are op-

timally provisioned, however, purestaticrouting is enough to maximize utility. Moreover,

it is optimal even within the class of multi-path routing: again, there is no penalty in not

splitting traffic across multiple paths.

Suppose it costsαl > 0 amount to provision a unit of capacity at linkl, and letα = (αl,

for all l) be the vector of unit costs. For instance, a longer link may have a largerαl. The

total capacity cost over the entire network isαT c. Suppose the budget for provisioning the

capacity isB. Consider the problem of optimally selecting capacities, routing, and source
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rates to maximize utility

max
c≥0

max
R∈Rm

max
x≥0

∑
i

Ui(xi), (5.45)

subject to Rx ≤ c, (5.46)

αT c ≤ B. (5.47)

whereUi are concave increasing utility functions. Note thatR ranges inRm and hence

multi-path routing is allowed. This problem may arise when optical lightpaths can be

dynamically reconfigured at a connection timescale.

Theorem 5.7.SupposeU ′
i(xi) > 0 for all i andxi ≥ 0. At optimality,

1. There is an optimal solution(c∗, R∗, x∗) whereR∗ ∈ Rs is a single-path routing.

2. Moreover,R∗ is pure static routing usingαl as link costs.

3. R∗x∗ = c∗, i.e., there is no slack capacity.

4. αT c = B, i.e., there is no slack in budget.

5. Link prices generated by TCP–AQM are proportional to the provisioning costs,p∗ =

γ∗α for someγ∗ > 0.

Proof. It is easy to show the existence of an equilibrium. Define the Lagrangian of (5.45)-

(5.47) as

L(c, R, x, p, γ) =
∑

i

Ui(xi)− pT (Rx− c)− γ(αT c−B).

At optimality, the KKT condition holds: there existp∗ ≥ 0 andγ∗ ≥ 0 such that

U
′
(x∗i ) = (R∗)T p∗, (5.48)

p∗ = γ∗α, (5.49)

(p∗)T (R∗x∗ − c∗) = 0, (5.50)

γ∗(αT c∗ −B) = 0. (5.51)
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From (5.49), we obtain the last claim in the theorem. Moreover, (5.49) andU ′
i(x

∗
i ) > 0

imply that γ∗ > 0 andp∗l > 0 for all l, sinceα > 0. Hence, from (5.50) and (5.51),

equality holds in (5.46) and (5.47), proving the third and fourth claims.

To prove the first two claims, express the routing matrixR asR = HW whereW ∈
Wm. Using the equalities in (5.46) and (5.47) to eliminatec, we can transform the utility

maximization problem (5.45)–(5.47) into:

max
W∈Wm

max
x≥0

∑
i

Ui(xi),

subject to
∑

i

(
αT H iwi

)
xi = B,

whereW =diag(wi). SinceUi is nondecreasing and both the objective and the constraints

above are separable ini, in order to maximize utility,wi should be chosen to be a solution

of

min
wi

αT H iwi,

subject to 1T wi = 1, 0 ≤ wi
j ≤ 1.

Since this is a linear program, there exists an optimal point on the boundary. Hence there

is an optimalW ∗ ∈ Ws, i.e., minimum-cost single-path routing usingαl as link costs is

optimal.

5.7 Conclusion

Given a routing, TCP-AQM can be interpreted as a distributed primal-dual algorithm over

the Internet to maximize aggregate utility over source rates. In this chapter, we study

whether TCP-AQM together with IP (modelled by minimum-cost routing) can maximize

utility over both source rates and routing, on a slower time scale. We show that we can

indeed interpret TCP/IP asattemptingto maximize utility in the sense that its equilibrium,

if it exists, solves the utility maximization problem and its dual, provided congestion prices

generated by TCP-AQM are used as link costs. TCP/IP equilibrium exists if and only if
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there is no penalty in not splitting traffic across multiple paths. Even if equilibrium exists,

however, TCP/IP with pure dynamic routing can be unstable. Specializing to a special ring

network, we show that routing is indeed unstable when link costs are congestion prices. It

can be stabilized by adding a static component to the definition of link cost, but the static

component reduces the achievable utility. There thus seems to be an inevitable tradeoff

between routing stability and utility maximization, for a given set of link capacities. We

show, however, that if link capacities are optimally provisioned, then pure static (and hence

stable) routing is sufficient to maximize utility even for general networks, and link costs

are proportional to the provisioning costs. Moreover single-path routing can achieve the

same utility as multi-path routing. Hence, one can regard the layering of TCP and IP as

a decomposition of the utility maximization problem over source rates and routes into a

distributed and decentralized algorithm, carried out on different time scales, at least when

network capacities are well provisioned.

5.8 Appendix

5.8.1 Proof of duality gap

We prove that there is generally a duality gap between the primal problem (5.22)–(5.23)

and its dual whenN is odd.

It is easy to see that the primal optimal routing is

r∗ =
N − 1

2
, or

N + 1

2
.

Suppose without loss of generality thatr∗ = (N − 1)/2 (the other case is similar). Then,

the source rates are

x1 = · · · = xr∗ =
2

N − 1
, and xr∗+1 = · · · = xN =

2

N + 1
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yielding a primal objective value of

N − 1

2
U

(
2

N − 1

)
+

N + 1

2
U

(
2

N + 1

)

= N

{ (
1

2
− 1

N

)
U

(
2

N − 1

)
+

(
1

2
+

1

N

)
U

(
2

N + 1

)}

< NU

(
2

N

)
,

where the last inequality follows from the strict concavity ofU . We now show that the

right-hand side is the optimal dual objective value, and hence there is a duality gap.

The dual problem of (5.22)–(5.23) is (e.g., [97])

min
p1,pN+1≥0

(
N∑

i=1

max
xi

φ(xi, p1, pN+1) + (p1 + pN+1)

)
,

whereφ(xi, p1, pN+1) = U(xi)−xi min{p1, pN+1}. First, note that the minimizing(p1, pN+1)

must satisfyp1 = pN+1, for otherwise, if (say)p1 < pN+1, then the dual objective value is

N∑
i=1

max
xi

(U(xi)− xip1) + (p1 + pN+1)

and can be reduced by decreasingpN+1 to p1. Hence the dual problem is equivalent to

min
p≥0

N∑
i=1

max
xi

(U(xi)− xi p) + 2p. (5.52)

Let p∗ denote the minimizer andx∗i = xi(p
∗) = x(p∗) =: x∗ denote the corresponding

maximizers (they are equal for alli by symmetry). Then we have

U ′(x∗) = p∗. (5.53)

Differentiating the objective function in (5.52) with respect top and setting it to zero, we

have

0 = N(U ′(x∗)x′(p∗)− p∗x′(p∗)− x∗) + 2. (5.54)
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Using (5.53), we havex∗ = 2/N, and hence the minimum dual objective value is

N(max
x∗

U(x∗)− x∗ p∗) + 2p∗ = NU

(
2

N

)

as desired.

5.8.2 Proof of primal-dual optimality

We prove that the solution given by (5.37) is primal-dual optimal using the saddle-point

theorem (e.g., [14, pp. 427]). Clearly,(r∗, x−∗, x+∗) is primal feasible and(p−∗, p+∗)

is dual feasible. We now show that(r∗, x−∗, x+∗, p−∗, p+∗) is a saddle point, i.e., for all

(r, x−, x+, p−, p+). Now

L(r, x−, x+, p−∗, p+∗) ≤ L(r∗, x−∗, x+∗, p−∗, p+∗) ≤ L(r∗, x−∗, x+∗, p−, p+).

For the right inequality, substituting(r∗, x−∗, x+∗) from (5.37) intoL(r∗, x−∗, x+∗, p−, p+)

to get, for all(p−, p+),

L(r∗, x−∗, x+∗, p−, p+) = U(2).

But U(2) = L(r∗, x−∗, x+∗, p−∗, p+∗), establishing the right inequality. For the left in-

equality, denotingp∗ := p−∗ = p+∗, from (5.37) we have

L(r, x−, x+, p−∗, p+∗) = rU(x−) + (1− r)U(x+)− (rx− + (1− r)x+)p∗ + 2p∗

≤ U(y)− yp∗ + 2p∗ (concavity ofU), (5.55)

with y := rx− + (1− r)x+, where equality holds if and only ifx− = x+ sinceU is strictly

concave. Notice that the right-hand side is maximized overy if and only if y satisfies

U ′(y) = p∗. This implies thaty = x−∗ = x+∗ = 2 sinceU ′ is strictly monotonic. Substitute

y = 2 into (5.55) yields, for all(r, x−, x+),

L(r, x−, x+, p−∗, p+∗) ≤ U(2)
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as desired, sinceU(2) = L(r∗, x−∗, x+∗, p−∗, p+∗).

5.8.3 Proof of Lemma 5.1

We will prove the lemma by induction. Note thatb0 < Ta implies thata1 = h−1(b0) >

h−1(Ta) = ra. Sincea ≥ T (1) andh(1) < 0, a1 = h−1(b0) < 1 (see Figure 5.6). Hence

h(r)

a2

T(r)

b1

T(0)

b0

r

a1a0

Figure 5.6: Proof of Lemma 5.1.

0 = a0 < ra < a1 < 1.

This implies thatb1 = T (a1) satisfies

T (0) = b0 < Ta < b1 < T (1).

Sinceb1 < T (1) < h(0), a2 = h−1(b1) > h−1(h(0)) = 0, we have

0 = a0 < a2 < ra < a1 < 1.
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Let the induction hypothesis be

a0 < . . . < a2n < ra < a2n−1 < . . . < a1

b0 < . . . < b2n−2 < Ta < b2n−1 < . . . < b1.

Thenb2n = T (a2n) > T (a2n−2) = b2n−2 andb2n = T (a2n) < T (ra) = Ta. Hence,

b2n−2 < b2n < Ta.

This implies thatra < a2n+1 < a2n−1, which in turn implies thatTa < b2n+1 < b2n−1. This

completes the induction.
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Chapter 6

Throughput, Fairness, and Capacity

6.1 Introduction

Recent studies, e.g. [80, 97, 116, 164, 101, 88, 96], have shown that a bandwidth allocation

policy can be formulated as a utility maximization problem where the bandwidth allocation

x∗ (source rates) solves [80]

max
x

∑
i

Ui(xi) subject toRx ≤ c. (6.1)

It is remarkable that as long as traffic sources adapt their rates to the aggregate (sum of)

congestion in their paths, they are implicitly maximizing some utility. The optimization

problem (6.1) is a convenient characterization of the equilibrium properties of various

TCP/AQM systems. We can derive the underlying utility functions of various TCP al-

gorithms and use them to study the relations among network throughput, fairness, and ca-

pacity. Our work reveals some counter-intuitive behaviors, which will be briefly presented

in this chapter. See [144, 146] for more detailed results and proofs.

We refer to network throughput as the total traffic through the network, which measures

the efficiency of the bandwidth allocation policy under which the network operates. There

are many examples in the literature that point to an inevitable tradeoff between fairness and

aggregate throughput (efficiency), yet there is no general theorem clarifying this folklore.

How do we balance fairness and efficiency in designing bandwidth allocation policies?

Will adding additional link capacities necessarily result in higher aggregate throughput?
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In this chapter, we rigorously study these questions in general networks using an ana-

lytical model . Here are our main results.

Suppose that the bandwidth allocation policies, represented by utility functions, are

parameterized by a common scalarα ≥ 0. We derive explicit expressions for the changes

in source rates and congestion prices when the parameterα or the capacities change for

general utility functions.

We specialize to a particular class of utility functions [116] that characterize various

TCP variants and include various fairness criterions as special cases. The parameterα in

these utility functions can be interpreted as a quantitative measure of fairness [107, 16], and

an allocation isfair if α is large. All examples in the literature indicate that a fair allocation

is necessarily inefficient. We quantitatively formulate the relations between fairness and

efficiency in general networks. This characterization allows us both to produce the first

counter-example (Theorem 6.3) and trivially explain all the previous supporting examples

(Corollary 6.2). Surprisingly, the class of networks in our counter-example indicates that

a fairer allocation could bealwaysmore efficient. In particular it implies that max-min

fairness can achieve a higher aggregate throughput than proportional fairness.

Intuitively, we might expect that the aggregate throughput will always rise when some

links increase their capacities. This turns out to be wrong, and we characterize exactly the

condition under which this is true (Theorem 6.4). Not only can the aggregate throughput be

reduced when some link increases its capacity, more strikingly, it can also be reduced even

whenall links increase their capacities by the same amount (Theorem 6.5). Moreover, this

holds under all bandwidth allocation policies . This paradoxical result seems less surprising

in retrospect: raising link capacities always increases the aggregate utility, but mathemat-

ically there is no a priori reason that it should also increase the aggregate throughput. If

all links increase their capacities proportionally, however, the aggregate throughput will

indeed increase, under the class of utility functions proposed in [116] (Theorem 6.6).

It is well known that counter-intuitive behavior can arise in a distributed system where

agents optimize their own objectives, e.g., the Braess paradox in transportation networks.

It was discovered theoretically in 1968 [18, 120, 44] and verified in real world years later

[37]. It shows that adding a new road to a transportation network may causelonger travel
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time foreverycar. Subsequent paradoxes have been discovered in mechanical and electrical

networks [27], in queueing networks [28, 136, 83, 11, 84], and in computer systems [72,

73]. Even though our results have the same flavor, they differ in important ways from the

Braess paradox.

First, in the Braess paradox, the performance degradation is due to misalignment of

individual and social optimalities. In our case, it is due to misalignment of two social

objectives (utility maximization versus throughput maximization). Second, in the Braess

paradox, the addition of new road leads to degraded performance forall flows, and hence

the new equilibrium point is not Pareto optimal. In our case, all equilibrium points are

Pareto optimal, and hence some flows are worse off and some better off in the new equi-

librium point. Finally, examples of the Braess paradox always involve the addition of new

paths and flows that re-route to maximize their own objectives. In our case, only link

capacities are changed, while network topology and routing are fixed.

6.2 Model

A network consists ofL links with finite capacitycl. It is shared byN sources indexed byi.

R is the routing matrix whereRli = 1 if sourcei uses linkl and0 otherwise. Letxi be the

transmission rate of sourcei, andUi(xi; α) be its utility. All the utility functionsUi(xi; α)

are parameterized by a scalarα ≥ 0. SupposeUi(xi; α) are concave inxi for α ≥ 0 and

strictly concave whenα > 0. Whenα andc are clear from the context, we may useUi(xi)

in place ofUi(xi; α).

Consider the utility maximization problem

max
x≥0

∑
i

Ui(xi; α) subject to Rx ≤ c, (6.2)

and its Lagrangian dual

min
p≥0

∑
i

max
xi≥0

(
Ui(xi; α)− xi

∑

l

Rlipl

)
+

∑

l

clpl. (6.3)
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A maximizerx = x(α, c) for (6.2) and a minimizerp = p(α, c) for (6.3) exist forα ≥
0, c > 0, since the utility functionsUi(xi) are concave.

Unless otherwise specified, we will assume thatα > 0, andR is full row rank, so

that the solutionsx = x(α, c) and p = p(α, c) are unique. The aggregate throughput

T = T (α, c) is defined in terms of the unique solution,

T (α, c) :=
∑

i

xi(α, c). (6.4)

From Lemma 6.1 below,x(α, c) andp(α, c) are continuous functions ofα andc. More-

over, they are differentiable except at a finite number of points when the active constraint

set at optimal changes asα or c is perturbed. We can study∂T/∂α and∂T/∂c in be-

tween these points. Hence, all our statement should be interpreted piecewise in between

non-differentiable point. For the rest of the paper, we will thus focus on the utility max-

imization with equality constraints that represent only those constraints that are active at

optimality

max
xi≥0

∑
i

Ui(xi; α) s.t. Rx = c. (6.5)

In this case the dual problem (6.3) should be interpreted as the Lagrangian dual of (6.2)

with a possibly reducedR, as opposed to the dual of (6.5).

SupposeR has full row rank. SupposeN ≥ L and letM = N − L be the difference

between the number of sources and the number of links. ThenM is the dimension of the

null space ofR. Let (zm,m = 1, . . . , M), zm ∈ <N be any basis of the null space ofR,

and letZ = [z1 z2 . . . zM ] be the matrix withzm as its columns. LetV = V (x; α) :=
∑

i Ui(xi; α) be the aggregate utility function. LetD = D(α, c) denote the curvature of

the aggregate utility function

D := −∂2V

∂x2
, (6.6)
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andb = b(α, c) be

b :=
∂2V

∂x∂α
(6.7)

at the optimal allocationx = x(α, c).

6.3 Basic results

In the rest of this chapter, we assume that the active constraint set is unchanged whenα or

c is perturbed locally (i.e., we consider problem (6.5) instead of problem (6.2)). WhenR

is full row rank, the following lemma cited from [150] guarantees the differentiability of

x(α, c) andp(α, , c).

Lemma 6.1. For any α > 0, c > 0, the unique solutionx(α, c) and p(α, c) of (6.5) is

continuous and differentiable at(α, c).

The basic results on how throughput and prices vary as the utility parameterα and ca-

pacityc change are given in the next theorem. In the next two sections, we will specialize to

a particular class of utility functions to study the throughput-fairness tradeoff and whether

increasing capacity always raises throughput.

Theorem 6.1. The optimal ratesx = x(α, c) of (6.5) and optimal pricesp = p(α, c) of

(6.3) satisfy the following equations

∂x

∂α
= (D−1 −D−1RT (RD−1RT )−1RD−1)b,

∂x

∂c
= D−1RT (RD−1RT )−1,

∂p

∂α
= (RD−1RT )−1RD−1b,

∂p

∂c
= −(RD−1RT )−1,

where matrixD and vectorb are defined in (6.6) and (6.7), respectively.
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Proof: At the optimal point, the Karush-Kuhn-Tucker condition holds. We have

Rx = c and RT p− ∂V

∂x
= 0. (6.8)

Define

y :=


 x

p


 , w :=


 c

α


 , and G(w, y) =


 Rx− c

RT p− ∂V
∂x


 .

Then (6.8) can be rewritten asG(w, y) = 0. The derivatives of functionG are

∂G

∂y
=


 R 0

−∂2V
∂x2 RT


 =


 R 0

D RT


 ,

∂G

∂w
=


 −I 0

0 − ∂2V
∂x∂α


 = −


 I 0

0 b


 .

SinceR is full row rank andD is positive definite,RD−1RT is positive definite. Then

∂G/∂y is always invertible, and it can be checked that


 R 0

D RT



−1

=


 D−1RT (RD−1RT )−1 D−1 −D−1RT (RD−1RT )−1RD−1

−(RD−1RT )−1 (RD−1RT )−1RD−1


 .

All the above matrices are well defined becauseRD−1RT is invertible. From the implicit

function theorem, the vectory can be uniquely solved in terms ofw locally. Moreover

dy

dw
= −

(
∂G

∂y

)−1
∂G

∂w
=


 R 0

D RT



−1 

 I 0

0 b


 .

From the definitions ofy andw, we have

∂x

∂α
= (D−1 −D−1RT (RD−1RT )−1RD−1)b,

∂x

∂c
= D−1RT (RD−1RT )−1,

∂p

∂α
= (RD−1RT )−1RD−1b,

∂p

∂c
= −(RD−1RT )−1.
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Since the optimalx always satisfies the constraintsRx = c, for a fixedc, the change in

x should be in the null space ofR asα varies. This is captured by the following corollary.

Corollary 6.1. The derivative∂x/∂α can also be expressed as

∂x

∂α
= Z(ZT DZ)−1ZT b,

where the columns of matrixZ form a basis of the null space ofR.

Proof: Denote

∆ := D−1 −D−1RT (RD−1RT )−1RD−1 − Z(ZT DZ)−1ZT .

From Theorem 6.1 and the definition of∆, we only need to show∆ = 0. By the definition

of matrixZ we have

RZ = 0, and ZT RT = 0.

It is clear that


 R

ZT D


 ∆ =


 RD−1 −RD−1 − 0

ZT − 0− ZT


 = 0.

The next step is to show that the matrix


 R

ZT D


 is full rank so that∆ must be the zero

matrix. Suppose it is not, then there exists a nonzero vectorv such that


 R

ZT D


 v = 0. (6.9)

Hence,Rv = 0, i.e.,v is in the null space ofR. Since the columns ofZ form a basis of the
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null space ofR, there existsw such thatv = Zw. Substituting into (6.9), we have

ZT Dv = ZT DZw = 0.

SinceZT DZ is positive definite and invertible, we must havew = 0 andv = Zw = 0. This

contradicts the assumption thatv 6= 0. Therefore


 R

ZT D


 is full rank and∆ = 0.

We will apply these results to a particular class of utility functions to study the effect of

changes in fairness (α) and capacity (c) on throughput in general networks.

6.4 Is fair allocation always inefficient?

Now we apply the expression for∂x/∂α in Corollary 6.1 to study the effect of changes in

fairness (α) on throughputT (α) = T (α, c) for a fixedc > 0. It clarifies a folklore about

the tradeoff between efficiency and fairness of a bandwidth allocation policy.

6.4.1 Conjecture

Recent studies show that bandwidth allocations can be formulated as a utility maximization

problem [80, 97, 96], and allocation properties such as throughput and fairness can be

studied by analyzing the underlying convex optimization problem.

Kelly et al. [80] introduceproportional fairness, characterized by utility function

Ui(xi) = log xi, which is achieved by TCP Vegas and FAST. Massoulie et al. [107] propose

another allocation policyminimum potential delaywith Ui(xi) = −1/xi, which has been

shown to approximate the fairness of TCP Reno by Kunniyur and Srikant [88]. Mo and

Walrand [116] present the following class of utility functions

U(xi, α) =





(1− α)−1 x1−α
i if α 6= 1

log xi if α = 1
. (6.10)

It includes all the previously considered allocation policies as special cases–maximum

throughput (α = 0), proportional fairness (α = 1), minimum potential delay (α = 2),
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and max-min fairness (α = ∞). It provides a convenient way to compare the fairness of

different allocation policies . Moreover, it can also generate utility functions of major TCP

congestion control algorithms, e.g., Reno (α = 2), HSTCP [39] (α = 1.2), and Vegas,

FAST [69], Scalable TCP [81] (α = 1).

We are not concerned with fairnessacross different flowsunder the same allocation

policy represented by a givenα value, as, e.g., Jain’s fairness index is [67]. Rather, we

want to compare fairnessacross allocation policies. While there are no generally accepted

criteria to compare the fairness of allocation policies, many examples in the networking

literature (e.g., [107, 116, 16, 105, 139]) informally compare specific allocation policies

in terms of theirα. For instance,α = 0 maximizes throughput but can be extremely

unfair. Proportional fairness (α = 1) is considered fairer, and max-min fairness (α =

∞) the fairest because it generalizes equal sharing at a single resource to a network of

resources in a way that maintains Pareto optimality [45, 15]. Comparison of fairness of

these polices [107] in a simple network shows that the minimum-potential-delay policy

(α = 2) “penalizes more (less) severely long routes than max-min (proportional) fairness.”

We extrapolate this intuition based on special cases to a continuum of allocation policies

indexed byα, and interpretα as a quantitative measure of fairness.

Is a fairer policy (largerα) always less efficient (smaller aggregate throughputT (α))?

This conjecture is prompted by the various examples in resource allocation in the literature

of wired networks [107, 116, 16], wireless networks, [105, 139], economics, [22], etc.

These examples seem to illustrate (quoted from [105])

“the fundamental conflict between achieving flow fairness and maximizing

overall system throughput. ... The basic issue is thus the tradeoff between

these two conflicting criteria.”

This conjecture can be analytically expressed as

Conjecture 6.1. T (α) is non-increasing

∂T

∂α
≤ 0 for α > 0.
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6.4.2 Special cases

We review several examples in the literature that have motivated Conjecture 6.1. The con-

jecture is checked in special networks for max-min fairness, minimum potential delay,

proportional fairness, and the maximum-throughput policy by analytically solving (6.2)

or numerically computingT (α). However, these techniques are not applicable to general

networks. As is shown in the next subsection, the underlying network topology in these

examples possesses a special structure that leads to trivial sufficient conditions for the con-

jecture to be true.

Example 1: Linear network with uniform capacity [107, 16]

Consider the classical linear network withL unitary capacity links andN = L + 1 com-

peting sources, shown in Figure 6.1. The ratesxi(α) are computed by solving (6.2) [16] ,

1x 2x Lx

0x

Figure 6.1: Linear network.

which gives

x0(α) =
1

L1/α + 1
, and xi(α) =

L1/α

L1/α + 1
for i ≥ 1.

Using this, we can easily check that, forα > 0,

∂T

∂α
=

−L1/α(L− 1) log L

α2 (1 + L1/α)
2





= 0, L = 1

< 0, L ≥ 2
.

Hence, except for the single-link case,T (α) is strictly decreasing inα for the linear network

with uniform link capacity. After examining this special case with several specialα values,
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Massoulie et al. [107] made a cautious comment: “It is not known whether the same

ordering holds for arbitrary network topologies.”

Example 2: Linear network with nonuniform capacity [116]

The same network topology in Example 1 is considered in [116] withL = 2 with link

capacitiesc1 < c2. The source rates under max-min fairness are

x0(∞) = x1(∞) =
c1

2
, x2(∞) = c2 − c1

2
, T (∞) = c2 +

c1

2
.

It is not hard to solve (6.2) to obtain the source rates and derive the aggregate throughput

for proportional fairness

T (1) =
2

3
c1 +

1

3

√
c2
1 + c2

2 − c1c2 +
2

3
c2 ≥ c2 +

c1

2
= T (∞),

which supports the conjecture forα = 1 andα = ∞.

Example 3: Linear network with two long flows

Consider a linear network with two long flows, shown in Figure 6.2. The link capacities

1x

7x

2x 3x 4x 5x

6x

1c 2c 3c 4c 5c

Figure 6.2: Linear network with two long flows.

arec = (500, 400, 300, 200, 500)T , and the aggregate throughputT (α) can be numerically

solved for anyα ≥ 0. The result is shown in Figure 6.3. It suggests that the conjecture is

true for allα > 0 for this network. Corollary 6.2 below implies that, indeed, it is.
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Figure 6.3: Fairness-efficiency tradeoff.

6.4.3 Necessary and sufficient conditions

We now investigate the conjecture in general networks. The aggregate throughputT is a

function of source ratex(α)

T (x(α)) = 1T x(α), (6.11)

where1 = (1, . . . , 1)T . From Corollary 6.1, we have

∂T

∂α
= 1T Z(ZT DZ)−1ZT b. (6.12)

When the utility functionU(x, α) is defined as in (6.10), the matrixD and vectorb defined

in (6.6) and (6.7) take the forms

D = α diag(x−α−1
1 , . . . , x−α−1

N ), b = (x−α
1 log x1, . . . , x

−α
N log xN)T ,

wherex = x(α) = x(α, c) are the optimal rates. Letµ = µ(α, c), β = β(α, c) and

A = A(α, c) be defined by

µi := zT
i b, βi := −1T zi, and A := ZT DZ, (6.13)
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wherezi are theith columns ofZ. Note thatA is positive definite and hence invertible.

Let Āi(α, c) denote the matrix obtained from replacing theith row of A with row vector

βT = (β1, β2 . . . βM). From the above definitions and (6.12) we have

∂T

∂α
= −βT A−1µ. (6.14)

Our first main result is a necessary and sufficient condition for the conjecture to hold.

Note that the condition is a function ofα even though this is not explicit in the notation.

Theorem 6.2.For anyα > 0

∂T

∂α
≤ 0 if and only if

M∑
i=1

µi det Āi ≥ 0.

Proof: The key observation is the following expression for the row vector

βT A−1 =
1

det A

(
det Ā1, det Ā2, . . . , det Ān

)
, (6.15)

which follows from the following formula for matrix inverse [62]

A−1 =
1

det A
A∗,

whereA∗ is the adjoint matrix ofA. Combining (6.14) and (6.15), we have

∂T

∂α
= − 1

det A

M∑
i=1

µi det Āi.

Theorem 6.2 characterizes exactly the set of networks(R, c) in which Conjecture 6.1

is true. Though difficult to understand intuitively, this characterization leads directly to

two sufficient conditions that explain all the examples in Section 6.4.2. The first condition

implies that the conjecture is true when every link has a single-link flow and there is only

one long flow. This condition is satisfied by Examples 1 and 2. The second condition
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implies that the conjecture is true when there are two long flows but both pass through the

same number of links. This condition is satisfied by Example 3. The corollary implies that,

while the diversity of capacitiescl in Examples 2 and 3 makes the optimization problem

(6.2) hard to solve and the previous analysis methods complicated, they are not relevant at

all to the truth of the conjecture for these examples.

Corollary 6.2. Suppose every link has a single-link flow.

1. If dim(Z) = 1, then∂T/∂α ≤ 0 for all α > 0.

2. If dim(Z) = 2 and the only two long flows pass through the same number of links,

then∂T/∂α ≤ 0 for all α > 0.

To prove the corollary, we now specialize to a particular basisZ of the null space of the

routing matrixR, making use of the fact that every link has a single-link flow. Rearrange

the column of routing matrixR to expressR as

R =
[

IL R1

]
,

whereIL is theL× L identity matrix andR1 is aL×M matrix,N = L + M . We choose

a set of basis for the null space ofR such that matrixZ can be expressed as

Z =


 −R1

IM


 .

Clearly rank(Z) = dim(Z) = M .

Lemma 6.2. Suppose every link has a single-link flow. ForZ in the form of (6.16), we have

1. µm ≥ 0 for m = 1, . . . ,M .

2. amm ≥ amn for all m,n = 1, . . . , M .

Proof: The proof is a series calculations based on the Karush-Kuhn-Tucker conditions.

See [144, 146] for the detailed proof.
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We are now ready to prove Corollary 6.2 with the above lemma.

Proof of Corollary 6.2: 1) In this case,M = 1 and Z ∈ <N×1 is a column vector.

There areL single-link flows, one at each of theL links, and exactly one other flow that

can traverse one or more links. This means
∑L

j=1−z1j ≥ 1 since the long flow at least

transverses one link. Hence

β1 = −1T z1 =
L∑

j=1

−z1j − 1 ≥ 0.

From Lemma 6.2, we know thatµ1 > 0. From Theorem 6.2 we have

∂T

∂α
= − µ1β1

det A
≤ 0

since matrix A is positive definite.

2) In addition to theL single-link flows, there are two flows that traverse one or more

links. Since they traverse the same number of links, we have

β1 = β2 = −1T z1 ≥ 0, (6.16)

as in the first assertion. We also have

µ1 det Ā1 + µ2 det Ā2 = β1 [µ1(a22 − a21) + µ2(a11 − a12)] .

Lemma 6.2 and (6.16) then imply that the above quantity is nonnegative. Hence,

∂T

∂α
= −µ1 det Ā1 + µ2 det Ā2

det A
≤ 0.
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6.4.4 Counter-example

The condition in the second part of Corollary 6.2 that both long flows pass through the

same number of links is important. When it fails, there are networks where theoppositeof

the conjecture is true!

Theorem 6.3.Whendim(Z) ≥ 2, for anyα0 > 0, there exists a network such that

∂T

∂α
> 0 for all α > α0

Proof: See the detailed proof in [144, 146] .

Since in reality there are many more flows than bottleneck links and therefore dim(Z)

is typically large, it is conceivable that Conjecture 6.1 is wrong more often than right in

practice.

Example 4: Counter-example

Consider the linear network withL = 5 links andN = 7 sources, shown in Figure 6.4. The

1x

6x

2x 3x 4x 5x

7
x

Sc Sc Lc Lc Lc

Figure 6.4: Network for counter-example in Theorem 6.3.

null space ofR has a dimension dim(Z) = N − L = 2. There are five one-link flows with

ratesx1, . . . , x5 and two long flows with ratesx6, x7. Links 1 and 2 have a small capacity

cS, and links 3, 4, and 5 have a large capacitycL. We solve the utility maximization (6.5)

numerically to computeT (α) for α ∈ [0.5, 10].

The aggregate throughputT (α) is plotted in Figure 6.5 as a function ofα, for cS = 10

and cL = 1, 000. The minimal throughput is achieved aroundα0 = 0.95 and will be
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achieved aroundα0 = 0.75 if we changecL to be5, 000. T (α) is strictly increasing beyond

α0. In particular,

T (∞) > T (2) > T (1).

The example is surprising at first because the conventional wisdom in networking is that
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Figure 6.5: Throughput versus efficiencyα in the counter-example.

increasingα favors long flows that take up more resources, leading to a drop in aggregate

throughput. This is not exactly right. Recall that the pricepl at a link is a precise measure

of congestion at that link. A more precise intuition is that increasingα favors “expensive”

flows, flows that have the largest sum of link prices in their paths. In Example 4, the link

capacitycS is small andcL is large, so that prices are high at links 1 and 2, and low at links

3, 4, and 5. Even thoughx6 traverses more links, it has a lower aggregate price over its

path thanx7. Hence, whenα increases,x7 increases, leading to a reduction inx6 (because

of sharing at link 2). This reduction allows increases in flowsx3, x4,andx5 , so that the net

change in aggregate throughputT (α) is positive. Hence the counter-example relies on the

design that the longest flow is not the most expensive.

Indeed, one can prove that for the network in Figure 6.4,∂x7/∂α > 0 and∂x6/∂α < 0
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for all α > α0, as illustrated in Figure 6.6. In this example, the decrease inx6 allows
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Figure 6.6: Source rates versusα in the counter-example.

increases in just three one-link flows, and yet this is enough to produce a net increase in the

aggregate throughput. Our example actually is compact in that our proof shows thatx6 has

to pass through at least three links (link 3,4,5) to make∂T/∂α > 0.

One may notice that the amount of increment in Figure 6.5 is quite small. In fact, an

easy and loose upper-bound for the increment of aggregate throughput iscS/2. Currently,

we don’t know whether this small variation is true only for this example or for general

networks (R, c).

6.5 Does increasing capacity always raise throughput?

We have seen how fairness, as measured byα, can affect efficiency, as measured byT , in

unexpected ways due to interaction among sources in general networks. In this section, we

study how increasing capacityc affects the aggregate throughputT . The results here can

be useful in deciding in which links resources should be invested to maximize aggregate

throughput.

Let δ ∈ RL be the vector that represents the increases in link capacities in the entire
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network. For instance, whenδ = εel, whereε > 0 is a small scalar, andel is aL-vector that

has all its entries 0 except thel-th entry which is 1, then only linkl increases its capacity

from cl to cl + ε. Whenδ = ε1, then all links increase their capacities byε unit. When

δ = εc, then all links increase their capacities by amounts proportional to their current

capacities.

The change in aggregate throughput per unit of an infinitesimal changeδ in capacities

is measured by the directional derivativeDT of T in directionδ, defined as

DT (α, δ) = DT (α, δ; c) := lim
ε→0

T (α, c)− T (α, c + εδ)

ε
.

From (6.11), we have

DT (α, δ) = 1T ∂x

∂c
δ,

where∂x/∂c is evaluated at the optimal ratex(α, c). We will takeδ to denote thedirec-

tion of increase in capacity, with the understanding thatε DT (α, δ) provides an estimate of

change in aggregate throughput whenc is changed toc + εδ. Our results should be inter-

preted in the context of small perturbations that do not change the active constraint set in

(6.2).

DefineB = RD−1RT , η = 1T D−1RT , andB̄i is the matrix obtained by replacingith

row of B by η. A similar argument to the proof of Theorem 6.2 yields the following:

Theorem 6.4.For anyδ, α > 0

DT (α, δ) ≥ 0 if and only if
L∑

i=1

δi det B̄i ≥ 0.

Theorem 6.4 characterizes exactly the set of all networks(R, c), and directionsδ, in

which aggregate throughput will increase, forall fairnessα > 0. An easy consequence is

the following:

Corollary 6.3. If R has only two rows, thenDT (α, δ) ≥ 0 for anyα > 0 and anyδ ≥ 0.

Proof: Let Bij denote the(i, j) element ofB. A similar argument to the proof of Lemma
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6.2 shows that

ηi = Bii, and Bii ≥ Bij = Bji for i, j = 1, 2.

Then

det(B̄1) = η1B22 − η2B21 = b22(B11 −B21) ≥ 0.

Similarly we havedet(B̄2) ≥ 0. From Theorem 6.4, we haveDT (α, δ) ≥ 0.

Corollary 6.3 says that increasing link capacity always raises aggregate throughput,

provided there are only two bottleneck links. Intuitively, one might expect this to hold

more generally. This is however not the case. We provide three interesting examples, with

different instantiations of directionδ, as an illustration.

The first result says that not only can the aggregate throughput be reduced when some

link increases its capacity; paradoxically, it can also be reduced whenall links increase

their capacities by the same amount. This is true for almost all fairnessα.

Theorem 6.5.Given anyα0 > 0,

1. there exists a network (R, c) such that for allα > α0, DT (α, el) < 0 for some linkl.

2. there exists a network (R, c) such that for allα > α0, DT (α, 1) < 0.

Proof: The proof is by construction. For the first claim, consider the network in Figure 6.7.

c5

c1

c2

c3

c4

Figure 6.7: Counter-example for Theorem 6.5(1).

There is a single-link flowxl at each linkl, for l = 1, . . . 4. The flowx5 transverses links
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1, 2, and5, and flowx6 transverses links3, 4, and5 respectively. The capacities of the links

arec1 = c2 = c3 = c4 = cL andc5 = cS. We increase only link 5’s capacity by 1, which

corresponds toδ = e5. For any fixedα0 > 0, we can choosecL/cS large enough, such that

for anyα > α0 all links are fully utilized. Calculating the change in aggregate throughput

using Mathematica gives

DT (α, e5) = 1T ∂x

∂c
e5 = 1T D−1RT

(
RD−1RT

)−1
e5 = −1.

For the second claim, consider the network shown in Figure 6.8. There is a single-link

c2

c1

c3

c4 c5 c10

x13

x11

x12

Figure 6.8: Counter-example for Theorem 6.5(2).

flow xl at each linkl, for l = 1, ..., 10. The link capacities arecl = cS for l = 1, 2, 3 and

cl = cL for l = 4, . . . , 10. We skip the detailed proof ofDT (α, 1) < 0, which can be found

in [144, 146].

Example 5: DT (∞, 1) < 0 for somec in Figure 6.8

To illustrate, we calculate the change in aggregate throughput for the network in Figure 6.8

under max–min policyα = ∞. Let the link capacities becS = 2 andcL = 10. The source

can be easily calculated under max-min fairness, and it is easy to check that the aggregate

throughput is55. When all capacities are increased by2ε with 0 ≤ ε ≤ 1, we can check

that the total throughputT (ε) changes into55 − ε, i.e.,T (ε) is a decreasing function ofε.

IndeedDT (∞, 1) = −1/2 < 0 in this situation.
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If link capacities are increased proportionally, i.e., ifc is increased to(1 + ε)c, then

aggregate throughput will always rise. Note that even though increasing all link capacities

proportionally may be interpreted as changing the unit of capacity, it doesnot imply that

general utility functions increase proportionally in optimal flow vectors. It does however

imply this for the class of utility functions defined in (6.10).

Theorem 6.6.For any network (R,c) and for allα > 0, DT (α, c) > 0.

Proof: The necessary and sufficient condition for anyx ≥ 0 andp ≥ 0 to be primal and

dual optimal are

Rx = c, and RT p =
∂V

∂x
= (x−α

1 , . . . , x−α
N )T .

Supposex andp are optimal with link capacitiesc. Whenc is increased to(1 + ε)c for

ε > 0, we claim thatx(1 + ε) and(1 + ε)−αp are the new optimal rate and price vectors,

respectively. We can check that these vectors satisfy the optimality condition for capacity

(1 + ε)c

Rx(1 + ε) = c(1 + ε),

RT p(1 + ε)−α = (1 + ε)−α(x−α
1 , . . . , x−α

N )T =
∂V

∂x
.

Therefore, the aggregate throughput is increased from the original valueT to (1 + ε)T .

Hence, we haveDT (α, c) = T > 0.

6.6 Conclusion

A bandwidth allocation policy can be defined in terms of utility functions parameterized

by some protocol parameterα. We have studied how throughputs and prices change as

link capacities orα changes. We then focus on a specific class of utility functions where

α can be interpreted as a quantitative measure of fairness. We say an allocation is fair ifα

is large and efficient if the aggregate throughput is large. We use this model to investigate

whether a fairer allocation is always more inefficient and whether increasing link capacities
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always raises throughput. We characterize exactly the set of all networks(R, c) in which

the answers are “yes.” Though these characterizations are difficult to understand intuitively,

they have led to simple corollaries that explain all the examples we found in the literature

and to the discovery of the first counter examples.

There are a number of ways this preliminary work can be extended. First, we have

focused of how throughputsx change in response to changes inα andc, which is only half

of Theorem 6.1. The application of the other half of Theorem 6.1 on how prices change

has not been exploited. Second, the necessary and sufficient conditions for the conjectures

are hard to understand intuitively and check for large networks. It is not clear whether

this condition is likely to hold or fail in practice. It would be useful to derive equivalent

characterizations that are more intuitive or more general corollaries than reported here.

Finally, we have assumed that every source has the same utility function. It would be

interesting to see how the fairness definition and tradeoff results should generalize when

sources have the same class of utility functions but with differentαi parameters, or have

different utility functions.
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Chapter 7

Other Related Projects

7.1 Network equilibrium with heterogeneous protocols

7.1.1 Introduction

As we have seen in the previous chapters, congestion control protocols can be modelled

as distributed algorithms to maximize the aggregate utility, e.g., [80, 97, 116, 164, 88,

96]. However, these studies assume that all sources are homogeneous, that is, even though

they may control their rates using different algorithms, they all adapt to the same type of

congestion signals, e.g., loss probabilities in TCP Reno and queueing delay in FAST TCP

[69]. When sources withheterogeneousprotocols that react to different congestion signals

share the same network, the current duality framework is no longer applicable. With new

congestion control algorithms proposed for large bandwidth-delay product networks and

usage of congestion signals other than packet losses (including explicit feedbacks with

ECN), we need a rigorous framework to understand the behavior of large-scale networks

with heterogeneous protocols.

A congestion control protocol generally takes the form

ṗl = gl


 ∑

j:l∈L(j)

xj(t), pl(t)


 , ẋj = fj


xj(t),

∑

l∈L(j)

mj
l (pl(t))


 . (7.1)

As we have shown in Chapter 2, heregl(·) models a queue management algorithm, and

fj(·) models a TCP algorithm. The effective pricesmj
l (pl(t)) are functions of the link
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pricespl(t), which in general can vary depending on the links and source.

When all algorithms use the same pricing signal (i.e., homogeneous protocols with

mj
l = ml for all j), the equilibrium of (7.1) turns out to be very simple. At the equilibrium,

the source ratesxi solve a utility maximization problem, and the link congestion measure

pl serves as a Lagrange dual. When heterogeneous algorithms that use different pricing

signals share the same network, i.e.,mj
l are different for different sourcesj, the situation

is much more complicated. For instance, when TCP Reno and FAST TCP share the same

network, neither loss probability nor queueing delay can serve as the Lagrange multiplier at

the link, and (7.1) can no longer be interpreted as solving the standard utility maximization

problem. Basic questions, such as the existence and uniqueness of equilibrium, and its

local and global stability, need to be re-examined.

7.1.2 Model

A network consists of a set ofL links with finite capacitiescl. There areJ different proto-

cols indexed by superscriptj, and there areN j sources using protocolj indexed by(j, i).

The total number of sources isN :=
∑

j N j. The L × N j routing matrixRj for type

j sources is defined byRj
li = 1 if source(j, i) uses linkl, and 0 otherwise. The overall

routing matrix is denoted byR =
[

R1 R2 · · · RJ

]
.

Every link l has a pricepl. A type j source reacts to the “effective price”mj
l (pl) in

its path. By specifying functionmj
l , we can let the link feed back different congestion

signals to sources using different protocols. The end-to-end prices for source(j, i) is qj
i =

∑
l R

j
lim

j
l (pl). Let qj = (qj

i , i = 1, . . . , N j), q = (qj, j = 1 . . . , J), mj(p) = (mj
l (pl), l =

1, . . . L) andm(p) = (mj(pl), j = 1, . . . J) be vector forms. Thenqj = (Rj)
T

mj(p) and

q = RT m(p).

Let xj be a vector with the ratexj
i of source(j, i) as itsith entry, and letx be the vector

of xj. We suppose that source(j, i) has a utility functionU j
i (xj

i ) that is strictly concave

and increasing.

A network is in equilibrium when each source(j, i) maximizes its net benefit and the

demand for and supply of bandwidth at each bottleneck link are balanced. Formally, a
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network equilibrium is defined as follows.

Given pricesp, the end-to-end price vectorq is formulated asq = RT m(p). The

source ratexj
i is uniquely determined byqj

i , and it uniquely solvesmaxz≥0 U j
i (z) − zqj

i .

Therefore, the source rates vectorx is a function of link pricesp, denoted asx(p). Denote

y(p) as the aggregate source rates at links, theny(p) = Rx(p).

In equilibrium, the aggregate rate at each link is no more than the link capacity, and

they are equal if the link price is strictly positive. Formally, we callp anequilibrium if it

satisfies

P (y(p)− c) = 0, y(p) ≤ c, p ≥ 0 (7.2)

whereP := diag(pl) is a diagonal matrix. We will study the existence and uniqueness

properties of network equilibrium specified by the above equations.

7.1.3 Existence of equilibrium

We prove the existence of equilibrium under the following assumptions.

A1: Utility functions U j
i are strictly concave, increasing, and twice differentiable. Price

mapping functionsmj
l are differentiable and strictly increasing withmj

l (0) = 0.

A2: For anyε > 0, there exists a numberpmax such that ifpl > pmax for link l, then

xj
i (p) < ε for all (j, i) with Rj

li = 1.

These assumptions are mild. Concavity and monotonicity of utility functions are often

assumed in network pricing for elastic traffic. The assumption onmj
l preserves the relative

order of prices and maps zero price to zero effective price. Assumption A2 says that when

pl is high enough, then every source going through linkl has a rate less thanε.

Theorem 7.1. Suppose A1 and A2 hold. There exists an equilibrium pricep∗ for any

network(c,m, R, U).

The mathematical tool used to prove this theorem is the Nash theorem in game theory

[121, 10], which is an application of Kakutani’s generalized fixed point theorem. The

detailed proof can be found in [147].
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7.1.4 Examples of multiple equilibria

Theorem 7.1 guarantees the existence of network equilibrium; however the equilibrium

may not be unique. We show two examples of multiple equilibria.

In a single-protocol network, if the routing matrix R has full row rank, then there is

a unique active constraint set. In contrast, the active constraint set in a multi-protocol

network can be non-unique even if R has full row rank as shown in Example 1. Clearly, the

equilibrium prices associated with different active constraint sets are different.

Example 1: Multiple equilibria with different active constraint sets

Consider a symmetric network in Figure 7.1 with three flows. The link 1 and link 3 have

1x1
2x1

1x2

Figure 7.1: Example 2: two active constraint sets.

identical parameters, and flows(1, 1) and(1, 2) have identical utility function. We show

that [142], under certain conditions, the network has two equilibria with different congested

links. We also carry out experiments with TCP Reno, which reacts to loss probability,

and TCP Vegas/FAST, which reacts to delay, and we set the experiment parameters such

that the conditions are satisfied. The prices (queues) at link 1 and link 2 are shown in

Figure 7.2. This result unambiguously exhibits that there are two equilibria with different

active constraint sets. The queue flip is produced when the network operates at different

equilibria.

Example 2: Multiple equilibria with a unique active constraint set

When the active constraint set is unique, it is still possible to have multiple equilibria,

and even uncountable many of them. We show that such an example withJ = 3. The
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Figure 7.2: Shifts between the two equilibria with different active constraint sets.

network is shown in Figure 7.3 with three unit-capacity links,cl = 1. All the sources use

1x1
2x1

1x2

1x3

3x1

2x2

Figure 7.3: Example 2: uncountably many equilibria.

the same utility functionU j
i (xj

i ) = − (
1− xj

i

)2
/2, and the price mapping function is linear

mj(p) = Kjp, whereKj areL × L diagonal matrices withK1 = I, K2 = diag(5, 1, 5),

andK3 = diag(1, 3, 1).

It can be shown that the equilibrium pricep satisfies

∑
j

Rj(Rj)T Kjp =
∑

j

Rj1− c

which is a linear equation inp. It has a unique solution if the determinantdet
(∑

j Rj(Rj)T Kj
)
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is nonzero, but has no or multiple solutions otherwise. By choosing appropriate parameters

(as shown above), we can make this determinant zero. It is easy to check that all of the

following are equilibrium prices for this network

p1
1 = p1

3 = 1/8 + ε, and p1
2 = 1/4− 2ε where ε ∈ [0, 1/24].

The corresponding source rates can also be derived, and all capacity constraints are tight

with these rates, yet there are uncountably many equilibria.

Examples 1 and 2 show that global uniqueness is generally not guaranteed in a multi-

protocol network. We will show, however, that local uniqueness is basically a generic

property of the equilibrium set.

7.1.5 Local uniqueness of equilibrium

We denoteE as the equilibrium set wherep is in E if and only if it satisfies (7.2). Fix an

equilibrium pricep∗ ∈ E. Let theactive constraint set̂L = L̂(p∗) ⊆ L be the set of links

at whichp∗l > 0. Consider the reduced system that consists only of links inL̂, and denote

all variables in the reduced system byĉ, p̂, ŷ, etc. Then, sinceyl(p) = cl for everyl ∈ L̂,

we haveŷ(p̂) = ĉ. Let the Jacobian for the reduced system beĴ(p̂) = ∂ŷ(p̂)/∂p̂, and

Ĵ(p̂) =
∑

j

R̂j ∂xj(p̂)

∂q̂j

(
R̂j

)T ∂m̂j(p̂)

∂p̂
. (7.3)

Since the equilibrium pricêp∗ for the links inL̂ is a solution ofŷ(p̂) = ĉ, by the inverse

function theorem, the equilibrium pricêp∗, is locally uniqueif the Jacobian matrix̂J(p̂∗) =

∂ŷ/∂p̂ is nonsingular at̂p∗. We call a networkregular if all its equilibrium prices are locally

unique. The following theorem shows that almost all networks are regular and that regular

networks have finitely many equilibrium prices. This implies that the uncountablly many

equilibria shown in Example2 almost never happens in real networks.

Theorem 7.2. Suppose assumptions A1 and A2 hold. Given any price mapping functions

m, any routing matrixR and utility functionsU ,
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1. the set of link capacitiesc for which not all equilibrium prices are locally unique has

Lebesgue measure zero in<L
+.

2. the number of equilibria for a regular network(c, m,R, U) is finite.

We now narrow our attention to networks that satisfy an additional assumption:

A3: Every link l has a single-link flow.(j, i) with
(
U j

i

)′
(cl) > 0.

Assumption A3 says that when the price of linkl is small enough, the aggregate rate

through it will exceed its capacity. It implies that the active constraint set is unique and

contains every link.

Since all the equilibria of a regular network have nonsingular Jacobian matrices, we

can define theindexI(p) of p ∈ E as

I(p) =





1 if det (J(p)) > 0

−1 if det (J(p)) < 0
.

Theorem 7.3.Suppose assumptions A1–A3 hold. Given any regular network, we have

∑
p∈E

I(p) = (−1)L

whereL is the number of links.

The proof of this theorem is based on the Poincare-Hopf index Theorem [149, 113].

First, we construct a vector field formed by a continuous-time gradient project algorithm

[97] with multiple protocols. Clearly,p∗ is an equilibrium point of this vector field if and

only if it is a network equilibrium. Under the assumption A3, there will be a contraction

region in this vector field, and all the equilibria are in this region. The Jacobian matrix of

the vector field equilibrium point is the same as 7.3 if uniform stepsize is used. Since the

network is regular, every equilibrium has an index. Using the Poincare-Hopf index theorem

gives us the result in Theorem 7.3. An obvious consequence of this theorem is:

Corollary 7.1. Suppose assumptions A1–A3 hold. A regular network has an odd number

of equilibria.



141

Corollary 7.1 also implies the existence of an equilibrium, although we show this in a

more general setting in Section 7.1.3. Next we will present another example to illustrate

Theorem 7.3 and Corollary 7.1.

Example 3: Illustration of Theorem 7.3 and Corollary 7.1

Recall that in Example 1, there are uncountably many equilibria. The componentsx1
1

andq1
1 of these equilibrium points are shown by the (red) solid line in Figure 7.4. We can

change the utility function of every source into the following form

U j
i (xj

i , α
j
i ) =





βj
i (x

j
i )

1−αj
i /(1− αj

i ) if αj
i 6= 1

βj
i log xj

i if αj
i = 1

,

whereαj
i andβj

i are parameters. We pick two points (the two black dots), and choose ap-

propriate parametersαj
i andβj

i for every source, such that these two points will be isolated

equilibria.

After this perturbation, we can check whether the two designed equilibria are locally

unique, and the network is regular. Corollary 7.1 predicts an odd number of equilibria. We

indeed can find another equilibrium, and three of them in total 7.4.

x 11

q 11

1=(β
1
1/q

1
1)1/α1

1  x 1

5/6

7/8

1/8 1/6

  

(0.135,0.865)

  

(0.165,0.835)

Figure 7.4: Example 3: construction of multiple isolated equilibria.

We further check the local stability of these three equilibria under the gradient algo-

rithm. It turns out that one of them is not stable and has index 1, while the other two are
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stable with index−1. The dynamics of this network under the gradient algorithm can be

illustrated by a vector field. We draw the vector field restricted on the planep1 = p3, and

the phase portrait is shown in Figure 7.5. The (red) dots represent the three equilibria. Note

that the equilibrium in the middle is a saddle point, and it is therefore unstable. The (red)

arrows give the direction of this vector field. Individual trajectories are plotted with slim

(blue) lines.
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p
1

p 2

Figure 7.5: Example 3: vector field of (p1, p2).

7.1.6 Global uniqueness of equilibrium

The exact condition under which network equilibrium is globally unique is generally hard

to prove. We provide several special cases for global uniqueness.

Theorem 7.4. Suppose assumptions A1–A3 hold. If all equilibria have index(−1)L, then

E contains exactly one point. In particular, if all equilibria are locally stable, thenE

contains exactly one point.

The first claim of the theorem directly follows from Theorem 7.3. It can be checked

that a local stable equilibrium also has an index of(−1)L, and the second claim also holds.

This result relates the local stability of an algorithm to the uniqueness property of a

network. Local stability can be checked in several ways, and it can be used to prove global

uniqueness. We will concentrate on several special cases in the rest of this section.
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Theorem 7.5. Suppose assumptions A1–A3 hold andR has full row rank. If for allj and

l, mj
l (pl) = kjpl for some scalarkj > 0, then there is a unique network equilibrium .

Under the assumption of Theorem 7.5, it is easy to show that we have an unusual situ-

ation in the theory of heterogeneous protocols where the equilibrium rate vectorx solves

the following concave maximization problem

max
x

∑
i,j

kjU j
i (xj

i ) s. t.Rx ≤ c.

Therefore, such a network always has a globally unique equilibrium whenU j
i are strictly

concave. It can also be proved using Theorem 7.4 by showing that every equilibrium is

locally stable under the gradient projection algorithm.

Theorem 7.6. Suppose assumptions A1–A2 hold. The linear network in Figure 7.6 has a

unique equilibrium.

7.6. We can show that every equilibrium in this network is locally stable and that even

1x

L+1x

2x Lx
Figure 7.6: Corollary 7.6: linear network.

every source uses different protocols. By Theorem 7.4, the equilibrium is globally unique.

Theorem 7.4 also implies the global uniqueness of equilibrium for any network in which

no flow passes through more than 2 links in the active constraint set, when A1–A3 hold. In

this case, the Jacobian matrix is strictly diagonally dominant with negative diagonal entries,

and hence its determinant is(−1)L.

Theorem 7.7.Suppose assumptions A1–A3 hold. A network where all flows using at most

two links has a unique equilibrium.
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7.1.7 Conclusion

When sources sharing the same network react to different pricing signals, the current dual-

ity model no longer explains the equilibrium of bandwidth allocation. We have introduced a

mathematical formulation of network equilibrium for multi-protocol networks and studied

several fundamental properties, such as existence, local uniqueness, number of equilibria,

and global uniqueness. We prove that equilibria exist and are almost always locally unique.

The number of equilibria is almost always finite and must be odd when they are associ-

ated with the same active constraint set. We provide four sufficient conditions for global

uniqueness.

The utility maximization problem that underlies a single-protocol network implies that

the equilibrium source rates exist and are always unique [96]. In the heterogeneous protocol

case, we prove that equilibrium still exists, under mild conditions, despite the lack of an un-

derlying concave optimization problem. There can be uncountably many equilibria, and the

bottleneck links set can be also be non-unique. However, we prove that almost all networks

have finitely many equilibria and that they are necessarily locally unique. Non-uniqueness

can arise in two ways. First, the equilibria associated with different sets of bottleneck links

are always distinct. Second, the number of equilibria associated with each set of bottleneck

links can be more than one, though always odd. Moreover, these equilibria cannot all be

locally stable unless the equilibrium is globally unique. We also provide several special

cases for global uniqueness of network equilibrium. We also provide numerical examples

to illustrate the theorem and equilibrium properties.

7.2 Control unresponsive flow–CHOKe

7.2.1 Introduction

TCP is believed to be largely responsible for preventing congestion collapse while the In-

ternet has undergone dramatic growth in the last decade. Indeed, numerous measurements

have consistently shown that more than 90% of traffic on the current Internet still consists

of TCP packets, which, fortunately, are congestion controlled. Without a proper incen-
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tive structure, however, this state of affairs is fragile and can be disrupted by the growing

number of non-rate-adaptive (e.g., UDP-based) applications that can monopolize network

bandwidth to the detriment of rate-adaptive applications. This has motivated several active

queue management schemes, e.g., [111, 41, 94, 141, 123, 126, 35], that aim at penalizing

aggressive flows and ensuring fairness. The scheme, CHOKe, of [126] is particularly in-

teresting in that it does not require any state information and yet can provide a minimum

throughput to TCP flows.

The basic idea of CHOKe is explained in the following quotation from [126]:

“When a packet arrives at a congested router, CHOKe draws a packet at random from

the FIFO (first-in-first-out) buffer and compares it with the arriving packet. If they both

belong to the same flow, then they are both dropped; else the randomly chosen packet

is left intact and the arriving packet is admitted into the buffer with a probability that

depends on the level of congestion (this probability is computed exactly as in RED). ”

The surprising feature of this simple scheme is that it can bound the bandwidth share of

UDP flows regardless of their arrival rate. Extensive simulation results in [126] show that

as the arrival rate of UDP packets increases without bound, their bandwidth share peaks and

then drops to zero! It seems intriguing that a flow that maintains a much larger number of

packets in the queue does not receive a larger share of bandwidth, as in the case of a regular

FIFO buffer. We provide an analytical model of CHOKe that explains both this throughput

behavior and the spatial characteristics of its leaky buffer. In this section, we will present

the model, analysis, and simulations of CHOKe very briefly. See [155, 143, 145] for details.

7.2.2 Model

We focus on a network with a single bottleneck link with capacityc pkts/sec, which is

shared by byN identical TCP sources and a UDP flow with a constant sending rate. We

study the network’s equilibrium behavior.

Equilibrium quantities (rate, dropping probability, etc.) associated with the UDP flow

are indexed by 0. Since the TCP sources are identical, we will use index 1 for all TCP
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flows. The definition of all variables and some of their obvious properties are collected

below:

d: common round-trip propagation delay for TCP sources.

τ : common queueing delay, and round-trip delay isd + τ .

bi: packet backlog from flowi, i = 0, 1.

b: total backlog;b = b0 + b1N .

r: congestion based dropping probability. In general,r = g(b, τ) whereg is a function

of aggregate backlogb and queueing delayτ .

xi: source rate of flowi. In general,x1 = f(p1, τ) wheref is a function of overall loss

probabilityp1 and queueing delayτ .

hi: the probability that an incoming packet of flowi is dropped by CHOKehi = bi/b.

pi: overall probability that a packet of flowi is dropped before it gets through.

A packet may be dropped, either on arrival due to CHOKe or congestion (e.g., according

to RED) or after it has been admitted into the queue when a future arrival from the same

flow triggers a comparison. Every arrival packet from flowi can trigger either0 packet loss

from the buffer, 1 packet loss due to RED, or 2 packet losses due to CHOKe. These events

happen with respective probabilities of(1 − hi)(1 − r), (1 − hi)r, andhi. Hence, each

arrival to the buffer is accompanied by an average packet loss of

pi = 2hi + (1− hi)r + 0 · (1− hi)(1− r) = 2hi + r − rhi. (7.4)

Consider a packet of flowi that eventually goes through the queue without being dropped.

The probability that it is not dropped on arrival is(1− r)(1−hi). Once it enters the queue,

it takesτ time to go through it. In this time period, there are on averageτxi packets from

flow i that arrive at the queue. The probability that this packet is not chosen for comparison
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is (1− 1/b)τxi. Hence, the overall probability that a packet of flowi survives the queue is

1− pi = (1− r)(1− hi)

(
1− 1

b

)τxi

. (7.5)

The rate of the flowi’s packets getting through the buffer isxi(1 − pi). Since the link is

fully utilized, the flow throughputs sum to link capacity:

x0(1− p0) + Nx1(1− p1) = c.

The model is derived by putting together all the above equations. The only independent

variable is UDP ratex0, and there are ten dependent variables. In summary, the model is

described by the following ten equations:

pi = 2hi + r − rhi, i = 0, 1 (7.6)

pi = 1− (1− r)(1− hi)

(
1− 1

b

)τxi

, i = 0, 1 (7.7)

hi =
bi

b
, i = 0, 1 (7.8)

b = b0 + Nb1 (7.9)

c = x0(1− p0) + Nx1(1− p1) (7.10)

x1 = f(p1, τ) (TCP) (7.11)

r = g(b, τ) (e.g. RED) (7.12)

Substituting(f, g) with the analytical model of Reno/RED, this set of nonlinear equations

(7.6)–(7.12) can be solved numerically using Matlab. The solution is accurately validated

with ns-2 simulations shown in Section 7.2.5. This solution can then be used in the differ-

ential equation model described later to solve for spatial properties of the leaky buffer.

7.2.3 Throughput analysis

By making three approximations, we can derive the maximum achievable UDP throughput,

and prove that UDP throughput approaches zero when it sends infinitely fast.
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First, we approximate the system by one in which the order of congestion based drop-

ping and CHOKe is reversed. Second, we assume thatN is large such that a comparison

triggered by aTCParriving packet never yields a match. The last assumption is that we can

approximate(1− 1/b)b ' e−1. Under these assumptions, we can eliminateτ in the model

(7.6)–(7.12) and get our key equation

1− h0

1− 2h0

= exp

(
x0(1− r)(1− h0)

c− x0(1− r)(1− 2h0)

)
. (7.13)

Let µ0 = µ0(x0) denote the UDP throughput share,µ0 = x0(1 − p0)/c, and let

µ∗0 = maxx0≥0 µ0(x0) denote the maximum achievable UDP share. The UDP through-

put behavior can be totally captured using equation (7.13), which is independent of TCP

and AQM algorithms. We show the bandwidth properties in Theorem 7.8 and visualize it

in Figure 7.7 which shows UDP throughput versus sending rates.
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Figure 7.7: Bandwidth shareµ0 v.s. Sending ratex0(1− r)/c.

Theorem 7.8.The UDP throughput has the following properties:

1. The maximum UDP bandwidth share isµ∗0 = (e + 1)−1 = 0.269. It is attained

when the UDP input rate after congestion based dropping isx∗0(1 − r∗) = c(2e −
1)/(e + 1) = 1.193c. In this case, the CHOKe dropping rate for UDP ish∗0 =

(e− 1)/(2e− 1) = 0.387.
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2. As the UDP sending rate grows without bound, even though UDP packets occupy up

to half of the queue, its throughput drops to zero. That is, asx0 →∞, b0 → b/2 but

µ0 → 0.

The second result of the theorem can also be proved without using the three approxi-

mations. See proofs and more details in [155, 143, 145].

7.2.4 Spatial characteristics

We now derive the spatial characteristics of the leaky buffer under CHOKe that give rise to

the macroscopic properties of maximum and asymptotic throughput proved in the previous

subsection.

Lety ∈ [0, b] denote a position in the queue, withy = 0 being the tail. Definev(y) as the

velocity at which the packet at positiony moves toward the head of the queuev(y) = dy/dt.

For instance, the velocity at the head of the queue equals the link capacity,v(b) = c. Let

ρi(y) be the probability that the packet at positiony belongs to flowi, i = 0, 1. The

bandwidth shareµi is the probability that the head of the queue is occupied by a packet

from flow i, µi = ρi(b). We can derive an ordinary differential equation (ODE) model of

these two quantities

v′(y) = β (ρ0(y)x0 + (1− ρ0(y))x1) , (7.14)

ρ′0(y) = β(x0 − x1) ρ0(y)(1− ρ0(y))
1

v(y)
, (7.15)

whereβ = log(1− 1/b), and the boundary conditions are

v(b) = c, and ρi(0)v(0) = xi(1− r)(1− hi), i = 0, 1.

The spatial characteristics of the leaky buffer under CHOKe are totally captured by

these differential equations. Now we present some structural properties of the velocity

v(y) and spatial distributionρ0(y), which are shown in Theorems 7.9, 7.10, and illustrated

in Figure 7.8.
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Theorem 7.9. 1. For all x0 ≥ 0, packet velocityv(y) is a convex and strictly decreasing

function. It is linear if and only ifx0 = x1.

2. Supposex0 > x1. Thenρ0(y) is a strictly decreasing function. Moreover, ifρ0(0) ≤
ρ∗, thenρ0(y) is convex. Ifρ0(b) ≥ ρ∗, thenρ0(y) is concave. Ifρ0(b) < ρ∗ < ρ0(0),

thenρ0(y) is first concave and then convex (as it is shown in Figure 7.8(b) ) , where

ρ∗ = (x0 − 2x1)/(3(x0 − x1)).

Now we study the asymptotic properties ofv(y) andρ0(y) asx0 goes to infinity. We

assume that the pointwise limits ofv(y) andρ0(y) exis and denote this byv∞(y) andρ∞0 (y).

We describe the asymptotic properties in the following theorem.

Theorem 7.10.For anyx0, every flow, including UDP flow, occupies less than half of the

queue. Whenx0 →∞, we have

1. the buffer sizeb∞ is finite. The UDP’s share of this buffer ish∞0 = (1−r∞)/(2−r∞).

2. the throughput of UDP source goes to zero, i.e.,x0(1− p0) = ρ0(b)c → 0.

3. let y∗ = b∞(1−r∞)/(2−r∞). When0 ≤ y ≤ y∗, we haveρ∞0 = 1 andv∞(y) = ∞.

Wheny∗ < y ≤ b∞, we haveρ∞0 = 0 andv∞(y) = c− β∞x∞1 (b∞ − y)

When the UDP input rate increases, even though the total number of UDP packets in

the queue increases, their spatial distribution becomes more and more concentrated near the

tail of the queue and drops rapidly to zero toward the head of the queue. This means that

most of the UDP packets are dropped before they reach the head. It is therefore possible to

simultaneously maintain a large number of packets (concentrated near the tail) and receive a

small bandwidth share, in stark contrast to the behavior of a non-leaky FIFO buffer. Indeed,

asx0 grows without bound, UDP share drops to 0. This also confirms the approximate

throughput analysis of Theorem 7.8. Second, the packet velocity is infinite before the

positiony∗ because UDP packets are being dropped at an infinite rate untily∗.
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7.2.5 Simulations

We implement a CHOKe module in ns-2 version 2.1b9. We have conducted extensive

simulations with a single bottleneck link network. This network is shared byN newReno

TCP sources and one UDP source which sends data at a constant rate. We present three

sets of simulation results. The first set illustrates the accuracy of our TCP/CHOKe model

(7.6)–(7.12) and its macroscopic properties. The second set illustrates the spatial properties

proved in Theorem 7.10. The third example uses TCP Vegas and illustrates that these

properties are insensitive to the specific TCP algorithms.

For the newReno simulations in the first two sets the link capacity is fixed at 125

pkts/sec, and round-trip propagation delay is 100ms. We use RED+CHOKe as the queue

management with RED parameters minthb = 20 packets, maxthb = 520 packets,pmax =

0.5. The corresponding analytical model for Reno (functionf ) and RED (functiong) can

be found in Chapter 3.

In our simulation, we vary the UDP sending ratex0 from 0.1c to 10c and measure the

aggregate queue sizeb, UDP bandwidth shareµ0 = ρ0(b), and TCP throughputµ1. We

also solve for these quantities using the analytical model (7.6)–(7.12) and the approximate

model described in Section 7.2.3. The results, shown in Figures 7.9, illustrate both the

macroscopic behavior of TCP/CHOKe and the accuracy of our analytical models.

As can be seen from Figure 7.9, the aggregate queue lengthb steadily increases as

the UDP ratex0 rises. UDP bandwidth shareµ0 = ρ0(b) rises, peaks, and then drops to

less than 5% asx0 increases from0.1c to 10c, while the total TCP throughput follows an

opposite trend, eventually exceeding 95% of the capacity (not shown). These results match

closely those obtained in [126], for both the analytical model and the approximate mode.

Figure 7.9(b) also displays the UDP bandwidth share measured from the simulations for

the casesx0 = 0.1c, c, 10c. It verifies Theorems 7.8 that predicts that the UDP bandwidth

share peaks at around 0.269 and tends to zero asx0 increases.

The next set of results measures the spatial distributionsρ0(y) of UDP packets in the

above simulations shown in Figure 7.9. The simulation results, and analytical solutions, are

both shown in Figure 7.10. They match well Theorem 7.10 and agree with Figure 7.8(b)
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Figure 7.9: Experiment 1: effect of UDP ratex0 on queue size and UDP share

in Section 7.2.4. Whenx0 = 0.1c (Figure 7.10(a)), UDP packets are distributed roughly

uniformly in the queue, with probability close to 0.08 at each position. As a result, its

bandwidth share is roughly 10%. Asx0 increase,ρ0(y) concentrates more and more near

the tail of the queue and drops rapidly toward the head, as predicted by Theorem 7.10.

Also marked in Figure 7.9(b) are the UDP bandwidth shares corresponding to UDP rates in

Figure 7.10. As expected the UDP bandwidth shares in 7.9(b) are equal toρ0(b) in Figure

7.10. Whenx0 > 10c, even though roughly half of the queue is occupied by UDP packets,

almost all of them are dropped before they reach the head of the queue!

In the last set of simulations, we use TCP Vegas [20] instead of newReno. In these sim-

ulations, the link capacity is fixed atc = 1875 pkts/sec., the round-trip propagation delay is

d = 100ms, and the number of TCP sources isN = 100. We set Vegas parameterαd = 20

packet, and use RED parameters(20, 1020, 0.1). The UDP sending rate varies from0.1c to

10c. We measure the UDP bandwidth shareµ0 and queue lengthb, and compare them with

the numerical solutions of the full model and those of the approximate model described.

The results are shown in Figure 7.11. Comparison of this with Figure 7.9 for NewReno

simulations confirms that the qualitative behavior of TCP/CHOKe is insensitive to TCP

algorithms.
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Figure 7.10: Experiment 2: spatial distributionρ(y).
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Figure 7.11: Experiment 3: effect of UDP ratex0 on queue size and UDP share with TCP
Vegas.

7.2.6 Conclusions

We have developed a model of CHOKe. Its key features are the incorporation of the feed-

back equilibrium of TCP and a detailed modelling of the queue dynamics. We prove that as

the UDP input rate increases, its bandwidth peaks at(e+1)−1 = 0.269 when the UDP input

rate is slightly larger than link capacity, and drops to zero as the UDP input rate tends to in-

finity. To explain this phenomenon, we have introduced the concepts of spatial distribution

and velocity of packets in the queue. We prove that structural and asymptotic properties

of these quantities make it possible for UDP to simultaneously maintain a large number

of packets in the queue and receive a vanishingly small bandwidth share, the mechanism

through which CHOKe protects TCP flows.
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Chapter 8

Summary and Future Directions

We have studied the equilibrium and dynamics of the Internet congestion control using tools

recently developed from feedback-control theory and optimization theory. We summarize

our work and list several future research directions in this chapter.

The models and dynamics of TCP Reno and FAST TCP have been studied in chapters

3 and 4. We point out several future directions in the studies of TCP dynamics.

1. TCP dynamics can be studied in several different settings, e.g., single link vs. general

network, homogeneous sources vs. heterogenous sources, local stability vs. global

stability, without feedback delay vs. with feedback delay. In general, the latter set-

tings are more difficult to deal with. Our studies only cover part of them and should

be extended to global stability with feedback delays in general networks.

2. As we mentioned in Section 7.1, during the incremental deployment of congestion

control schemes, there is an inevitable phase of heterogenous protocols running on

the same network. While the equilibrium properties of heterogenous protocols have

been studied in [146], the dynamics of such systems are still open and is one of our

future directions.

3. The fluid model of TCP has been widely used to study TCP dynamics; however this

model can not capture the self-clocking feature in the packet level. We have shown

in Chapter 4 that this model may give wrong predictions about stability. A discrete-

time model is introduced to capture thisself-clockingeffect. However, we also found

several scenarios where its predictions also disagree with the experiments. It seems



157

that both models are inaccurate. We need to clarify the discrepancies in these models

and hopefully derive a better one.

Recent studies have shown that TCP/AQM algorithms can be interpreted as carrying

out a distributed primal-dual algorithm over the Internet to maximize aggregate utility.

The equilibrium properties (i.e., fairness, throughput, capacity, and routing) of TCP/AQM

systems are studied using the utility maximization framework in Chapter 5, and 6. These

studies can be also extended in several ways.

1. We have focused on how network throughput changes in response to changes in

fairness and capacity in Chapter 6. However, how link prices and network revenue

changes has not been investigated.

2. We have identified the existence of a non-trial duality gap, in the joint utility maxi-

mization problem in Chapter 5, and we need to derive a bound for this gap which is

the penalty for not splitting the traffic.

3. Even though numerical examples suggest that the tradeoff between routing stability

and utility maximization exists in a more general network, we have not been able to

find an analytical proof.

4. When a static component is included in link cost, it is not known if TCP/IP has an

equilibrium, whether the equilibrium jointly solves a certain optimization problem,

and under what condition it is stable.
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