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SUMMARY

Some potentiszl probvlems ralsed by the trailing-vortex theoxy
of axisl turbomachines are solved in the cases of cylindricel semiw
infinite and infinite helicoidal vortices and of trailing vortices
in a cone, The analysis is carried out for the cylindrical doubly

infinite case and the dynamical problems are set up,

The results are in = form where further applications to the
physicel problems may be undertaken and actual computations worked
out.

It is hoped that this work will be completed in the future.
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I. INTRODUCTION

The central problems of the theory of axisl-flow turbomachines
subject to treatment by the methods of non-viscous, incompressible
fluid theory are essentislly thekollowing two:

The Yinverse problem", Given: blade loading, fluld state far

upstream, rotation speed of the machine., Find: the velocity field,
blade shape, distribution of energy.

The "direct problem”, Given: blade shape, roiztion speed,

fluid state far upstream, Find: velocity field, blede loading,
distribution of energy.

Because of the great geometrical and therefore snalytical com~
plication of the problem, as formulated in three dimensions, two dif-
ferent methéds of reduction to twe dimensions have been developed,
answering to different and complementary needs:

1. The airfoil lattice theory has been applied in each isolated "in-
finitesimal®" cylindrieal layer, neglecting their interaction.

2. The actual shape of the blades has been heg;ected, and the shed vor-
ticity assumed distributed continuously downstream of the blade row.
References: Heyer(l); Marble(g).-The purpose of the following treat-
ment is to formulate a vortex theory of axial flow turbomachines,

based on the principles of Prendtl's wing theory and Joukowski's

screw propeller theory, and to solve a few of the potential problems
thus formulated.

The axial motion of the incoming fluid is assumed uvniform, as
well as the rotation., The problem is linearized by assuming that the

vorticity is carried downstream along the undisturbed streamlines,
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(and not by its own induced velocity). ZHach blade being represented
by 2 radisl bound voritex of strength varying with radial distance,
the shed vortices fill a screw surface of constznt pitch., Sueh a
vortex sheet is highly unstable, and it is uninteresting to attempt
to refine the treatment by assuming the trailing vortices to be
other than strictly helicoidal., But in the case of blades impart-
ing a solid body rotation to the fluid one may compute the pitch
of the helix on the basis of the angular velocity downstream (which
makes our theory applicable to the stator as well).

In the first chapter, the method of expansion of the potentieﬂ.¢
in a series of harmonics (Kawada(s); Flerine(4)) is used to derive
the influence function of an infinite helicoidal vortex between
two cylinders; the series expansion for g% is approximated by an
easily summable series, and é_is finally given by an integral, the
kernel of which reproduces Florine'!s result for screw propellers with
an additional term representing the influence of the boundaries.

This investigetion gives an insight into the behavior of axial
and tangential velocities at a blade and permits one %o set up the
dynamical relations between circulation, thrust, torgue and the in-
duced velocities; 1t does not give, however, any indication as to
radial induced velocity near the blade; this last is fortunately of
little interest in the study of the interaction between successive
rows of blades beceuse one could not anyway take account of its var-
iation around the axis. A mean value, such as determined by Harble(z)

as function of radius and distance from blade row gives a sufficient
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estimate. - In the second chapter, the behavior of the velocity near
the blade is investigated by rigorous and then by approximate methods.—
Finally the third chapter gives 2 preliminary mathematical investi~
gation of the three-dimensional field of velocities induced by a
trailing vortex between two cones,

In no case does the treatment go beyond mathematical generasl-
ities and it will have to be completed by a numerical study of a few
significant cases for a comparison with previous theories, and 2 check
on all the successive approximations,

It is to be remarked that many aspects and methods of this theory
are closely related to the study of the electromagnetic field due to
a loose helicoidal conducting wire. See H, Lamb(5) Pe Jace&tet(s) who
limit themselveé to the case where the coordinate Z does not enter ex-

plicitly in the results, However the methods also apply when the cur-

rent propagates along the wire, and to more complicated cases,
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CHAPTER I
TWO-DIMENSIONAL PROBLEMS FOR CYLINDERS

2. Velocities in the Trefftz plane: Green's function.

Simple symmetry comsiderations show that, similarly to what hap-
pens in wing theory, the axial and tangential velocities induced on the
blades,and on the bisecting lines of these blades,by the shed vortices
are exactly equal to ome-half of the velocities induced by a doubly in-
finite vortex, There lies the interest of the following investigatlion,

Biot-Savart Law cannot be conveniently used, because there are no
well-defined imsges in = cylinder., One applies therefore the method of
separation of variables to Laplace's equation to find direetly the per-
turbation velocity potential (}5 . 88 the solution of this eguation which
satisfies the required condition of comtinuity, and one-valuedness or
meny-valuedness and the boundary conditions,

A return vortex is added along the axis to make easier the passage
4o three-dimensional considerations. (This axial vortex is then part
of the shed vortex systenm).

The purely formal operations which follow will be justified later
on when the actual series development on which they had been performed
will be obtained.

Notationsg /): number of blades
W)
P

v = advance velocity

= gtrength of each shed vortex filament

W = angular veloclity

z,6r cylindrical coordinates fixed with respect to the blade row



If the new variables X, 5-0- %5 J M= %f are introduced

into the problem, the equations of the helicoidal vortices are
§=-3/-;‘-£ (#=01, .. p=1) ; m=po
the equations of the cylindrical boundsries are M= = G sy
and the potential ¢ is the solution of Laplace's equation, depending
only on the geometrical position of the point relative to the helices.
That is: 55 depends on M and § , but is independent of 2,
The egquation for the velocity potential is :
A)¢= ¢"’”+ 7’l_¢r * ¢zz + }iz b0 =0

or in terms of the new variagbles |

A?SZ q/ﬁu/u+/é ¢/‘+(/+/u~/2-)¢é§:0 (2.1)

The boundary and periodicity conditions are: TFor Mo b Sy ¢

i1s & single valued, continuous function of [« §) odd and periodic in§,

n

b its/u,-d.erivative 2—?: 945 Y - U v mast vanish

with peried 21
e Ir w w

for p=p,; o For p, << tio, ¢ will be a multiple-valued function
of ( , increasing by % when § increases by 2”//3 o Its normal M -deriv-
ative venishes for Koy, , E?_E’/w:/xo » S F zp’lé . (f) and 315/4 must be cone

tinuous in u . - Separating the veriables, let Blu,s) = M)I(t)
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Then
M'Z o+ 4 M'Ze (le L )mzr=o
vz a2
14 / ”
and M—/ﬁ = - ?% =n?  must be independent of « and §
(/+ ZLZ)A4 g

7"entl=0 gives ZL=A5+B if n=0

Z=Acsni+BsinnS if n+0 ; from periodicity

conditions, N must then be an integer multiple of ﬁ :on=mp

% - ives M= Alo B if n=9
~rz /+ M=0 g oVl
p e (1 L)
M= AL, (nu) + B Kn(nu) if n+#0,
where In)Kna.re the Bessel functions of purely imaginary argument. (Ses
Watson(7).)

Keep only the terms which satisfy our periodicity conditions, The

solution is then, with undeterminate coefficients .

. , . 2.2a
S?é) :Z Sin mps gam /{mpkm/y/x)+/am Ly \””ﬁ/a)f Mo o ( )
m=(
54, = Z S mp§ {dm Kmp (mppc) + 6m L mp ('”/’/‘}} Fon (g p’ i/l
(2.2b)
Develop: ! ( §~Z£ ) = Z L Sin mp? and write that the

m=
four boundary conditions are satzsfieﬁ identically in ; this deternmines
the four coefficients of each harmonic (see Appendix p.35, for details).
If n=mp (m=12.... o) and expressions such as I'(1) stand for

4 L (n ) one obtains the expressions:
n U4 s,

(2033»)

54, - - x(/xo)/xaj [I'k-K'2)1 J[ K1) - K()T0)]  sm mpS
- K(2)r0)- K'(1)I'() mp



-

5é; = MZ JIk - KT J[K'(2)T'0) - K(DI'©)] Sta mp$
e
s

K(2) (1) - K'(r) I'(z) mp

o)
)

m=i

(2,3b)

To obtain the actual linearized velocities, intezrate these con-
tributions slong the blade, with for 7[io)the (unknown) distribution
of vorticity along the blades - 2I) (i.e. the sum of vorticities

Y pcpto
around gll Dblades):

S
fleo= |75 [y ol g 1] 25
2

Mz i
o [t s ] 5 (2.
/b(.

There is of course no question of hendling these whole infinite series,
Two methods have been considered to obtaln more tractable expressions:
a "yorticity wake" method, and a method of approximate estimation of

the successive coefficients by terms of a directly sunmable series.

3¢ "Worticity wake" method of spproximation

Ackeret(a) points out that a sharp tralling vortex 1s anyway an

idealized concept, and that the vorticity is actually distributed in
a wake of finite "width®, This width might for instance be assumed = q, a
constant along the blade, =2nd the following scheme, intermediate between

the strict vortex approach, and Marble's theory(4>, might be adopted:

2 or
Writing %= 3’%—; Y= R—é, s pga ; fluo) - Py



Aa < ‘
o - ‘!'_i
/ : ! /\ 4_!’_(5/
_ : : Loy 14
! ! <
§0 o"’g—@—
/)
"/ o) = 2’6 o -+ )/ 73 r’fa
Let (i) = Bofpre) < 2 by fsa) cop(15.) (3.1)

Five terms of the series give an excellent approximstion. The corres—

ponding Bessel functions are found in tables, and one has to integrate

numericallys ,
Q! I
= K (m /lo)d o J / = Am (mﬂ//a/cﬁé(o
L o mp p al 4 o i

(and same thing for In“’) form= 1,2,3,4,5 only, This procedure is ex-
tremely convenient when a distribution of I’ is preassigned; and it may
then be used to bridge the gap between the present theory and the lat-
tice theory. However it is not suitaeble for handling any inverse prob-

lem,

4, Summation of the series for ,45; with the aid of Nicholson's approxims-
tion onIn, Kn functions.

The essential components of reduced velocity will be the tangential
velocity, and the velocity perpendicular to the screw surface. Both
are linked %o ?g o« By differentiation of the expression for?’ s the

following series is obtained:



K QK- K1
2, < *“/IM%Z /HM T tpp - LEE~ KL ) o)

K()1'0)-K (T2 K@ra-1e)ka)
(4.1)
/“z
I't)Kk- K01 WK -K@Qr
+ //oééb(a y,«,/aZ -~—~——-—————-—7— ‘fh ’),Mﬂ.—.’_‘.f(Z}KYﬂ) y
@) k)12 K@)I()-L)k ) y
Yz
The lowest order for the Bessel functions in ﬁ is already /b. There-
fore the approximate formula derived by Nicholson(g) can be used, and
gives errors which are very reasonable (see Florine(4); Annexe 2), By
a series of integrations by parts (details of which are given in Appen—
dix p. 36 ) the following result is derived:
7“]5 71]72 c«nm/;[ S[V(H/u,f}/"] Coh mp(t-tz) smh mp(t-t)
(/_/./az)/‘/ svh m/v [éz«ﬁ‘l)
Zé[/‘é(/wo")y’/ csh mp (EL) 1mh mp(E-ta) (4.2)
r| 2
o Jvh mp (€-&)
t
where Eln) = //+ + log ﬂf/7;;ﬁr is tabulated in Chart I and

72)72 are the total circulations ax/u;uqvug . I3 cen be different
from C’(contrary to what is true for propellers) because for the paurpose
of this theory, fhe tips of the blades are assumed to join the outer
wall, The next step is to write the trigonometric and hyperbolic func-
tions as sums of expomentials, One obtains in this way a geometric
series (which shows a posteriori that the manipulations on series were

justified)., The summation of this series, if one can assume that
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e TPlt) » and therefore replace the denominator by
2/_ e plle-ti) » gives as re mlts
h_ [ ol 1)
(2n¢, - L )(1+43) V;/ _\__0_2?______,]{ (bo, t1E, 67 ) dbo (4.3)
o]

¢
where the kernel K has the expression:
2p(t, -t
- ¢ Pl

]{(éo)l'/é,,fz): +

E-br) .
€ #l ~Zcospf e plot)

o[t ol 2h(brto-2t) (4.4)
¢ p (€ +¢ ) e p( _y

—+ —

- B E+bo
€~2p(t+fo—261)zm/6;e (e to %) o %

plEsto-260)
+

”Z(—'z Zeos pfe /

This kernel is of the nature of a Green's funciion and has the same

symmetries, For $=0 , the kernel becomes:

\x efié’ € P(fffo—?élj e——P(fff‘o‘Z‘“;)
2 o Pt bt * [~ PlErE-26) B [ g PlErEo-2t) (4.5)

In the absence of walls, this reduces to the kernel given by Florine(4) ’
if one takes into account the fact that the lowest Bessel function is
here already of order ,b s rather larze compared to the number of blades
in a propeller. One cen therefore use an approximation for /n, fnsimp-
ler than the approximation used by Florine, |

~4pltz-¢)

If e 2P lte-b) is not «/ Dbut € is, other terms

may be added to the kernel, (The details are given in Appendixz p. 39 ).
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Behavior of this kernel, especially for p large

Consider the case 5=¢ , i.e. to the velocity on the blade.

¢
" e’ _—— has a pole of order 1 for «-u, , where it behaves
7\/1 P(/ e/oéo /0{,/(
e -
like F{ele ) . The two branches, for ¢ >(lo , where X, >0 » and — + 1
-to

88 b ~oo 4 1eGe & ,0035 @nd t<to , where X, <0 , and —= =0 as &t —+-o2 ,
i.e./a -0 o are geometrically identical.

vz For p—~oco , K, tends

toward the step function,

- Kack

appoximate uniformly for /t-to/>¢& o If

oz
p > , end Se, 1s very
Q0
/
% # # 2 N
. ST smooth®, i.e. its second
e
—
& £ derivative very small, one

may neglect the infinities

in teking the Cauchy princi-

—_— T e e
}
~

pal value, i.e. integrate
from (, to to-& and from te+& to ¢, o« But for /[é-to/>¢ and forp>/,
thig kernel can be excellently approximated bys

(E-to)
[+ e d ﬁr £ o

-e -plé-to)

K, =
de ¢ <o

The rest ]Q of the kernel is always regular, the value is large
(_-_ e Plea-t) ) only where (¢=¢(y=¢, or t-¢,:-t, ; otherwise it is
small, of the order of

p e+ bo-2t2) _pltta-2¢,)
¢ e F
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The result obtained for p>-/ means simply that When¢ is inde=~
pendent of { , the vorticity in layers which envlop Mo is the only
one to aet: this is well=known in electromasgnetic theory.

If §#0 the kernel is a regular function of ¢ (or/u)
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Seo Formulation of the dynamic problems of the rotor in terms of the
circulstion function

So far the circulation function.%; wes assuped known sround esch

blade, idealized as a bound radlal vortex . This function [u) has
now to be related to the actual geometrical properties of the blades,
and to the fopces acting on the blades. This leads to a series of
integro-differential relations yielding the equations appropriate for
each problem. Assume that the variation of the blade shape with /1
is slow enough 1o permit to neglect altogether its reaction on axial
and tangential induced velocities through the radial velocity.

The axial end tangential velocity in Trefftz pleme ave Un=-2f§ ;

Mt”ﬂi— © 9 o The resultant of the velocities at the blade is
rov o
wo .4 @ Jreut perpendicular to the resultant v/i+u?  of U
=5 L

and W', Call Cyd the chord,n%u) the two-dimensional-lift-curve slope,
f(u) the angle of the zero-1ift curve of the blade with the exis; W
being as before the circulation arcund any individusl blade, the "sirip

theory® gives the relation ;

%@: slovfnure = M(#JC(#,)[(/é~fam~/a) v/l ’k//

or
T) (8- fam'ue ) [1eu? —, (5.1)
Tt BRI ls) - g mrel) Ve b

This equation, linear in ['(x) , relates Ifu) to the geometry of the blade,
to @ and U s

The 1ift =nd drag formulas written for the blade strip are!



wal _dL _ g W 2 2
Vg " dr 3'"(#)6(#)!’(///‘) an” @ Wi )v (14?)
w dd  db t 9 L aL v W
Vo M"ZC/’“}fv (1) Coo Ju Y vfiu?

and, since the thrust and the torque are given by

w af

WM M o
vV

W A e

we obtein the following equalities

w

e =

v g o m(p) () (- tew ) pU St 4 L (p)pv Vi Cou +

7 Z el
r g (f) () (p-tarlu 1) ;%f(/@,u"’/ﬂ - é-;’z/;{—zm(/u}c/ﬂ/w’(/w/fé (5.2)

Q / - cut 2L 2
3 %/z:-zi’ﬂ[/f)c//(}(ﬁ fan=' 1) pv* [ reut + 5 Poufieu fet) Cop +

/ 7 2 Z (5'3)
o) (- o 2 )t (s — o el s
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These relations are unfortunately not linear and the second order
terms do not seem & priori much smaller than the first order onese
All the preceding relations permit the formulation of the follow=-

ing dynamical problem:

1) Find the circulation which would induce a given tangential vel-

ocity in Treffiz planes.

tz
/;ﬁi Hato - (end - 1) (1gu)*- (

&

ZQJ/L Ue - ‘Z}(/f/ﬂ}l/‘"

where Clu)=T[w)((+«*)% . This will be solved by successive approximations

Zn
on the kernel)7l being given dirsctly as l( %(%Q)/“Zczg » First keep
el
Gﬁé’e péo
to the coordinate % defined by

only \ﬁﬂz and neglect the rest )giof the kernel K. Pass

el hiben o ;A- Llefie?) B Lefett) [ E-- A

Florine (4: Annexe }) shows that the equation becomes

g ¢ ¢ '
(o Abs _ [ mvu VIR épz.,ef" 5
/5«27 [om,,,mﬂ'( L e T (1) 2 (%) (5el)

4

and its solution is
&l 17 Yz
Y w8
WA (5.5)
amé 4 - / 5Se
Cle)= =, / %
o

Coo - cnl’

This expression was obtained by looking for a Fourier series expansion
of C(f), and Florine gives other,equivalent forms. To C can be added
an arbitrary funetion A4+ 8(8) which gives the value zero to the

integral, but serves to obiain the desired values for 7, and /2 .
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The value of C(6) is substituted into.Az and the corresponding
correction to ¢ (¢) gives by inversion of the Fredholm equation (5ek4)
a correction to C(9/.

A particular case is investigated in more detail: +the solid body
rotation blades: the rotation far downstream is a solid body rotation
of veloesity @, « There is a priori a question as to the practicality
of such a flow: it is of course not realisable rigorously, and &J
will be only the averasge of angular rotation, defined such that at a

Z far downstreami
Zn
77[/“}://‘1{5 A = nr (v -w.)r (56)

therefore the problem is actually again a simple "inverse problem®

leading to no integral equation, but to an integral. Now in this in=-

tegral, one shall be much closer to reality if & is replaced by &

in the definition of @ *. To obtain reasonably close values of Uec

as a function of § , one may compute Ue only for =0 and §- é? s
and then interpolaie

all, by smoothing the step

curve built on these
u&(y:o) .

two values which gives

the average (W.-&) "

T W-I)r

m(ﬁiy LT The most important

question remains to find

the distribution of U

S 7 %ﬁ with Z, near the blade;
*This will also permit one to treat in the seme theory the case of a

stator inducing a solid body rotation.
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this is left to the second chapiere.

2) Given the blade geometry, find /(%) .

Relation (5.1) is the integral equation for /' , once we agree on
a certain /2 . It is a Fredholm equation of second kxind and there is
little khope in finding an exact solution numerically tractable. For p
large, the following approximate procedure is suggested:

a) Neglect the A; part of K and assimilate K, to the step function

it becomes for /vaw o« Then

©) m/u)cw)w s (/a’(ﬂ/*f@"'%)//:;zméu)%a)ﬂ
! ()/ /a - 2

I'® is the O-order approximation of /- .

Lopli

b) Write the equation as / 95 K dto = S(E) « S(¢) is
3

obtained by replacing ' by 7@ in 7@/ and /5755 Kyoto y This is of

Florine's type and gives [7(’/.

To estimate the importance of terms where the approximate value

is used, compare Fl— to f_’%#_ﬁ,_ Vitpt » Take as typical values:
nr
mwt; -’%,v?' i p w2 b 30 » Then the first expression

is roughly 1/6 of the seconds The approximation procedure appears as
justified.

¢) Repeat procedure b) with 740 get /¥,

3) Functioning off designe

If ¢ju) and /é:x) have been désigned to give a certain distribution
of velgcity at a given g— s which modification in /¢ and " will be
the consequence of a change of g » The following treatment applied to
egs (5.1) is suggested: The change in /' is first of all neglected in

% and the new wvalue of 755_ is deduced by equalling the right hand
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side of both 0ld and new {5.1). This gives a Florine's type eguation,
for the new / . ‘
This new [’ is placed in the left hand side of (5.1) and the equa-
tion solved for a better value of ¢, and eventually ot [’ by another
operation.

L) Determine the shape of blades giving minimum wake less (Betz's
probleme

This problem is not as cruecial as in propeller theory, because of
the presence of downstiream stages, the energy is not definitely lost.
However, the present method gives to it elegant solution.

Betz's theory requires that

Up= - =

with W const. This leads %o

27w
pm(w) <lp)

and if F'is determined by (say) the condition of solid body rotation

angle of attack déu} - ;15: //az
M

(57)

downstream, this is an all solved equation for 4(«)as a function of &/,
W, (the rotation downstream) and c(«/.

It may be noted that S. Goldstein's classical approach to this
problem in propellers allows itself to be applied with little difficulty

to the case of a turbomachine.
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CHAPTER II
BEHAVIOR OF THE TANGENTIAL INDUCED

VELOCITY IN THE NEIGHBORHOOD OF THE BLADES.

The velocity on a blade and on a blade bisector induced by the shed
vortices was seen to be one=half of the velocity at infinity. However
this result leaves aside the velocity induced by the bound vortices.
Section 6 gives a derivation of the total induced velocity (infinite on
the blade); the problem is enormously more complicated than in 1, and
an approximate study is desirable.

It would be tempting, because of the exponential nature in
of the correction terms, to try to £it at best an exponential *decay?
coefficient, the same for all 3 's. This however is impossible, because
the circulation must remein conséant along the z=-axis for 72-0. In §7

these gquestions are discussed in detail

6. Velocitics induced by p helicoidal semi-infinite vortex filaments,
starting at Z=-0 . .

Consider the potential field composed of the solution of (2.3)
for 2>0 and 0 for %<0 . This field satisfies Laplace's equation in
three variables, the boundary conditions, continuity conditions for
=L and periodicity conditions. However it is discontinuous for
Z =0« Therefore add to it a solution of Laplace's equation in three
dimensions, conitinucus in oo satisfying the B.C. for A=ty g s €VeTY=
where one-valued and periodic in ¢ of period é?i ; and heving for 2:0
precisely as jump the %}or %; given by (2e3)e This solution will

have four different analytic expressions.
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In coordinates ) 9 and Z- %‘i (where Z/is the natural coordinste)

the equation is:

?“/‘ /‘ %&d ;é?z =0

In the harmonic of order )n/.z in f » the variables are separated .
(m] imp 8
g PM () Z(%)

for -0, take ¢=MZ, because¢ must be one~valued.

Diff tiat / 1
ifferentiate: oM, iﬂ’ Zm ézz/y] L MZ"z0
/b(
M”+7’Zf /K Mm", pey 0; 7" R =0

where k is some fixed number to be determined. This gives as solutions

/J—m/yzﬁ/,() Z ) {@kz
Z Vm,’ (f(/u) 6'&
Write
%:Z/eimpc‘);eﬁz{ﬁ’m}(ﬁ/ T (-) = Gy (A) Vo () {

+ e*ﬁz{PmI (£) p (ku) + lep (%) fuep M/“)j
(é{: Z/ me 4 2{ () Jwp (fe) + éw/ﬁ)"/w [fé/u/j (6.1)

Mo

{Pm;q () Ty (£01) + @y (£) Yo (4)



DD
and analogous expressions for ¢z - C?L J ¢ 3- ¢U « These must be
continuous for Mo and their derivabtion must vanish for A and 7
for any X » However this condition is not realizable for any value
of k. The calculations given in Appendix p.4/ show that if non=-
trivial solutions for Fsand G 'S are to be found, k must satisfy the

following characieristic equations

T (Rpiz) Vo (R10,) - fm',g (Rpty) ¥y (Rt0)= 0
(6+2)

Call kﬂ*,:( the characteristic values. Meyer (1l:Anhang) indicates
a series of methods for their approximate determination. For instance
for p=10, M=l , uy=1 s+ 4,-.8 » the first root is already 11.089, the
second 19.35 and their orders of magnitude increase proportionally to
m s and to o .

The solutions gé)@ ,..- may now be expressed in double series of these
Bessel funciions. Considering that all these functions must vanish when
[Z] - oo , the four series are

§- L cm/ﬁZ 4% e "TZ(J’(/)V- TN T2y 70)¢2)

m+£0

M= -o00

9, - Z ety A e'"z(f/(ew 79@)) (TU) V') - T(@)v'1))

p-4

5 0

Ze”""g )lbee B2 )y T ) (110 Y0)- 70) V)

\~

4-0.¢ ") B e % (3 v (70 Vo) -7 VL) (63)



The last operation is to determine the coefficients A, B, by
the condition of smooih joining for 7=0 . Pirst write the continuiiy

of the derivative

S (458,7) B () o

L=
L (LT 7)) 0)- TR sy,
where m " [I(2) ¢ - T ) J[T() ¢i)-30) () ] oSt g,

is precisely by definition of zéo'(" ene of the set of eigensolutions
of Bessel equation, with vanishing derivatives for A=y Mo they
are complete and orthogonals, Therefores
Bm = - Am
The last condition is continuity at 2-0 ; write Cm bn, Qm bm
for the known coefficientsof (2.2), that is:

¢ =2 j(e ém/’fe'cmﬂ)/a'" Ko () + by, L, /”7/7//}/ (6al)
o .

R O cmpl  im ' 7 ‘ 3/
q{b. :-Zc;gj (6 r—é ﬁr)/dm Km/, (mﬁ/f‘)* ém j)n/v /mﬁ/u} - JZM,b}
For Z=0 ,$=0 ; and therefore Ag=0, and for m#0,
‘ , P e
Z;/)qﬁdz - Z(amw{%/)*émjh%(”%/‘)jz*{m”’;
A=y

L { e Kop ()t by Tog ()

which finally determines 4,: /5 a8 coefficients of the development in
X . X . . . « [0 pu
generalized Fourier series in the eigenfunctions ﬁ,,, [5/1 By -fdﬂr/u://,]/,(z]
of another function F with 3:% F=o0 &b 1=, o e
There is of course no guestion of actually computing a1l these

. . «
coefficients. However given the orders of megnitude of %m the
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computation of the first coefficients would give excellent precision,
as scon as I leaves a close neighborhood of O , which is physically

of no interest.

7+ Approximate solution.

Pollowing the idea slresdy used.ixngh part 1, investigalte sep~
arately the behavior of’é_ for {-0 and.,(r;?, and then fair in between

by a1smooth curve arranged o give the correct aversge for %—. The
U

T~ Total

-  Bound vortex coniribution

_ Trailing vortex contributien

b4
v x 2z

I Vs
contributions of the bound and trailing vortices are investigated sep-
arately for the case of solid body rotastion blades.

Trailing vortex. In this case introduce a single exponential decay

same for all § ‘s, and for this purpose use the average of ¢ s Say 2{
which gives the correct circulation at z-® « &% Z=¢0 , the corres-~

. . . . ; T(u) . ;
ponding contribuiion to veloeity will be ¥ o The following is a very
rough approximetion which has however the merit of great simplicity.

Thus © is defined by ty - %_ég c(w,-w)r

That is P- (w-w) %‘fﬁ Hutf H- (w,—w)éi:
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One wishes to haves
¢‘—' @(/”Z/g"azj 7 =0
b= & (7¢%) £<0

Apply Laplace's operator A to the exponential term only:
A¢: (\36% CT)’i Alu Q)/L/ '*e
It is impossible to have A7550 » Therefore the mean weighted square

only will be minimized:

My p % 2 5
A= for )t s g
M Jo o

where 2% has for purpose to favor large values of Z Integrate in <&

and@ .

/

1

//“;(3+ é}—tlA’;aﬁ) Z%
A,

(M)

v 2 4
R (o5 - wf) 00+ & (/Uz;‘/{f/;)c—dv’q

Differentiate with respect %o A3

an _ 18 (we-pd za A
dA . JEse) | 2 (A7 ) 2

[y otd

) I/’-/
This gives A= /45(& fi / (7.1)

This velue of A is seen to be independent of 52—) .
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It may be poted that the procedure is also applicable for dif-
mmmfwmofé.

A more refined spproach would result if we keep for 2 the actual
expression for the velocity potential far downstream. The expression
for /1 depends considerably on the welghting factor (Z%in our case).
For a reasonable result, this weighting factor should give for/] en
expression which is infinite for d=0 end 4= This in perticular

limits the possible exponents of a factor of type 2% An incorrect

choice of o« would result in a variation of type

A A

(@) &)

(a) or (b) or more complicated, with more then one root in 4 for
é;ﬁzra , and other phenomena. These Tacts make difficult the eritical
a
examination of the whole approximation procedures

Bound vortex. As an approximation, for Z small, consider the

action of the two nearest vortices only. The tangential component iss

Z
/—7(/“) + < (702)
<n zt4 r1gt Ztr PZ(%*ﬁ)Z




2]
with the assumptlon, usual in the study of the vorticities near =
wing, that the velocity can be considered as induced by only the
immedietely close section of the bound voriexs

This part of the induced velcocity will give another contribution

to the total eirculetion around the axis: this contribution is /7/2

for 7-0 e



CHAPTER 1III

TRAILING VORTICES IN A CONICAL TURBOMACHINE

A great simplification resulted in Chapter I from the possibility
in the case of a cylindrical turbomachine of assuming in a first study
that the field is esgentially independent of the exial coordinate.
Chapter II gave a refinement of this theory to teke the axial coordinate
into accounte

Such a two=gstep procedure is unfortunately impossible in the case
of a conical turbomachine and e mathematical investigation must take
three coordinates into sccount even if the vortex is assumed "infinite#,
The feollowing section gives only a prelimineary mathematicel investigation

of the influence function.

8. Preliminary study of the influence function.

Let the polar coordinates be IYQTH' fixed with respect to the blade
row, the walls of the machine being ¢°- #,% » From the origin flows
an incompressible source of strength §; the emitted £1luid rotates like
a solid body with angular velocity @ .

From the circle I''=# , ¢-¢ sare shed p vortices of strength %é ’
they are continued by the bound vortices 7:rs , 0<P< % and the exis
@-0, r>t ¢ Neglect all self-induced displacements. The differ-

ential equation of the shed vortices iss

ab Grrt , 2%
i dr Therefore 8.4 - 9RO s k3 where K= “a

38
Let the origin of 0’ ve defined in such a fashion that the p vortices

heve the equation:
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$=0- kr’ = :;@ S k=01, .. p-1 (81)

The potential V of induced velocities is a solution of Laplace's

eguation

; 2V / ! 2
e + I T tyt T 4 7 :d 8.2
t//”f" /,,/ -+ /4/25/),}2((/ 1/99 + f'lz.flh ('p/afp [f/)’l(f VV/ ( )

satisfying the following boundary and other conditions:

For r'<ry it is a finite, one=-valued, smooth function of r’¢’d  ;
its §{-derivative vanishes for ¢=-¢, ¢

For r'>f, it must be infinite for ¢-% , s”:;f% , on any of the
vortices; it is otherwise smooth and finite; its ¢=derivative veanishes
for ¢-¢,4 ; for #>¢: » it is one~-valued, for ¢<¢¥, , it increases by 222

4
whenever ¢ increases by 37¢ »

Define
g-: Q/’ K,.3
yz cop’
r'=r

Four different regions, where V has to be investigated separately,

are shown below.
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The solutions in 1, and L are called <75, éq » The sclutions in 2
and 3 are divided into two parts: gﬁz 753 satisfying the same conditions
as qs,qﬁqan& 5150 755 taking care of the circulation. Separating the var-

iables, define R and M through
impl
V= 2] et R(r) Miu)
The equations obtained for R and M are classical. They give, if

we introduce a number 7 which is such that M (n+) is a real,

R: ’,,“’ or r‘—(nﬂ)

mp mp if n is not an integer or
/i (/‘) or Q,L (/‘) if n is an integer > mp

M-

Pf;mp(/(z or Qﬂmp //f) if n is an integer <Mmp

(notations of Hobson: Py;m(x) = Am M /Ong[ﬁc) )
bam (n+€)!

Case of ¢’,., ¢2, ¢3 2 gi,

In ¢ , </59 are to be kept only the terms in r" (n=o0)

~(n+)
In 752 . ?{;3 ere to be kept only the terms in 7 (ne120

Cne expects N not to be an integer. Therefore wiite for instance:

) = im{;ﬂ ~ [ A ':1 Pﬂ”‘/’ B’ Qn'”/’
ﬁvze Zr‘[ //‘)* Him (/"))

Mms-co n
o9 oy Y mf (8'3>
e )Ten (At B+ B ¥ )
754 M%Joo ~

The boundary conditions and the continuity at /6 lead to four homogeneous

linear equations in A, B's for every m, end M. These eguations are



compatible only if
doprbiy d o) - Lpi) L@ u) -~ o (8uls)

The same equation being also obtained frcqug és ; and the coef=-
ficients are then defined only in their relstive values. The absolute
values will be determined later by the conditions of continuity at r=/o

@



Case of §5o . 554'.

One wishes to have these as functions of { , F,/L, 80 as to have
the required divergence for f =0 , /(>/<o. Therefore write the solutions

as:

¢o: f 6€mp€£/76£mPKr3 (o(f‘n*/-'sr‘ﬂ(n“))(Y Ph_mﬁ(/&) . J@n/’(ﬂ))

j% wﬁ€i mpo kS (" f A ) (v /’M/’{f‘} 5 Qn "(/'))

Mz - 02
Y 3

L

The domain of wvariation of N and the various coefficients are to

be determined. For this purpose write the circulation term as

<4

imp o
l(f.-g) . m v P vk
r M;o Zfﬂ’/ﬁ 2nr

- Case of m=0 s one needs

¢ = D) (Ar " Brr )(C Pafr) + DAn(r))
g0 = O (AT B ) (C R ¢ D'An () ¢ Lo

for any N3 , one finds again the homogeneous conditions studied for

</>,v )753 ¢ the corresponding terms have already been included in these
parts of the potential.

for h=3 » & non=homogenecus set of equations is cobtained which givess

[

¢o~ YK ( i) [Pa'(2)- &P’(Z)][/”(’d}é?’(/)—Q’[O)f”(/)]rs
P2)Q!) -2 ) P'(1)

45 YK (1-p) [QU)P- pi)q](P'0)22)-@'0) P2)] 3, K

Ple)ai) -@'@) P %

(8e5)

Lp3

where ¢(2) for instance stands for - (\7 ‘)
gu o / Apy
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—~(age of M+0, one wants the boundary conditions to be satisfied by:

T () (A PEE 4 B @)

-m (N " i £mp ; ‘Y ,c'm/;/{rl
e /’Krlgé‘m: %’ (o(,l‘ (n )+,,, )(/4”’” P. s Bn:n (Q:ﬁ)+z_;;7? e

The sclution will have to be smooth at /o and its /¢ «derivative

to vanish at k, Ky for eny r « For this purpose, developg sgain the

circulation term in series:

, —imp Kr? : ; 4 ¢
7 ¢ mpp ) ir . YK r3 o LyKempr—
2 mp 21t mp 2 an

m &
= eom +€3mf3 + 66 ro+.-

4 -
By identification one obtains 1) that the coefficientof (re)

o o i M *+m mf:
are zero - 2) that the coefficients Amw s Bpm » Anm ) Bum of Fr ,: &
. m g m .
in ¢o ,472 must for each m,n satisfy a set of four

non-homogeneous linear equations. Remember that:

2m 77/ 77+27+/) 7’//;11»214-2)

PVL — Qn W"‘ = ///MQ T//n—m+l) /”/h-m,/-z)
2 z
A (say)
/7a2

(Magnus-Oberhettinger, p. 83)

Then the final result is:



“3lje

s

Y _Ze""/”(”féz 3 [P&(2)-QP @) J[P0)Q(1)-@'(2) P11

i 7 (1)
o b e PR))- P1IR (@) 7
" (2) -9'0) P12)] o8
¢m: 27 o PR 8 s [ Pat)- QP J[Pr)d'( )
P T Pl PIOQ'C) ‘
q + oy
272 I

*m

where PZﬁstands for da P é/

+ < 3q=mp

- Sq<mp

The camplete formal solution of the problem requires as a final
step the development of the above function teken for =/5in a Fourier
series of the eigen-functions corresponding to the different solutions
of the characteristic equation, for fixed m « The result would have %o
be integrated over fto« The corresponding integrals will not be written

down explicitlye.



EXPLICIT DETAILS OF DERIVATIONS

Page g 6 )  The four boundary conditions are:

am /(0 -+ ém IO - a;n ko - é;" Io = ,.__7.;;)’;/1,/:.
Am Ko + bpI, — am Ko - bpmIs =0
Qm K7 + ém]zl _ g

Gl K = b1 =0

1

Where K: ;j,:/; K mp ("‘77/")//(/4

for instance

The determinant of the system is

and

K',

Ke lo -Ko -Io Ke [, 0 o©

Ko To -Kbo -lo Ko I, 0 O
1% 0 0 ] K, I% Ky 19
o -~Ki -I 0 o -K\ -

0

N A AN AN

A K2l - KiI;

/(,c
’;}’ﬁam: Iy (ko1 -Kk1s)
1_2;1./1 bm = -Ki (Koll -k 15)

L F= 1L (Ko lz Ky 1L

Z;ﬂ) by = =K, (Ko li-K515)
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Page (Y

By integration by perts, we cobtain

//(

a7 dx/{m/; 7 ak . 2«

.._,/C/a ¢(/o:/ __ﬂ,_/',] f ('”f’, t;.,,,l /70 //01‘.»/ K l’hfl 0 %/a
lﬁ/uo @/“o 7~ m 2 /a f 4, ‘ /’o) 7 ( ///

dfkm//

7 e
Uy Mo gy T O gy Dt it [T s L) Ko )
7 a/l/a/a %/a %1/ %‘ %(Z A e /a

and seme formulasare valid with..Zﬁpu)replacing Knfu)-

The integrated terms summed over m yield:

i oo mpS (-Twe) | (K- KZD)(T/ K™ KiTY)
Ky ll-Kile + (K=K 1)(Ks1"-K'17)

)

=/, o S )

=1

And the remaining terms yield:

A 7
JZ?% = 22’ \+2£i‘ &Dpnﬂf'z(_i7-+ _~Jfffj;ﬁ_ X

Py Ky 10 =K, 1%

AL
[/ 7o (o s L) (15K ~K11) (1Ko K1 1o) qune

4

Mo
o s L) (ke ) KK 1) g ]
7%
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Nicholson's approximation is (see 9)
~nt(u)
Kn(’?/l) ~ ¢
[ (1pe)
b: / 4 «éo -
nbcul w ! ? /#/7;/;—2
Venr ((1u )t

n(p) ~

By one of the recurrence formulas on functions /,Kwe obtain then for

T /h and K the following approximations:

e ~ " _e
A () + )
e [ 2 /Zm (/f/u]/q
né‘cl/} -€lu) +66")
d
A e ) v ¢ e )
g (’?/" o (/7‘/0(1)/" (

and therefore: / " e " {

s "k, g tki) ) (o K)o Hr)

K /'J' - /C}' [y~ 2‘7 Joh ["(‘1’-@)] € +€zy ]{6’ + € /
(1467 (1 )%
C —t(k‘:).f e (:(kf)

(/f/az}%( (/*/a‘z')’/y

Kl -Ki(  ~ .Zi cosh [n(é~éi)]

It results from an oral communicaiion of Rs 3. Phillips that
precise upper and lower bounds can be found for the ratios I//I and
KA( + The first integration by paris has lefit the derivatives only
in terms of type ['(/) or K1), end they enter to the same degree in

both numerator and denominetor. Therefore the additional uncertainty
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on I' K’ (coming from the arbitrariness of the choice of recurrence

formula giving /')K' ) is immaterisl insofar as it is translated

by a factor independent of %, and very close to 1 for p not smalle
Substitute into <I’Z§g ¢ the expressions derived for the Bessel func-

tion combinations:s

/Tc?% = %&+Z OD/?MS‘{V-

=

o g gt
Mo I+ sivh  mp (t-t)

__Pm/ﬂ;, (i)™ coh mp (b-t1) cooh mp brtd)
/0‘ Mo (14?7 stah mp (t2-E1) /

Switeh to variable £:

27 2 3/({ /

ak - _(./j;/f:(—__)-zocfﬁ J .(_/.—f_;(g.{..o-_}.. &(,flo = (/-f/(z(o&}/qdéo
[¢}

and integrate by parts again

é.
[[@(/WOIJV«]pm thh pm (bo-t1) dbo =

4 ¢ 4 /,,’
" (14%) 7 fink mple-t) - | ”“g’éf/ﬂ)/] Sk pr (651 ) ot
é'l 'o

and similarly for the other integrals, and the final result is:

. AN 1
T et
Mz

OW “’P’I//J(L‘Z~ét)
+/éz a[/é(/u«o‘)”']dh coh pm (E-t,) smh mp (éa—éz)]
t

dts A mp (éz—b)

{/ 9[/70//*,610)/']0(/60 cnh pm (€-E2) 2 lh ""//’(('o’h)
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Page 57 7 ) Summation of the series on the kernel

26 (-t
Develop the cosh in sums of exponentials and meglect e 2f (%"

¢ ) - ‘
~2ng T e 9[710(/wa)/?]6&02,7 o P (beto-the cit)
: 2% ), ot

=1

em/’(&ré *t‘f/__ e mp (E-to + 260 - 22 +(U’ e mp (& + 26, Lo +[§)+ e mp (E+to - 26, _[f)'f

. 26,28, _; 1 s 2¢, - 5)
(60-(‘,‘~ 5) m ot + 1= z,gf} /J(—é lo + ¢ {
re™ g - e

b AT (el )t & mp (Evbo - 2Us ¢ ¢
e Sy
t m=t

I
) Crbo-28p -5
'f‘@m/) (~é+&o+%.’u-zu¥)~ e M/ﬂ(é«éo+z§')§€ M}J[—éf—éo+g(—, +(‘S")+€MP( o 2 -({)

4 Qmﬁ (-t + ¢t +%‘,~%z—f5)’e rn/:(é-(:o-ij')_e Mﬁ(—("éo—(—Z(-,_Lf))//

All the moduli of the geometric series are -/ . Dropping the terms in
g% 6-t) which still subsist and swming |

& 2[/_, ( /] e /b{é"féa—%g +17/
/ o /f az}I‘(
-2ng, =T ——— " Ao ,
(é( 2z 2(/4‘/412}/1’/[ 260 /’6 /b((*fl‘o’%lvf T}
[

*e 'P[é"*fo - Zé’( —-L‘S')

¢ (b-t +cS) 3 e pl-to+t-iy)
+/ 3[]6(,6 @Ib 4/ ‘_)_Z___]d/éo
ti

—m Ho ’ /_eﬁ(fa—(—flr/ o /-e Pl-to+ -3

( + same terms with - { instead of +§.)
las

Now the sum of the /two terms of the second line equals
éza ] e—P(éwéwI} .
- / [ Ao - /7(/7‘/(/(2]/"'
t, b [-g Pleo-trd)
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The T° cancels the initial T’ . PFinally the first approximetion kernel is

[ /
]f - p(éa-c %) -+ /,e/’(é"'b'}y o [-¢ —plC+to-2z+:T)

/ / /
B /_. e_/)(eféo—%z'lr) + /,_e P(('L/‘(.’o—&"l-lfr) * /“6 P(f—f‘é‘o—%/ _lj'j
2

A A Y S

Aef’ Ae 5 A% - 24 cop S
For §=0 A 2z

A-1 A-1 A~
For §-ZX o, ! . .2
% ~A- -A-t A1

And the kernel becomes: (the 1 drops out by integration)

2p Lbo-t) o "Wl rto- %) _

Jr(/ [+¢ 4 /
ZPZéo ) -9 He/a&o -t)

e—zp(e +to ‘Zéz)+/~ Zcopte ~pletto-2tz)

e Wlbtto-2t) /

ez;la(é4l-a~7/é,)+/~ 2ecopte plEtto-261)
for =0 L L AN
[~ePlte® [-@ PlE+to-2%2) [- gt (E+ta-2t)
or with terms of order C’Z’b (t2-t) dropping outs
K e Pt €{séé+éo-uz)’e_,e(aeo-u‘,)
2 " ePt_ o Pt + [ blbttomtty)_ o pltato-2e)

—Zf’(é‘l-é/}

—up [tq-
If one may neglect e F (k60 pug not € one must add

to the kernel for J s The terms:
6 "Z/’(éZ;f/)[e /6[61”(’0»%23 ¢ f/’[("‘féa—%,) .6 - 7%[&2~é,) [e P(é—éo__{ "lb(é“éay
/Pe—Zp(tz—él)/e /s(efe,,—zezié ~plEts- %}] /e 2 UTE é;)[ plé- éo —/’(é eoy




Pege (22) The Boundary equations are

}n}a Jo + éw’{v o - ‘E;n;: Jo - 6»177 (o =0
Fop Jo + Gonp %5~ fuy To = Gyt £5-0
Hul I// * 6nllf7 v

= Fup T5 - Gy

where V,/: % me /ﬁ/u}é,_//

The determinant is

and if it is 0, the coefficients are:

Fp = € (To Vo795
ﬁm/

n

T/ (T6 % - T3 %)

/—',,,7, = - (T T %)

!

Gup = To (T4 -7/ 05)

Jo Yo -Js -% Jo Yo © o
To ¥ To  -¥ T Yo o o)
o o o M A ¢
o o -7, -¥; o o I, -¢
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