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Chapter 2

Mean field theory and the spinodal
lines

In Chapter 1, we discussed the physical properties of reversible gel and the gelation of associating

polymers. At the macroscopic level, reversible polymer gel is characterized by solid-like elasticity

at high frequencies as well as liquid-like relaxations at long time scales. On the other hand, static

inhomogeneities are frozen in the microscopic structures of the gel phase (Ikkai and Shibayama,

1999; Shibayama et al., 2000).

We noted that gelation in the solution of associating polymers is related to the microphase tran-

sition in copolymer systems. (For a discussion of experimental observations in diblock copolymer

melts, see Chapter 3.) However, in contrast to the order-disorder transition, reversible gels do not

have well-developed periodicity in the micro-structures. Therefore gelation to order-disorder transi-

tion resembles glass transition to crystallization; reversible gels share similar features as supercooled

liquids, which exhibit non-equilibrium relaxations and breaking of ergodicity.

In this chapter we study the thermodynamics of the solution of A-B-A triblock copolymers, where

the A monomers are associating. This system is the most widely studied model for reversible gelation

(Tanaka and Matsuyama, 1989; Tanaka and Stockmayer, 1994; Ishida and Tanaka, 1997; Semenov

et al., 1995a,b; Semenov and Rubinstein, 1998a,b). We adopt two mean-field approaches. First,

density functional calculations can provide snapshots of the micro-structures of the solution under

microphase transition. We hope to confirm our conjecture that across the microphase order-disorder

transition, random structures with finite wave lengths are possible; such structures provide natural

candidates for the gel phase1. Unfortunately we were not able to obtain enough numerical results

to support our conjecture, therefore this part is only a summary of the theoretical model. Second,

we construct the mean-field phase diagram through a quadratic expansion of the free energy (effec-

tive potential) from the Edwards Hamiltonian. The phase diagram shows both binodal coexistence
1Wolynes and co-workers (Singh et al., 1985; Hall and Wolynes, 1987) used density functional calculations to study

the phase transition in an inhomogeneous hard-sphere liquid and found aperiodic structures as a more stable phase
compared to the disordered liquid phase, which suggested aperiodic structures as natural candidates for the glass
phase.
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between polymer-rich and polymer-poor solution phases, and a spinodal transition associated with

the microphase transition. Comparing the phase diagram to experimental observations by Tanaka

et al. (1979), we may conclude that the gelation is an incomplete microphase transition which mani-

fests the underlying spinodal instability. In Chapter 3 we further demonstrate that the competition

between microscopic monomer interactions and this spinodal instability at a finite length scale com-

parable to the polymer size, results in a glass transition, which supports our conjecture that gelation

is an alternative random microphase transition to the order-disorder transition. In addition, the

glass transition lines approach the microphase spinodal in the mean field limit (as chain lengths

go to infinite); this result underscores the close relationship between gelation and the mean-field

microphase spinodal.

2.1 Self-consistent field theory

Since the successful predictions of the ordered structures in diblock copolymer melts (Matsen and

Schick, 1994), self-consistent mean field theory has been widely used to study the phase diagrams

in diblock and multi-block copolymer systems, and polymer blends. Many results are summarized

in the reviews by Schmid (1998) and by Fredrickson et al. (2002). Further extensions such as

the dynamic density functional theory by Fraaije et al. (1997) and Uneyama and Doi (2005) allow

systematic studies of the phase separation kinetics in these systems.

Self-consistent field (SCF) theories approximate systems with many-body interactions as non-

interacting particles under effective fields. The external fields are determined self-consistently from

the microscopic Hamiltonian in a mean-field approximation. Since the order parameter is a density

distribution or a function variable, density functional calculations enable us to sample the whole

space of density distributions, in particular, to find the free energy minima with irregular microscopic

structures. [See Fraaije et al. (1997), or the reviews, Schmid (1998) and Fredrickson et al. (2002),

for examples of irregular morphologies.]

SCF provides a natural way to probe the microscopic structures of associating polymer solutions,

which in many aspects are similar to copolymer melts. But applying it to polymer solutions needs

some caution. Depending on the solvent selectivity and the concentration of polymer segments,

the polymer chain can be significantly stretched or collapsed: in this scenario the random phase

approximation underlying the SCF theory breaks down. However, at the gelation point, polymer

chains overlap with each other, therefore the solution is in the semi-dilute or concentrated regime: the

correlation length is much smaller than the chain size and concentration fluctuations only renormalize

the microscopic “monomer size” and “monomer interactions”; at the level of polymer aggregates,

we expect density distributions to look similar as in a mean-field theory, and qualitative features of

the mean field theory should be preserved. In fact, SCF theory has been shown to be qualitatively
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valid in phase diagram calculations even when significant chain stretching is observed (Almdal et al.,

1990). In addition, as long as the polymer concentration is far away from the critical point, long-

range density fluctuations are not important and mean field approximation is valid; an analysis of

fluctuation effects in the spirit of Fredrickson and Helfand (1987) is presented in the next chapter.

2.1.1 Microscopic Hamiltonian of polymer mixtures

A continuum Gaussian chain with length N in an external field V (r) is described by the Edwards

Hamiltonian (Doi and Edwards, 1986)

h0[R(t)] =
3kBT

2Nb2

∫ 1

0

[(
∂R(t)
∂t

)2

+ V (R(t))

]
dt (2.1)

where R(t) maps the configuration of the polymer (0 ≤ t ≤ 1 is a parametrization of the polymer

chain), and Nb2 is mean square end-to-end distance.

To account for monomer interactions, we introduce the density operators φ̂α(r)(φ̂A, φ̂B, φ̂S)

φ̂A,B (r) =
np∑

m=1

∫ 1

0

δ (r−Rm(t)) δA,B(t)dt,

φ̂S (r) =
ns∑

n=1

δ (r− rn) . (2.2)

Here Rm labels the spatial conformation of the m-th polymer chain; rn is the position of the nth

solvent molecule; δA,B(t) is used to label the A or B block, e.g., δA(t) = 1 if the segment at t is A

and δB(t) = 1− δA(t). The spatial positions of solvent molecules and polymer chains are completely

described by {Rm(t), rn}.

The two-body interactions are given by2

∑
αβ

εαβφ̂αφ̂β =
∑
α6=β

χαβφ̂αφ̂β +
1
2
(εAAφ̂A + εBBφ̂B + εSSφ̂S), (2.3)

where

χαβ = εαβ −
1
2

(εαα + εββ) .

The last term in (2.3) can be dropped as εαα reflect constant shifts of the external fields, or self-

energy contributions, which do not affect the interaction free energy.

Besides the two-body enthalpic interactions, we also need to account for the incompressibility or

the excluded volume effect. Strict incompressibility can be inserted by adding a delta function (ρ is

2Here the summation is over each pair once.



14

the average bulk density), ∏
r

δ

[∑
α

φ̂α(r)− ρ

]

to the partition function. Alternatively, we can assume a virial expansion (“soft” incompressibility)

c1φ̂
2
p + c2φ̂

3
p,

where φ̂p = φ̂A + φ̂B is the total density of polymer segments, and c1 and c2 are positive constants.

The total Hamiltonian of the system is

H

kBT
=

np∑
m=1

3
2Nb2

∫ 1

0

[(
∂Rm(t)
∂t

)2

+ V (Rm(t))

]
dt

+
1

kBT

∫ [∑
αβ

εαβφ̂α(r)φ̂β(r) + c1φ̂p(r)2 + c2φ̂p(r)3
]
dr. (2.4)

The strict incompressibility will result in an osmotic pressure term which we will discuss in the

derivation of self-consistent equations.

2.1.2 Partition function and self-consistent equations

2.1.2.1 Partition function

In the canonical ensemble with np polymers and ns solvent molecules, the classical partition function

is (β = 1/kBT )

Z(np, ns) =
∫
D[Rm]D[rn]e−βH

∏
r

δ
[
φ̂A(r) + φ̂B(r) + φ̂S(r)− ρ

]
. (2.5)

Here D stands for functional integration (or path integral) over the configurations. And in a grand

canonical ensemble where the chemical potential of polymer chains and solvents are given by µp and

µs, we have3

Ξ (µp, µs) =
∞∑

np=0

∞∑
ns=0

exp (βµpnp + βµsns)
ns!np!

Z(np, ns). (2.6)

To proceed, we introduce collective variables (functions) φα(r), their conjugate fields Wα(r), and

an osmotic pressure Π(r) to get rid of the operator fields φ̂α. Insert

∫
Dφαδ(φα − φ̂α) ∝

∫
Dφα

∫
DWα exp

[
iWα

(
φα − φ̂α

)]
= const.

3In Wood and Wang (2002) the chemical potential of the polymer segments is assumed instead of that of the
polymer chains.
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into the partition function, we get

Z(np, ns) =
1
N

∫
Dφα

∫
DWα

∫
DΠ exp

{
−βH1[φα] + iWαφα + i

∫
Π(r)

[∑
α

φα(r)− ρ

]
dr

}
∫
D [Rm]

∫
D [rn] exp

{
−βH0[Rm, rn]− iWαφ̂α

}
(2.7)

= N−1

∫
Dφα exp [−βH1(φα)− βF0(φα)] ; (2.8)

βF0(φα) = − ln
∫
DWαDΠ exp

{
iWαφα + i

∫
Π(r)

[∑
α

φα(r)− ρ

]
dr

}
Z[iWα]; (2.9)

Z[iWα] =
∫
D [Rm]

∫
D [rn] exp

{
−βH0[Rm, rn]− iWαφ̂α

}
= e−G0(Wα) (2.10)

where repeated indices imply integration over space, as well as summations over the same index,

Wαφ̂α =
∑
α

∫
Wα(r)φ̂α(r)dr.

Physically φα and Wα correspond to the density distributions and their conjugate external fields,

like the magnetic moment and the magnetic field, or the volume and the pressure in the liquid-gas

system. Z[iWα] gives the partition function of the imaginary system of non-interacting molecules

under external fields iWα (the imaginary unit i is introduced only for mathematical convenience),

G0 is the Gibbs free energy of this imaginary system, and F0 is its Legendre transform, or the

Helmholtz free energy in terms of the density fields φα.

Z[iWα] can be calculated for arbitrary polymer systems using the random phase approximations.

See Leibler (1980), Ohta and Kawasaki (1986), and de la Cruz (1991). F0[φα] can be expanded

as a power series of φα, and the physical free energy F = − lnZ can in principle be calculated

perturbatively. In the next section we shall derive the expansion of F up to quadratic order.

We note that in general the random phase approximation that assumes polymer chains to be

ideal does not apply to polymer solutions as the polymer chains are swollen. Therefore our model

applies to associating A-B-A polymers in a theta solvent for the middle block B, and a poor solvent

for end block A. Alternatively we can interpret microscopic parameters as renormalized by chain

swelling.

2.1.2.2 Self-consistent equations

In this section we derive the self-consistent equations from a saddle point approximation for the

partition function in (2.7). Minimizing the exponential term with respect to φα, Wα, and Π we have

δ

δφA (r)
,

δ

δφB (r)
,

δ

δφS (r)
= 0 ⇒
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iWA(r) + iΠ(r) = β
[
εABφB(r) + εASφS(r) + εAAφA(r) + 2c1φp(r) + 3c2φ2

p(r)
]
; (2.11a)

iWB(r) + iΠ(r) = β
[
εABφA(r) + εBSφS(r) + εBBφB(r) + 2c1φp(r) + 3c2φ2

p(r)
]
; (2.11b)

iWS(r) + iΠ(r) = β [εASφA(r) + εBSφB(r) + εSSφS(r)] ; (2.11c)

δ

δΠ (r)
= 0 ⇒ φA (r) + φB (r) + φS (r) = ρ; (2.11d)

δ

δWS (r)
= 0 ⇒ iφS (r) = −δ lnZ(iWα)

δWS(r)
; (2.11e)

δ

δWA (r)
,

δ

δWB (r)
= 0 ⇒ iφA,B (r) = −δ lnZ(iWα)

δWA,B(r)
. (2.11f)

To complete the set of equations we need to evaluate the partition function

Z(iWα) = Zp(iWA, iWB) · Zs(iWS).

For solvent molecules we neglect their internal degrees of freedom,

Zs(iWS) =
∫
D[rn]n=1,2,···ns exp

[
−i
∫
WS (r) φ̂S (r) dr

]
= qns

s , (2.12)

where

qs =
∫

exp [−iWS(r)] dr.

For polymer chains

Zp(iWA, iWB) = qnp
p , (2.13)

where qp is the partition function of a single polymer chain in external fields Wα. Details of the

derivations of Zp and its derivatives w.r.t. Wα are given in Appendix 2.A.1.

The self-consistent equations are

WA (r) = β
(
εAAφA + εABφB + εASφS + 2c1φp + 3c2φ2

p

)
, (2.14a)

WB (r) = β
(
εBBφB + εABφA + εBSφS + 2c1φp + 3c2φ2

p

)
, (2.14b)

WS (r) = β (εSSφS + εASφA + εBSφB) ; (2.14c)

φS (r) = ns

[∫
exp(−WS(r))dr

]−1

exp (−WS) , (2.14d)

φA (r) = Nnp

[∫
q(r, 1)dr

]−1 ∫ 1

0

θA(t)q (r, t) q∗ (r, 1− t) dt, (2.14e)

φS (r) = Nnp

[∫
q(r, 1)dr

]−1 ∫ 1

0

θB (t) q (r, t) q∗ (r, 1− t) dt; (2.14f)

where φp = φA + φB, N is total the number of segments in each chain4, and np and ns are the

4For convenience we have assumed the monomer volume to be b3.
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number of polymer chains and solvent molecules, respectively. q and q∗ are the once-integrated

Green’s functions to be obtained from solving the following diffusion equations(
∂

∂t
− Nb2

6
∇2

r +N
∑
α

θα (t)Wα (r)

)
q(r, t) = 0, (2.15)(

∂

∂t
− Nb2

6
∇2

r +N
∑
α

θα (1− t)Wα (r)

)
q∗(r, t) = 0, (2.16)

q(r, 0) = q∗(r, 0) = 1.

θα(t) are labels for the different blocks. For a triblock copolymer with the structure 10A−80B−10A,

θα(t) is defined as

θA(t) =

 1 0 ≤ t ≤ 0.1 or 0.9 ≤ t ≤ 1

0 0.1 < t < 0.9
(2.17)

θB(t) = 1− θA(t).

The diffusion equations can be solved using the Crank-Nicholson scheme or the spectral method, as

explained in Appendix 2.A.

2.2 Free energy expansion

In Section 2.1.1 we write the Hamiltonian of the polymer system and by introducing collective fields

φα and Wα we get the free energy functions G0(Wα) and F0(φα), as in Eqs. (2.10) and (2.9). Here

we derive the perturbative expansion of F0 and G0 as a power series of the φα and Wα. From the

quadratic term we find the mean field spinodal transition lines from the Helmholtz free energy F0.

The higher-order terms (many-body interactions) are necessary if we want to study the effects of

fluctuations.

First we calculate G0(Wα). From now on we replace iWα by Wα. Note that

G0(Wα) = −kBT lnZ(Wα) = − 1
β

ln
∫
Dφ̂α exp

(
−βH0 −Wαφ̂α

)
, (2.18)

which admits an expansion into power series of Wα and connected correlation functions:

G0(Wα)−G0(Wα = 0) = − 1
β

∑
m

1
m!

∫
dx1dx2 · · ·dxm∑

α

G
(m)
α1α2···αm(x1,x2, · · · ,xm)Wα1(x1)Wα2(x2) · · ·Wαm(xm)

= − 1
β

∑
m

1
m!
Gα1α2···αmWα1Wα2 · · ·Wαm . (2.19)
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From now on we will adopt the summation convention with integration over space.

The connected correlation functions G(m)

G(m)
c (x1,x2, · · · ,xn) =

(−1)mβδmG0(Wα)
δW (x1)δW (x2) · · · δW (xn)

∣∣∣∣
Wα=0

=
〈
φ̂(x1)φ̂(x2) · · · φ̂(xm)

〉
c

(2.20)

can be calculated using the propagator of Gaussian chains; details are given in Appendix 2.B.1.

F0(φα) is the Legendre transform of G0(Wα), which satisfies

F0(φα)−G0(Wα) = − 1
β
φαWα = − 1

β

∫
φα(x)Wα(x)dx, (2.21)

where φα are the averages of operators φ̂α under external fields Wα, defined as

φα =
βδG0(Wα)

δWα
=
〈
φ̂α

〉
Wα

, (2.22)

and we have

Wα = −βδF0(φα)
δφα

. (2.23)

It is known that in the expansion of F0(φα),

F0(ϕα + φ̄α)− F0(φ̄α) =
1
β

∑
m>1

Γ(m)
α1α2···αmϕα1ϕα2 · · ·ϕαm , (2.24)

the vertex functions are related to the amputated connected correlation functions (Zinn-Justin, 2002):

Γ(2)
αβ(x1,x2) = Sαβ(x1,x2) =

[
G(2)

c (x1,x2)
]−1

αβ
; (2.25a)

Γ(3)
αβγ(x1,x2,x3) = −G(3)

amp(x1,x2,x3); (2.25b)

Γ(4)
αβγδ(x1,x2,x3,x4) = −G(4)

amp(x1,x2,x3,x4) +
∫
G(3)

amp(x1,x2,y)G(2)
c (y, z)G(3)

amp(z,x3,x4)dydz

+ 2 permutations; (2.25c)

where

G(n)
amp(x1,x2, · · · ,xn) =

∫
dy1dy2 · · ·dynG

(n)
α′

1α′
2···α′

n
(y1,y2, · · ·yn)

Sα1α′
1
(x1,y1)Sα2α′

2
(x2,y2) · · ·Sαnα′

n
(xn,yn). (2.26)

The interacting free energy of the interacting system is

F (φ) = H1(φ) + F0(φ). (2.27)
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At high temperatures (β � 1), the system is uniform and the free energy is minimized at φ = φ̄. As

the temperature decreases, the enthalpic interactions dominate over the entropic mixing term, and

the system tends to phase separate. This is signaled by the instability at the quadratic expansion

of the free energy with respect to perturbations of the order parameter ϕ = φ− φ̄, i.e., the Hessian

matrix attains negative eigen values. This defines the spinodal limit.

Up to quadratic order F is given by (See Appendix 2.B.2 for the derivation)

F (2) = V
∑
q

[
S−1(q)− f(βε)

]
ϕα(q)ϕα(−q) (2.28)

where S−1(q) is the inverse structure factor, βε are the interaction parameters, ϕα(q) is the Fourier

transform of ϕα(x), and ϕ∗α is the complex conjugate of ϕα. S−1(q) is dependent on the chain

composition and the bulk average volume fraction of polymers. To find the spinodal limit, we

minimize S−1(q) and find the value βε such that f(βε) ≥ minq S
−1(q).

The wave vector qm that minimizes S−1(q) gives the inverse of the correlation length of the

phase separated structure. In the microphase transition, qm ∼ N−1/2, thus the correlation length

is comparable to the chain length. In the macrophase phase separation, qm = 0. In the solution of

associating triblock copolymers, both spinodals are present.

2.3 Results and discussion

First we look at the spinodal lines in the solution of associating triblock copolymers. For simplicity

we assume that the only associating interaction is εAA = eA < 0, the solvent molecules and B

segments are assumed to be non-interacting.

In Figure 2.1 on page 20 we show the spinodal lines in the solution of associating polymers

with composition 3A-4B-3A with different chain lengths: N = 20, 40, 100. The spinodal for the

macrophase separation is shown in red, with a critical point; the spinodal for microphase transition

is shown in blue. The phase diagram is very similar to the experimental results obtained for gelatin

solution by Tanaka et al. (1979) and theoretical calculations by Tanaka (1989) and by Semenov and

Rubinstein (1998a).

From Appendix 2.B.2 we find that the critical point in the binodal coexistence is given by

e∗A
kBT

=
1

4f2
A(1− φp)

+
1

4f2
AφpN

,

which is of order O(1), and the microphase spinodal satisfies eA ∼ N−1. Therefore increasing the

chain length results in a large shift of the microphase spinodal, but only affects the macrophase

spinodal weakly. The scaling e ∼ N−1 is also obtained by Tanaka et al. (1979) for the gelation line,
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Binodal coexistence

Microphase transition

Figure 2.1: Spinodal lines for the microphase transition and the macrophase separation in solutions
of associating polymers. The fraction of associating A block is 0.3 on each end of the triblock
copolymer. Results are shown for associating polymers with three kuhn lengths (N = 20, N = 40
and N = 100). The red lines are the spinodal for the macrophase separation, with a critical point;
the blue lines are the microphase spinodal with instability at wave vector qm > 0.

while our result has no a priori assumption of the appearance of the gel phase. This coincidence

suggests that gelation has the same thermodynamic signature as the microphase transition.

We notice that as chain length increases, the intersection point between the two spinodals is

shifted to the left, suggesting that the solution is unstable with respect to the microphase transition

for lower polymer concentrations. Therefore the solution of associating polymers with longer chains

should form a gel at lower concentrations. This is expected both from the microscopic mechanism

of self-assembly and from the thermodynamics of polymer solutions.

We also point out that the microphase spinodal does not terminate at the intersection, but

continues below the binodal coexistence. Mathematically this implies a discontinuous jump in the

quadratic coefficient a in the structure factor

S−1(q) = q4 − aq2 + b.

This is different from the mean field Lifshitz point where a continuously decreases to zero. This might

be an artifact of the mean field approximation, and fluctuation effects should drive the confluent
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Figure 2.2: Spinodal lines in the solution of associating polymers with chain length N = 40 and
different end-block fractions, fA = 0.25, 0.3, 0.35. The meaning of the curves are the same as in
Fig. 2.1.

point to a Lifshitz tri-critical fixed point.

In Fig. 2.2 we plot the spinodal lines for associating polymers with fixed length (N = 40) at three

different end-block fractions: fA = 0.25, 0.3, 0.35. Compared to Fig. 2.1 we see that increasing the

end-block fraction has a big effect on the macrophase spinodal, but does not affect the microphase

spinodal very much. This can be understood from the driving force for the phase transition in each

case. In the macrophase separation, the driving force is mainly the enthalpic interactions, therefore

increasing the fraction of A blocks can enhance the tendency for phase separation into A-rich and

A-poor phases. On the other hand, for the microphase transition, the A blocks serve as connection

while the B blocks are the linkers. Because of volume incompressibility, the local density of A

segments is about the same for all chain compositions, therefore as long as the monomer interaction

between A segments is strong enough, they will form aggregated structures dispersed in the B matrix.

The driving force for this microphase transition is not only enthalpic, but also entropic, due to the

presence of B linker. In fact, as shown in Figure 2.3 on page 22, if we further increase the end fraction

to “unrealistic” high values fA = 0.45, we see that the microphase spinodal is shifted to even larger

eA. In particular we observe that increasing the polymer concentration can dissolve the gel instead

of triggering gelation as for lower end-block fractions. This corresponds to the “inversion” of the
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Figure 2.3: Spinodal lines in the solution of associating polymers with large end blocks. The chain
length is N = 40 and results are shown for end fractions fA = 0.35, 0.4, 0.45.

microphase structures from the A dispersed phase to the B dispersed phase, and clearly reflects the

self-assembly nature of the transition.

We also note that for fA = 0.25 the microphase spinodal intersects the binodal spinodal to

the left of the critical point, implying the possibility of two co-existing microphases with different

polymer concentrations. This is also found by Semenov and Rubinstein (1998a) for the gelation of

associating polymers. Our results suggest that such a coexistence is due to the competition between

short-range monomer interactions and the self-assembly of copolymers at the mesoscopic polymer

length scale.

Figure 2.4 on page 23 shows the critical wave vector qm associated with the microphase spinodal.

The correlation length ξ ∼ q−1
m . From the two blue curves we see that for long chains or at high

concentrations, the polymer chains are less swollen, as is expected from less screening. From the

three curves with different compositions at N = 40 we see that the structure is more swollen for

larger end-block fractions when the polymer concentration is high, but at low densities the trend is

reversed. This probably reflects the entropic effect in the self-assembly, and can be easily tested in

experimental measurements.

Finally in Figure 2.5 on page 24 we plot the microphase spinodal curves in a solution with virial



23

0 0.2 0.4 0.6 0.8 1
2

3

4

5

6

7

8

φp

Nb2q∗2

6

fA = 0.35

fA = 0.3 fA = 0.25

N = 20

N = 40

Nb2q2
m

6

Figure 2.4: Critical wave vector in the solution of associating polymers. We present the results for
three end block fractions, fA = 0.25, 0.3, 0.35 with chain length N = 40, and one curve fA = 0.3 for
N = 20.

type expansion instead of volume incompressibility. The macrophase spinodals are not shown as

they are similar to the previous cases. These results show similar features as for the model with

strict volume incompressibility.

2.4 Conclusion

To summarize, from analysis of a simple system for reversible gelation—triblock associating poly-

mer solutions—we find that such systems exhibit microphase transitions which share many similar

features with the reversible gelation. We find that this transition is rather insensitive to the chain

composition as compared to the chain length or associating energy. This reflects the nature of this

transition, which is due to the interplay between short-range monomer aggregation and long-range

polymer extension.

Although our work is carried out for triblock copolymer solutions, qualitative features should

hold in other associating polymer systems, such as multi-block or even diblock copolymers: There

should always be a microphase spinodal due to the segregation between A and B monomers. And

these systems could exhibit gelation under certain conditions.
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Figure 2.5: Microphase spinodal calculated using the virial-type expansion instead of strict volume
incompressibility. The chain length is N = 40 with c1 = 1kBT and c2 = 6kBT . Results are shown
for fA = 0.1, 0.15, 0.25, 0.35.

Our calculations suggest that one can start from the basic microscopic model to study the

thermodynamics of gelation, without a priori assumptions of the gel phase. But the nature of

reversible gelation, like the glass transition, is different from conventional phase transitions, and

calls upon new theoretical tools. In the next chapter, which is adapted from our published paper,

we analyze the possibility of glass transitions associated with this microscopic spinodal.

Appendix 2.A Self-consistent field calculation

2.A.1 Calculations of the partition functions of non-interacting polymers

in external fields

In this subsection we solve the partition function Z(iWα) as defined in Eq. (2.10). First we replace

iWα by Wα, it will turn out that thus defined Wα are real. From Eq. (2.12) we have

Zs(iWS) =
∫
D[rn]n=1,2,···ns exp

[
−
∫
WS (r) φ̂S (r) dr

]




