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CHAPTER VI. CONCLUSIONS AND FUTURE WORK 

 

6.1. A new tool for tuning protein expression 

 Chapter II describes a novel tool for tuning protein expression levels in yeast. By 

engineering strains with altered expression of the Gal2p permease, we demonstrated a 

modified induction response from the native GAL1-10 promoter. Specifically, the 

GAL2Δ strain resulted in a linear and homogeneous response such that protein levels 

could be finely tuned with galactose concentration. 

 We demonstrated the utility of this system in our yeast strains engineered for the 

production of benzylisoquinoline alkaloids (BIAs). By titrating one of three enzymes in a 

short heterologous pathway independently, we were able to determine optimal expression 

levels of each enzyme. We then selected a constitutive promoter from a well-

characterized promoter library5 that exhibited the desired expression level and made the 

appropriate substitutions. Constitutive promoters are preferred for this work to avoid the 

additional induction step and the use of costly inducers. We also observed greater 

conversion in the constitutively-expressing strains, likely due to the elimination of an 

uninduced population. 

 We propose this as a general strategy that can be useful for adjusting protein 

expression levels for pathway engineering. Although it is not applicable to all systems; 

for instance, the P450 activities were not tunable in this range, it can greatly simplify the 

promoter screening and selection process. In addition, this tuning strategy is applicable to 

many other areas of synthetic biology such as the construction of genetic circuits.  
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6.2. De novo biosynthesis of BIA backbone molecules 

 While we were able to make significant progress engineering the downstream 

BIA pathway starting with norlaudanosoline, we ultimately want to synthesize BIA 

metabolites de novo from two molecules of tyrosine. Since this early pathway has not 

been fully elucidated in plants, we took a bioprospecting approach and combined 

enzymatic activities from plants, bacteria, humans, and yeast to engineer a unique 

pathway for the production of norcoclaurine and norlaudanosoline. 

 We have developed two different synthesis routes for the production of dopamine 

and 4-hydroxyphenylacetaldehyde (4-HPA) and validated enzymatic activities for each 

step. However, we are only able to produce very low levels of dopamine and more 

optimization is required to reach levels sufficient to build the BIA backbone. This may 

require protein engineering or evolution of the CYP2D6 enzyme used to convert tyramine 

to dopamine. Similar to other human P450s, CYP2D6 exhibits low activity on a broad 

range of substrates as we have also used this activity to convert (R)-reticuline to 

salutaridine. Since dopamine and L-dopa activate the yeast oxidative stress response 

pathway, a reporter gene such as GFP fused to the FUS1 promoter can potentially be used 

as a high-throughput screen for increased production of either of these molecules42. 

 In addition, we have identified endogenous alcohol dehydrogenase (ADH) and 

aldehyde dehydrogenase (ALD) activities that act on the acetaldehyde intermediates 4-

HPA and 3,4-DHPA. As single knockouts allowed increased accumulation of 

norcoclaurine and norlaudanosoline, we are hopeful that combinatorial knockouts will 

show additive effects.  

  



 146

We have also begun work building protein scaffolds and using leucine zipper 

domains to co-localize enzymes and increase local metabolite concentrations. These and 

other strain engineering methods will be required to develop a viable process for the 

biosynthesis of the BIA backbone.  

 

6.3. Production of the intermediate reticuline and downstream berberine and 

morphinan alkaloids 

 We engineered yeast strains for the production of two sets of very diverse BIAs 

along the berberine and morphinan branches. Currently, we are able to accumulate up to 

165 mg l-1 of (R, S)-reticuline, ~35 mg l-1 of (S)-tetrahydroberine, and ~15 mg l-1 of 

salutaridinol-7-O-acetate. We put considerable effort into optimizing transcriptional 

activity of the enzymes used to convert norlaudanoline to reticuline. However, 

intracellular transport is limiting in addition to the affinity of the enzymes for 

norlaudanosoline as it is not the natural substrate. Total biosynthesis of norcoclaurine in 

vivo will remedy both issues assuming an additional P450 activity CY80B1 can be 

successfully incorporated.  

 Along the berberine branch, we are able to accumulate (S)-scoulerine, (S)-

tetrahydrocolumbamine, and (S)-tetrahydroberberine. Very recently, a protein with (S)-

cheilanthifoline synthase activity was cloned from E. californica95. This enzyme which 

accepts (S)-scoulerine as a substrate will allow access to other metabolites along the 

sanguinarine branch. In addition, the BIA palmatine can be produced from (S)-

tetrahydrocolumbamine once the enzyme opening this branch through columbamine is 

cloned. And finally, (S)-tetrahydroberberine can be oxidized to the final product 
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berberine in our yeast strains once the (S)-tetrahydroberberine oxidase (STOX) activity is 

cloned from plant hosts or an alternative enzyme is identified. Although we see efficient 

conversion to (S)-tetrahydrocolumbamine, we only see ~10% conversion to (S)-

tetrahydroberberine which makes this step a target for additional optimization. 

Preliminary strains were constructed for production of morphinan alkaloids which 

leave room for improvement at every step. Once again, we observed low activity from 

both P450s tested in our system for the production of salutaridine. This is not surprising 

for the human P450 CYP2D6 but higher activity is expected for the plant enzyme SalSyn 

(CYP719B). We tested multiple reductase partners here to no avail and feel this may be 

the limitation in our system. Low accumulation of salutaridine also affects SalR activity 

as the enzyme is inhibited at low substrate concentrations. Testing of different SalR 

variants and mutants as well as codon-optimization did not yield significant 

improvements. SalR is also an NADPH-dependent enzyme so the redox balance of the 

cell may need to be taken into consideration. For the SalAT step, we were able to 

significantly improve expression through codon-optimization but are still plagued by low 

activity. Since this step also requires acetyl-CoA, other metabolic engineering strategies 

can be applied to increase this cofactor pool if necessary. In addition, the pH and 

temperature optima for this enzyme are not compatible with yeast physiological 

conditions. While we can increase the pH to ~7 in buffered media, we cannot operate at 

pH>8 which is the reported requirement for thebaine production. Ultimately, a 2-stage 

process will likely be required. Our early attempts to do this entirely in vivo were 

unsuccessful, and it is likely that the final step must be performed in vitro. Alternatively, 
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the cloning of thebaine synthase (THS) from poppy plants and its incorporation into this 

heterologous pathway may facilitate efficient thebaine production in our yeast hosts.   

 

6.4. Construction of a strain to produce downstream BIAs from tyrosine 

 The end goal of this work is the construction of yeast strains capable of 

performing the total biosynthesis of complex BIAs from tyrosine. To reach this goal, 

much more optimization is required in each segment of the pathway, particularly the 

upstream portion. We have begun to merge the two pathways by producing reticuline 

from dopamine and coclaurine from exogenous dopamine and 4-HPA, demonstrating the 

feasibility of combining these segments. Also, as predicted, conversion is greater when 

the BIA precursor is synthesized in vivo rather than added to the media, avoiding 

transport limitations. Presuming we can construct a strain to produce norcoclaurine and 

norlaudanosoline, there is no reason to believe we cannot begin to piece together a stable 

strain to produce reticuline from tyrosine. From there, plasmid-based expression of 

downstream enzymes should be sufficient to extend these pathways down various 

branches. The work described here is significant as it marks the first demonstration of 

reconstructing this very important pathway in a single microbial host.  
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