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ABSTRACT
The M8ssbauer effect has been used to investigate electronic
shielding by closed electron shells in salts of trivalent thulium, by
measuring the temperature dependence of the nuclear guadrupole

169

splitting of the 8.42 keV gamma transition in Tm The nuclear
quadrupole interaction was studied for Tm3+ ions in thulium ethyl
sulfate, thulium oxide and thulium trifluoride within a temperature
range from 9. 6°K to 1970°K. The interpretation of the experimental
data in terms of the contributions of distorted closed electron shells
to the quadrupole interaction yields values for electronic shielding
factors. The results lead to amounts of 10% or less for the atomic
Sternheimer factor RQ. The experiments also reveal substantial
shielding of the 4f electrons from the crystal electric field, ex -
pressed by the shielding factor Toe Values of 250 and 128 are ob-
tained for the ratio (1—')/00)/(1—02) for thulium ethyl sulfate and thu-

lium oxide respectively, where Yoo is the lattice Sternheimer factor.
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I. INTRODUCTION

The technique of recoilless nuclear resonance absorption of
gamma radiation, the so-called M8ssbauer effect (1), has been em-
ployed in numerous experiments in recent years (2), (3). By binding
a radioactive nucleus in a crystal lattice the emitted gamma radiation
will, under certain conditions (2), have essentially the natural line
width as determined by the Heisenberg uncertainty relation and an
energy exactly equal to the excitation energy of the nucleus. If a
nucleus of the same isotope which is in its ground state is also bound
in a lattice, there is a large probability for nuclear resonance ab-
sorption of the gamma radiation. A distinct advantage of this tech-
nique is the inherently high energy resolution that is available. For
example in the experiments to be described here, the resolution is
one part in 101 ! . Energy resolutions of this order make it possible
to study nuclear properties as well as solid state effects in the crys-
tals that are used to bind the nuclei. We make usc of the M8ssbaucr
effect here to study the nuclear hyperfine interactions in salts of
rare earths, specifically thulium salts.

Measurements of the nuclear quadrupole interaction in salts of the
rare earth elements yield information on the quadrupole moments of

the relevant nuclear states and on the electric field gradients which

(1) R.I.. MHssbauer, Z. Physik 151, 124 (1958); Naturwissen-
schaften 45, 538 (1958); Z. Naturforsch. 14a, 211 (1959)

(2) See for instance H. Frauenfelder, The MUssbauer Effect,
(W.A. Denjamin Inc., New York, 1962)

(3) The Proceedings of the Third International Conference on the
Md8ssbauer Effect appear in Rev.Mod. Phys. 36, 333-504 (1964)
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exist in the salts at the nuclear sites. The extraction of the compo-
nents of the electric field gradient tensor from such measurements
is rather straightforward if the values of the nuclear quadrupole mo-
ments have been obtained by other methods siich as Coulomb excita-
tion techniques. On the other hand the determination of nuclear mo-
ments of rare earth nuclei by measurements of the nuclear quadru-
pole interaction is rather involved since this requires a calculation
of the components of the electric field gradient tensor at the nuclear
sites. A calculation of the electric field gradients for salts of the
rare earths can he performed at present only with limited accuracy.
Uncertainties in excess of 30% are typical. It therefore appears
that measurements of the nuclear quadrupole interaction in solids of
the rare earths are at present of more importance for studies of the
sources of the electric field gradients than for determination of
nuclear quadrupole moments.

The electric field gradient at the nuclear site of a certain ion
originates from a number of different sources. Major sources are
distortions of the electronic shells of the ion. These distortions
result from the interactions of the electrons of the ion with the crystal
electric field (CEF') produced by the surrounding ions in the lattice,
provided the arrangement of the surrounding ions reflects a point
symmetry lower than cubic. The field gradient at the nuclear site
results not only from the distorted partially filled 4f electron shell
of the rare earth ion, but also from distorted closed electron shells.
These distortions of the closed electron shells of the ion constitute a

major source of uncertainty in calculations of the electric field
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gradient at the nuclear site. The deviations of the closed shells from
spherical symmetry (electric multipole polarization) usually lead to
substantial reduction or enhancement (shielding or antishielding) of
the electric field gradient at the nuclear site. Sternheimer (4),(5)
was first to emphasize the importance of magnetic dipole and electric
quadrupole polarizations of closed shells and pioneered in calculating
the contributions of closcd shell deformations to the nuclear hyper -
fine interactions.

The nuclear quadrupole interaction depends strongly on the elec-
tronic state of the ion. The electronic states which arise when a
rare earth ion is incorporated in a crystal lattice are basically
caused by the interaction of the CEF and the electrons in the partially
filled 4f electron shell, but the splittings of these electronic levels
are also strongly influenced by distortions of the closed electron
shells (6),(7),(8). In order to account for the modification of the
CEF splitting which results from electronic shielding, one has to
consider the quadrupole moment as well as higher multipole mo-

ments induced in the closed shells.

(4) R.M. Sternheimer, Phys. Rev. 80, 102 (1950); 105, 158
(1957); R.M. Sternheimer and H. M. Foley, ibid. 102, 731
(1956); H.M. Foley, R.M. Sternheimer and D. Ty—fi_(;’,- ibid.
93, 734 (1954)

{5) R. M. Sternheimer, Phys. Rev. 84, 244 (1951); 95, 736 (1954)
(6) D.T. Edmonds, Phys. Rev. Letters 10, 129 (1963)

(7) R.G. Barnes, E. Kankeleit, R. L. MBssbauer and J. M.
Poindexter, Phys. Rev. Letters 11, 253 (1963)

{8) J. Blok and D. A. Shirley (private communication)
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Rare earth ions exhibit CEF splittings which are usually very
much smaller than similar splittings observed for ions of the iron
transitions elements. In the iron transition series, the partially
filled 3d electron shell is fully exposed to the CEF produced by
surrounding ions, resulting in large CEF level splittings. The rela-
tively small CEF level splittings observed for rare earth ions,
which typically are of the order of a few hundred crnAl, probably
arise because of large shielding effects resulting from the SSZp
electronic shells which surround the partially filled 4f shell.

Present theoretical predictions of the influence of electronic
shielding upon the CEF level splitting of rare earth electronic levels
diverge. Burns (9) concluded that electronic shielding in the rare
earth ions is of little importance and that the difference between the
CEF level splittings in the iron series and those in the rare carth
series cannot be attributed to electronic shielding of the 4{ electrons
from the CEF by outer closed electron shells. In contrast, Lenander
and Wong (10}, Ray (11) and Watson and Freeman (12) conclude that
electronic shielding plays a significant role in rare earth CEF level
splittings.

Quantitative estimates of actual shielding effects are hampered

by the lack of sufficiently accurate atomic wave functions for rare

(9) G. Burns, Phys. Rev., 128, 2121 (1962)
(10)  C.J. Lenander and E. Y. Wong, J. Chem. Phys. 38, 2750 (1963)
(11) D.K. Ray, Proc. Phys. Soc. 82, 47 (1963)

(12) R.E. Watson and A.J. Freeman, Phys. Rev. 133, A1571{1964)




earth ions. Inadequate knowledge of the contributions of the core
electrons is a primary source of uncertainty in our present under -
standing of hyperfine interactions in rare earth (as well as in other)
elements. Direct measurements of the influence of electronic
shielding upon the nuclear hyperfine interactions and upon the CEF
splittings of electronic levels therefore are highly desirable.

This paper demonstrates the use of the technique of recoilless
nuclear resonance absorption of gamma radiation as a means to ob-
tain information on electronic shielding effects in rare earth isotopes.
The procedure introduced here consists of combining measurements
of the temperature dependent nuclear gquadrupole interaction (per-
formed by using the technique of recoilless resonance absorption)
with measurements of the CELI level splittings (performed by using
optical techniques), Specifically we report on determinations of the
relevant electronic shielding factors for trivalent thulium based
upon our gamma-absorption measurements of the nuclear quadrupole

69

interaction of Tm in thulium ethyl sulfate {13) and thulium oxide
and on optical measurements of CEF levels by Wong and Richman
(14), Gruber and Krupke (15), and Gruber et al. (16).

o 1 : . . : . .
I'm appeared to be an isotope particularly suited for studies

(13) A preliminary report of part of this work appeared elsewhere

1
(7).
(14) E.Y. Wong and I. Richman, J.Chem. Phys. 34, 1182 (1961)
{(15) J.B. Gruber and W,F. Krupke, to be published

(16) J.B. Gruber, W.F. Krupke and J. M. Poindexter, to be

sublichaod

d
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of electronic shielding, for the following major reasons:
(1) The low energy of the 8.4 keV transition used results in a high
Debye-Waller factor (recoil-free fraction) even at very high tempera-
tures, thus permitting a measurement of the quadrupole interaction
within an unusually wide temperature range.
(2) The separation of the excited levels belonging to the ground
multiplet of thulium (L = 6; S = 1) is rather large, with the first
cexcited level (3H4) some 5600 (:nn—l above the ground terin (3H6)'
Thus the existence of the higher levels of the ground multiplet is of
minor concern for the interpretation of our data in thulium, in con-
trast to the situation prevailing in the case of some other rare earth
ions.
(3} The spin of the nuclear ground state {I = 1/2) and of the 8.4 keV
excited state (I = 3/2) is rather low , resulting in a small number of
quadrupole hyperfine components of the gamma lines which are easily
resolvable.
(4) The nuclear collective model applies well to Tm 169 thus per-
mitting a rather reliable semi-theoretical estimate of the nuclear
guadrupole moment of the 8.4 keV state.

69

{5) The relative abundance of Tzn1 is 100%.
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II. CRYSTAL ELECTRIC FIELD (CEF) INTERACTIONS

A rare earth ion interacts in a salt with the CEF produced by all
the ions which surround its position in the lattice. The dominant
effect is the interaction of the CEF with the electrons in the partially
filled 4f-shell. This interaction is weak compared to the spin-orbit
interaction, in contrast with the situation prevailing in the case of
iron~transition elements. As a result, the total angular mormentum
J remains a good quantum number for rare earth ions hound in
crystals. The effect of the CEF then essentially is a partial or com-
plete removal of the 2J + 1 fold spatial degeneracy of the orientation
of J which exists in a free ion. The actual numbcr of clectronic CEF
levels depends on the symmetry of the field, while the level spacing
depends on the strength of the interactions between the CEF and the
4f electrons. The situation is illustirated in Fig. la.

The potential energy describing the interaction between the CEF
and a negative charge at position (r, 4 , ¢ ) within the ion centered at
the origin may be represented in good approximation by the following

expansion, not including shielding from closed shells:

+n

~eV (r,V, )= % 2: AT RO (o, ) (1)
n n
n m=-n
if one assumes that there is no overlap between the charge distri-
butions of different ions. In Eq. (1) the A;l represent lattice sums
over point charges and effective multipole moments in the surround -

ing ions. The relevant functions Q)n , which are linear combinations



Fig.

Fig.

la:

1b:

8-

Schematic of the atomic level splitting of a rare earth
ion in the CEF. For a nuclear spin I = 3/2 the nuclear
quadrupole interaction splits each CEF level into a
doublet, which is the case illustrated. Typical overall
CEF splittings are of the order of ]O~2 eV, while typical
quadrupole hyperfine splittings are of the order of 10-6

eV,

Schematic of the nuclear quadrupole splitting of the

.. T }
8. 4 keV transition in Tm 9, The temperature dependent

level splitting <A\ E>T, which is typically of the order of
-6 N
10 7 eV, is the average of the hyperfine splittings of

Fig. la, welghted according to thelr Doltzman factors.,
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. ~ . m . ~-m - .
of spherical harmonics Y and Y, are defined as follows (17):

O, =(2" 4. 6....211)P2n(c0519’)

5c05 m ¢
Q sin m¢Y

OF = (2™ (my) 2T M (008

m V . . ,
where Pn and Pn are Legendre polynomials and associated Legendre

funclions, respectively., In particular, we obtain for n = 2:

@g =3 cos? ¥ -1 (2a)
(D;' = sin® ¥ cos 2 ¥ (2b)
(022: sin? ¥ sin 2 ¥ (2¢)

Specifically, the Hamiltonian describing the interaction between
the CEF and the electrons in the partially filled 4f shell of rare earth
ions, including the effect of shielding via the closed electron shells

of the central ion is given by:

{41) m | n N n ,
ool = S - 3
Heorr XX A 1tk t qn(’kﬁ 2 () 3
k nm
(17) The normalization of the functions Q)fn (’?}, £ is arbitrary;

the choice adopted here is the one most commonly used
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The terms proportional to r;' describe the potential energy due to

k
the direct interaction of the CEF with the k-th clectron in the 4f-shell
while the terms proportional to Sn(rk) describe the additional poten-
tial energy arising from a deformation of the closed electron shells.
The interaction described by the Iamiltonian o Eg. (3) splits the
electronic ground state of the free ion, characterized by total angu-
lar momentum’\i, into a number of CEF levels. We shall assume
in calculating these CEF levels that the angular and radial parts ot
the free ion wave functions can be factorized and that higher terms
with different J values can be neglected. Under these circumstances
we are dealing with a manifold of states belonging to the same J and
it is then convenient to replace the angular operators occurring in
the Hamiltonian, Eq.(3), by equivalent operators (18). The relevant
matrix elements then are of the form

_ ] !\
g™ B, A7 G G113 Gl 0,5 10.m0 o

where én% = (1 -—rrn) <Tn>4i (5)

(18) K. W.H. Stevens, Proc. Phys. Soc. A65, 209 (1952);
R.J. Elliott and K. W.H. Stevens, Proc. Roy. Soc. A218,
553 (1953); J.P. Elliott, B,R. Judd and W.A. Runciman ,
ibid. A240, 509 (1957); R. Orbach, ibid. A264, 458 (1961)
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"n - <U4f11 Sn(r) .U4f>/<rn >4f (6)
<n>4f <U4fl ro| Uy (7)

and ?}' = w, B, v for n=2,4, 6
In these expressions U4f 1s the radial part of the electronic wave

. . . , . . m,. A
functions for the 4f-shell, The functions On (J‘(, J J'z) are opera-
tor equivalents; those relevant for this work are listed in Table I.
The expressions <J “ ’é:’l HI> are reduced matrix elements (1Y),
which for the more general case of intermediate coupling are avail-

3t . )
able for Tm in the literature (14)-(17), {20).

- = - - - . ™

It is in principle possible to calculate the parameters An and
n e e s . Cerr e . : .
< %, but difficult in practice. Difficulties are in the evaluation
C 4 [} g I H m o £ 4 1- 1 T e . E
of the "lattice sums An because of a lack of sufficient knowledge of
the 1onic¢ position coordinates and their temperature dependence as
well as of the values of moments in the surrounding ions (21). The
. c e n . .
evaluation of the radial integrals r , which are the expectation
1 n - - . . . -

values of r~ [for the 4f shell modified by contributions from closed
shells to the electric multipole fields at the 4f electron positions, is

hampered by the lack of knowledge of sufficiently accurate atomic

(19) B.R. Judd, Proc. Roy. Soc. A241, 414 (1957)

(20) J.B. Gruber and J.G. Conway, J., Chem, Phys. 32, 1531
(1960)

(21) M.T. Hutchings and D.K. Ray. Proc. Phys. Soc. 81,6063
(1963)
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wave functions for bound rare earth ions. For these reasons it is

therefore preferable to introduce the "CEF parameters"

m m Ry
c o= Al <1 >E (8)

to be determined by experiment. The point symmetry of the central
ion drastically reduces the number of CEF parameters (22). In the
case of rare earth ions only the terms with n = 2, 4, 6 need to be
considered, with the effects of n =1, 3, 5 being negligible in most
cases (22).

The wave functions % of the VY -th CEF level will be taken as a
linear combination of eigenvectors of the total angular momentum .;jw

(m,) m
Ve vy P Ty (9)

(m )
m P \‘ = N ~3 = 23 = ) - o & "y =y - .x. S - -
I'he cxpansion coefficients d,y and the ecnergy eigenvalues E\)

follow from the diagonalization of the interaction matrix H'm m
BN |

(22) A compilation of the relevant values n and m for various
crystal symmetries was given by J. L. Prather, NBRS
Monograph 19 (1961)



-16-
III. THE NUCLEAR QUADRUPOLE INTERACTION

Each of the CEF levels may produce a magnetic field and an
electric field gradient at the nuclear site; this results in hyperfine
splittings of the electronic levels. A rare earth nucleus thus ex-
periences at a certain time a magnetic field and an electric field
gradient which depends on the electronic state thatis actually popu-
lated at this time. The situation substantially simplifies at elevated
temperatures where the spin-lattice relaxation phenomenon produces
rapid transition between the different CEF levels. The nucleus
under these circumstances experiences a magnetic ficld and an clce-
tric field gradient which in essence result from averaging these
fields over all electronic states weighted according to the population
numbers. This averaging process, which esscntially constitutes a
time averaging process, holds only if the significant electron relax-
ation times are short compared to all other relevant times such as
the nuclear lifetimes and the nuclear precession times, a situation
prevailing at temperatures above a few degrees Kelvin. In particu-
lar, the magnetic hyperfine interaction cancels in the absence of an
external magnetic field and all one is left with is the quadrupole
hyperfine interaction (23}, (24). An example of this situation is

illustrated in Fig. lb for an assembly of nuclei. The quadrupole

(23) R. L. Cohen, U, Hauser and R. L. M#8ssbauer, Proc.
Mbssbauer Coni. 2nd, (John Wiley and Sons, N. Y., 19362)

p. 172

(24) R. L. MUssbaucr, Rev. Mod. Phys. 29_, 362 {1964)
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interaction is strongly temperature dependent since the overall CEF

splitting within the lowest electronic term is only of the order of a

. ~1
few hundred cm .

The electric field gradient which interacts with the nuclear

quadrupole moment of a rare earth nucleus bound in an ionic crystal

has four significant sources:

1)

3)

One contribution is the direct field gradient praduced at the
nuclear site by all of the ions surrounding the host ion which
contains the nucleus in question. This contribution in the
case of rare earth ions is neually negligible in comparison
with the contributions from other sources, particularly at
low temperatures.

Another contribution results from the electric field gradient
produced at the nuclear site by the electrons in the partially
filled 4f-shell of the host ion. This field gradient results
from the interaction of the 4f-electrone with the CEF pro-
duced by the surrounding ions. This interaction effectively
induces electric multipole moments (multipole polarization)
in the 4f-ghell; the quadrupole part of this polarization con-
tributes to the electric field gradient experienced by the

nucleus.

A distortion ie usually also induced by the CEF in the closed

electron shells, yielding another contribution to the total

field gradient experienced by the nucleus. This contribution
is proportional to source (1), with proportionality factor Yo
: 3

The absolute value of the proportionality factor is in the
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case of the rare earths usually large in comparison with
unity, thereby leading to such an enhanced field gradient
(antishielding effect) that it often becomes comparable with
the one resulting irom source 4}, 'L'his is the "lattice''
Sternheimer effect (25)-(28).

4) Another ficld gradient contribution due to an induced quadru-
pole moment in the closed electron shells results from the
interaction of the closed electron shells with the electrons in
the partially filled 4f-shell. This relatively small contri-
bution, which is proportional to source 2), with proportionali-
ty factor ——RQ, is the "atomic' Sternheimer effect (5), (28).

Collecting the different contributions, we obtain for any compo-
nent e&ij of the electric field gradient tensor

(4£)

eq.j i,j=1,2,3 (10)

a1

8 = —— ) (Lat) + —
LEMJ (1 ’()o) quj (1 RQ)

where Yo and RQ_ are the lattice and atomic Sternheimer factors,

respectively, as introduced above.

(25) E.G. Wikner and G. Burns, Phys. Letters 2, 225 (1962)
(26) D.K. Ray, Proc. Phys. Soc. 82, 47 (1963)
(27) R.M. Sternheimer, Phys. Rev. 132, 1637 {1963)

(28) A.J. Freeman and R. E. Watson, Phys. Rev. 132, 706
(1963)
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In the principle axes system of the electric field gradient tensor

the nuclear cuadrupole interaction Hamiltonian H(QV ) associated with
the (V)-th CEF level of the ion is given by
(11)
) et Q < Af) (L t)
gWl. &= (1—~R V Voot @ 312-12) +
Q  ax21-1) { l/ Vo) 9y, af )

. 4f 4 at a ; :
' {A(l-RQ></,ngX)—5§y§)lv> b (- ) (gt At L a2 +};f)}

where NIW, , I, are the usual nuclear spin operators and Q is the

NN

4
nuclear quadrupole moment. The quantities q(l..lLat) and <‘/’_§l§;f)[\>
determine the direct contributions to the electric field gradient at
the nuclear site produced by the surrounding ions in the lattice and

by the 4f-eclectrons of the host ion, respectively. They are defined

by
Cq(;’;at)x [azv(1~,rz},<y)/axi ox ] _ 4 (12)
where V(r,’ﬂ, %) is defined in Eq. (1), and
(13)
4f-electrons
(41) /ol ,
{¥] %5 }V> v>_,_,_w[a _rl>/DA .1 Ol;,)

where the wave function l\)> of the Yy -th CEF level is of the form
given by Eq. (9).
Explicitly we obtain for the lattice contribution from Egs. (1),
(2),(12)
o2 G(Lat): _ 0 L o2 (Lat) q(L.a’c) 2

2 2 XX VY ): -4AZ (14)
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Expressing the contributions from the 4f -electrons within a manifold
of states of constant J in terms of operator equivalents, we obtain

from Eq. (13}

GNP Callels > ey V- (150)

(4f) 4f.) AN _ 2
V.4 P R I BV PRGNS
X yy
(15b)
where <r_3> . is defined by Eq.(7).
' 4f
Usually one observes only an average field gradient from the 4f-
electrons, which is a field gradient from the individual CEF levels
weighted according to their Boltzman factors, as discussed above.
If we consider only those electronic states which belong to the lowest
manifold spanned by the state vector J , then the average direct
contribution from the 4f-electrons to the electric field gradient acting

on the nucleus at temperature T is given by {29)

2J + 1
(4f) Z <V 'wll 1)/> - exp(-E , /kT)
[, 16)
<M(,1,1.L >T ZJ N 1 (
Z exp(-E, /kT)
V=1

The diagonal component of the averaged total electric field gradient

tensor is according to Eqs.(10) and (16) given by

(29) A more general description including effects of higher J
states is given in the Appendix I
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{477 = Umry) q’JSi oy (1-Rpy) <3§i£)>T (17)

where we have neglected any temperature dependence of the lattice

(Lat)

contribution Ay

The total Hamiltonian describing the average quadrupole inter-
action at temperature T may now according to Egs.{(11) and (17) be
written as

(18)

2

. 2“0 r 2 2 12 2

H(T) = ——onu I/ 312 ~12) + {q - 112 41
Q( ) 41(2I-1) L\%ZZ T ( ~7 ~ ) <~lXX ,\q;.yy> T 2 ("‘4' M-)

We shall now apply the preceding formalism to the particular

169

case of Tm The twofold degeneracy of the nuclear ground state

of Trn'lég (I=1/2)1is not removed by the Hamiltonian, Eq.(18); the
8.4 keV excited state (I = 3/2), on the other hand, is split by the
nuclear quadrupole interaction into two states. Thelr energy separa-

tion <AE>T which follows from the diagonalization of the Hamiltonian

HQ( I') is given by

By = (2Q/2) g o + L < 17 ¢
<A >T = (e 2) L<347 T * 3 4 '_qyy>T (19)

XX ey

This expression may be written in more detail, by using Eqgs. (5), (8),

{14),(15),(17):
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where <3~i‘; - /lf)rl“ and <;]“, + N]VZ_ >T are thermal averages defined
as those given by Eq.(16), while the parameter <1"3 >Q is defined by
<r—3\ -3

¢

o = (- RQ) G (21)

It is just this splitting <AE>T that is measured as a separation of
gamma lines in recoilless resonance absorption experiments.

Several additional hyperfine interaction mechanisms which
contribute Lo lhe nel nuclear yuadrupole coupling of a rare earth ion
have been neglected in our calculations. These additional contri-
butions arise in second-order perturbation theory with the principal
effects coming from the magnetic hyperfine interaction itself (30)
(the so-called pseudo-quadrupole coupling) and from the quadrupole
interaction with states of higher J admixed into the ground state
multiplet by the CEF. We have made calculations of these contri-
butions for the compounds covered in this paper and they amount to
less than 1% of the total quadrupole interaction energy.

In order to compare experimental results with theory within the

framework of the CEF model it is convenient to replace in the theo-

(30) R.J. Elliott, Proc. Phys. Soc. B70, 119 (1957)
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retical expression for the quadrupole splitting <AE>T all quantities
involving electronic radial integrals (the theoretical determinations
of which is presently somewhat uncertain) as well as the nuclear
quadrupole moment by experimentally observable parameters. For

this purpose we introduce the dimensionless parameters
o =etQ (r 25 (Tl la> /c® (22a)
1 Q 2
= 1 -~ -2 .
p, = Q1 ,OO)/ {r >E (22Db)

Expressed in terms of these parameters the quadrupole splitting

. 169
in Tm reduces to

; -1 0 2712 _ 72 +oacO -
AEDy = { [Cz Py 3L, = L0r 4G pa] *
(23)
s L lGrel o) gz e gy, +act o]0y
5 2 P Sy T A0y 2 P2 }

The temperature averages < )L/Z -J*  and <,~£j + sz_ >T within
the framework of the CEF model depend only on the experimentally

- [$¢!1
observable CEF parameters C
n
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Iv  EXPERIMENTAL TECHNIQUE
The nuclear quadrupole interaction was measured by using the

technique of the recoilless nuclear resonance absorption of gamma

69

radiation (2). The partial decay scheme of Er 169 is shown in Fig. 2.

Measurements of the gamma resonance absorption were performed
as a function of the relative velocity between sources and absorbers.

The measurements involved sources of erbium trifluoride (ErF.) and

3)

erbium oxide (ErZ.OB) and absorbers of thulium ethyl sulfate

(Tm (CZH‘SSO4)3 . QHZO . abbreviated to TmES)and thulium oxide

(TrnZO3).
Anhydrous ErF.3 provides an excellent source for experiments
16¢
utilizing the 8.4 keV line of Tmlé). The crystal structure of the

heavy rare-carth trifluoridces has been investigated by Zalkin and
Templeton (31). At temperatures below about 900 - 1000° C the

stable phase is orthorhombic, space group D16

-P a, | i
>h nma, having four

formula units per unit cell. The rare earth ions arc crystallogra-
phically equivalent, having the point symmetry m. Thus, although
the electric field gradient tensor EnvalJ 1s not axially symmetric, all
erbium (or thulium) nuclei experience the same 0&1] Therefore,
the quadrupole splitting of the recoilless absorption line given by
Eq.(23), may be expected to pass through zero or at least through a
minimum at a specific temperature (550° K in this case}). The advan-
tages of a single-line source are thereby obtained. The line width

obtained this way with sources of ErF3 is less than with sources of

(31) A. Zalkin and D.H. Templeton, J. Am. Chem. Soc. 7»._5_,
2453 (1953)
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Er203 where the presence of non-equivalent crbium sites complicates
the situation (23),(24). At the same time, with reasonable precau-

tions, the ErF

3 can be maintained at the critical temperature for

periods of several weeks without decomposition or rcaction. This
chemical stability does not exist with most other erbium salts in
which the erbium ions are also crystallographically equivalent (e. g.,
the sulfate, nitrate, chloride).

Anhydrous ErF3 was prepared from erbium metal or erbium
oxide by a ''wet' process. The metal or oxide was first dissolved in
a small quantity of nitric or hydrochloric acid in polyethylene centri-
fuge tube. A few ml of aqueous hydrofluoric acid were then added
and the mixture heated at approximately 100° C in a water bath for 30
minutes. The somewhat gelatinous ErF3 precipitate was then centri-
fuged down, the excess solution decanted off, the precipitate washed
with distilled water, centrifuged three to five times and dried in air
at roughly 100°C. Air drying yields a hydrated Eer of unknown
composition. To remove the water of hydration, the dry contents of
the centrifuge tube bottom were transferred to a small tantalum boat
and annealed in an evacuated fused quartz tube. Experience showed
that the hydrated ErF3 could be converted directly into a mixture of
the several forms of oxyfluoride (32) if the annealing temperature
was raised too rapidly. The procedure finally adopted was to hold

the hydrate at room temperature at about .10‘5 torr for at least 12

hours in order to pump off most of the water. The temperature was

(32) W. H. Zachariasen, Acta Cryst. 4, 231 (1951)
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then raised slowly (in 60 hours) to 1 50° C, Lhus removing virtually all
of the water. Finally, the temperature was raised to 850° C in an-
other 6 hours and then reduced back to room temperature within 2
hours. This procedure yielded consistently good clean x-ray powder
patterns of the orthorhombic phase without a trace of the hexagonal
phase appearing (31). ErF?) prepared in this manner appears to re-
main stable at room temperature over an indefinite period of time.

At elevated temperatures care must be e¢xercised to avoid reaction
with oxygen or water vapor. Sources of ErF3 were prepared in the
above manner from ErZO3 (usually enriched in Erl{)8) or from erbium
metal after irradiation in the Materials Testing Reactor, Arco, Idaho.
Alternatively, the ErF3 was prepared first and then irradiated. Iden-
tical spectra were obtained by the two methods.

Absorbers of Tlm]i“3 were used in order to experimentally determine
the critical temperature at which the narrowest possible emission
line is obtained with sources of EI‘FB. Figure 3 shows the tempera-
ture dependence of the quadrupole splitting in TrnFB. The source was
mounted in a small evacuated oven shown in Fig. 4. The absorber
was maintained in a helium atmosphere within an oven equipped with
beryllium windows.

It is interesting to note that the same minimum line width
(1.8 cm/sec) was obtained in both the trifluoride ~trifluoride and tri-
fluoride-ethylsulfate experiments. This strongly suggests that the
quadrupole splitting of the trifluoride line does indeed pass very near
to zero at 550OK(24). This minimum observed line width of

1.8 cm/sec may be compared with the theoretically predicted line



-28-

Temperature dependence of the quadrupole splitting
. . 169 .

of the 8.4 keV gamma line of Tm using an ErF,

source and a TmF,% absorber. Source and absorber

were maintained at the same temperature.
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Fig. 4:

30~

Details of moveable source oven. The entire oven
(weight 0.2 kg) was moved relative to the absorber

by the cam drive. The main body of the oven was
made of stainless steel. A similar oven made of
aluminum was used with the transducer drive. The
heating element was fabricated from nichrome strips,
1/16 x 0.005 in. For a source temperature of 550° K

the power input was 30 W.
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width. In a transmission-vs-velocity measurement since an emission
line of width T is moved over an absorption line of width I' , one ex-
pects a minimum line width of 2I' . In the case at hand this is (in

velocity units)

2T C/Ev = Z'Hc/’CE'Y = 0.74 cm/sec

based on the lifetime (33),T = 6.28" 10’9 sec, and energy,

169

E = 8.42 keV, of the first excited state of Tm . However for an
Y

absorber of finite thickness this width increases by a corvection

factor which is 1.47 in our case for an absorber of 5 mg/cm? of
thulium and a total conversion coefficient of 325 from Kankeleit et al.
(34). Thus the predicted line width 1s 1.0Y ¢m/sec which must be
compared with the minimum observed line width of 1.8 cm/sec. The
observed line width is 1.6 times broader than expected. The origin
of this line broadening is uncertain.

Absorbers of TmES were prepared by crushing single crystals.
Absorbers of Tm203 and sources of (enriched) ErZO3 were prepared
from commercially available material. Absorbers of all materials
to be used below room temperature were prepared by mixing the
powdered samples with a soft wax and pressing the mixture into thin

disks between mylar films. Absorbers and sources of all materials

{33) R.E. McAdams, G.W. Eakins, E.N. Hatch, Phys. Letters
6, 219 (1963)

{34) E. Kankeleit, F. Boehm, R. Hager, Phys. Rev. in press
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to be used above room temperature were prepared by settling the
powdered samples from a slurry of dry acetone onto 1/2 mm thick
beryllium windows,

The relative velocities required for Doppler-shifting the gamma
lines were produced by using both cam drives (35) (providing constant
velocities) and transducer drives {36) (providing constant acceleration).
A hlock diagram showing the experimental apparatus for use with the
cam drive is shown in Fig. 5. The experimental arrangement used
with the transducer drive is given in Ref.(36). Proportional counters
filled with one atmosgphere of a mixture of 0% argon and 10% methane
{by volume) and equipped with [ /2 mm thick beryllium windows were
used as detectors, see Fig. 7.

A cryostat specifically designed for recoilless resonance absorp-
tion experiments with low energy gamma radiation was used for the
measurements (37). The sample temperatures in the range from 10°K
up to 300° K were attained by either controlled heating of the cooled
sample holder, by pumping on liquified gascs, or by using exchange
gas cooling. The sample disks were clamped between thin beryllium
disks soldercd to the cryostat sample holder in order to cnsurc good
temperature uniformity and stability. Temperature measurements
were made using carbon resistors and thermocouples. The oven used
for heating sourcces to 2000°K is shown in Fig., 8.

69

- . 1 . .
Some typical M8ssbauer spectra for Tm are shown in Fig. 9.

(35) R. L. MBsshauer, Proc. MUssbauer Conf. 2nd, (John Wiley
and Sons, New York, 1962), p.38

(36) E. Kankeleit, Rev. Sci. Instr. 35, 194 (1964)

uhliched

——
(o8}
-J

) F. T. Snively, to be p
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Fig. 5: Block diagram of experimental apparatus {or use with
the cam drive. A detailed schematic of the pro-
grammer is presented in Fig. 6. All other electronic
equipment shown is commercially available, The cam
drive has been described elsewhere (35). The recoil-
less resonance absorption measurements were per -
formed by first moving the source at a normalizing
speed (12 cm/sec), then at a measuring speed (v), and
finally at the normalizing speed. The three runs were
of about 5 min each. The counting rates, C, during
the two normalizing runs were averaged and combined
with the results of the measuring speed to yield the
amount of absorption, A(v).

Alxv) = [C(x12) —C{£v)]/C{x12)

AVE AVE

This sequence of events was repeated until the counting
statistics were satisfactory. The information at the end
of each run was printed out on a typewriter for moni-
toring purposes and punched out on paper tape for
processing by an electronic computer. The entire

process was automatic except for changing from one

measuring speed to another.
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Fig. 6: Schematic of programmer for use with cam drive.
This programmer controlled the changes from the

normalizing speed to the measuring speeds and

initiated the counting and print-out cycles of the

scaler, see Fig. 5,
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Proportional counter. The anode of the counter is
a 3 mil stainless steel wire kept under light tension
by a spring in the end fitting. The beryllium window
is 0.5 mm thick, This counter was operated at about
2500 V with 1 atm of 90% argon and 10% methane, by
volume. Under these conditions the resolution at

8.42 keV was about 17%.
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High temperature, resistance heating, source oven.
The heating coil was fabricated from two pieces of
56 mil tungsten wire 15 in long. These two pieces
were connected in parallel and the source container
was suspended from the midpoint of each piece. For
0 .
a source temperature of 1970 K the power input was
. -4 . .

4.8 kW. A vacuum of 10 =~ torr was maintained in
the oven. The thermocouple made of tungsten vs.

tungsten - 26% rhenium is reliable to 3100 K.
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) L ) 169
Quadrupole splitting of the 8.4 keV level of Tm
in an absorber of thulium ethyl sulfate {5 mg/cm?

, 169

in ErF.

source of Er 3

of thulium). A "single line'
was used at the critical temperature T = 550° K
throughout curves a-d. The spectra a, b and c¢, d

were obtained by using a cam drive and a transducer

drive, respectively.
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V. EXPERIMENTAL RESULTS AND ANALYSIS

The nuclear quadrupole interactions measured as a function of
temperature in the compounds TmES and Tm203 are given in Figs.
10 and 11, respectively. Details of the figures are explained below.
The reduction of our experimental results is carried out in two sub-
stantially different ways:
Method 1: We combine our nuclear quadrupole splittings obtained
from gamma resonance absorption measurements with optically de-
termined CEF levels and obtain two quantities

0 1 0,°

cOrch + L )
P12 W 3 2

1,.2,% .3 .
+ ~3—(CZ) ] which de-

2,23
(CZ) ] and P [(C
pend directly on the electronic shielding factors, compare Eqgs.(5),
(21), (22). This method emphasizes the low temperature data, which
have the smallest relative errors.
Method 2: The same two quantities may be obtained without the
necessity of referring to any optical determination of CEF levels,
merely by using gamma resonance measurements obtained at elevated
temperatures. This method is useful in those cases where measure -
ments can be performed at temperatures which are large compared
to the overall CEF level splitting, but small compared to the spin-
orbit splitting. This is the case in both TmES and TmZO3.

1. Thulium Ethyl Sullate (TmES)

All rare earth lattice sites in TmES are occupied by Trn?)+ ions
with point group symmetry C3h' By choosing the proper coordinate
system (22) the relevant CEF parameters as defined by Eq.(8) are

0 0

limited to Cg, C4, C6 and C(é) for this symmetry. This leads to an



Fig.
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Temperature dependence of the nuclear quadrupole
: : - 169, .
interaction of Tm in absorbers of thulium ethyl
sulfate (TmES). Sources of E:rF?) (T = 55001{; single
line) were used. Curve A is the best two-parameter -
fit {parameters Py and pZ) to the experimental data.
Curve B is the best one-parameter-fit (parameter p 1)
to the experimental data, thus disregarding the lattice
contribution to the electronic shielding (i.e. P 0}.
The CEF parameters in set 3 of Table II were used in
both curves A and B. Observe that <&E>, ——>
I'— oo

for curve B.

The difference between curves A and B shows the

T.at
large contribution of the lattice part (1——\/00) q_§i at)

to
the electric field gradient at the nucleus. Curve B
illustrates in particular, that it is not possible to ob-

tain a good fit to the experimental data by merely

adjusting the theoretical value of either Q or RQ.
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Temperature dependence of the nuelear quadrupole

69 .
9 in Tm203. Sources of ErF3

interaction of Tml
(T = SSOOK; single line) and absorbers of Tm203

(5 mg/cm® of thulium) were used for temperatures

of the absorber in the range 11°K < T < 700°K.
Absorbers of TmES (T = 300° K; single line; 5 mg/cm?
of thulium) and sources of L‘rZO3 were used for
temperatures of the source in the range T ~ 700° K.
Curve A is the best two-parameter-fit (parameters

Py and p,) to the experimental data, using the CEF

2

parameters of Table VI. The insert shows a typical

spectrum. The importance of the lattice contribution

(Lat) . . (Lat)
~ - +
(1-y ) ds; to the total field gradient (1-y ) 9,
(1“RQ) qiff) at the nuclear sites is strikingly demon-

strated by the fact, that the quadrupole splitting <AE>T
does not approach zero in the high temperature limit,

but rather goes through a minimum and then increases

. . (Lat)
again, with <qii> T S (l—yoo) U .
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axially symmetric electric field gradient at the nucleus, i.e.

<§XX *3yy T 0. In this case the quadrupole splitting <AE>T of

the gamma lines, Eq.{23), reduces to

Bp = 3¢y [0, BIE -1D0 + 4p, ] (24)

Method 1: In order to obtain the quantities Cg and <3gw?‘z _»{2>T
entering in Eq.(24) we use different sets of optically determined
CEF parameters given in Table II. Set 1 was obtained for Tm3+ in
LaES by Wong and Richman (14), who employed observed optical
levels from a series of different optical multiplets. Set 2 was ob-
tained for Trn3Jr in TmES by Gruber and Krupke (15), who again
used observed optical levels from a series of different optical multi-
plets. In contrast, set 3 was obtained by a least-squares method
using only levels observed by Gruber and Krupke (15) in the 3H6
term of Tm3+ in TmES. The evaluation of the Cnm given in set 3
thus does not employ optical terms other than 3H() and therefore
should be the set most appropriate for our reduction of the nuclear
quadrupole measurements. To permit a check on the intrinsic con-
sistency obtainable by using one set of CEF parameters for the whole
series of optical levels we confront in Table IIl observed and cal-
culated CEF levels. The overall agreement is rather encouraging,
the average deviations between calculated and observed values being
only of the order of experimental uncertainties. Table IV gives for

set 3 the wave functions and field gradients for the CEF levels which

are necessary for the evaluation of the temperature average
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TABLE II

CEF parameters C;n for thulium ethyl sulfate (units cm-l)

<

Set number Cg C, C() Ci References
Wong and
1 129.8 -71.0 -28.6 432.8 Richman (14)
Gruber and
2 135.2 -71.3 -28.8 428.1
Krupke (15)
3 130.5 -65.9 -28.6 427.3 See text
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TABLE III

Observed and calculated CEF levels for thulium ethyl sulfate in
the 3H6 term of the ground multiplet (units Cmnl). The calculated
levels of set 1 were taken from Wong and Richman (14). For sets 2

and 3 the following reduced matrix elements were used (15):

(Tle)sy =10097 - 107, (o p]s) =1.5938- 107 and
Gy ) =-5.5318 107°
Observed levels & Calculated levels
Set 1 Set 2 Set 3
302.5 306.8 304.7 300.8
274.0 281.1 279,17 274.3
219.3 221.2 221.7
212.9 215.1 215.5
198.9 204.3 204.0 198.8
157.3 162.1 161.4 157.8
110.9 113.3 111.5 110.7
32.1 32.1 28.9 32.0
0 -0.5 -4.4 0.7
a Optically determined levels of Gruber and Krupe (15)
b Calculated levels using the CEF parameters given in Table II.

The center of gravity of the calculated levels is adjusted to
give the hest fit,
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TABLE IV

Energies, wave functions and electric field gradients of the CEF
levels of the 3H6 term of the ground multiplet of thulium ethyl sulfate
(C?)h symmetry), using the CEF parameters of set 3 and the reduced

matrix elements given in the caption of Table III.

Energy Degeneracy Wave Function & 332 - g2
1371 1 -0.707 [-3) + 0.707 [+ 3) -15.
110.6 2 -0.446|-2) + 0.895 |+ 4) - 1.
0.895[-4) - 0.446 |+ 2)

58.0 1 0.697 |-6) - 0.1680)+ 0.697 [+ 6)  63.

51. 8 1 -0.707 |-6) + 0.707 |+ 6) 66.

35. 1 2 -0.305 [-1) + 0.953 [+ 5) 26.
-0.953 |[-5) + 0.305 [+ 1)

-5.9 1 0.707 [-3) + 0.707 |+ 3) ~15.

-53.0 2 0.895 |-2) + 0.446 |+ 4) -22.
0.446 [-4) + 0.895 |+ 2)

~131.7 2 0.305 |-5) + 0.953 |+ 1) -32,
0.953 |-1) + 0.305 [+ 5)

-163.0 1 0.119 [-6) + 0.986 [0) +0.119|+6) -39.

a The general form of the wavefunction is given in Eq. (9)
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(332~ I;. Eqs. (16) and (24).

A summary of the reduced data obtained by combining our
measurements of the temperature dependence of the nuclear quadru-
pole interaction for Trn3Jr in TmES with the results of optical
measurements performed on the same compound is presented in
Table V. The dimensionless parameters Py and Py presented in
Table V are experimentally obtained quantities (compare Fig, 10
curve A) which hold within the framework of the CEF model. The ad-
vantage of introducing these parameters is that their deduction does
not depend on a knowledge of the radial distribution of the 4f-elec-
trons or the value of the nuclear quadrupole moment. Such a know-
ledge, however, enters into the evaluation of the shielding factors,
Eqgs.(22), (21) and (5).

Method 2: At elevated temperatures the temperature average

<3;I,; —-;l2>T entering in Eq.(24) may be approximated by Eq.(I-17) of
Appendix I, which yields {3]#~J% = -14.1 C)/KT. Expansion
(I-17), which applies to the case of an axially symmectric field gra-
dient, was first given by Elliott (39). Details are given in Appendix I,
which also includes an extension to the case of non-axially symmetric

field gradients. From a plot as a function of 1/T of our measure-

ments obtained for TmES at temperatures T > ZOOOK, Fig. 12, we

2 —
obtain from Eqgs.(24) and (I-17) the values pl(Cg) = {(0.18+ 0, 05)crnZ
and pZCg =(2.8%1.1) 10~3 mela These values may be compared

{38) M. C. Olecson and B. Elbek, Nuclear Phys. 15, 134 (1960)

(39) R.J. Elliott, Rev. Mod. Phys. 36, 385 (1964) and private

communicat ion
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Fig.

12:

“55 .

Nuclear quadrupoleinteracthn1of'Tn1169in.absorbers
of thulium ethyl sulfate and thulium oxide plotted as a
function of 1/T in the high temperature ranges where
method 2 is applicable (see text). The straight lines

are the best fit to the experimental data points.
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with the values obtained by method 1: pl(Cg)Z = (0.157£0.001) crnm2

and pZC(Z) =(2.57£0.07) 10“3 cm—l. The agreement between these
two values obtained by two different methods gives confidence in the
consistency of our analysis. In particular we conclude on this basis,
that our results are not seriously influenced by any temperature de-
pendence of the CEF parameters Cﬁl, within the temperature range
studied (9. 6°K - 3OOOK). The agreement obtained for the results of
methods 1 and 2 indicates that the CEF parameter Cg is reasonably
independent of temperature. The higher order parameters Cg, C2
and (’2 should be even less dependent on temperature, because of the
faster convergence of the associated lattice sums. The justification
of the neglect of any temperature dependence of the CEF parameters
(Jrrln in our analysis is supported by measurements of Gruber and
Conway (40), who determined by optical methods the energies of CEF
levels of Tm>  ions in TmES at T = 77°K, 194°K and 273°K. The
changes with temperature in the position of the levels typically are
less than 10 cm—l. We therefore feel justified in using in our analysis
one set of CEF parameters, C;n, determined optically at a single
temperature.
2. Thulium Oxide (Tmzog)

The Tm3+ ions in the TrnZO3 (space group T;) occupy two non-

equivalent lattice sites; sites with symmetry C2 and C3i occur in

(40) J.B. Gruber and J.G. Conway, J. Chem. Phys. 32, 1178
(1960)
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the ratio 3:1. Experimentally, only the higher populated ionic sites
associated with point group symmetry CZ are observed. By choosing

a proper coordinate system the relevant crystal field parameters for

L 0 2 0 2 -2 4 -4 0
CZ symmetry are limited to CZ’ CZ’ C4, C4, C4 , C4, C4 , Cé,
2 -2 4 -4 6 -6 -2 . ..
C6’ C6 , Cé, C6 , Cé, C6 . The parameter CZ has been elimi-

nated by the proper choice of the coordinate system. One may always
. -m . m .
eliminate one Cn by such a choice (22) when Cn also exists .
. . . m -m .
Assume that in a given coordinate system both Cn and Cn exist,
Then by rotating the coordinate systems about the Z-axis by an angle
6 defined by
tan §=-C_/ch
n n
one may reduce the problem to one parameter in the new coordinate

1
system, Cnm, which is related to the old parameters by

1

c™ = V(G + (C )

The quadrupole splitting of the gamma lines produced by the non-
axially symmetric field gradient is given by Eq. (23).

Method 1: Gruber et al. (16) have studied the optical absorption and
emission spectra of Tm3+ ions in YZOB at the CZ symmetry sites;
the same CEF levels were obtained in preliminary studies of an%L
in TmZOB’ within the limits of the experimental accuracy. Using
the energy levels obtained for diluted Trn%L by Gruber et al. (16) we
have calculated the crystal field parameters C;l which are included

in Table VI. This calculation was performed by minimizing x?2,
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TABLE VI

. +
Observed and calculated crystal field levels for Tm3 in thulium
oxide at sites with C2 symmetry, in the 3H6 term of the ground

multiplet (units cm_l). The following set of CEF parameters was

used™: Cj = =82, CZ= 636, cJ=-100, = 1070, c;%= 118,
Ci = 837, 0114 = —68, 02 =3, (;(2) = 83, CE)Z: 2, C?; =227,
Cé‘}: -316, c(g =1, Cg6 = 1b4
Calculated Observed Calculated Field Gradients
levels levelsb Degeneracy <3J§ - .TZ> <Jf_ + Jf>
770 796.9 1 - 1.1 -74.2
768 788.5 1 - 4.1 -69.9
680 1 16.8 -43.0
674 1 7.5 -37.9
497 494.0 1 - 8.7 42.0
429 435.7 1 -21.3 17.5
344 1 ~22.2 - 2.3
336 340.0 1 -17.1 25.0
258 230.3 1 - 8.3 11.8
200 219.0 1 3.0 22.7
95 89.3 1 - 9.9 42.7
44 30.7 1 40.3 28.2
-1 0 1 25.2 37.5

a A preliminary set from Gruber et al. (16)

From Gruber et al. (16)
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using the technique described by Davidon (41). A summary of the re-
duced data obtained by combining our gamma resonance measurements
for Tlrn3+ in T:mZO3 (compare Fig. 11) with the results of the optical
measurements is included in Table V.

Method 2: At elevated temperatures the temperature averages
<3£‘Z—£¢>T and <gwi + gf)T entering in Eq.(23) may in first order
be approximated by the expressions given in Eq.{(I-17) and (I-18) of
Appendix I, which yield {332 -32 = -14.1 CO/KT and (2 + 12 D=
-9.4 C;/kT. From a plot as a function of 1/T of our measurements
obtained from TrnZO3 at temperatures T = 1270° K, Fig. 12, we ob-

tain by using Eqgs.(23), (I-17), (I-18) the following values:

0 1, .22 % 2 0 L, 2.2

Py CZ [(Cg)2 + §(CZ) ]2 =(0.540.3)cm “ and Py [(C2)2+ §(CZ) ] =
(4.0£0.9) 10—3 cm™ ! These two values again may be compared with
the corresponding values obtained by method 1, namely (0. 508 0. 001)
em™® and (3.80+0.03) 1072 cmvl, respectively. The rather good
agreement between the valucs obtained by mcthods 1 and 2 suggests,
as in the case of TmES, that the mneglect in our analysis of any
temperature dependence of the CEF parameters C;n is a justifiable
approximation. Iurthermore, the agreement suggests the absence of
crystallographic phase transitions in the whole temperature range
studied. X-ray diffraction studies of Stecura and Campbell (42) do

not reveal any phase tran sitions within the temperature range 300°K

<T < 1568°K.

(41) W.C. Davidon, ANL-Report 5990 rev., (Nov. 1959)

(42) 5. Stecura and W.J. Campbell, U.S. Bur. Mines, Rept. on
Investigation No. 5847 (1961)
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Vi. ELECTRONIC SHIELDING FACTORS

Our experiments reveal the presence of strong charge polari-
zations of closed electron shells. The shielding (or antishielding)
factors RQ’ Yoo and T which were introduced in Sections II and III,
are a measure of these charge polarizations.

The antishielding factor Yoo ("'lattice" Sternheimer factor) may be
calculated by several techniques when the free ion wavefunctions are
known. Wikner and Burns (25), Ray (26), Sternheimer (27), and
Freeman and Watson (28) have made calculations of this quantity for
certaln rare earth ions, and their results are summarized in Table
VII. Wikner and Burns used the (restricted) Hartree-Fock wave-
functions calculated by Ridley (43) for Pr3+ and Tm3+ and calculated
Yo by means of a perturbation-variation method. Sternheimer used
the same wavefunctions, but calculated Yo by direct solution of the
inhomogeneous Schridinger equation for the perturbed wavefunctions.
Freeman and Watson used the unrestricted Hartree-Fock formalism
to calculate Yoo for Ce3+. The value of Freeman and Watson for
Ce3+ is not very different from that obtained by Sternheimer for the
neighboring ion Pr3+ , but differs appreciably from the value which
Wikner and Burns obtained for Pr

Thcorctical cvaluations of the shielding factor RQ are more
involved. This results because of the proximity of the closed elec-
tron shells to the distorting source, the 4f-electrons. For this

reason, one may even expect that the distorted shells may produce

(43) E.C. Ridley, Proc. Cambridge Phil. Soc. 56, 41 (1960)
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repercussions upon the 4f-electron shell, as was pointed out by
Freeman and Watson (12), (44). Table VII includes the few available
theoretical values of RQ = Rrad + Rang for rare earth ions.

Theoretical evaluations of the shielding factor o, are physically

2

similar to those for Yoo The additional complication arises from
the fact, that Y oo is a measure of the closed shell distortions ex-

perienced at the origin, while o, is a measure of the closed shell

distortions experienced at the position of the 4f-electrons, thus re-
quiring in addition a rather precise knowledge of the 4f-electron

density. Theoretical predictions for o, are still rather qualitative.

2

Lenander and Wong (10) came to the conclusion that the shielding
factor o, was of the order of 0.5 to 0.75 in the case of PrCl3 while

Watson and Freeman (12) in the case of cerium ions likewise con-

cluded that shielding via the o, factor is large. Ray (26) arrives at

2
the theoretical value of o, = 0.52 for the case of PrClB. Burns {9),
on the other hand, using analytic perturbation calculations, con
cludes that the shielding factor T, should be at most of the order of
0.1 for rare earth ions.
The analysis of our cxperimental results yidds the parameters

Py and Py given in Table V. Using the value of the nuclear quadru-
pole moment Q we can evaluate the parameters <r—3>Q and (1~'yoo)/

<rz>E. Values of these parameters are included in Table V. It

appeared reasonable to use a theoretical value for Yoo tO obtain the

radial integral <rZ>E, since theoretical evaluations of this quantity

(44) A.J. Freeman and R. E. Watson, Phys. Rev. 131, 2566 (1963)
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TABLE VII

Theoretical values of Sternheimer shielding factors for rare

earth ions

Ion Yo Rrad Rang Reterence
ce "t - 735 0.43° (28)
prot - 16.4 (26)
poot -105 (25)
Py - 78.5 (27)
Tm> " - 61.5 (25)
Tm " — (21)

Eu 0.29 ( 5)

a Using the value (28) <r—3 >4f =4.71 a.u.
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appear to be relatively reliable.

Besides the values of the ''electric' radial integrals <r—3>Q and
<rZ>E, which enter in the analysis of our measurements of the
nuclear quadrupole interaction, there exists a '"magnetic' radial
integral <r"3>M, which enters in the analysis of nuclear magnetic
interactions. The effective integral <r~3>M likewise may be asso-
ciated with a shielding factor (5), (45), which in analogy with the
electric case is defined through the relation <r—3>M = <r—3>4f(1~RM)
(compare Eq.(21)). The difference between the values of <r—3>Q and
<r—3>M arises because the contributions from the closed shells differ
for the quadrupole and the magnetic interactions. This difference is
due to the different forms of the interaction operators for the nuclear
quadrupole, magnelic orbital and magnetic spin inleractions, as was
emphasized by Sternheimer (5),(45) and Freeman and Watson (44).

The radial integrals <r’3>Q, <r—3>M and <rZ>E, which enter the
anuclear quadrupole, nuclear magnetic and CET interactioas, incor-
porate the contributions to these interactions from both the partially
filled (4f) and the closed electron shells. These radial integrals in

principle may be taken from experimental observations, a procedure

adopted in this paper. Table VIII includes a compilation of relevant

(45) R. Sternehimer, Phys. Rev. 86, 316 (1952)

(46) I. Lindgren, Nuclear Phys. 32, 151 (1962)

(47) B.R. Judd and I. Lindgren, Phys. Rev. 122, 1802 (1961)
(48) R. L. Cohen, Phys. Rev, 134, A94 (1964)

(49) E. Gerdau, W. Krull, L. Mayer, J. Braunsfurth, J.
Heisenberg, F. Steiner, K. Bodenstedt, Z.Physik [74, 389 (1963)
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radial integrals for Tr:rl3+ ions in different chemical surroundings,
obtained from experimental data by using the theoretical values for
Q and Y o given in the caption. The table includes radial integrals
evaluated from onr gamma resonance studies as well as from other
pertinent experiments,

The interpretation of the radial integrals in terms of electronic
shielding factors requires a knowledge of the quantities <r~3>4f and
<r2>4f, as discussed above. These radial integrals are not acces-

sible to direct experimental observation and one is forced to use
thearetical valunes, the evaluation of which is presently somewhat
uncertain because of the lack of sufficiently accurate atomic wave
functions for rare earth ions. Any evaluation of electronic shielding
factors is therefore limited by the uncertainties in these theoretical
values. Nevertheless, by using a specific set of theoretical values
throughout the whole analysis, one still can observe the general trend
in electronic shielding.

Freeman and Watson {(50) discuss the theoretical situation in the
evaluation of <r_3>4f and <r2>4f for most rare earth ions. These
authors. in particular, have shown that the values of <r_3>4i. for
rare earth ions incorporated in a solid do not differ very much from
the free ion values (28). Table VIII includes a compilation of elec-
tronic shielding factors for an3+ ions obtained by using the theore-
tical quantities given in the caption. The uncertainties of the theore-

tical values of Q, <r2>4f and <r_3>4f are presumably less than 30%.

(50) A.J. Freeman and R. E. Watson, Phys. Rev. 127, 2058 (1962)
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It appears from Table VIII that the shielding of the nuclear qua-
drupole interaction and the nuclear magnetic interaction, expressed
through the shielding factors RQ and RM, is always small in the case
of Tm3+ ions.

As concerns shielding factors other than R, we note again that
our experiments provide only the ratio (l-'yoo)/ <r2>E =
(1—yoo)/[(1—62) <r2>4f ], compare Eqgs.(22), (23). It appears from
column 7 of Table VIII that there is a substantial electronic shielding
associated with the shielding factor 05s which describes the fact that
the 4f electrons do not interact with the direct CEF, but with a CEF
shielded by core electrons (primarily 5szp6 electrons). This ex-
perimental observation is in qualitative agreement with conclusions
we draw for praseodymium salts from NMR measurements on lantha-
num salts performed by Edmonds (6). CEF shielding effects of
comparable magnitude were also obtained by Blok and Shirley (8),
in the case of several rare earth ethyl sulfates and rare earth double
nitrates, using nuclear alignment techniques. We note that our con-

clusions concerning o, are in agreement with the theoretical

2

estimates of Lienander and Wong (10), Ray (11) and Watson and
Freeman (12), but are in serious disagreement with theoretical
conclusions of Burns (9).

It is interesting to note the difference in the o, values presented

2

in Table VIII for TmES and Tm203. This seems to indicate that T,
depends on the chemical environment, which might result from

different amounts of overlap of ligand wavefunctions with the central

rare earth ion. This seems to conform with similar conclusions by
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ITutchings and Ray (21) for the case vl PrCl, and PrBr_. It should

3 3

be observed that our conclusions concerning o, are based on the
plausible assumption that Yoo is much less dependent on the chemical
bond than 75

Furthermore, we emphasize that we have neglected the
non-linear shielding effects (12) in our analysis. Appreciable non-
linear shielding would invalidate the CEF parameterization scheme.
However, due to the overall agreement reached in our analysis -- in
terms of linear shielding -- of the optical data and our quadrupole
data we conclude that non-linear shielding effects play only a minor
role.

Similar measurements of the nuclear quadrupole interaction in
TmES as those reported in this paper were performed by Hlfner
et al. (51). HUfner et al. in the analysis of their data did not take
into account, that the optically determined CEF parameter C(Z) does
not represent an unshielded CEF parameter but rather represents a
potential at the 4f-electron sites which undergoes shielding by closed
electron shells of the order of 70%, as shown in this paper. We
would like to emphasize, in this context, that the lattice contribution
to the total electric field gradient at the nuclear sites is most easily
observed in the measurements performed at higher temperatures.

The nuclear quadrupole interaction in TmZO3 has been investi-

gated previously in a limited temperature range by Cohen ot al., (23)

(51) S. HUfner, M. Kalvius, P. Kienle, W. Wiedemann,
H. Eicher, Z. Physik 175, 416 (1963)
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and Kalvius et al. (52) using recoilless resonance absorption of
gamma rays. In the analyses of these papers the direct contribution
from the lattice to the electric field gradient, enhanced by electronic
shielding, was not considered. Preliminary results for 'l’m203 in a
limited temperature range were reported by Cohen (53).

Although the importance of shielding effects expressed by the
factor o, is well established, the absolute values of the shielding
factor o, may be in error by up to 30%. On these grounds we do not
feel that there exists any of the serious discrepancies reported by
Hifner et al. (51) between the value of the nuclear quadrupole mo-

ments obtained by gamma resonance measurements and those derived

from Coulomb excitation measurements.

(52) M. Kalvius, W. Wicdemann, R. Koch, I’. Kienle and II. Eicher,
Z. Physik 170, 267 (1962)

(53) R. L. Cohen, Ph.D. thesis, Departmentl of Physics, California
Institute of Technology, Pasadena, 1962, unpublished
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VIiI. SUMMARY

This work has demonstrated that the technique of gamma reso-
nance absorption provides a sensitive method for investigating elec-
tronic shielding by closed electron shells in rare earths, via measure-
ments of the temperature dependence of the nuclear hyperfine inter -
actions. It was shown, in particular, that in those cases where
measurements can be performed at clevated temperatures one can
obtain information on electronic shielding factors without the necessi-
ty of relying on CEF parameters determined by other methods, such
as uptical spectruscopy. Our results lead to the conclusion that the
distortions induced in the closed electron shells by the 4f shell only
produce a small shielding of the 4f electron contribution to the total
field gradient at the nuclear site ("atomic' Sternheimer shielding
factor [RQ| < 0.1). On the other hand the distortions induced in
the closed electron shells by the CEF lead to substantial enhance-
ment of the direct electric field gradient produced by the surrounding
ions at the nuclear site (''lattice' Sternheimer antishielding factor
Voo) as well as to a substantial reduction of the CEF as seen by the
4f-electrons (shielding factor 0‘2). We obtain values for (1-—*}/00)/

(1-0,) of 250 for Tm3+ ions in thulium ethyl sulfate and of 128 for

2
+
Trn3 in thulium oxide. The difference in these two values seems

to demonstrate a dependence on the chemical bond.
It is interesting to note that the ratio of 1——@2 for TmES to 1-——0“2
for TrnZO3 agrees approximately with the ratio of the overall CEF

splittings in these two compounds,

It appears that measurements of the nuclear quadrupole inter -
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action are presently much better suited to determine electronic
shielding factors than to determine nuclear quadrupole moments, due
to the existing uncertainties in the different electronic shielding

phenomena.
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APPENDIX I
In what follows we derive an approximation for the electric field
gradient which holds at elevated temperatures.
The relevant matrix elemments entering the expression for the
electric field gradient introduced in the text, Eq.(15) can be ex-

pressed in terms of spherical harmonics by

Callef| 3) (392-39), =4V T 75 (x YO (9., ¢.)) o (I-1a)
1

(I-1b)

(3 el 5) g +3%) 7 = AT /15 <?[Y§(0i’ o)t Ygz (s ‘pi”>T

where the z. extends over all 4f electrons.
Using the density matrix formalism the thermal average of

the spherical harmonics in Eq.(I-1) may be written as

(Yf}T =771 KL; (MM [Y 7 exp [~ B (H,+ V) [AM) (I-2)
where
z= 0, (aM|exp [, + V)] |am) (1-3)
AM

and § = 1/kT. The Coulomb and spin-orbit interactions are

represented by HO and V 1is the CEF potential defined by
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Ve AT Y0 e)) (1-4)
inm

and the electronic wave functions ,}\ )/> for pure Russell-Saunders

coupling are defined by
(Hy + V) |av) =(E +Ey) ) (I-5)

The quantum numbers @LSJ are represented by )\ and V is a
quantum number characterizing the CEF levels. Since the trace of
a matrix is invariant to the choice of basis functions, we choose
eigenfunctions of M{Z in Eys.(I-2) and (I-3) rather than using the
eigenfunctions in Eq.(I-5) which are mixed in M. The 'lattice
sums'"’ ar;l introduced in Eq.(I-4) are linear functions of those

used in the text (compare Eq.(1)). We have for instance

dg S NENE Ag (I-6a)

aNZ7 15 A% (I-6b)

2

I

as+a;*

and we choose ag = 0.
According to Van Hove et al. (54) the exponential factor in

Eqgs.(I-2) and {I-3) may be expanded as follows

(54) L. Van Hove, N.M. Hugenholtz, L.P. Howland, Quantum
Theory of Many Particle Systems (W.A. Benjamin, Inc.,
New York 1961) p. 82
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exp [=BH+VI]= D »p (1-7)

i n
=0

where Py ~ exp(—ﬁHO) and for n>0 we have

B Bl Bn—l
Pn:('l)n/ dBI/ dBZ../ dﬁn CxXp [_(B—QI)HO] V-
0 0 0

cexp | ~(51~BZ)HO] V...V exp| -—(Bn—l—Bn—Z)HO Vexp (-—BHHO)

For a temperature large compared with the CEF interaction energy
(i.e. BE,, < 1) only the first few terms of Eq.(I-7) need be considered.

Hence Eq.(I-2) reduces to

(I-8)

SHYE z7! ﬁ\:‘{ <AM}Y;’1 [am) (o |p P+ OB |AM)
MM!

where

_ 2
z %{lepo+pl+O(B)[xM>

and
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<?\1M! ,pO |7\M> = exp (~ BE}\) 5?\?\, GMM' s

~Bexp(-BE,) (AM' [ViM)  for x = !

M M) =
<7‘ 19117\ > eXp[B(E?\,—-E?\)]——l

—exp (- BE, ) (M vy

for A F A

Furthermore, if the temperature is also small compared with the

spin-orbit splitting (i.e. B( E?\ —-E?\ ) >> 1, where A
1 0
the first excited term of the ground multiplet and A

1 represents

represents

0
the ground term) only the ground term is appreciably populated.

Thus Eq.(I-8) reduces to

<Y;n>T = -z Z

MMv[B (MM |Y;n l}\OM'> <7\OM' IV l)\OM> +

(I-9)

vz Qg (M| Y7 2 mr) <7\'M‘IV|7‘0M>/E7\']

1
A #7\0

for n>0. Here Z = 2J0+ 1 and we have chosen E}\ =0. Further-
0
more because of the Wigner-Eckart theorem and the properties of

the vector coupling coefficients (the notation of Edmonds' (55) is

used) we have used the following relations

(55) A.R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, 1957)
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z (MY M) = (2n+ 1) SN 1a(-l)‘T‘M@*MJ-M[;rJnm>

-1)? Mot 1)721" (M7 -M |53 00)

1%/1 (37 00| IMI-M) (IMI-M |33 nm) =06 06,

and therefore
i(xm]&*f‘xM) =0  for n > 0 (I-10)

According to Eq.(I-1) we are only interested in the cases of

even n and m, for which we obtain from Eq. (I-9)

(s, e g ==+ = ™ { (ol vy €30 [ag)

D Golho otz B[ Oglrgo )
* 0

DO Ty g b} e o (=11

In arriving at Eq.(I-11) we used Eq.(I-4) and the following

relations:
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Z <>\OMlY;nl)\'M'> <x‘M‘|YgleM> -

MM

[ I

= [(2n+ 1) (2p+ 1)]

Colal 2y el 1)

Do (Mt (Ipd nm [T MIT=M) (I MT-M[T'T pa) =
MM!

= [(2n+ 1) (2p+ 1)] (7\0“3{ 1) O fe, gy (-n™

Jl
6np 6m_qA(JO n)
where A (JOJ'n) =1 if JO’ J' and n satisfy the triangular condition
and A 1is zero otherwise.
Following Elliott and Stevens (18) we now make the followiug

correspondence between reduced matrix elements

(3 “a (EY SN ENE <ozLSJ“izj T, (0 “aLSJ> /\/?z“; (I-12a)

J,J+ 1

Qa3+ D=-aNT 7518 |2 ¥, (8)]eLsT+ 1) NE ' (1-12b)
1

(Tla 3+ 2= 4vT 75 (aLs |z ¥, (9)]eLsT+2) /N

J,J+ 2
{I-12¢)
where

Q =J(J+ 1) (2T+ 1) (2T-1) (2T + 3) (I-13a)

J,J
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0 . T T EE D I+2) (2T 1) (274 3) (I 13b)

Q 545" % (J+ 1) (T+2) (2T + 1) (2T + 3)(2T + 5) (I-13¢)

Finally, by combining Eqgs. (I-1), (I-6), (I-11) and (I-12) we obtain

the following expressions:

<J“0‘“J> <3i§“£2>rr = Ag <ra>E O (T) (I-14)
Gllels) (23200 =5 A2 (B 0(m) (1-15)
where

@(T):-g.—l; 27+ 1)} KJ“Q“JMZ 55 ¢ (7 e lr=) ] Q5 52,
kT EJ:L—l
SN EDILe
EJ:hZ (I-16)
The factors QJ,J-—-I and QJ,J—Z in Eq.(I-16) are obtained

from Egs. (I-13b) and (I-13c¢c) by changing J to J—1 and J-2,
respectively. The energies EJ:&:l and EJﬂ:Z are those of the

center of gravity of the tecrms ncarcst the ground term which have

quantum numbers J+1 and J=*2.
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. 3+
Applying these results to the case of Tm™ , the effect of the

second and third terms of Eq.(I-16) is negligible ( < 1%) at all

temperatures used in our experiments, Under these circumstances

we arrive at the following high temperature approximations used in

method 2 of the text (compare Eqgs.(23) and (24))

ERL L N TA R VRt G 1 DY 1 g A% (1-17)

@t - @i nTet Gy oy pr s
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APPENDIX II

Most of the computations involved in the analysis of the experi-
mental data presented in this paper were carried out with the aid of
an IBM 7094 computer. This section contains the listings of the
Fortran IV computer programs that were used. The analysis involved
four major steps.
1) OPTIC ... A least-squares fitting of the calculated CEF levels,
using the method of Section II, to the optically observed levels in terms
of the CEF parameters.
2) ICARME ... A calculation of the reduced matrix elements (compare
Eqgs.(4) and (I-12) in the intermediate coupling approximation starting
with the relevant Slater integrals and the spin-orbit coupling para-
meter.
3) QTAVE ... A least-squares fitting of the calculated nuclear quadru-
pole splitting, using method 1 of Section V, to the observed splitting in
terms of the parameters N and P
4) HITEMP ... A least-squares fitting of the calculated nuclear quadru-
pole splitting, using method 2 of Section V, to the observed splitting at
high tcmpcraturcs.

Some of the programs used are available in the SHARE library

and are not included here.
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Or1ic

The required card decks are:

10.

11.

12.

13.

MIN
READY
AIM see SHARE no. 980
FIRE ZO ANFZO13
DRESS
STUFF

MATMPY

FCN

THEORY 4

QSQUAR

LEIGEN

HERM see SHARE no. 884 PK HMEE

RDM see SHARE No. 1359 G5 XGC 0008

Decks 1-7 were converted from Fortran II to Fortran IV and

deck 12 was modified so that it could be used with a Fortran program.

The listings of decks 8-12 follow.
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100

800

200

500

900

- 700
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FCN ...
THIS SUBROUTINE IS THE LINK BETWEEN THEORY4 AND QSQUAR TO MIN,
THE VARIABLE METRIC MINIMAZATION ROUTINE, SHARE NO. 980
INPUT DATA
PAR({I1)=CEF PARAMETERS IN THE FULLOWING ORDER (£20,(22,C40,C42,
C4’21C44’C4°41C6O,C627C6'2, Céliy C6‘41C661C6-6 UR CZO,C"?O,CDQ'
C66
NE=NO. OF ENERGY LEVELS MEASURED
ITIME= MAX. XEQ TIME ALLOWED
ALOWER=LOWER LIMIT OF RELATIVE DIFFERENCE USED IN CALCULATING
GRADIENT
UPPER=UPPER LIMIT OF RELATIVE DIFFERENCE USED IN CALCULATING
GRADIENT
E(I)=MEASURED ENERGY LEVELS
R{I)=ERROR IN MEASURED ENERGY LEVELS
"V{I)=LEVEL IDENTIFICATION ‘
DP(I)=STEP SIZE USED FOR GRADIENT
AB=IDENTIFICATION FOR PARAMETERS
SUBROUTINE FCN(NP+GsFyPARyMFLAG)
COMMON/CCMTHE/NFORM,P{3,40)
COMMON/COMQSQ/NE+E(100),5(120}),R(100)
COMMON/COMMIN/H D
DIMENSION H{40,40),G{40),PAR(40),V(100),DP{40),AB(40)
DIMENSION AH(50,22),BH(50,1),FP{40), ITER(40), I TERM{40),DEV{100)
IF(MFLAG-1)1,1,2
READ{5,100) NE,ITIME,ALOWER,UPPER
FORMAT(1I3 /16/2E12.5)
CALL ICLOCK (INTIME)
ITIME=ITIME+INTIME
READ(5,800)(E(LTI}4R{I),V{I), I=1,NE)
FORMAT(2F20.5,A6)
READ(5,200)({DP(I), I=1,NP)
FORMAT(F20.5)
READ{5,500) AB ~
FORMAT (12A6)
READ(5,900)
FORMAT(80H HEADING

WRITE(6,700) (DP(I), I=1,NP)

FORMAT (39HOSTEP SIZE USED IN CALCULATING GRADIENT/(3HO B8El4.5))
WRITE(6,600) AB

FORMAT (23HOORDER OF PARAMETERS X/(20A6))

NODEG=NE~-NP

NFORM=0

IF(MFLAG.NE.1) NFORM=1

DO 3 I=1,NP

P{2,1)=PARI(I)
F=0.5%QSQUAR(1,2,2)
NFORM=1

DO 10 I=1,NP
ITERM(1)=0
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[TER{I)=0
12 P(3,1)=PAR(I)={1.0+DP(I))
FP{I)=0.5#QSQUAR(1,43,2)
RF=ABS{{FP(I)-F)}/(FP{I)+F}))
IF(RF.GT. ALOWER) GO T0O 11
DP(I}= 5.0«DP(1)
ITER{I)=1ITER(11+1
IF(ITER(I).LT.9)Y GO TO 12
FP(I)=F
WRITE (6,2001) I,DP(1)
2001 FORMAT(35HOGRADIENT FOR PARAMETER SET TOQ ZERGC 16,£20.8)
GO TQ 10
11 IF(RF.LT. UPPER) GO TO 10
DP(I)=0.40=DP(I)
ITERM(I)=ITERM(I)+1
IFIITERM(I).LT.9) GO TO 12
WRITE (6,2002) I,DP(I)
2002 FORMAT(35HOGRADIENT FOR PARAMETER SET TO 10. 16y £20.8)
FP(I)=F+ 10.0*DP(I)#PAR{(I)
10 CONTINUE .
WRITE(6,2000)(ITER(I)}),ITERM(I), I=1,NP)
WRITE(6,700)(DP(1)y, I=1,NP)
~ DD & I=14NP o
4 G{IV=(FP{I)-F)/(DP{[)=xPAR(]))
7 CALL IcLOCK(LPTIMEY
IF({LPTIME.GTLITIME) GO TO 50
IF{MFLAG-3) 60,451,460
] 50 WRITE(6,1000) } )
1000 FORMAT(28HOx#=xxx TIME EXCEEDED $$$3$%% ’ )
v - WRITE(6,1001) (P(2,1), I[=14NP)
1001 FORMAT (32HORESULTS OF FIT UP TO THIS POINT/3HOX=1P8E1l4.5/
1 {3HO 8F14.5))
" WRITE(6,1003) ' o
1003 FORMAT (13HOERROR MATRIX)
DO 6 I=1,NP
6 WRITE(64,1004)(H{(IsJ)y J=1,NP)
1004 FORMAT(1HO1PBE14.5/(1H08E14.5))
o ,PUNCH 10021(?(2ﬁ})1}[317NP)
1002 FORMAT(6E12.5) I
DO 5 J=1,NP
5 PUNCH 1002, (H{J,1}, I=J,NP)
51 PUNCH 200,(DP{I)y I=1,NP)
CALL THEORY(1,2,2,0)
WRITE(6,4300)
~ ANE=NE
DD 30 I=1,NE
30 DEV(I)=S(I)-E(I)
STAN=0.0
DO 31 I=1,NE
31 STAN=STAN+(DEV(I))==2




901

903

1005

60
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STAN=SQRT(STAN/ANE)
WRITE(6,4901)(S(I),E(I),DEV(I),R(I),VI(I), I=1,NE)
FORMAT(2F20.3,F11.14F9.1,15XA6)
WRITE(6,700)(DP(I), I=1,NP)

ANODEG=NODEG

CHI2=2.0%F/ANODEG

WRITE(6,903) NODEG ,CHI2,STAN

FORMAT (30HONUMBER OF DEGREES OF FREEDOM= [6/

134HOCHI SQUARED / DEGREES OF FREEDOM= 1Pcl4.7/
235HORMS DEVIATION FOR EACH LEVEL= +0R- 0OPF6.2)

DO 55 I=1,4NP

DO 55 J-I,NP

AH(T,J)=H{I,J)

AH(J, I )=AH{1,J)

CALL MATINV(AH,NP,BH,0,DELTA)
WRITE(6,1005) DELTA
FORMAT (7HODELTA= E20.8)
IF(LPTIME.GT.ITIME) CALL EXIT
RETURN

END
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THEORY 4 ...
THIS SURROUTINE CALCULATES THE ELECTRONIC ENERGY LEVELS OF A RARE
EARTH ION IN NTERM TERMS OF THE OPTICAL SPECTRA. THE MAX J=15/2.
HIGHER J MAY BE HANDLED IF THE APPRUPRIATE DIMENSION STATEMENTS
ARE CHANGED. THE LEVELS ARE CALCULATED FROM GIVEN CEF PARAMETERS.
NTERM MAX = 20, MAX NO. OF LEVELS = 100, ANY POINT SYMMETRY THAT
USES ONLY CEF PARAMETERS WITH EVEN N AND M.
INPUT DATA
NTERM=NO. UF OPTICAL LSJ TERMS
NJ=NO. OF DIFFERENT J VALUES IN TERMS
XJ=MIN. J VALUE - 1.0
I W=DUMMY VARIABLE
IDEG=1 FOR INTEGRAL J, 2 FOR HALF INTEGRAL U
DFLTA=LIMIT FOR OFF-DIAGONAL ELEMENTS IN EIGENVALUE Suz-
ROUTINE EIGENH
NRDM=STARTING POINT FOR RANDOM NUMBER FUNCTION RDM
SYMTRY=C2 UOR C3H AS THE CASE MAY BE
C3HSYM=C3H IF THIS IS THE CASE '
THETA(N,M)=REDUCED MATRIX ELEMENTS, N IS ORDER,M IS TERM
IDENTIFICATION o ' o o ]
AJ{I)=J VALUE FOR THE ITH TERM
NOBSVR(M,N)=1 IF THE NTH LEVEL IS NOT OBSERVED AND ZERODU
- OTHERWISE 4 o , N
NORMAL(M)=NO. OF THE LEVEL IN THE MTH TERM WHICH IS TO BE
NORMALIZED TO ZERO
" NOP=NO. OF CARDS WITH OPERATOR EQUIVALENT MATRIX ELEMENTS FOR
EACH J VALUE DIVIDED BY 3

aXaKsizslalsXeinEsNeEaEeRaNeNalslalaNelaNeNoNalalaelaRalalaNaRaNe/

HEAD(K,I)=LABELING FOR EIGENFUNCTIONS
~ FMT(K,J)=FORMAT FOR EIGENFUNCTIONS ) o
OA, 0B, OCI(K,I,J)=IJ OPERATOR EQUIVALENT MATRIX ELEMENT FOR
KTH J VALUE FOR ALPHA, BETA, GAMMA RESPECTIVELY, I AND J
GO FROM 1 TO 2J+1, 1 IS INDEX FOR MJ=-J AND 2J+1 IS INDEX
FOR MJ=J

10
1

_ 100

"CALL OVERFL{J123)

SUBROUTINE THEORY (IQyJQ,KQ,IOP)}
DIMENSION OA(8416416),0B(8B,16516)40C(8,16416),THETA{3,20),4W(16)
DIMENSION CEF(16,1642),GIVE(300),ANM(3,4,2),AJ(20),SIGN(2)
DIMENSION E(100),R(100),V(100),P(3,40),X({20),Q5Q(3),DP(20),5(122)
DIMENSION DEF(16491642)4W1(16)

 DIMENSION HEAD(8433),FMT(8,12),FMTA{12),EVECI(16),EVECR{16)

DIMENSION C(16,416)
DIMENSION NOBSVR{20,20)4sNORMAL(20),51(120)
COMMON/COMTYHE/NFORM, P
CUMMUN/CUMQSQ/NEyEySeR
COMMON/COMWAV/CL{256)
COMMON DUMMY (281), NP
COMPLEX C,CTEMP,C1 —
COMPLEX CSQRT,CONJG

IF(NFORM)1,41,2 o -
READ  (5,100)NTERMyNJ3sXJ s IWs IDEG,DELTA,NRDM

FORMAT(212,F10.5,212/E20.5,13)
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73
101

99
999

1000

103

102

997

AK=K
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NRDM=NRDM+1

DG 91 I=1,NRDM

IRDM=RDM( XRDM)

READ(5,73) SYMTRY,C3HSYM

FORMAT (12A6)

DO 999 M=1,NTERM

READ (5,101 ) (THETAIN, M), ,N=1,3),Ad(M)
FORMAT(3E£20.5,F10.5)

READ(5499) (NOBSVR(M,N), N=1,16),NORMAL(M)
FORMAT{1611,12)

CONTINUE

DO 1000 1I=1,8

DC 1000 J=1y106

DO 1000 K=1,4,16

OA(I,J:K’=O.

OB(I’J'K)=00

OC(I'JyK)=O.

CONT INUE

DO 998 K=14NJ

READ{54103) NOP, (HEAD(K,yI)I=1433),(FMT(K,yJ),J=1,12)
FORMAT(12/20A4/13A4/12A6)

DO 997 L=14NOP -

READ(5,102) T5Js (0A{KyT4J)) 1,3y (OB(KsTsdd)sLsds (OCIK,I,J))

FORMAT (212, E20.8)
CONT INUE

LMAX=AK+XJ+0.52

996

850
995
998

1001

~ OA(K,MAX,N)=0A(K,NA,L)

DO 996 L=1,LMAX
MIN=L+1
JMAX=2.0#(AK+XJ)+1.01
MAX=JMAX+1-L

DO 996 N=MIN,MAX
NA=JMAX+1-N

OB(K,“AX;N)=OB(K1NApL,
OC(K,MAX,N)=0C(KsNA,L)
CONTINUE
DO 995 L=1,JMAX
DO 850 N=1,L
OA(KyNyL)=0A(KyLsN)
DB(K,NQL)=OB(K1L1N)
UC(K)N'L)=0C(K1L1N)
CONTINUE
CONT INUE
CONTINUE

' ' SETTING UP OF ANM
DO 1001 I=1,3
DO 1001 J=1,4
DO 1001 K=1,2
ANM(I,JyK)=0.
CONT INUE
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993

1
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[A=0

IS=1

ISA=1

ICTR=0

DO 994 N=1,3
MAX=N+1

DO 994 M=1,MAX

DO 994 L=1,2
IF(L-N) 111,111,994
CONT INUE
IF{M-1)994,993,993
[CTR=ICTR+1
IF{(SYMTRY.EQ.C3HSYM)

GO TO (5499445999479994499449944579944994,994,994,5,994),

[A=TA+1
IF(IA-1Q)992,991,992
ANM{N,M,L)=P(KQ,IA)
GO T0 994
ANM{N,M,L)=P(JQ,IA)
CONTINUE
IF{INFORM)112,113,112

WRITE(6,3000) (L {ANMIN,MyL)y L=1,2)y, M=1,4),

FORMAT (5HOANML/(6E20.8))
CONTINUE

CALCULATE CEF MATRIX ELEMENTS

- SIGN(1)=1.0

‘DO 900 1=1,NTERM

SIGN{2)=-1.0

IJ=AJ({1)-XJ+.01

CJIMAX=2,0%AJ(1)+1.01

IF{SYMTRY.NE.C3HSYM) TA=NP-NTERM

CIF({IQ.GT.IA+1) GO TO 52

DO 903 J=1,JMAX

903

801

800
802

803
804

805
806
810

DO 901 K=1,J

DO 903 K=1,JMAX
DO 903 L=1,2
CEF(JQK,L)=O-O
CONTINUE

DO 901 J=1,JMAX

IF(J-K)800,801,800
M=1

GO TO 810
I1F(J-K-2)901,802,803
M=z

GO TO 810
IFlJ-K-4)901,804,805
M=3

GO TO 810
IF(J-K-6)901,806,901

M=4

CONTINUE

N=I'3)‘

ICTR
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DO 899 L=1,2
CEF{JyKoL)=SIGNIL)=#{THETA( L, 1) =0A(IJsJyK)®ANM(1,M,L)+THETA{2,])*
OB(IJyJeK)=ANM{2,M,L)+THETA(3,1)=0C(I1J4J,K)I®=ANM{3,4M,L))
CEF(KyJyL)=SIGN{L)®CEF(JsKyL)
CONTINUE
CONT INUE
DIAGUNALIZE THE HERMITIAN MATRIX CEF
[F{IDEG-21)500,501,500
JMAX=JMAX/IDEG
JAB=1
DO 503 J=1,JMAX
KAB=1
DO 504 K=1,4J
DO 505 L=1,2
DEF(J.KsL)=CEF{JAByKAB,L)

- DEF(K,J,L)=SIGN(L)=DEF(J,K,L)

505
504

203

CONTINUE

KAB=KAB+2

CONTINUE

JAB=JAB+2

CONTINUE

IF{JMAX.EQ.1) W(L1)=DEF(1l,1,1)
IF(JMAX.EQ.1) GO TO 506

 IFUJMAX.NE.2) GO TO 499

TEMP=SQRT((DEF(1,Ls1)-DEF(29241) }%#2+4.0%(DEF(2,1,1)%%24DEF(2,1,2)

yws2Y) o

W(l)=(DEF(1,1,1)+DEF(2,2,1)4TEMP)/2.0

499

500

W(2Y=(DEF(1,1,1)+DEF(2,2,1)-TEMP)/2.0

GO TO 506

CALL EIGENH(DEF,W,JMAX,DELTA)
GO TO 506

MZ=0

DO 515 M=1,2

509
508

- 507

IF(M.EQ.2) JMAX1=(JUMAX+1)/2
JI=2
DO 507 J=1,JMAX1

KZ=2

IF(M.EQ.2)} KZ=1 .

DO 508 K=1,J

DO 509 L=1,2
DEF(JyKyL)=CEF(JZ,KZ,L)
DEF{KyJsL}=SIGN{L)=#=DEF{JsK,L)
KZ=KZ+2

JI=J7+2 T
IF(JMAX1.EQ.1) WLl(Ll}=DEF(1l,1,1)
IF{JMAX1.EQ.1) GO TO 511
IF(JMAX1.NE.2) GO TO 512

- TEMP=SQRT((DEF(14141)-DEF(242y1))%%244 . 0%{DEF(2,1,1)%%2+4DEF(2,1,2)

1#%2))
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WL(L)=(DEF(141,1)4DEF(2,241)+TEMP)/2.0
WL(2)=(DEF(Lly1,1)+DEF(2,2,1)-TEMP)/2.C
GO TO 511
512 CALL EIGENH(DEF,Wl,JMAX1,DELTA)
511 DO 510 J=1,JMAX1
MZ=MZ+1
S10 WIMZ)Y=W1l(J)
515 CONTINUE
506 KMAX=JMAX-1
DO 17 K=1,KMAX
KP1l=K+1
DO 17 J=KP1l,JMAX
IF(W(K)=-W(J))1T7,17,418
18 TEMP=W({K)
WIK)=W(J)
W(J)= TEMP
17 CONTINUE
INCRM=NORMALI(I)
TEMP=W ( INORM)
DO 69 K=1,JMAX
69 W(K)=W{K})-TEMP
DO 50 K=1,JMAX
IF(NOBSVR{I,K).EQ.1l) GO TO 50
S{IS)=WI(K) - -
S1{IS)=S({IS)
TIS=ISs+l
50 CONTINUE

53 17S=KQ

GO TO 53
52 IF(IDEG.EQ.2) JMAX=JMAX/2Z

~ I1ZT7=1A+1 o
IF(IQ.EQ.IZT) IZS=4Q
DD 51 K=1,JMAX

C

IFINOBSVR{I,K).EQ.1) GO TO 51
S(ISA}=S1{ISA)+P(IZS,12T)
ISA=I1SA+1 ST
51 CONTINUE
IF{IOP.NE.O) GO TO 900
~ IF({IDEG.EQ.2) JMAX=2#JMAX
CALL EIGENH(CEF,W,JMAX,DELTA)
DO 6005 J=1,JMAX
DO 6005 K=1,JMAX
INDEX=J+K*JMAX-JMAX
6005 C{KyJ)=C1l{INDEX)
6006 KMAX=JMAX-1
T MULTIPLY C BY PROPER PHASE FACTOR
DO 4000 J=1,JMAX
TEMP=REALI(C(1,J))
IF(TEMP.EQ.0.0) GO TO 4001
CTEMP=CSQRT(CONJGIC(JMAX,J)})/Cl1,J))
GO TO 4002
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4001 CTEMP=CSQRT{-CONJG(CIKMAX,J))/Cl244d1))
4002 DO 4003 K=1,JMAX
4003 C(KyJ)=CTEMP=C({K,J)
4000 CONTINUC
DO 6017 K=1,KMAX
KP1=K+1
DO 6017 JU=KPlyJMAX
IF(W(K).LE.W(J}) GO TO 6017
TEMP=W (K)
WIK)=W(J)
W(J)=TEMP
DO 6018 L=1,JMAX
CTEMP=C(L,yK)
C(LyK)=C(L,J)
6018 C(LyJ)Y=CTEMP
6017 CONTINUE
WRITE(6,6000){HEAD(IJsK)yK=1,33)
6000 FORMAT(33A4) ) '
DO 6001 K=1,12
6001 FMTA(K)=FMT(IJ,+K)
DO 6002 J=1,JMAX
DO 6003 K=1,JMAX
EVECR(K)=REAL{C(KsJ)})
6003 EVECI(K)=AIMAG(C(K,J))
6002 WRITE(6,FMTA) W(J), (EVECR(K) 4K=1,JMAX), (EVECI(K),K=1,JMAX)
900 CONTINUE o ) o
RETURN
- — N
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QASQUAR .«

FUNCTION TO CALCULATE VALUE OF Q=#+2, WHERE CHI®##2 IS MINIMUM VALUt
OF THIS FUNCTION

FUNCTION GQSQUAR(IQ,JQ,KQ)

DIMENSION E(100)4R(100),V(100)4P(3,20),X(20),QSQ(3),DP(20),S(1500)
DIMENSION GIVE(300)

COMMON GIVEyS+EsRyVyPyXsQSQyNEJNP,IQyJQsKQyIOP,XTEST

QSQUAR = 0.0

CALL THEORY{(1QsJQ,KQ,1)

DO 10 L=1,NE

QSQUAR=QSQUAR+{(E(L)-S(L))/R(L)) =2

RETURN

END




o0

END

-92-

LEIGEN s«

THIS IS A LINK BETWEEN A PROGRAM CALLING EIGENH AND HERM.

SUBROUTINE EIGENH(CEF,WyJMAX,DELTA)
COMMON/COMHER/B(16),H{200)
COMMON/COMWAV/C

COMPLEX HyC,CMPLX

DIMENSIUN C(16916)4yCEF(1691642)sW(16)
IBEGIN=16-JMAX

DO 1 I=1,JMAX

IS=1+IBEGIN

B{IS)=CEF(I,1,1)

I=1

IMAX=JMAX-1

DO 2 J=1,1IMAX

JP1=J+1

DO 2 K=JP1l,JMAX
HI{T)=CMPLX(CEF(JyKy1)sCEF(JyKy2))
[=1+1 '

KZE=I+1/2-1

H{KZE)={0.0,0.0)
HIKZE+1)=(0.0,0.0)

CALL HERM(H, JMAX,C,0,DELTA,IT)

DO 3 I=1,JMAX

IS=1+IBEGIN

W(I)=B(IS)

RETURN
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HERM. o o
THIS SUBROUTINE DIAGONALIZES A HERMITIAN MATRIX AND OBTAINS ALL
EIGENVALUES AND EIGENVECTORS. IT IS SHARE NO. 884 PK HMEE WHICH
HAS BEEN MODIFIED SO THAT IT MAY BE CALLED FROM A FORTRAN PROGRAM
ONLY THE MODIFICATIONS ARE SHOWN HERE.
THE CALL STATEMENT TO BE USED IS CALL HERM{H,NyU,PR,DELTA,IT)
ALL ARGUMENTS HAVE SAME MEANING AS DESCRIBED IN SHARE NJ3. 884
WRITE UPy, PR SHOULD ALWAYS BE ZERO AND IT IS THE NUMBER OF
ITERATIONS
ERM SAVE 142
SXA XR4,4
CAL 3,4
STA H1
CAL%® 4,4
LGL 18
STD H1
CAL 5,44
STA H2
CAL* 6,4
LGL 18
STD H2
CAL* 7,4
SLW H3
TSX HMEE, 4
Hl PZE #%,,%%
 H2 PZE ®%,,x=x
H3 BSS 1

T ow ok ok ok x % @ ok 4

XR4 AXT *x,4
CAL COMMON+20
SLW® 8,4
B RETURN HERM
x FIRST CARD OF SHARE NO. 884 FOLLOWS THIS CARD

* LAST CARD OF SHARE NO. 884 PRECEDES THIS CARD
COMMON BSS 23
END
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ICARME

The required card decks are:

1. ICA

2. RME

3. SIXJ

4. DELTA
5. FACT

The programs in decks 3 and 4 were written by B. A, Zimmerman.

The listings of decks 1-5 follow.
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I C A
THIS IS A PROGRAM TO CALCULATE THE CPERATOR EQUIVALENT FACTORS
IN THE INTERMEDIATE COUPLING APPROXIMATION
FOR TM 1V OR PR IV GIVEN THE SLATER INTEGALS,
COUPLING PARAMETER, AND PURE L-S OE FACTORS.
REF. F.H., SPEDDING, PHY.REV. 58,255{1940) AND GRUBER AND COnNWAY
J. CHEM, PHY. 32, 1178(1960).
INPUT DATA
El1, E2, E3=RACAH'S LINEAR COMBINATION OF SLATER INTEGRALS
F2, F4&4, F6
ZETAL=SPIN-ORBIT COUPLING PARAMETER
DIMENSION AS(3),AL(3)
DIMENSION S(3,3), EVI(3,3), E(3) ,
DIMENSION ERASS (20),A{3),B(3),G(3),AE(3),BE(3),6E(3)
1 READ(5,100) E1,E2,E3,ZETAL
100 FORMAT ( F20.5) B
F2=(E1+143.0%E2+11.0%E3)/42.0
F4=(6.,0%*F2-39,.0%#E2-E3)/11.0
FO=(T.0%F2-18.0%E2-3.0%E3)/77.0
" IETA=-7ETA1/2.0 ) S
WRITE(6,1000) E1,E2,E3,2ETAL,F2,F4,F6,2ETA
1000 FURMAT(4HLEL1=1PEL14.T995X3HE2=E14.795X3HE3=E14.7,5X6HZETA'=EL14.T7
14HOF2=El4.7y5X3HF4=E14.,7,5X3HF6=E14.7,5X5HZETA=E14.7)

SPIN-ORBIT

OO0

C PURE ELECTROSTATIC ENERGY LEVELS
E3H = 0.0
) E3F = 15.0 = F2 + 18.0 * F4 - 273.0 = F6 o
ELG = - 5.0 * F2 + 148.0 * F4 + 91.0 = F6
~ E1D = 44.0 * F2 - 48.0 * F4 + 728.0 = F6 N i
CEll = 50.0 = F2 + 60.0 = F4 + 140 * Fé
T E3P = 70.0 % F2 + 84.0 % F4 - 1274.0 * F6
ELS = B5.0 * F2 + 249.0 %= F4 + 1729.0 = Fé

~ COULCMBIC AND SPIN-ORBIT MATRICES, CHARACTERIZED BY J

S{1,1) = E3F + 4.0 = ZETA
T S(2,2) = E1D T
S(3,3) = E3P ~ ZETA
T S(2,1) = 2.0 ¥ 2.449490 » IETA o
S{3,1) = 0.0
S(3,2) = = 3,0 % 1.414214 = ZETA
~bo21-=2, 3 .
DO 2 J = 1, 2 T ) N o
2 SUJdyI) = S({14J)
AS{1)=1.0
AS(2)=0.0
AS(3)=1.0
AL(1)=3.0
o AL{2)=2.0 T o
AL(3)=1.0
AJ=2.0
NORDER = 3
IFLAG =1
_WRITE (6,400)
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400 FORMAT ( 1H1 12X 6HENERGY 15X 3H3F2 15X 3H1DZ 15X 3H3P2 13X
15HALPHA 14X 4HBETA 13X S5HGAMMA )
GO TO 30

10 S(1,1) E3H + 6.0 # ZETA

S{242) = E1G

S(343) = E3F - 3.0 = ZETA

S(2+41) = 2,0 ® 3,162278 / 1.732051 #= ZETA
S(3,1) = 0.0

S{342) = - 2.0 * 3,316625 / 1.132051 # LETA
S{1,2) = S(2,s1)

S{1,3) = 0.0

S{243) = S(3,2)

AL{1)=5.0

AL(2)=4.0

AL{3)=3.0

AJ=4.0 )

NORDER = 3

[FLAG = 2

WRITE (6,500)

500 FORMAT (1HO 12X6HENERGY 15X 3H3H4 15X3H1G4 15X 3H3F4 13X
15HALPHA 14X 4HBETA 13X S5HGAMMA )

20 S(1,1) Ell ,

E3H - 5.0 ®= ZETA

- 2.449490 * ZETA

S{241) o

S(241)
S(1,2)

ALI1)=6.0

AL(2)=5.0

AJ=6.0

NORDER = 2

IFLAG = 3

WRITE (6.600) ——- - o

600 FORMAT (1HO 12X 6HENERGY 15X 3H1I16 15X 3H3H6 13X
15HALPHA 14X 4HBETA 13X 5HGAMMA )
TEMP=SQRT((S(1y1)+S(2,2))%%2+44,0%(S(1,2))%%x2-4,0%S(1,1)%S5(2,2))
E(1)=(S{1,1)+S(2,2)+TEMP)/2.0 '
E(2)=(S{141)+S(2,2)~-TEMP)/2.0
DO 12 I=1,2
TEMP=(E({[)-S(1,1))/S5(1,2)
EV(1,1)=1.0/SQRT(1.0+TEMP#%2)

12 EV(2,1)=TEMP/SQRT({1.04+TEMP*%2)
GO TO 31

30 CALL EIGVVI(S,EV,E,NORDER,ERASS)

31 DO 25 I=1,NORDER
A(T)=RME(AS(I)sAL(I) AL(I)3AJsAJ+2.0)
B(I)=RME[AS(I),AL{I),AL(I),Ad,A0,4.0)

25 GII)=RME(AS(I)AL{I) AL(I),AJ,Ad,6.0)

IF(NORDER.EQ.2) GO TO 5

A13=RME(AS(1),AL(1),AL(3),AJsAJ42.0}
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B13=RME(AS(1)+AL(1),AL(3)4AJyAU+4.0)
G13=RME(AS(1)sAL{1),AL(3),AJyAd,6.0)
5 CONTINUE
WRITE(6,300)(A(I)4B(1),G(I)y I=1,NORDER),A13,B13,G13
300 FORMAT(E20.8)
DO 3 1T = 1, NORDER

AE(I) = 0.0

BE(I) = 0.0

GE(I) = 0.0

DO 4 J = 1, NORDER

AE(L) = AE(L) + A(J) = (EV(Ja1))==2

BE(I) = BE(I) + B(J) * (EVI(JsI))==x2
4 GE(I) = GE(I) + G(J) » (EV(J,]))%=2

IF(NORDER.EQ.2) GO TO 3

AE(I) = AE(I) + Al13 = EV(1,I) = EV(3,[)%2.0
BE(I) = BE(I) + B13 & EVI[1,I) = EV(3,1)%2.0
GE(I) = GE(I) + G13 = EVI(1,1) = EV(3,1)%2.0
3 CONTINUE - o ‘

IF{NORDER.EQ.2) GO TC 63
WRITE (64,200)(E(I)y (EVIJsI)yd
1 I = 1,NORDER) ,
200 FORMAT (1HO1P7EL18.7)
GO TO (10,20), IFLAG
63 WRITE (64,2010 (E(I)y (EV(JsI)sJd
1 I = 1,NORDER)
201 FORMAT (1HOLlP6E18.7)
GO 7O 1

1,NORDER), AE(I), BE(I), GE(I),

-1 yNORDER), AE{I), BE(I), GE(I),

i

STOP
END




OO0

1oo

-98-

RME ...

THIS IS A FUNCTION TUO CALCULATE THE REDUCED MATRIX ELEMENTS UR
OPERATOR EQUIVALENT FACTORS FOR THE 4F12 ELECTRON CONFIGURATION.

THE ELEMENTS ARE OF THE FORM (S,L,J 1LIN1L S,Lt*,J").
REF. B.R.,JUDDy PROC. ROY. SOC. A241,414(1957).
THIS VERSION IS FGOR J=J4°'.
FUNCTION RME(ASsAL+BLyAJyBJI¢AN)
TEMPJ=SQRT({(2.0%AJ+1.0)#{2.,0#BJ+1.0}))
TEMPL=SQRT({(2.0#AL+1.0)%(2.0%BL+1.0})
L1=AL
L2=BL
J1=AJ
J2=8J
[S=AS
WLI=SIXJ{AL,AJ,BLsBJI,AS,AN)=#(=-1.0)#2{L1+L2+J1+J2)
w2=SIXJ(3.0,AL,3.0,BL,3.0,AN)*(*1.0)**(L1+L2+J1*J2)
N=AN
J=AJ
SFACT=SQRT(FACT(2%J-N)/FACT(2%J+N+1))
RMEL1=(~-1.0)=« (IS~ J+2 )=TEMPJxTEMPL®#SFACTxW1lxNW2
GO TO (142919491496} 4N
RME=16.0#SQRT(7.0/15.0)=#RME1
RETURN
RME=-32.0#SQRT(14.0/11.0)%RME1
RETURN
RME=1280.,0#SQRT(7.0/429.0)=*RME1
RETURN :
WRITE(6,100)
FORMAT (32HORME DOES NOT EXIST FOR THIS N )
STOP o et Db . B
END
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SIXJeow
A FUNCTION FOR SIX J SYMBOLS 2725764
ROTENBERG ET. AL. PAGE 13 EQUATION (2.3)
INPUT SIXJ(J1,J2,L2,L1,J3,L3) IN FLOATING POINT
REQUIRES DELTA AND FACTURIAL ROUUTINES
FUNCTION SIXJ(A4B4CyDsE4F)
TRI1 = A+B-E
IF(TRI1)Z2,y1,41
SIXJ = 0.0
RETURN
TRI1 = A-B+E
IF(TRI1)}243,3
TRI1 = -A+B+E
[F(TRI1)} 2,444
FIRST TRIANGULAR TEST COMPLETED
TRI2 = D+C-E
IF(TRI2)2,5,5
TRI2 = D-C+E
IF(TRI2)2,6,6
TR1IZ2 = ~D+C+E
CIF{TRI2)24747
SECOND TRIANGULAR TEST COMPLETED
TRI3 = A+C-F
IF(TRI3)2,8,8
TRI3=A-C+F
IF(TRI3)2,9,9
TRI3 = —A+C+F
TF(TRI3)2,10,10
THIRD TRIANGULAR TEST COMPLETED
TRI4 = D+B-F
IF(TRI4)2,11,11
TRI4 = D-B+F
IF(TRI4)2,12,12
" TRI4=-D+4+B+F T o T T T T
IF(TRI4)2,13,13
FOURTH TRIANGULAR TEST COMPLETED

DELY = DELTA(A+B,E)

DEL2 = DELTA(D,C,E) "

DEL3 = DELTA{(D+B,F)

DEL4 = DCLTA(A,C,F) S T
DELX = DEL1+#DELZ2x*DEL3=DEL4

N = A+B+C+D

PHZ = (-1.0)#==N

SUM = 0.0

AK = 000

S1 = A+B—E-AK
IF(S1)22,16,16

M = Sl

FS1 = FACT(M)

S2 = C+D-E-AK
IF(s2)22,18,18




18
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M = §2

FS2 = FACTI(M)

$3 = A+C-F-AK
[F(53)22,19,19

M= S3

FS3 = FACT(M)

S4 = D+B-F-AK
IF($4)22,20,20

M = S4

FS4 = FACTIM)

S5 = ~A-D+E+F+AK
[F(S5)17,21,21

M = S5

FS5 = FACT(M)

S6 = —B-C+E+F+AK
IF(S6)17,23,23

M= S6

FS6 = FACT(M)

N = AK

SPHZ = (-1.0)=#N

TOP = A+B+(C+D+1.0-AK

U AK

FTOP = FACT(M)

TOP = SPHZ=FTOP

M = AK

FAK = FACT(M)

DENOM = FAK#FS1xFS2#FS3#FS54%FS55%F506

17

22

SUM = SUM + (TOP/DENOM)
AK=AK + 100

G0 TO 24

SIXJ = PHZ=DELX*SUM
RETURN
END.__ - -
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DELTA...

FUNCTION DELTA(A.B,C)
ROTENBERG ET. AL. PAGE 13 (2.4)
FUNCTION DELTA{A,B,C)
S1 = A +8-2C
M = S1
FS1 = FACT(M)
S2 = A+ (C -8

M = S2

FS2 = FACT(M)
S3 =B +C - A
M = S3

FS3 = FACT(M)

DENOM = A+B+C+1.0

M = DENOM

FD = FACT(M)

DELTA = SQRT((FS1®#FS2#FS3)/FD)
RETURN

END
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FACT...

CALCULATES N FACTORIAL
FUNCTION FACT(N)

A=N

FACT=0,0

[F(A.LT.0.0}) RETURN
FACT=1.90

IFIA.EQ.0.0) RETURN
FACT=FACT=A

DO 1 I=1,100

B=1

C=A-8

IF(C.EQ.0.0) RETURN
FACT=FACT=C

CONT INUF

WRITE(6,4100)
FORMAT(19HOFACTORIAL OVERFLOW )
STQP )

END
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QTAVE

The required card decks are:

1. SEARCH

2. COREL

3. OUTPRUT

4. DERIV 3

5. JPLOT

6. CEFMAT

7. THEORY 6

8. QSQUAR see listings for OPTIC

9, HERM see SHARE no. 884

The listings of decks 1-7 follow.
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SEARCH. ..
THIS PROGRAM USES THE METHOD OF DIRECT SEARCH TU UBTAIN BEST
VALUE OF CHI*%2

INPUT DATA

NE=NO. OF ENERGY LEVELS MEASURED

NP=NO. OF SHIELDING PARAMETERS

NPP=NO. OF SHIELDING PARAMETERS WITH NON-ZERO STEP SIZE

ITIME= MAX. XEQ TIME ALLOWED

E(1)=MEASURED ENERGY LEVELS

R{I)=ERROR IN MEASURED ENERGY LEVELS

VII)=LEVEL IDENTIFICATION

PI2,1)=INITIAL VALUE OF PARAMETERS

X(1)=STEP SIZE FOR EACH PARAMETER FOR INITIAL CYCLE

XMIN=2#*N , WHERE N IS MAX NO. OF CYCLES ALLOWED I.E. FINAL

STEP SIZE WILL BE X{Il)}/2==N
DIMENSION E{100),R{100),V(100),P(3,20),X(20),Q5Q(3),0P(20),5(1500)
DIMENSION AB(20)
DIMENSION GIVE(300)
COMMON GIVE,SyEyR¢VyPsXsQSQeNEsNP+1Q,JQ,KQs I0P,XTEST,NFORM,NMOVE, A
COMMON /COMTIM/ITIME ‘ “ |
READ (5,99)NE,NP,NPP, ITIME
CALL ICLOCK(INTIME)
ITIME=INTIME+ITIME
READ (5,800)(E(1)4R{I),V(I}, I=1,NE)
FORMAT(3F20.5) T
READ (55500)AA,BB, (AB(I), I=1,NP)

500

1000

- 200

300

'READ  (54300)XMIN

FORMAT(12A6)
NFORM=0
READ (54200)(P(2,1),X(I)y I=1,NP)
FORMAT(2F20.5)

FORMAT (F20.5)

" NFORM=1

- CHI=QSQ(21/A

DO 2 I=1,NP

NMOVE=0 i - S

A=NE-NPP

WRITE {6,700) (AB{I)yI=1,NP)

) FORMAT(IHL (10X, A6514X,A6514XA6,14X,A6,14X,A6,514X,A6))

WRITE {6,701}

FORMAT(9X,7H CHI*#2//29H INITIAL VALUES OF PARAMETERS)
WRITE {65702} (P(241)yI=14NP)

FORMAT (6E20.8)

WRITE {65 TO3)CHI (X{I),I=1,NP)

3 FORMAT(1PE20.7//24H INITIAL VALUES OF STEPS/{OP6E20.8))

FORMING PATTERN
XTEST=1.0 -
NZERQ=0
NFORM=NFORM+1
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[F(X(T))50,5,50
CONTINUE
P(ly)=P(2,1)=-X(1)
QSQ(1)=QSQuUAR{I,1,2)
P(3,1)=P(2,1)+X(1)
QSQ(3)=QSQUARI(I1,3,2)
IFIRSQU2)-Q5Q(1))343,4
[F(QSQ(2)-QSQ(3))5,5,6
pPll)=-1.0
QSQ{Z21=Q35Qili

GO 70 7

DP(1I)=0.0
NZERO=NZERO+1

GO 10 7

DP(1)=+1.0
QSQ(2)=QSQ(3)

P2, 1)=P(2,1)14DP(I)%X{1)
CONTINUE

CHECK TO SEE IF PATTERN IS NON-ZERO

IF(NZERO-NP)8,9,8
XTEST=2.0%XTEST

CALL ICLOCK(LPTIME) ~—
IF(LPTIME.GT.ITIME) GO TO 11
IFI{XTEST-XMIN)10,10,11
CALL OUTPUT

GO TO 1000

DO 12 I=1,NP

12

~ WRITE (6,100) (P(2,1),I=1,NP)

14

15

16

17

X(T)=x(I1)/2.0
CHI=QSQ(2)/A

FORMAT (6E20.8)

WRITE (6,101)CHI,NFORM, NMOVE, XTEST
FORMAT(1PE20.7/15X,7H NFORM= 16,7Xy7H NMOVE= 16,7H XTEST=
G0 TO 13 LA : el Sy AT

MAKE PATTERN MOVES
NMOVE=0 ’
NMOVE=NMOVE+1
DO 14 I=14NP
Pl 1)=P(2,1)+0P (1) %X(1)
QSQ(1)=QSQUAR(1,41,1)
IF(QSQ{2)-Q5Q(1))13,13,15
Q5Q(2)=Q5Q(1)

DO 16 I=14NP
P(2,1)=P(1,1)
CALL ICLUCK(LPTIME)

IF(LPTIME.GT.ITIME) GO TO 11

GO TO 18
END

OPF9.1/)
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CORELe e

THIS SUBROUTINE CALCULATES THE CORRLLATION MATRIX FOR A LEAST
SQUARE ANALYSIS.

SUBROUTINE COREL

DIMENSION A(5+5),DER(5,20),AINV( 50,5},B(50,1)

DIMENSION E(100)4R{100),V(100),P(3,20),X(20),QSQ(3),DP(20),5{1502)
DIMENSION GIVE(300)

COMMON GIVE,S+EsR4 V4P, X,QSQyNE NP, IQ,JQyKQ,IOPXTEST,NFORM,NMOVE
COMMON /COMTIM/ITIME

NK=NE

DO 5 I=14NP

DO 5 K=1,4NK

NE=K

CALL ICLOCK(LPTIME)

IF(LPTIME.GT.ITIME) GO TO 90

DER{I,K)=DERIVI{I,K} ’ - -
DO 10 I=14NP

DO 10 J=1,1

AINV(I,J)=0.0

DO 10 K=1,NK -
AINV(I,J)=AINV(I,J}+DER(I,K)#DER{J,K)/(R{K)#R(K)}

CONTINVUE ToERt 1R RIAARIRIERIND

NPM1=NP-1

DO 11 I=1,NPMI1
IP1=1+1

“DO 1T JSIPL,NP e e e o,

11

T

AINV(I,J)=AINV(J,1)

CONTINUE o T
WRITE(65,200) ((AINV(I,d)y I=1,NP), J=1,NP)
FORMAT(36H INVERSE OF BEST CORRELATION MATRIX//{5E20.8))
CALL MATINV(AINV,NP,B,0,DETERM)

60712 T=1,Np 10Uy DETERPY

DO 12 J=1,NP

AT, JY=SQRTIAINVI(I,J))
CONTINUE

WRITE (64100)((A(I4J)y I=14NP), J=1,NP}

FORMAT (44H BEST CORRELATION MATRIX (SQRT OF ELEMENTS)//(5E20.8))
RETURN

__END_
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OUTPUT .

THIS SUBROUTINE CONTROLS THE OUTPUT PHASE OF SEARCH

SUBROUTINE OUTPUT

DIMENSTION E(100),4R{100),V(100),P(3,20),X(20),QSQ{(3),DP(20),5(1500)
DIMENSION GIVE(300)

COMMON GIVEyS+EsRy VP4 Xy QSQyNEJNP,IQ,JQyKQyIOPyXTEST4NFORMyNMOVE,A
CHI=QSQ(2)/A

XTEST=XTEST/2.0

WRITE (6,200)

FORMAT(38H FINAL VALUES OF PARAMETERS AND CHI®*#%2)

WRITE (6,800)(P(2,1),I=1,NP)

FORMAT (6E20.8)

WRITE (6,801)CHI,NFORM,NMOVE, XTEST

FORMAT(1PE20.7/15X,7TH NFORM= 16,7X,7H NMOVE= [6,7H XTEST= OPF9.1/)
WRITE (64300)(X(I)y I=1,NP)

FORMAT (22H FINAL VALUES OF STEPS/(6£E20.8))

CALL COREL

CALL THEORY(1,2,2,0)

RETURN

END
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DERI VI3 cacense

THIS FUNCTION CALCULATES THE PARTIAL DERIVATIVE OF THE QutPUT
OF THE SUBROUTINE THEDRY wWITH RESPECT TO THE PARAMETER [P AT THe
POINT JP.

DERIV3 [S FOR THE SPECIAL CASE OF THE SHIELDING PARAMETERS
ONLY IN THE CASE OF 2 SYMMETRY,

FUNCTION DERIVIIP,UP)

COMMON/COMDER/DR(300),D0S5(300)

[F{IP-1)10410,20

DERIV=DR(JP)

GO TO 3¢

DERIV=DS{JP)}

RETURN

END
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JPLOT...

JPLOT, THIS SUBROUTINE PLOTS A SINGLE VALUED FUNCTIUN
ON THE OFF-LINE PRINTER., THE ORDINATES ARE PLOTTED ACROSS THE PAGE

THE ABSCISSAS ARE PLOTTED DOWN THE PAGE

S= ARRAY T0O BE PLOTTED (ONE DIMENSICNAL)

NP= NO. OF ELEMENTS IN S

NL= NO. OF LINES THAT PLOT [S TO COVER

XO0= LOWER LIMIT OF ORDINATES

X1= UPPER LIMIT OF ORDINATES

X= UNITS PER LINE (SCALE FACTOR)

DD= AN ALPHAMERIC TITLE FOR PLOT, 1046

LAB= NO. OF THE PLOT, MUST START WITH 1

WHEN LAB=1 THE PLOT SYMBOLS ARE READ. THE PLOT SYMBOLS, AA(I),
CONSIST OF 7 WORDS THAT CONTAIN 6 BLANKS OR 5 BLANKS AND ONt
PLUS SIGN.

SUBROUTINE JPLOT(S,NP,NL,XOyX1l,XyXI,DD,LAB)

DIMENSION S(1500),GIVE(300),AA(9),AB(20),DD(10)

COMMON GIVE r S '

IF{LAB-1)1000,1000,1001

READ (5,999)(AA(I), [=1,9)

FORMAT (9A6)

JD=NP/NL

X2=(X1+X0})/2.0

WRITE (64980)DDyX04X29X1L

FORMAT (18H1 RESULTS OF JPLOT//10A6//12XsFTe2943X4FT7.2+43X4F7.2/

115X, 102H «ITTITITII«TIQTT Q0TI I« T0 0TI i« I Q000 =10 0000 =ITI011

21TI* T TTITITT# T T IR EITTw T TI0INT«T10111101#)

994
43

44
45

46

952
© 991
997
950

995

DO 998 J=1,NP,JD
ABC=X#FLOAT(J)+XI
DO 994 I=1,17
AB(I)=AAL7T)
IF(S(J)-X0)43,44,44
AB(1)=AA(8)

AB(2)=AA(9)

GO TO 990 ,
IF({S{J)=-X1)46,464,45
AB(16)=AA(8)

AB(17)=AA(9)

GO TO 990
PS=100.0%(S(J)=-X0)/(X1-X0)+0.5
I1PS=PS

ITEST=0

DO 997 I=1,17

IF(IPS-1TEST)952,995,952

IF(IPS-6-1TEST)950,991,991
ITEST=ITEST+6 S
CONTINUE

IDEL=IPS~ITEST

GO TO (19293,4,5),IDEL
AB(I)=AA(1)
GO TO 990



990
389
9398

AB({I}=AA(5)
GO TO 990
AB(I)=AA[4&)
GO TO 990
AB(I)=AA(3)
GO TO 990
AB(I)=AA{2)
GO TO 990
AB{I)=AA(6)

WRITE (6,9893)1ABC, (AB(K)}4+K=1,17})

FORMAT(7XyF6.1493H 1
CONTINUE

RETURN

END
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CEFMAT veeeone
THIS SUBROUTINE CALCULATES THE CEF MATRIX ELEMENTS OF A RARE
EARTH ION IN NTERM TERMS OF THE OPTICAL SPECTRA. THE MAX J=15/2.
HIGHER J MAY BE HANDLED IF THE APPROPRIATE DIMENSION STATEMENTS
ARE CHANGED. THE ELEMENTS ARE CALCULATED FROM GIVEN CEF PARAMET.
INPUT DATA
P(2,1)=CEF PARAMETERS IN THE FOLLOWING ORDER C20,C22,C40,C4%2,
C‘G"Z'C449C4‘49C601C621C6"2)C64’ C6’49C661C6"6
NTERM=NO. OF OPTICAL LSJ TERMS
NJ=NO. OF DIFFERENT J VALUES IN TERMS
XJ=MIN. J VALUE - 1.0
I W=DUMMY VARIABLE
IDEG=1 FOR INTEGRAL J, 2 FOR HALF INTEGRAL J
THETA(N,M)=REDUCED MATRIX ELEMENTS, N IS ORDER,M IS TERM
IDENTIFICATION
AJ({I)=J VALUE FOR THE ITH TERM
NOP=ND. OF CARDS WITH OPERATOR EQUIVALENT MATRIX ELEMENTS FOR
EACH J VALUE DIVIDED BY 3 ' '
OA, 0B, OC(K,[,J)=IJ OPERATOR EQUIVALENT MATRIX ELEMENT FOR
KTH J VALUE FOR ALPHA, BETA, GAMMA RESPECTIVELY, I AND J
GO FROM 1 TO 2J+1, 1 IS INDEX FOR MJ=-J AND 2J+1 IS INDEX
FOR MJ=J S N o ' o
SUBROUTINE CEFMAT(IQ,JQ,KQ)
DIMENSION OA(8,16,16),08(8,16,16),0C(8,16,16),THETA{3,20)
DIMENSION P(3,20), ANM(3,4,2),AJ(20),SIGN(2)
COMMON/COMTH/CEF(13,13,2) ' -
READ(5,699)1(P(2,1), I=1,14%)
FORMATI(6E12.5) - C
READ (5,100)INTERM,NJ,XJ,IW,IDEG
FORMAT(212,F10.5,212) '
DU 999 M=1,NTERM

- READ {5,101 )(THETA({NsM)4N=1,3),A0(M)

101

949"

1000

103

FORMAT{3E20.54F10.5)
CONTINUE ~ T
DO 1000 I=1,8

DO 1000 J=1,16

DO 1000 K=1,16

OA(I,J,4K}=0.

OB(I,.J,K)=0.

- OC(I,4J+K)=0,

CONTINUE

DO 998 K=1,NJ
READ (5,103)NOP
FORMAT (12}

DO 997 L=1,NOP

T READ (5,102)13J4(0A(KsI4J)s0B{KyIgJd)sOC{KyIgd))

102
997

FORMAT (212,3F20.5)
CONTINUE

AK=K
LMAX=AK+XJ+0,52

DO 996 L=1yLMAX



996

995
998

MAX=N+1
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MIN=L+1
JMAX=2,0#(AK+XJ)+1.01
MAX=JMAX+1-L :

DO 996 N=MINsMAX
NA=JMAX+1-N
OA(KyMAX,N)=0A(KyNA,L)
UB(K,MAX,N)=DB(K,NA,L)
UC(K;MAX,N)=OC(K)NAQL)
CONTINUE

DO 995 L=1,JMAX

DO 995 N=1,L
DA(KyNyL)=0A(KyL4N)
OB{RKyNyLI=0BI{RKyL NI
OC(KyN,L)=0C{K,L,sN)
CONTINUE

CONTINUE B
SETTING UP OF ANM
DO 1001 I=1,3
DO 1001 J=144
DD 1001 K=1,2
ANM(I’JyK)z()o
CONTINUE

[A=0

Is=1

DO 994 N=1,3

DO 994 M=1,MAX

111

993

DO 994 L=1,2
IF(L-N) 111,1115994
CONTINUE '
IF(M-11994,993,993
IA=TA+1 ‘
IF(IA-1Q)992,991,992

992

991
994

903

ANM(Ny My L)=P{KQ,yIA)
GO TO 994
ANM(NsM,L)=P(JQyIA)
CONTINUE

- CALCULATE CEF MATRIX ELEMENTS
SIGN(1)=1.0
SIGN(2)=-1.0
I=1
1J=AJ(1)-XJ+.01
JMAX=2.,0%AJ(I)+1.,01
DO 903 J=1,JMAX
DO 903 K=1,JMAX
DO 903 L=1,2
CEF(J]K,L)=0¢O
CONTINUE
DO 901 J=1,JMAX
DO 901 K=1,J
IF(J-K)B00,801,800
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801 M=1

GO TO 810
800 1IF({J-K-2)901,802,803
802 M=2

GO TO 810
803 IF(J-K-41)901,804,805
804 M=3

GO TO 810
805 IF(J-K-6)901,806,901
806 M=4

810 CONTINUE
DO 899 L=1,2
CEF(JyKyL)=SIGNIL)*(THETA(1,I1)*#0A(IJsJsK)=ANM(L1,M,L)+THETA(2,])+
1 OB(IJyJsK)xANM(2 My L)+ THETA(3,1)#0C{IJyJ,K)®ANM(3,M,L))
CEF(KyJyL)=SIGN(L)*®*CEF{JyK,yL)
899 CONTINUE T
901 CONTINUE
WRITE(é:IOOZ) (P(Zyl)i I=1115)
1002 FORMAT(32H1 VALUES OF CEF PARAMETERS USED/ 8H A20R2=F10.3,7H A22
" 1R2=F10.3,7H B22R2=F10.3,7H A40R4=F10.3,7H A42R4=F10.3/8H B42R4=
1 F1l0
o 2.3y7H A44R4=F10.3,7H B44R4=F10.3,7H A6O0R6=F10.3,7H A62R6=F10.3/
38H B62R6=F10.3937H AH64R6=F10.3,7TH B64R6=F10.3,TH A66R6=F10.3,
4TH B66R6=F10.3) ' ' ' ' "
RETURN
e S ENDT
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THEGRYé ® % 0800 020 00
THIS SUBROUTINE DIAGONALIZES CEF MATRIX PROVIDED BY CEFMAT AND
CALCULATES(DELTA E)T, THE TEMPERATURE DEPENDENT QUAD SPLITTING
IN TERMS OF SHIELDING PARAMETERS.
INPUT DATA
NPOINT=NO. UF POINTS THAT ARE TO BE CALCULATED FOR PLOTTING
IF NPOINT IS GREATER THAN OR EQUAL TO 150 THE TEMPERATURE
DEPENDENT QUAD SPLITTING IS ALSO PLOTTLD ON THE MOSELY
PLOTTER
SCALE=SCALE FACTOR FOR TEMPERATURE SCALE
C20,C22=CEF PARAMETERS
DDO=LABEL FOR PLOTS
YMIN, YMAX=MIN. AND MAX. VALUES OF QUAD SCALE IN CM/SEC
SUBROUTINE THEORY(IQ,JQ,KQ,I0P)
COMMON GIVEySsEsRyVsPsXyQSQ)NEJNP,1Q+JQyKQ,yIOP,XTEST,NFORM,NMOVE,A
COMMON/COMDER/DR(300),DS(300)
COMMON/COMHER/EVENUP, N(13)1H(78),SPARE(79)
COMMON/COMTH/CEF(13,13,2)
DIMENSION Qll(13)oQXY(13),DD(IO),C(I3,13),EX(13 100)
DIMENSION GIVE(300)
DIMENSION E(100),R(100),V(100),P(3, 20)1X(20)1QSQ(3):DP(20),S(ISOO)
DIMENSION EVECI(I3):EVEtR(13) o
COMPLEX H,C,CTEMP,CMPLX

'”CDMPLEX'CSQRT' CONJG,y CABS

IF(NFORM)1,2,1

DO 3 I=1,13

T JPl=0+1

WIT)=CEF{I,1,1) - o S

CONTINUE

I=1

DO 4 J=1,12

DO 4 K=JP1,13

HTTT=CMPLX (CEF TSRy TS CEFT K, 21— —
I=1+1

CONT INUE
SPARE(79)=0.0

- DELTA=1.0E-10

1001
1002
1003
1000

CALL HERM(H,13,C,0,DELTA,IT)

- MULTIPLY C BY PROPER PHASE FACTOR

DO 1000 I=1,13
TEMP=REAL(C(I,7))
IF(TEMP.NE.0.0) GO TO 1001
CTEMP=CSQRT(-CONJGIC(1,12))/C(1,2))
GO TO 1002
CTEMP=CONJG(C(1,7))/CABS(C(I,7))

DO 1003 J4=1,13

ClI,J)=CTEMP*CII,J)

CONTINUE

REARRANGE ENERGIES AND WAVE FUNCTIONS
DO 5 I=1,12
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IP1=1+1
DO 5 J=IP1,13
IF(W(I)=W(J))545,7

T TEMP=W(I)
WII)=W(J)
W(J)=TEMP
DO B8 K=1,13
CTEMP=C(I,K)
C(I4K)=C(J,4K)

8 C(JyK)=CTEMP

5 CONTINUE

C RENORMALIZE THE ENERGIES

TEMP=W(1)
DO 9 I=1,13

9 WII)=W(I)-TEMP

C CALCULATE MATRIX ELEMENTS OF 3JZ#%2-J(J+1) AND 3/2(JP##2+JMx=2)

DO 10 I=1,13
QZ2(11=0.0
DO 10 J=1,13
T QZZ(I)=QZZ(I)+REAL(CONJGIC(I J))=C(T1,J))*(3.0%(FLOAT(J)-7.0)
: 1 =%2-42.0)
10 CONTINUE
DO 11 I=1,13

. QXY(1)=0.0
.. ..Dbo11 J=3,13 e
AJ=J-7 o o

QXY(I)=QXY(I)+1.5#REAL(CONJG(C(I4J))=C(I,J-2)+C(I,J)=

1 CONJGIC(I,J-2)))*SQRT((6.0+AJ)*(5.0+AJ)*(7.0-AJ)=(8.0-AJ))
11 CONTINUE
READ(5,100) NPOINT,SCALE,C20,C22
100 FORMAT(14,F10.5/2F20.5)
B=0.695056
E2Q=0.769854

'HCE=0.8610308E-5
R2=0.19
R3=75.5
ALPHA=1.0196651E-02
C  CALCULATE THE PARTITION FUNCTION
1 IFUIOP)12,13,12
13 MI=NPOINT
6D TO 15
12 M1=NE
IF (NFORM)15,14415
14 DO 19 M=1,Ml
16 T=V(M)

18 DO 19 N=1,13
EX(N,M)=EXP(-W(N)/(B*T))
19 CONTINUE
DIR1=0.5%E2Q#4.0%HCE*C20/R2*(~1.0)
" DIR2=0.5%#E2Q*4.0#HCE*C22/R2%(-1.0)
C4F=0,5%EZQ®ALPHA#R3*(~-1.,0)
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15 CONTINUE

ccen T TUC
=g = D SEA |

GAMMAR=P (KQ,1)

GAMMAS=P(KQ,2)
GO TO (50451),1@Q

50 GAMMAR=P(JQ,1)
GG TO 52

51 GAMMAS=P(JQs2)

52 CONTINUE
DO 20 J=1,M1
IF(I0OP)70,71,70

71 T=SCALE=FLOAT(J)
DO 72 I=1,13

72 EX(I,1)=EXP(-W(I)/(B=2T))
JAP=1

T 70 IF{IOP.NE.O) JAP=J

PART=0.0
D0 21 I1=1,13

21 PART=PART+EX(I,JAP)

© QZZA=0.0 '
QXYA=0.0

" DO 22 1=1,13

QZZA=QZZA+QZZ(I)=EX(I4JAP)

22 QXYA=QXYA+QXY(I)#EX(I,JAP)
SA=C4F#QZZA/PART

(@]

IF(DIR2)2001,2000,2001

 SAA=SA%(1.0-GAMMAR)+DIRL*GAMMAS

2000 S(J)=SAA
GO TO 2002
2001 SB=C4F=QXYA/PART

T T 23 CONTINUE

2002

20

25

SBB=SB*(1.0-GAMMAR) +DIR2#%GAMMAS
S(J)=SQRT{SAA*¥2+1.0/3.0%SBB#*2)
IF(10P)23,20,23

DR(J)=—(SAA=SA+SBB#SB/3.0)/S
DS(J)=(SAA=DIR1+SBB*DIR2/3.0)/S
CONTINUE

IF(10P)24,25,24

WRITE(64200) IT

1 48HO
2117H  (CM-1)
3 0

DO 30 I=1,13
DO 31 J=1,13
EVECRUJ)=REAL(C(T,J))
EVECI{J)=AIMAGIC(I,J))
WRITE(6,201)W( 1), (EVECR{J),
FORMAT(F10.34,6X 13F8.3/716X 13FB8.3)
CONT INUE
WRITE(6,9202)QZZ,QXY

ENERGY
MJ=
+1

-6
+2

-5
+3

7200 FORMAT(32H NUMBER OF ITERATIONS IN HERM =

+4

15 7/

MIXING COEFFICIENTS/
-4 -3 -2
+5 +6//

J=1113)1(EVECI(K)9 K=1113’

)

-1



202 FORMAT (18HO
L + J-=x2)//(
READ(5,203)
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(3J0Z2%%2-J(J+1))//6E20.8/6E20.8/E20.8/22H0 1.5=(J+xx?
6E20.8))
DDs YMIN, YMAX

203 FORMAT(10A6/2F20.5)

WRITE(6,204)
204 FORMAT (22H1
1 F10.27/1(2X

DDy SCALE, (S(I),I=14M1)
RESULTS OF PLOT OF 10A6/10X 15H SCALE FACTOR=
20F6.3))

IF{(NPOINT.LT.150) GO TO 32
CALL CPLOT(SyM1,M1,DDyYMAXyYMIN,1)
32 CALL JPLOT{(SyM1,120yYMINyYMAX,SCALE,0.04DD,41)

24 RETURN
END
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The required card decks are:

1. THEORY 5
2, DERIV 2

3. SEARCH = |
4. QSQUAR ——— see listings for QTAVE
5. OUTPUT

6. COREL

7. JPLOT

The listings of decks 1-2 follow.



COOOOOO0O0

1

" ALAT=0.52E2Q+HCE*4.0

Cile-

THEORY 5., ..

THIS SUBROUTINE CALCULATES THE QUADRUPOLE SPLITTING IN THE FORM
OF A/T+8B

INPUT DATA

TEMP=INITIAL TEMPERATURE WHERE PLOT IS TO START

SCALE=MAX. TEMPERATURE/4O

DD=LABEL FOR PLOT
SUBROUTINE THEORY(IQ,JQ,KQ,I0P)
COMMON GIVE»SsEsRyVyPy Xy QSQINEINP,1Q,JQyKQsIOP,XTEST,NFORM,NMOVE,A
COMMON/COMDER/S4F,SLAT
DIMENSION GIVE(300),S4F(120)
DIMENSION DD(10)
DIMENSIUN E{100),R(100),V(1001,P(3,20),X{20),Q35Q(3),0P(201,5(300}
IF{NFORM)1,41,2
R2=0.19

RI=74.0" e ke

ALPHA=1.0201E-2
ALPHA2=ALPHA®=ALPHA
J=6
SUM=Js(J+1)#(22J+]1)%(22J-1)%{2%xJ+3)/5
RM1=1.0
B=0.695056
E2Q=0.769854
HCE=0.8610308E-5
ANUM=-0.5%E2Q#R2#R3*#ALPHA2%SUM=RM1/(13.0%B)

~READ(5,100)TEMP,SCALE

100 FORMAT(2F20.5) e

— w_zt.

2

11

12

13
14

10

ANM=P[KQ,1)
"GAMMA=P({KQ,2)
GO TO (3,4),1Q
"ANM=P(JQs1)
GO T0 5
CRMMA=P [JQy 2 J e
SLAT=-ALAT

IF(IOP)6,7,8

M1=41

GO TO 9

M1=NE

60 To 9 e , o R
Ml=1

DO 10 M=1,M1
IF(IOP)L1,12,13

T=V(NE)

GO TO 14
T=TEMP+SCALE*FLOAT(M)
GO TO 14

T=V(M)

S4F(M)=—ANUM/T
S(M)=—ANM=S4F (M) -GAMMA®SLAT
CONTINUE




IF(IOP)15,16,
16 P(2+42)=P(2,2)

WRITE(6,4200)

200 FORMAT(28HO0
1GMA)= F10.2)
READ{(5,101)DD

101 FORMAT(10Ab)
WRITE(6,102)D

102 FORMAT(50H1L
140HO0 NO. OF
218H SCALE FA
WRITE{645,103) ¢
103 FORMAT(2X 20
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15

/P(2,1)

P(2,1),P(2,2)

SQRT(A20%%2 + 1/3A22%%2)=

Dy TEMP,SCALE

F10.2,22H

(1-GAMMA) /(1-S1

PLOT OF TEMPERATURE VS QUADRUPOLE SPLITTING IN 13As/
POINTS = 41 INITIAL TEMP

CTOR = F10.1)
S(I}y, I=14M1)
F6.3)

= Fl0«l,

CALL JPLOT(S,41441,0.0,10.0,SCALE,TEMP,DD,1}

15 RETURN
- END
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DERIV 2...

THIS FUNCTION CALCULATES THE PARTIAL DERIVATIVE OF THE JUuTPurt

OF THE SUBROUTINE TVTHEDORY WITH RESPECT TO THE PARAMETER IP AT THE
POINT JpP.

DERIV2 IS FDR THE SPECIAL CASE DOF THE SHIELDING PARAMETERS

ONLY.

FUNCTION DERIVIIP,JP)

DIMENSION E(100),R(100),V(100),4P(3,20),X(20),Q5Q(3),S(300)
DIMENSION GIVE(300)

DIMENSION S4F({120)

COMMON GIVES»EsRyVyPs Xy QSQyNE NP, IQyJQsKQyIOP+XTESTyNFORM,NMOVE
COMMON/COMDER/S4F,SLAT
CALL THEORY{1,242,1)
IF(IP-1)10,10,20 ’

DERIV=-S4F(JP)

GO 10 30 T
DERIVY=-SLAY
RETURN

END




