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Abstract

A variety of effects can occur from different forms of nonlinear diffusion or
from coupling of diffusion to other physical processes. I consider two such
classes of problems; first, the analysis of behavior of diffusive solutions of the
generalized porous media equation, and second, the study of stress-driven
diffusion in solids. The porous media equation is a nonlinear diffusion equa-
tion that has applications to numerous physical problems. By combining
classical techniques for the study of similarity solutions with perturbation
methods, I have examined some new initial-boundary value problems for
the porous media equation, including “stopping” and “merging” problems.
Using matched asymptotic expansions and boundary layer analysis, I have
shown that the initial deviations from similarity solution form in these prob-
lems are asymptotic beyond all orders. Applications of these studies to the
Cahn-Hilliard and Fisher’s equations are also considered. In my examina-
tion of stress-driven diffusion, I consider models for the behavior of systems
in the emerging technological field of viscoelastic diffusion in polymer ma-
terials. Using asymptotic analysis, I studied some of the non-traditional
effects, shock formation in particular, that occur in initial-boundary value
problems for these models. Phase-interface traveling waves for “Case II”

diffusive transport were also studied, using phase plane techniques.
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Part 1

Similarity solutions for

nonlinear diffusion



Introduction

Here we study similarity solutions of problems for nonlinear diffusion equa-
tions. For these special solutions, the governing partial differential equation
can be reduced to a more tractable ordinary differential equation. Using
perturbation methods and matched asymptotic expansions it will be shown
how these similarity solutions can be employed to construct solutions for
more general problems involving the full partial differential equation. In the
first section, the method of inverse similarity solutions for the porous media
diffusion equation is discussed. The influence of boundary conditions and
merging solutions of similarity type are analyzed for this class of problem.
In the second section, this approach is extended to study merging traveling
wave solutions in a porous-Fisher’s equation model for population dynam-
ics. Finally, we consider the consequences of non-invertible inverse similarity
solutions that occur for nonlinear forward-backward heat equations in the

Cahn-Hilliard model.



Chapter 1

The stopping problem for the

porous media equation

1.1 Introduction

The general nonlinear diffusion equation

ou 0 ou
= (b3, (11)
specialized to the case D(u) = u™ (n > 0) is called the porous media equation
ou 0 ( ,0u

This model can be used to describe diffusive behavior in many physical appli-
cations [2], [5], [19], [22], [28]. We illustrate two of these applications below.

The mathematical properties of certain classes of solutions of (1.2) have been



studied extensively [3], [4], [20], [21]. It is well-known that if the diffusion
coefficient D(u) vanishes at v = 0, then (1.1) has solutions with compact
support and well-defined interfaces that move with finite velocity — this is
also the case for (1.2).

We formulate an initial-boundary value problem for (1.2) on a finite do-
main that admits a similarity solution of this form for a finite interval of time.
When the solution reaches the edge of the finite domain, the solution’s fur-
ther evolution will come under the influence of the boundary condition. The
focus of this report is to analyze the ability of a fixed boundary to “stop” an
expanding similarity solution. The solution of the “stopping problem” will
be an analytic description of the short-time affect of the boundary on the
similarity solution. This approach is motivated by suggestions to generalize
the use of similarity solutions made by Barenblatt [6], [17]. In developing
this description we will construct an asymptotic solution for a linear problem
and show how the approach generalizes to nonlinear problems. Finally, the
techniques used to solve the stopping problem will be extended to describe

interface-merging dynamics for the porous media equation.

1.2 Derivations of the model

The porous media equation is a model that occurs in many physical problems
[4], [22]. To illustrate this point we present derivations of the model for
problems in porous-media diffusion and for gravity-dominated spreading of
thin layers of viscous liquids.

Following Aronson’s presentation [4], we consider the flow of a gas through



a porous medium. The conservation of mass for this system is given by

dp _
et V - (pu) =0, (1.3)

where ¢ is the porosity of the medium and p,u are the density and velocity of
the diffusing gas. A popular model for the velocity in porous media is given
by Darcy’s law

u= —gvp, (1.4)

where & is the permeability of the medium, p is the viscosity of the gas and
P is the local pressure. This system is closed using the equation of state for
an isentropic gas,

P = Py, (1.5)

where <y is a constant related to the specific heats of the gas. Combining

these equations to eliminate u and P yields the porous media equation

op .
5 = PV (P"V0), (1.6)

where D = il'l’f‘l.

Alternately, following Buckmaster’s presentation [9], we derive the equa-
tion governing a layer of incompressible, viscous liquid spreading over a level
surface, neglecting surface tension. Consider the case where we have a drop

of liquid with upper surface z = h(z,y) spreading on the dry surface z = 0.



The momentum balance for the drop is

Du 1 9
T)?—-—;VP—H/V u-—g, (1.7)

where v is the kinematic viscosity and g is the acceleration due to gravity.
Using approximations from lubrication theory, we may take the pressure to

be

P = —pg(z — h), (1.8)
and reduce (1.7) to
Pu g

Applying no-slip boundary conditions at z = 0 (u = 0), and free-slip condi-

tions at the drop’s surface z = h (u, = 0) yields
g 1,2
= ZVh(32° — hz). 1.1
u VV (22 z) (1.10)
Integrating the velocity over the height of the drop yields the local mass flux
h
q= / pudz = —PLp3vh, (1.11)
0 v

Then, writing the conservation of mass,

oh

pa tV a=0, (1.12)



Figure 1: Liquid pouring out of a tank — a physical situation corresponding
to initial-boundary value problem (1.14a—c).

yields the porous media equation

% = DV - (h¥Vh), (1.13)

where D = ZL.

Many of the qualitative properties of solutions of (1.2) are the same for
all n > 0. While much of our analysis will be done for a modified model
with n = 1 [17], [23], we use Buckmaster’s model with n = 3 to fix physical
ideas. We will address some of the differences in the analysis and the nature
of solutions for the cases n < 1 and n > 1 later, but now we formulate
a problem for the porous media equation that will lead to the “stopping”

phenomenon.



1.3 The initial-boundary value problem

We consider the one-dimensional initial-boundary value problem for the

porous media equation

ur = (U"Uyg)q, (1.14a)

on the finite domain 0 < z < 1 for ¢ > 0 with n > 0, boundary conditions
u(0,t) =1, u(1,t) = 0, (1.14b)

and initial condition

u(z,0) = 0. (1.14¢)

In the context of spreading viscous liquids, this problem describes the be-
havior, in the region of the spout, of a liquid pouring out of a large tank (see
Figs. 1, 2).

It has been shown that (1.14a) has well-defined non-negative compact-
support solutions [4]. Beyond the leading-edge of the region of support,
or the interface, the solution vanishes identically (see Fig. 3). Before the
leading-edge hits the boundary at z = 1, the boundary condition there is

trivially satisfied; hence we can find a similarity solution of the form
u(@,t) = (U(R)", z2=gz/V4 (1.15)
where (w)* = max(w, 0) and U(z) satisfies the ordinary differential equation

...._;.zU'(z) = (DU)U'(2))". (1.16)



u(x,t)

X

Figure 2: The behavior of the solution u(z,t) for short times.



(Uz))*

10

2

Figure 3: The compact-support similarity solution (U(2))".
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To uniquely specify the desired similarity solution, we give two conditions.
First, transforming the boundary condition at z = 0 yields U(0) = 1. Sec-
ondly, we integrate (1.16) over the region of support to yield a statement of
global conservation of mass. We denote the interface position by z,, where
U(z.) = 0 by continuity of the solution. Additionally, requiring the flux,
—D(U)U'(z), to vanish at z, [5], [25] yields '

—% " U(z)d = DOYU0), (1.17)
which is an equation for the unknown interface position z,. Observe that
the position of the leading edge is z.(t) = 2,4/t which moves with velocity
v.(t) = 2./V/4t, which is finite for ¢ > 0. For diffusion coefficients with
D(0) > 0, (1.17) still applies [26], but the region of support is no longer
compact, z, — 00, and the well-known result of infinite propagation speed
for classical diffusion is recovered.

If we integrate (1.16) from 2z, to some indefinite position z and use the

chain rule to write z as a function of U, that is z = z(U), then [8], [27]
D)= ~37(U) [ =(uw)d (118
=37 | #(u)du. .18)

This is a formula that yields the diffusion coefficient corresponding to a given
similarity solution. Later, we will use (1.18) to construct a model problem
for a modified porous media equation with an explicit closed-form solution.
For now, we return to the analysis of (1.14a).

The compact-support similarity solution is valid for times up till the in-
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terface z.(t) hits the right boundary z = 1. At that time, t, = 1/22, z = z,x
and we may determine the final similarity solution U(x) = U(z/+/%.) by

solving the scaled ordinary differential equation

~ 57l (z) = (DU ) (119)

subject to the boundary condition #/(0) = 1 and

————z / D(LU'(0). (1.20)

Observe that for times ¢ > t,, the similarity solution will not be a solution of
the boundary value problem (1.14a—c) since the boundary condition u(1,t) =
0 can no longer be satisfied. The solution can no longer continue expanding to
the right; it is stopped behind the boundary at z = 1 (see Fig. 4). We may
describe the “stopped” behavior with the solution of the initial-boundary
value problem

ur = (uug)g, (1.21a)

on 0 < z < 1 with boundary conditions
u(0,t) =1, u(1,t) =0, (1.21Db)
for ¢ > t, with initial condition

u(z, t,) = U(z). (1.21¢)
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u(x,t)

X

Figure 4: The stopping behavior of u(z,t).

In the following sections we will more carefully examine the nature of “stop-
ping” and develop techniques for studying short-time behavior of solutions

to initial-boundary value problems like (1.21a-c).

1.4 The stopping problem

In this section we will expand our discussion of some of the interesting aspects
of the stopping problem. In our problem, a moving similarity solution is
stopped by a fixed boundary and then the solution evolves there. This is in
some ways complementary to Kath’s description of the waiting-time problem

[22], where a solution evolves for a time before it begins to move.
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It is instructive to note that we may reformulate our initial-boundary

value problem (1.14a—c) as the moving boundary problem

ur = (UUg)y, 0 <z < s(t), (1.22a)
u"uz =0 ,
u(0,t) =1, . at = = s(t), (1.22b)
u=0,
u(z,0) =0, (1.22¢)

with the prescribed interface

s(t) = z.(t) = (1.22d)

1 t > t..

{z*\/i 0<t<t.,

For times ¢ < ¢,, (1.22a~d) has a unique similarity solution that loses this
structure for ¢ > t,. Observe that the interface z,(¢) is a continuous function,
but it is not smooth. We will study how the kink in z,(t) at t, yields effects
that propagate into the interior of the domain, where we expect the solution
to be very smooth. This behavior is comparable to the reflection of an
expansion fan by a wall in the study of gas dynamics.

Another approach to studying this behavior is to reformulate the problem
in inverse variables to directly examine the level sets, or contours of constant
u. In the study of diffusive problems, this technique is called the isotherm
migration method (IMM) [15], [16]. If we consider the similarity ordinary

differential equation (1.16) in terms of inverse variables, that is z = z(U)
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Li foormmmmom e fom s e e

Figure 5: The level sets of the solution (solid) and the similarity solution
(dashed).
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rather than U = U(z) then we derive the equation

1 d dz\ ™'

and the corresponding partial differential equation

b2 (D(u) (g_i) _1) . ’ (1.242)

This is an equation that describes the motion of the isotherms xz(u,t) for all
values of u for 0 < v < 1. The initial and boundary conditions corresponding

to problem (1.14a—c) for (1.24a) are
z(1,t) = 0, z(0,t) = z.(t), (1.24b)

z(u,0) = 0. (1.24¢)

Simple numerical discretizations of (1.24a-c) yield very accurate level sets
(see Fig. 5). Comparison of the numerical solution with the similarity solu-
tion X (U, t) = 2(U)v/%, where 2(U) is given by (1.23), shows that there is a
smooth transition from the similarity solution for ¢ < ¢, to the stopped state
for ¢t > t,. In the interior of the domain, the isotherms are smooth curves for
all time. We observe that the isotherms diverge from the similarity solution
for ¢ > t, more rapidly as we approach the interface z.,(t).

To analyze the character of the stopped state we will use singular pertur-
bation expansions to yield the short-time asymptotic behavior of the solution.

This study will show that for a short time after the solution has formally
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stopped, it may still be represented by the similarity solution with an addi-
tional correction from a boundary layer. This approach will also be used to
characterize the dynamics of the interface in a problem describing merging
viscous fluids. In the next section we will study a simple linear problem so
that we may find the limitations of the techniques that will consequently be

applied to the nonlinear initial-boundary value problem (1.21a-c).

1.5 A linear problem - the heat equation

Here we develop a representation of the solution, for short times, of an initial-
boundary value problem for the heat equation. Our representation is asymp-
totically accurate as t — 0 and clearly separates the influences of initial and
boundary conditions on the solution. In the following sections we will show
that this approach generalizes to nonlinear problems.

We consider the initial-boundary value problem for the heat equation
U = Ugy, (1.25a)
on the finite domain 0 < z < 1 for ¢ > 0, with boundary conditions
u(0,t) =0, u(1,t) =0, (1.25Db)
and smooth initial condition

u(z,0) = up(x). (1.25¢)
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We are most interested in the behavior for short times ¢t = 0%, hence we
introduce the stretched time 7 = t/¢, where 0 < ¢ < 1 is an artificial small

parameter, then (1.25a) becomes
Uy = €Ugg. (1.26)

We will use matched asymptotic expansions in € to write a solution of (1.25a—
c). The parameter € is called an artificial parameter since it was introduced
by an arbitrary scaling and can just as easily be completely eliminated. Ar-
tificial parameter expansions can be shown to be nonuniformly convergent
[12], [14], [24]. Hence, our solution will be good only for a limited time, but
for the study of the stopping problem this will be sufficient to determine the
interesting behavior. We now solve (1.26) by constructing an outer solution
to satisfy the initial conditions and boundary layers to correct for the applied

boundary conditions.

1.5.1 Outer solution

We may obtain the outer solution to (1.26) using a regular perturbation

expansion of the form

oo

u(z,7) = y—";l('i)— e, (1.27)

n=

which yields
Unt1(2) = up(x), n=0,1,2,... (1.28)



19

and after applying the initial condition, we find that

00 (21'1«)

u(z,7) = W (2) T, (1.29)

|
n—0 n:

Observe that this is a Taylor series in time ¢ with coefficients that contain
the spatial dependence. In general, this outer solution will not satisfy the
boundary conditions at z = 0, and z = 1, hence we need to place boundary

layers there.

1.5.2 Boundary layers

The stretched variable in the boundary layers scales like O(e/?) and we
recover the full heat equation for the inner problems:
z=0: u,=uz, 0<7T<oo, T = €'/,

(1.30)
z=1: U =uUz, —-00<T<0, z=1+¢/T.

We shall look for a uniformly convergent solution u(z,t) that is the sum of
the outer solution (1.29) and corrections due to the boundary layers, U*(z, 7)
and UR(z, 1),

u(z,t) = u(z, 7) + UL(%,7) + UR(z, 7). (1.31)

Note that the boundary layer corrections vanish as (|Z],|Z]) — oo in the

interior of the domain, so

o) {_.( ) +ULET) [o] - oo, .

u(z,7) +UR(Z,7) |%| = oo.
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This is the only approximation that is made in the analysis of this problem.
We consider the situation at z = 0% in detail; the analysis for the right
boundary layer is exactly analogous. Using a Taylor series, we expand the

outer solution (1.29) in terms of the inner variables to get

0 (2n+m) (O)

ryu o

n=0m=0

— n+3Emn, | (1.33)
Substituting the uniform solution (1.32) into (1.30) yields an initial-boundary

value problem for the boundary layer correction on 0 < Z < co

Ul =UEL, (1.34a)
2 up™(0)
uk,7r)=-3% —— e Ul(z — 00,7) = 0, (1.34b)
n=0 '
Ut(z,0) = 0. (1.34c)
We then expand U¥ in a perturbation series
Lz,7) = ZG"U z,7), (1.35)
where at each order U, satisfies
Um- - Unj:i, (136&)
(2n)
U.(0,7) = _uw (0) ", Un(Z — 00,7) = 0. (1.36b)

Un(%,0) = 0. (1.36¢)
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At each order in ¢, this problem has a similarity solution of the form
Un(2,7) = T"ya(3), 2 =i/V4r, (1.37)
where y,(2) satisfies the ordinary differential equation
y' +2zy' — dny = 0. (1.38)

If we let m = 2n then we obtain the differential equation for integrals of the
error function [1]

w" + 2zw' — 2mw = 0, (1.39)

which has the solution that vanishes as z — oo
- . m . -
w(Z) =I1,(2) =2™T (5 + 1) i™erfc(2), (1.40)

where I,,,(0) = 1. Note that i™erfc(Z) is a standard notation where i refers
to an integral operator, not the complex number i. These functions can be

generated from the recursion relation

sm 3\ — _i-m-‘l 5 _l__-m—2 > —
imerfc(z) = —i erfc(Z) + 5 erfc(z), m=1,2,3,... (1.41a)

where

i%erfc(z) = erfe(Z), ilerfc(z) = —=e%. (1.41b)

S
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Solving at each order, we find that

Uz, 7) = 200 fap (-f—) . (1.42)

Using these solutions, we write a uniformly-convergent-in-space solution to

the original problem (1.25a—c) that is good for short times

32 10"() o
u(x, t) = =~ ——n—'— t (143)
o0 (2"-) o0 (271,)
Up (O) n z Ug (1) n (1 — .’E)
-3 il (= | - S g, ,
= n! \ Vat = ! VAt

where the first sum is the outer solution and the following sums are the
corrections due to the left and right boundary layers respectively. Observe
that (1.43) is valid even when ug(z) does not satisfy the boundary conditions
at £ = 0, z = 1. This solution may be interpreted as being composed of
pieces coming from related problems: a Cauchy initial-value problem (the
outer solution), and two initial-boundary value problems on semi-infinite
domains (the left and right boundary layers). Further analysis of (1.43) is
pursued in the next section in order to provide insight into the nature of the

representation.

1.5.3 An example

We now carry out a detailed analysis of (1.25a—c) with the specific initial

condition

up(z) = z(1 — x). (1.44)
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The asymptotic solution, (1.43), for this initial condition is
Uz, t) =2(1 —z) - 2t + V(z, 1), (1.45)
where the boundary layer contribution is given by

V(z,t) = 8t (i2erfc (%) + Zerfc (%)) . | (1.46)

We now compare (1.45) with two representations of the exact solution of

(1.25a~c). Using the Laplace transform method [11], we find that

’U,L(CL',t) = iL‘(l - ‘73) —2t+ U(:E,t), (1'47)
where
VRS —1)*| i%erfc ?_t(_’“j_ﬁ
v(z,t) = 8t ?;;)( 1) ( erf ( T >+ (1.48)
" 1—z+(k+3)
i‘erfc ( Jai ) )

Alternately, using elementary separation of variables, the Fourier series so-
lution is
8 X o~ (2k+1)2x%t

7(3 Pt W sin (Zk -+ 1)7‘(’2’,‘ (149)

U]:(Z' R t) -

By studying certain properties of the solution we will illustrate the virtues
of our asymptotic representation.

First, we see that (1.45) is a closed-form representation as opposed to the

infinite series in the exact solution. Indeed, comparing V(z,t) with v(z,t)
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we note that the asymptotic solution replaces two infinite series of i%erfc’s
by just two ierfc’s! The asymptotic accuracy of Y (z,t) for t — 0% can be
shown from the agreement of the Laplace transforms of v and V as s = oo
[10],

2cosh \/s(z — 3 Pz, s) 4 cosh /s(z — 1)
T =
s?cosh /5 # s2eVs/2 ’

o(z,s) = (1.50)
and V ~ 9 as s = oo. Our representation also does not suffer problems
from nonuniformly convergence of series: consider the calculation of u;(z,t)
at t = 0. We know that the exact solution should have u; = 0 at £ = 0 and
z =1 for all times since u is prescribed to be a constant on the boundaries.

However, from the Fourier series solution

_ (_4_1_ i sin (2k + l)mc) Y (151)

=0 Tz, 2k+1

Our
ot

where the above sine series is a nonuniformly-convergent representation of
u = 1. Consequently we see that the behavior near z = 0 and z = 1 for
t — 0 is not well-handled by this representation of the solution. In contrast,

from the asymptotic solution

%%{_ — 2438 <i2erfc (%) + iZerfc (%)) + (1.52)
2 e v (2)

which agrees with (1.51) on 0 < z < 1 as ¢t — 0 and also correctly captures

the behavior of the solution on the edges of the domain in the boundary
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layers.

The eventual breakdown in validity of our artificial parameter expansion
can be tied to the fact that the boundary layers spread like O (\/i) as t in-
creases. As described earlier, the only approximation made in the derivation
of the asymptotic solution is that the boundary layer contributions vanish in
the interior of the domain. Moreover, we have assumed that the contribution
from the boundary layer on the far side of the domain is zero in applying the
boundary conditions. In either the limit of an infinite domain, L — oo, or of
small time, ¢ — 0%, this contribution will be transcendentally small, but on
a finite domain there will be an error for ¢ > 0. The asymptotic behavior of

a boundary layer term I,(Z) is

! .
In(3) ~ ——e% 700 (1.53)

\/7_1' 22n+1

Hence the behavior of the error for short times is

L 4n+1/2n! L2
I n ~ n+1/2 = - .
2 (\/Zt.) \/77L2n+1t exp( 4t)’ t—0 (1.54)

For short times, the exponential is the controlling factor, independent of n,
and as ¢ — 0 the error is negligible beyond all orders. We will now consider a
nonlinear stopping problem where we will find that a similar boundary layer

influences the short-time evolution of the solution.
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1.6 Solution of the stopping problem

We will now apply the techniques developed above to study stopping in a
nonlinear initial-boundary value problem of the form (1.14a—c). Consider the

generalized porous media equation
we = F(u)em (sl
on the finite domain 0 < z < 1 for ¢ > 0, with boundary conditions
u(0,t) =1, u(1,t) = 0, (1.55b)

and initial condition

u(z,0) = 0, (1.55c¢)

where the chemical potential function f(u) [13] is

flu) = 943 (1 - —g) , (1.55d)

where the diffusion coefficient is given by D(u) = f'(u). Note that for (1.55d),
D(u) = O(u) as u — 0, so we are considering a modified porous media
equation with n = 1.

This modified equation is very convenient to study since it possesses a
closed-form similarity solution. For arbitrary diffusion coefficients D(u), the
similarity solution of (1.55a) can only be obtained from numerical calcula-
tions or a perturbation expansion [5] and will be difficult to work with an-

alytically. However, if we write a suitable analytic similarity solution U/(z),
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u(x,t)

X

Figure 6: The solution of (1.55a—d).
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then we may determine the diffusion coefficient D(U) from (1.18) such that
our given U(z) is a solution of (1.55a). By picking a function that approxi-
mates the numerical solution of a problem with a given D(u), we may write
a modified equation that reproduces the behavior of the solution to arbitrary
accuracy. This powerful technique is well known in the modeling of infiltra-
tion and sorption problems for porous media diffusion [8], [27]. In our case,
we have picked (1.55d) in order to simplify the analysis so that we may focus
attention on the phenomenon occurring in the boundary layer. Equation

(1.55a,d) has the simple closed-form solution (see Fig. 6)
u(z,t) = (U(2))" = (1 - 2)*, z=1z/Vt. (1.56)

This solution has interface position 2z, = 1, hence from the discussion in
section 3, stopping occurs for times greater than ¢, = 1.
We now consider the stopped initial-boundary value problem (1.21a—c)

for (1.55a) for ¢t > 1 with the initial condition
u(z,1)=U(z) =1-—z. (1.57)
We introduce a stretched time 7 to focus on the behavior at ¢ = 1,
t=1+er, (1.58)

yielding
ur = €f (U) e, (1.59)
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where 0 < € < 1. We search for an outer solution of (1.59) in terms of a

regular perturbation expansion

u(x,7) = i €"un(z,7), (1.60)

n=0

which yields the series of problems
0(1) ugr = 0, uo(z,7) =1 -,
0(6) Uy = f(u0)1‘$7 U (iL', T) = %557_- (161)
To O(e), our outer solution is
1 2
ulr,7)=1-z+ €T + O(e?). (1.62)

This can be seen to form the beginning of the expansion of the similarity

solution (1.56) for er < 1,

wz,7) = 1—z(14er)"V/? (1.63)
= 1l-2 (1 - -;—ET + 262’7'2 + 0(637'3)) .

Hence, we actually know the outer solution to all orders since (1.56) is an ex-
act solution of (1.55a) for all times (neglecting boundary conditions). Like the
outer solution of the linear problem (1.29), (1.64) is completely determined
by the initial condition. If our problem were on an unbounded domain, then

this would be the solution of a Cauchy problem; for boundary value prob-
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u(x,t)

0.95 1
X

Figure 7: The behavior of the solution in the boundary layer at z = 1
compared with the outer similarity solution (dashed).

lems on finite domains this solution must be combined with boundary layer
corrections as was done in the previous sections. Solution (1.56) satisfies the
boundary condition at z = 0 for all times, so we only need a boundary layer
at z =1 (see Fig. 7).

Observe that at time 7 the value of the outer solution at z = 1 is u =
€7 + O(€?), therefore we know that u is O(e) in the right boundary layer.
Therefore, rescale

u = €, (1.64)
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yielding

@y = flell)gp = ?i' (@ + 0(e%)) (1.65)

Rescaling the independent variable, we find that the width of the boundary
layer is O(e)
z=1+ez, , (1.66)

and to leading order we obtain the porous media equation with n =1
1o
u,:z(u ). (1.67)

for —oo < £ < 0,7 > 0. At Z = 0, the boundary layer must satisfy the
boundary condition u = 0, and by expanding the outer solution in terms of

the boundary layer variables, we find that
e 1 -
Wz — —00,7) — 5712 + O(e). (1.68)
This problem has a similarity solution of the form
a(z, 1) = Ty(2), Z=17/T, (1.69)

where y(Z) satisfies

y—Zy = % ()", (1.70a)

(1.70b)
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Let y(2) = —Z + 1 + w(Z), where w(2) satisfies
(5 — % — w4+ (2— 23 — W' + 2w = 0, (1.71a)

w(Z = —o0) = 0, w(0) = —=. (1.71b)

To determine the asymptotic behavior of w(Z) as Z — —oco we may approxi-

mate (1.71a) by the linear equation
n" ! 2
w" — 2w + Fh 0. (1.72)
Using the WKBJ method [7] to write w(3) = *®) we find that

w(z) ~Cz e 7 —x. (1.73)

Therefore, the asymptotic solution is

w(z, t) ~ (1 - %Y + (- 1w (“3 - 1) L i1t (1.74)

t—1

and the correction due to the boundary condition is

o((';—_ll)2 exp [2‘;’:11]) (1.75)

which is transcendentally small for z < 1 as ¢t — 1. Hence, we have shown

that the similarity solution is valid for short times past ¢ = 1 with a boundary-
condition correction that is negligible beyond all orders as t — 1% (see Fig.

7). Moreover, (1.74) is appealing since it clearly separates the influence of the
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boundary from the rest of the solution. This form of the solution will offer

us some insight into a merging process that is studied in the next section.

1.7 Dynamics of merging interfaces in one di-
mension

In this section we will extend the results derived above to describe interac-
tions of similarity solutions. Generally, similarity solutions only exist for a
small class of problems. We will consider a problem whose solution does not
have a similarity structure, but for short times we show how to construct a
uniform asymptotic solution from combinations of similarity solutions and a
nonlinear interaction term.

In the context of viscous flows, we will be describing the short-time behav-
ior of two merging streams in one-dimension (see Fig. 8). We will consider
a problem for the generalized porous media equation used in the previous

section (1.55a,d) on the finite domain 0 < z < 1 with boundary conditions
u(0,t) =1, u(l,?) = 1. (1.76)

Observe that the nonlinear diffusion equation (1.55a) admits the following

invariant transformations:

z — —z reflection in space,
z — z + h translation in space, (L.77)

t — ¢+ k translation in time.
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u(x,t)
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Figure 8: A problem for merging streams
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Using these transformations, we can generalize the similarity solution (1.56).

For example,

uo(z, 1) = U(\/——%%c—;) (1.78)

describes a similarity solution expanding to the right that started from the

initial condition ug(z,0) = (1 -z/ \/I?(;)+. Likewise,

wi(z,8) = U(\}%) (1.79)

is a similarity solution expanding to the left from the boundary condition
ui(1,£) = 1 with the initial condition u;(z,0) = (1 - (1 — 2)/v/k) .

While the regions of support of ug(z, t) and u;(z, t) are disjoint, there is no
interaction between them and we may write the exact solution to (1.55a,d),
(1.76) as

u(z,t) = max(uo(z, t), u1(z,1)). (1.80)

Nonlinear interactions begin when the regions of support first intersect at

(Tuy ta) = (ﬁi’j—(;—:—@—) — k0>, (1.81)

(see Fig. 9). For short times ¢], we assume that the nonlinear interactions
are localized in the neighborhood of z, and, just as in the stopping problem,

we determine the scalings for inner problem to be

T =z, + €I, t=1t, +er, (1.82a)
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Figure 9: The interfaces of the similarity solutions ug(z,t) and u;(z,t) and
the region of interaction (shaded) in the z—¢ plane.



u = €t, (1.82b)

so that
_ 1.
%:Z@ﬂﬁ+0@, (1.82c)

where —0o < Z < oco. Expanding the outer solution in terms of the inner

variables, we obtain the boundary conditions to leading order for @

(1.82d)

T T -
. 5’53‘ z T — 00,
u—r

T T
2(1-z. )2 + T—z. T =700

Like the boundary layer problem for the stopping problem, this problem for

@ has a similarity solution of the form

w(Z, 1) = Ty(2), Z=13/T, (1.83)
where y(Z) satisfies
1 "
S — 2
y—-2y' =7 (v*), (1.84a)
1 z 5
57 T = Z — —0Q,
y - { o (1.84b)
2(1—z. )2 + 1z, # 00

For times ¢ > t,, the behavior of the approximate solution offers an in-
teresting view of the physical merging process. The outer solution u(z,t)
describes two isolated streams that flow through each other with no interac-

tions (see Fig. 10). This solution is incorrect due to the lack of conservation



38

(1)n

xo(t)

X%

xi(t)

Figure 10: To conserve mass the regions above/below the outer solution must

have equal areas.
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of mass in the region of overlap, where the mass defect is given by
zo(t)
m(t) = / m(z,t) dz, (1.85)

where

m(z,t) = min(ug(z, t), ui(z, 1)), (1.86)

with the interfaces for uo(z,t) and u,(z,t)

.’Eo(t) = \/t + ko, CL’l(t) =1- \/t + kl, (187)

where zo(t) > z,(t) for t > ¢, and m(t) = 0 for t < t,. To conserve mass, the
nonlinear interaction solution in the internal layer at z, must balance this

mass defect to leading order, that is
m(t) = / ~ (3, 7) — ulz, t) di. (1.88)

Observe however, that away from the interaction region, m(z,t) = 0 and
the similarity solutions given by the outer solution u(r,t) are still locally
exact solutions. These physical considerations lead to a physical criterion for
judging if the asymptotics yield a good approximation of the true solution;
while m(z,t), and presumably the corresponding nonlinear interaction, is
localized compared to the length of the domain, the approximation should be
good. When the spatial extent of the interaction at z, becomes significant,
then solving an infinite domain shock layer problem for y(z) (1.84a,b) is

no longer valid since the effect of the boundary conditions (1.76) on the
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U(z) a=1

z

Figure 11: Similarity solutions to the porous media equation for o < 1,
a=1,and a > 1.

finite domain will become important. This situation was observed in the
examination of the “far boundary layer” error for the heat equation (section

5).

1.8 Further considerations

We conclude with a discussion of approaches to generalize the analysis given
above. The porous media equation will be examined for general n > 0 and
also for the two-dimensional case.

Above, we have studied the stopping problem for a modified porous media
equation with D(u) = O(u), that is, the case n = 1. For the general case

D(u) = O(u®), o > 0, there are some significant differences in the analysis.
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If we assume a similarity solution of the form
u(z,t) = U)*, U@ =Q0-2Y, z=z/V, (1.89)

then, from (1.18), we obtain D(u) = O(u*). For @ = 1 the solution has finite
slope at the interface; for o < 1 zero slope; and for a > 1 infinite slope (see
Fig. 11). For the analysis of section 6 to O(e) there is no trouble for a < 1.
For oo > 1, we will encounter divergent terms in the direct expansion of the
outer solution (1.61). To avoid this difficulty, we can either use the similar-
ity solution (1.89) as the complete outer solution, or attack the problem in
inverse variables. While for & > 1, U(z) has an infinite slope at the interface
z, = 1, in inverse variables, z2(U) = 1 — U* is a nice, differentiable function.

Recalling (1.24a), the inverse partial differential equation corresponding to

(1.55a) is
g_;”_ = -e;% (D(u) (%) ) : (1.90)

and we may expand z(u,t) in a regular perturbation series

2(u,t) = i € (u, 1), (1.91)

Using either approach, we will determine that in the boundary layer at z = 1,
u = O(e'/*), and

i, = % (@), (1.92)

where

u = e/eq, z=14¢€z. (1.93)
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This boundary layer problem has the similarity solution

a(z,7) =1V (3), i=3i/T (1.94)
where y(Z) satisfies
1 P o a+1 "
V=3 ()", ' (1.95a)
1 1/a
y(Z = —00) — (—5 + 5) . y(0)=0. (1.95b)

Observe that the similarity variable for the boundary layer problem is given
by Z = z /7 for all o; hence the spreading of the boundary-condition influence

like O(t) is a generic property of the porous media equation in one dimension.

Application of this analysis can be extended to the porous media equation
in several dimensions

u =V - (u"Vu). (1.96)

Consider the Barenblatt similarity solution of (1.96) in two dimensions [18],

[22]

1/n
' 1 n(z?+y?) 1° /
Uy, t; E) = myeesvll i 4(n + 1)t/(nHD) ’ (1.97)

where F is a parameter. In Buckmaster’s model U(z,y,t; E) would describe
a finite drop of fluid on a surface, spreading under the influence of gravity.

We might consider the Cauchy initial-value problem for two merging drops
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Figure 12: Merging drops in two dimensions.
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given by the initial condition

’U,o(.’E, y) = max(uo(x, v, O): ul(ma Y, O))7 (198)
ug(z,y,t) =U(x — 2o,y — Yo,t + ko; Ep), (1.99)
u(z,y,t) =U(T — 21,y — y1,t + k1, Ey). (1.100)

We expect the qualitative features of the solution to this problem to be
similar, however the details to the analysis will be much more difficult due to
added geometric considerations and the fact that the nonlinear interaction
will be governed by a partial differential equation. Numerical simulations

support the generalization of the outer solution

u(z,y,t) = max(uo(z, y, 1), u1(z, y, 1)), (1.101)

for short-times after merging in the two-dimensional case (see Fig. 12).

1.9 Appendix: long-time behavior of the
stopping problem

Above, we considered the “stopping problem” — the one-dimensional initial-

boundary value problem for the porous media equation

U = (U uy)q, (1.102a)
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on the finite domain 0 < z < 1 for ¢t > 0 with n > 0, with boundary

conditions

w(0,) =1,  u(l,t) =0, (1.102b)

and initial condition

u(z,0) = 0. (1.102¢)

The solution to this problem was developed in terms of a compact support
similarity solution for times up to a critical stopping time ¢,. Moreover, using
singular perturbations, a solution for short times after ¢, was constructed
using matched asymptotic expansions. Here, we complete the analysis of
(1.102a-c) by giving a description of the behavior of the solutions for long
times, £ — oo.

As — oo, we expect the solution u to approach a steady-state. The

steady-state solution %(z) of (1.102ab) satisfies
(@u;), =0, (1.103a)

and

a(0) =1, (1) = 0. (1.103b)

The unique solution of this problem is
a(z) = (1 — z)Y/0+D), (1.104)

If our solution at time ¢, u(z,t), is a function in some sense close to the

steady-state, we may express it as the sum of the steady-state and higher
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order deviation terms
u(z,t) = a(z) + dv(z, t) + O(6?), (1.105)

where ¢ is a small parameter. This ansatz allows us to study the evolution
of the solution using linearized stability analysis.
Substituting (1.105) into (1.102a) and retaining terms to leading order in

d yields
o &

5 = 50 @v(@,1) +0(). (1.106)

Using separation of variables, we search for a solution of the linearized prob-

lem in the form

oz, 1) = ki:) Fe(@)gu(t)- (1.107)
We find that gx(t) = e % and that fi(z) satisfies the boundary value prob-
lem
(1—2)2f"(z) — ;?%(1 —2)f(2)+ (1.108a)
(,\2(1 — )R - ﬁ) F(z) =0,
f0)=0, f(1)=0, (1.108b)

where the eigenvalue \? is the exponential rate of decay of the linearized

deviation from the steady-state. We can put (1.108b) in a more standard
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form with the change of variables s = 1 — z, y(s) = f(x),

(n+1)?

(s71y/(s)) + (A%ﬂ‘l - s‘?’%) y(s) =0. (1.109)

Equation (1.109) subject to the boundary conditions y(0) =0, y(1) =0 is a
self-adjoint eigenvalue problem. It can also be written in the form

2n
n+1

(n+1)2

sy'(s) + (Azsﬁ%? - ) y(s) =0, (1.110)

which is related to Bessel’s equation and has solutions

A
y(s) = SPJ,, <58q> 5 (1.111)
where
l1-n n+2 n+1
= =" = , 1.112
P=onv2 5oy YT oi2 (1.112)

where the J, is the Bessel function of fractional order v and the eigenvalues
satisfy
J, (%’i) 0 fork=01,2,... (1.113)

Therefore, we can write v(z,t) as a generalized Fourier-Bessel series expan-
sion

v(z,t) = i are % (1 = 2)PJ, (\k(1 — 2)9/q). (1.114)

In the limit that ¢ — oo, we may neglect the higher order terms k =1,2,...

in (1.114) and higher order terms in (1.105) as we approach steady-state.
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Hence

u(z,t) ~ T(z) + @ (1 — 2)PJ,(Ao(1 — 2)7/q),  t—oo. (L.115)
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Chapter 2

Merging traveling waves for the

porous-Fisher’s equation

2.1 Introduction

Wavelike propagation of properties is a phenomenon that is observed in
countless biological and chemical systems. In biology, studies of popula-
tion dynamics are often based on models that show properties spreading in
traveling waves [12], [13]. Similarly, in many chemical systems, such as the
Belousov-Zhabotinskii (BZ) reaction and combustion problems [13], a “reac-
tion front” propagates with constant velocity into regions of unreacted ma-
terials. All of these problems are described by mathematical models called
reaction-diffusion equations. We will construct a reaction-diffusion model
for a population dynamics system and show how the case of two merging

populations can be examined.
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The simplest and most well-known reaction-diffusion model is Fisher’s

equation [4], [9], [12], given in one dimension by

ou 0%u

5 a2 +u(l - u), 0<u(z,t) <1, (2.1)

which is a partial differential equation that describes the evolution of a popu-
lation density function u(z,t). Fisher’s original work modeled the spreading
of a gene throughout a population [12]. The terms on the right-hand side
of (2.1) represent the effects of diffusion and local nonlinear reaction on the
population respectively. Equation (2.1) has two homogeneous steady-state
solutions; v = 0, v = 1. These solutions describe spatially-uniform empty
and full populations respectively. In the absence of spatial variations, Fisher’s

equation reduces to the logistic ordinary differential equation

du
i u(l — u), (2.2)

where the nonlinear reaction term F(u) = u(1—u) is called the Pearl-Verhulst
model [6], [13]. This model describes growth processes and the stabilization of
a saturated finite-density population. Kolmogorov, Petrovksy and Piscounoff
(KPP) [9] showed that, for a general class of reaction functions F'(u), Fisher’s
equation yields the same behavior as the Pearl-Verhulst model. We will take
reaction terms F'(u) from this general class and focus on making an improved

population dynamics model by modifying the diffusive term in (2.1) [1], [15].

In the absence of the reaction term, Fisher’s equation reduces to the
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u(x,t)
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Figure 1: A traveling wave solution of Fisher’s equation.
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classical model of diffusive processes, the heat equation,

ou _ d%u

Friaiok (2.3)

This equation describes the spreading out of a population composed of indi-
viduals that move about at random [7], [11], [12]. The interaction of diffusion
and reaction terms in Fisher’s equation yields steady-profile traveling wave

solutions (see Fig. 1)
u(z,t) = U(z), z=1z— ct, (2.4)

in which fronts move with constant velocity ¢ and do not change shape as
they propagate. These fronts connect regions where u = 1 to regions where
u = 0. Such traveling wave solutions describe locally saturated populations
expanding into empty regions. We will now derive an improved model of the
diffusive effects in population dynamics by considering a revised description
of the motion of individuals.

Following Gurney and Nisbet [7], we study a population made up of indi-
viduals whose motions are governed by a simple drive: to avoid overcrowding.
The spatial distribution of a fixed-size population is governed by the conser-

vation law
du
i -V .J, (2.5)

where J is the local population flux vector. We model the flux as having

contributions from random, diffusive motion and from the tendencies of in-
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dividuals to avoid crowded regions

J=-DVu+uv, (2.6)

where D is a constant diffusion-coefficient and v is a density-dependent ve-
locity vector. To represent our model, we take v to be opposite the direction
of maximal density increase

v ox —Vu, (2.7)

this is the “directed motion” model of Gurney and Nisbet [7]. A generaliza-
tion of their model is to have the velocity scaled by an increasing function of
density

v =—-Eg(u)Vu, (2.8)

where E is a constant of proportionality. Hence, local density and local
gradients both contribute to the anti-crowding impulse. The flux may then
be written as

J=—-DVu - EG(u)Vu, (2.9)

where G(u) = ug(u). The relative sizes of D and E determine the magni-
tudes of the diffusive and directed-motion contributions to the flux. We will
consider a population where directed-motion is the dominant effect F = 1,

D <« E. Then we have

au_

5 = V- (GwVw) +0(D), (2.10)

which is a generalized porous media equation [16]. Weak diffusive effects can
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be added to this model, but the results will only be minor modifications to
the solution of (2.10).

The porous media equation with G(u) = u®, a > 0,

ou 0 [ ,0u

is a model describing diffusive processes in many physical systems [8], [10],
[16]. Murray [12] describes how this nonlinear diffusion model has been used
to represent “population pressure” in biological systems. The mathemati-
cal properties of solutions of (2.11) have also been extensively studied [2].
The most significant features are “compact support” and “finite speed of

propagation.” Non-negative compact support solutions can be written as

u(z,t) = (U(z, )", (2.12)
where
w)*=m wO)-—{w w0 (2.13)
()“ax(’_Oelse, .

and U(z,t) is a smooth function [8]. These population distributions have
distinct boundaries, called interfaces, beyond which the population density
is identically zero. Solutions of the heat equation (2.3) do not have distinct
boundaries; rather, they have populations which extend over the whole do-
main. Solutions of the porous media equation spread with a finite interface
speed. This is also a desirable feature for our model since it corresponds to a
finite speed for the motion of individuals in the population. The properties

of compact support and finite propagation speed can be shown to be related,
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and they also extend to the generalized porous media equation [16].
We will study population dynamics for a generalized directed-motion

porous-Fisher’s equation [1]

%Q;— =V (u*Vu) + u(l — u®). (2.14)
Using combinations of traveling wave solutions of (2.14), we will describe the
behavior of merging populations. In the BZ reaction, circular traveling wave
solutions (“target patterns”) are often observed [5], [12]. A simple model

for the BZ reaction in two dimensions can be reduced to an axisymmetric

Fisher’s equation [12]

ou 0*u 10u

575— = 573+;5;+u(1—u). (2'15)

As described by Murray, (2.15) does not formally allow steady-profile travel-
ing wave solutions of the form (2.4). However, for large radii, R = 6! > 1,
where 6 — 0 is a small parameter, we may introduce the change of variables
r = R4 to yield

ou _ d%u § Ou

ot = o Tl mu At T

(2.16)

As § — 0, we solve (2.16) using a regular perturbation expansion of the form

u(F,t) ~ uo(7, t) + duy (7, 8) + . ... (2.17)



56

To leading order, (2.16) becomes the one-dimensional Fisher’s equation

6u0 _ 6211,0
‘5{' = W‘*‘Uo(l -UQ)+O(5), (2.18)

and hence has the leading order axisymmetric traveling wave solution
ug(7,t) = U(F — ct). In three dimensions, the spherical wave case can simi-
larly be reduced to the study of the one-dimensional Fisher’s equation. The
focus of our study is to analyze the interaction of two expanding popula-
tions. By considering the porous-Fisher’s equation in one-dimension, we
hope to describe the fundamental behavior of merging target patterns in the
BZ reaction [5] and more generally, the dynamics of merging populations.
The following section will be a mathematical analysis of this problem.
For the global structure of the population distribution, we will make use
of traveling wave solutions of the form (2.4), (2.12) found by Newman [12],
(13], [14]. Our focus will be the study of the local interactions near the
merging interfaces (see Fig. 2). Using perturbation theory and the method
of matched asymptotic expansions, we will be able to describe the dominant

physical effects for the short-time merging behavior.

2.2 The merging problem

We study the porous-Fisher’s equation on —0co < z < oo:

ou 8 ( 20U
u

N = % —3—5) + u(l — u®), (2.19)



u(x,t)

7

Figure 2:

Merging fronts in the porous-Fisher’s equation.
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for a > 0. After reviewing some properties of traveling waves for this equa-
tion, we will construct a problem describing merging populations and then
solve it using perturbation theory.

Traveling wave solutions of (2.19) of the form u(z,t) = U(z — ct) satisfy

the nonlinear ordinary differential equation
—cU'(z) = (U*U'(2))' + U(1 = U®). (2.20)

The corresponding ordinary differential equation for the classical Fisher’s
equation (2.1) has traveling wave solutions for a continuous range of velocities
c. Newman [14] has showed that for the porous-Fisher’s equation, there is a

unique traveling wave solution

u(z,t) = (U(2))* = ((1 — exp [%})1/0)+, z=z—ct, (2.21)

with velocity

1

Vva+1

Observe that the partial differential equation (2.19) remains unchanged under

c= (2.22)

the following transformations

z — —x reflection in space,
z — =+ h translation in space, (2.23)

t — t+k translation in time.

Using these transformations, we can generalize the traveling wave solution
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(2.21). For example,
ug(z,t) = (U(x — 9 — ct)) ™ (2.24)

is a shifted traveling wave moving to the right, starting from position z = z,

at time ¢ = 0. Likewise,
ui(z,t) = (U(zy — z —ct))*t (2.25)

is a reflected traveling wave moving to the left, starting from position z = z;
at time ¢ = 0. Using these two solutions, we now produce a description for
merging populations.

While the populations represented by ug(z,t) and u,(z,t) remain sepa-
rated (see Fig. 2), there will be no interaction between them and the overall

population distribution is
u(z,t) = max(uo(z, t), ui(z, t)). (2.26)

This equation describes two populations moving toward each other; the two

populations first meet at

To+ X1 .'13'1—-.’560) (2 27)

w b)) = 3
(= ) ( 2 2c

Hence, if the initial population distribution at time ¢ = 0 is given by

u’(z) = max(uo(z, 0), us (z, 0)), (2.28)
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then u(z,t) will be the exact solution for times 0 < ¢ < t,. In fact, we
can consider a large class of initial conditions similar to (2.28) represent-
ing initially widely-separated populations, since KPP showed that each such
population will eventually approach a traveling wave profile U(z) [9].

At time t,, the populations begin to merge and interactions take place.
For t > t., u(z,t) is no longer an exact solution; it requires a correction in
the neighborhood of z.. Equation (2.26) incorrectly predicts that at z, the
populations will “pass through” each other with no interactions (see Fig. 3).
While near z., u(z, t) is not accurate, away from z,, it correctly describes the
behavior of the bulk of the population. In our asymptotic solution of (2.19),
u(z,t) is called the outer solution since it describes the solution away from
the critical point z,. We will show that the correction needed to describe the
interaction of the merging populations, called the inner solution, is initially
localized to a small neighborhood of z,.

We will study (2.19) for short times after the merger at ¢t = t,, so we
rescale time as

t =1, +er, (2.29)

where € < 1 is a small parameter. Observe that at z., u(z,t) at time 7 is

U(—ecr), and from (2.21) we have that
u = O(e®). (2.30)
Therefore, we rescale the dependent variable as

u = e'/*q, (2.31)



61
and the distinguished limit yields the scaling in z to be
T =z, + €%, (2.32)
yielding the partial differential equation
iy = (4%Uz); + €d(1 — ea®). (2.33)
Expanding @(Z, 7) in a regular perturbation series as € — 0,
W(Z, 1) ~ Uo(Z,t) + ety (Z,t) +..., (2.34)
yields the leading-order porous media equation

By 0 (.0

Therefore we observe that in the neighborhood of z., the population-merging
dynamics are diffusion dominated; the reaction terms do not affect the solu-
tion to leading order.

Expanding the outer solution in terms of the inner variables, we obtain
the matching boundary conditions to leading order for @

Ule(z —cr)) I — —o00,

u(z,t) - { (2.36)

U(—€e(Z +ec7)) T — o0,
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u(x,t)

w(s)

u] (x’ ¢ ) :j"‘_',,«.-" uo (x’ t )
0 L

X x
X

Figure 3: Details of the merging-dynamics perturbation expansion.

Figure 4: Circular merging fronts in the porous-Fisher’s equation.
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and, from (2.21)

Ve ((c—Z/r)V/* % — —o0,
i(z,t) — ( il ) e=/7) (2.37)
va+1 (c+Z/T)V/* 7 — 0.
This problem for %(Z,7) has a similarity solution of the form
W&, 1) =1y(3),  §=3F/T, (2.38)

where y(3) satisfies the ordinary differential equation on —oo < § < 00

1 ~ 1(= a, =\ /

Sy =S8 =06, (2.39)
with boundary conditions

y(3) — ( = )Ua { (e=9He 5 —co, (2.40)

va+1 5

(c+ 5> 5— co.

We present the analysis for the case o = 1, corresponding to the simple
directed-motion model and the Pearl-Verhulst reaction term, for which the
algebra becomes straight-forward. From considerations of (2.39), (2.40), we
note that y(§) must be an even function of 3, so we may consider the problem

for (2.39) on —oo < § < 0 with boundary condition y'(0) = 0. Let
+ w(3), (2.41)

where w(3§) represents the nonlinear correction needed to describe the merg-

ing dynamics (see Fig. 3) and satisfies the nonlinear ordinary differential
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equation

(%——%—w) W'+ (V2 -§5—uwuw' +w=0, (2.42)

with boundary conditions

w(E = —00) 50,  w(0) = —1\[-2- (2.43)

To determine the asymptotic behavior of w(§) as § - —oco we may approxi-
mate (2.42) by the linear equation

w" — 2uw' + l/s—iw = 0. (2.44)

Using the WKBJ method [3] to write w(8) = e®®) we find that
w(3) ~ C5%eV® 5 —c. (2.45)

Hence we have shown that during the initial stages of the merging process, the
effects of nonlinear interactions are exponentially localized to the interface

region. The uniform asymptotic solution to (2.19),

u(z, t) ~ max(uo(z, ), w1 (2, ) + (£ — £.)ow (ft{ti) t 5 tF, (2.46)

is the sum of the outer traveling wave solution (2.28) and the nonlinear merg-
ing correction w(3). From (2.46), we observe that effects of the population-
merging propagate from the interface back into the bulk of the populations

with distance proportional to O(t). Since the nonlinear interactions are ini-
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tially localized, we note that the bulk of the population away from the inter-
face continues moving with the same speed in a traveling wave profile, just as
before the merger. Hence (2.28) correctly describes the outer solution even
for short times after the merger. We note that this solution for the circular
traveling wave case yields patterns for the front positions during merger that
are very much like the “merging target patterns” observed in the BZ reaction

(see Fig. 4).
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Chapter 3

Similarity solutions of the

reduced Cahn-Hilliard equation

3.1 Introduction

Formation of spatial structures in nonequilibrium mixtures through the pro-
cess of phase separation has been the focus of many recent studies [1], [6],
[19]. When a solution of two miscible components is rapidly brought to a
thermodynamic state where the components can no longer exist as a uniform
mixture, or “quenched,” then it will spontaneously separate into two phases.
We will examine certain aspects of the Cahn-Hilliard model for phase sepa-
ration [8], [17]. While it was originally derived from classical thermodynamic
considerations for a two-phase solution, the Cahn-Hilliard equation has be-
come accepted as a model for various physical phenomena including pattern

formation through phase transition [17], spinodal decomposition [13], [14],
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and nucleation (8], [12].

We will study a problem for the Cahn-Hilliard equation in the limit of
weak interfacial energy. Under these conditions, the Cahn-Hilliard equa-
‘tion reduces to a nonlinear diffusion equation, the reduced Cahn-Hilliard
equation. After reviewing properties of an equilibrium solution to the Cahn-
Hilliard equation, we will study a similarity solution of the reduced Cahn-
Hilliard equation. From theoretical analysis and numerical simulations, it
will be shown that this class of nonlinear diffusion equations admits weak
solutions with shocks. The behavior of solutions to this nonlinear parabolic
problem will be compared with wavelike behavior in hyperbolic systems of

conservation laws and in Burger’s equation.

3.2 The Cahn-Hilliard equation

Following Bates and Fife [6], we consider the Cahn-Hilliard equation in the

form

ou 0? ,0%u

5= m (f0 - =) (31)
where 0 < € < 1is a small parameter related to interfacial energy and u(z, t)

is the concentration of one of the two components in the system. This model

can be derived from the energy functional [11]

Flu] = / E[u] dz, (3.2)
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where the energy density £[u] is given by
Elu]l = F(u) + I(ug), (3.3)

where F'(u) is the free-energy density and I(u,) is the interfacial energy. The
chemical potential [11] may be derived from (3.2), for systems with Dirichlet

or Neumann boundary conditions on 4 [19], as

fs—-f = / plu] dz, (3.4)
where
plu] = f(u) = I" (ug) U, (3.5)
with
f(u) = F'(u). (3.6)

We shall call f(u) the reduced chemical potential. The diffusive flux is given
by the negative gradient of the chemical potential, and we define the diffusion
coefficient to be

D(u) = f'(u) = F"(u). (3.7)

Additionally, the interfacial energy can be modeled by

1
I(ug) = -2—e2ui. (3.8)
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F(u)

u

Figure 1: A double-well free-energy density F(u).

With these definitions, the conservation law for u can be generally written

as

U = gg, (3.9)

or as (3.1) for our particular choice of .

For the study of phase separation, F(u) is modeled by a double-well po-
tential with two stable states (see Fig. 1). This form of the free-energy
density yields a diffusion coefficient that becomes negative over a range of u.
We will call diffusion coefficients with this property Cahn-Hilliard diffusion
coefficients. The concentrations where D(u) = 0 are called spinodal points,

%, and u,, and the range u, < u < u, where D(u) < 0 is the spinodal or
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unstable region

Uy
U

Figure 2: A Cahn-Hilliard diffusion coefficient D(u).

u=l =S
mixing region
——  u=0

X

Figure 3: The physical problem studied here.
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unstable region [1], [13] (see Fig. 2). The higher-order gradient term in (3.1)
that gives the contribution to the energy due to an interface is needed to
regularize fronts that form in this region in general solutions. Linearized
analysis in the unstable region suggests that (3.1) is an ill-posed problem
without this regularization [12], [14]. The focus of this report is to study
a particular, well-defined solution of (3.1) in the absence of regularization.
Close parallels exist between this special solution and the “breaking-wave”
solution of the inviscid Burger’s equation. Our solution will be a weak solu-
tion of (3.1), with € = 0, that contains a shock. The effect of regularization
is to smooth out the shock according to the form of the interfacial energy.
Away from a sharp interface, we may approximate solutions to (3.1) using

a regular perturbation expansion in e for the outer solution
u(z,t) = u(z,t) + eui (z, t) + ua(z, t) + O(). (3.10)

Expanding (3.1) to leading order in € yields the reduced Cahn-Hilliard equa-
tion

Uy = f(T)ge + Ofe), (3.11)

which can be written as a nonlinear diffusion equation
U = (D(T)Ty)y, (3.12)

where D(%) is given by (3.7) from the appropriate form of F(z).
We will study a Dirichlet problem for (3.12). The corresponding Dirichlet

problem for the Cahn-Hilliard equation can be used to represent the behavior
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of a mixture that is initially uniform v = 0 (the pure second component)
separated by a semi-permeable membrane from a uniform reservoir of u = 1
(see Fig. 3). First we will consider the steady-state problem, and then
using similarity solutions, we will describe a dynamic solution to the time-

dependent Cahn-Hilliard equation.

3.3 The equilibrium problem

We introduce some of the properties of the Cahn-Hilliard equation through
the examination of a steady-state problem. Consider the solution to the

steady-state boundary-value problem for the Cahn-Hilliard equation on 0 <

<1
(f(u) - €2uz:c)z.1: =0, (313&)
w(0) =1,  wu(l) =0, (3.13b)
Uee(0) =0,  ugy(1) = 0. (3.13¢)

These boundary conditions on u, u,, correspond to Dirichlet conditions on
the chemical potential ; and describe the physical problem given in the

previous section. Integrating (3.13a) twice yields
f(u) — Eugy = az + b, (3.14)

where a and b are constants of integration. If we assume that u(x) is a smooth
function, so gradients are O(1), then to leading order we may neglect the

O(€?) term. Both boundary conditions (3.13b) are satisfied by the resulting
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multi-valued implicit outer solution (see Fig. 4)

_ fw) - £() |
z(u) = O = F D) (3.15)
Returning to the full problem (3.13a), we have now determined a and b to
yield
f(u) = €uge = (F(0) = f(1))z + F(1). (3.16)

The multivalued outer solution cannot satisfy this differential equation for
€ > 0, and we conclude that a shock layer must be inserted to form an
admissible single-valued solution. Therefore, we will assume the existence
of a sharp interface, or shock, of width O(e) at some position z,, to be
determined. The inner problem in stretched variables in the neighborhood
of the shock is

f(@) — Gz = ¢+ O(e), (3.17)

where
T — I

T = = (£(0) — f(1)zs + f(1). (3.18)

€

The general leading order solution to (3.17) is

T dUu
T—Ty= /uo \/2(F(U) = cU)’ (3.19)

where Io,uq are constants of integration, and

F(u) = /0 “HU)AU, () = uo. (3.20)
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To match to the outer solution, we require that @ approach constant values,
say 4(Z — —o0) — up and @4(Z — o0) — uy, as |Z| — oco. From (3.17), this

results in the conditions

flu)=¢,  flug) =c (3.21)

In order that the integral (3.19) diverge as & — u; and @ — uy, we require
that the denominator of the integrand vanish at these points. This condition

can be written as the equal area rule [19] (see Fig. 5)

/u " (Fw) = ¢) du =0. (3.22)

2

To uniquely specify the shock layer solution, we take %, = 0 and require that
the shock layer agree pointwise with the multivalued outer solution at z = z,
(Z = 0). Therefore, define u, as the value on the middle branch of (3.15)
such that z(u,) = z,, and take ug = u,. Equations (3.21) and (3.22) are a
system of three equations for the unknowns u;, us, and ¢. The solution of

this system yields the shock position from (3.18) as

g, = =) ;= a(u), (3.23)

- fO)-s(

and by comparing (3.23) with (3.15), we note that ¢ = f(u,).

For particular choices of the reduced chemical potential function f(u) it
is possible that the shock position determined by the equal-are rule will fall
outside of the domain 0 < z < 1 and hence will not be admissible. To study

such a case, and for other general considerations, we consider a problem for
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Figure 4: The equilibrium solution.
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The equal-area rule.

Figure 5
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the time-dependent Cahn-Hilliard equation.

3.4 The dynamic problem

We will consider the initial-boundary value problem for the Cahn-Hilliard

equationon 0 <z <1fort>0

U = (f(u) — €Ugz)en, (3.24a)
u(0)=1, wu(1)=0, (3.24b)
uzz(0) =0,  uge(1) =0. (3.24¢)
u(z,0) = 0. (3.24d)

As above, we will use the method of matched asymptotic expansions to con-
struct a solution of this problem. For this problem, the shock layer analysis
is very similar to that in the equilibrium case, so we address this point before
proceeding to the study of the outer solution, which will be the focus of the

remainder of this article.

3.5 The dynamic shock layer

As in the equilibrium case, to determine the fine structure of the solution
at a sharp interface, we use stretched variables to obtain an inner problem.

Consider an inner expansion centered at the unknown shock position z, =
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s(t), which will be determined later by the outer solution,

5=12 ’:(t). (3.25)

Under this change of variables, (3.24a) for u = (%, t) becomes
Uy — s’ ()i = (f(@) — Uzz)zs- (3.26)
To leading order we get
AZ + B = f(a) — sz, (3.27)

where A and B are constants of integration, possibly functions of time, and
are determined from matching to the outer solution. As in the equilibrium
case, as |Z| — oo, to match to a smooth outer solution % must approach

constant values, hence A = 0, and
B = f(@) — fizs. (3.28)

This is the same equation as for the steady-state shock (3.17), and therefore
we obtain the same equal-area rule (3.22) for shock placement to leading
order.

We will now study the outer problem for (3.24a) which will give the
overall structure of the solution as well as determining the motion of the
shock layer. The analysis of this problem is considerably simplified for outer

solutions of similarity form. For particular forms of F(u), these will be
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exact solutions of (3.24a—d). Hence, in the next section we will use similarity
solution techniques to reduce to outer problem (3.12) to a nonlinear ordinary

differential equation.

3.6 The outer solution - similarity solutions
of diffusion equations

As described earlier, away from the shock, we expand in a regular perturba-

tion series to obtain the leading order nonlinear diffusion equation

Ut = f(u)zs. (3.29)

We will consider similarity solutions of this equation. The properties of
similarity solutions used in the study of diffusive systems [9], [21] will be
reviewed in this section.

We consider the initial-boundary value problem for the general nonlinear

diffusion equation in one-dimension 0 < z < oo for t > 0
uy = (D(u)ug)s, (3.30a)
with boundary conditions

u(0,t) =1, u(z,t) = 0 as z — oo, (3.30b)
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and initial condition

u(z,0) = 0.
If we define the diffusive flux as

ou

then we may write (3.30a) in conservation law form as

Ou  Oq
B‘i“i—-a—a;-—o.

Searching for similarity solutions of (3.30a) of the form
u(z,t) = U(2), z=z/Vt,

reduces it to the ordinary differential equation

%—zU'(z) — —(DUYU'(2))"

(3.30c)

(3.31)

(3.32)

(3.33)

(3.34)

The transformation to similarity variables yields a corresponding similarity

flux

a(z,t) = t72Q(2),

where

Q(z) = -DU)U'(2).

(3.35)

(3.36)
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With this definition (3.34) becomes
1 ! /
izU (2) = Q'(2). (3.37)

Following Babu [5], we will consider this problem in inverse variables, that
is z = z(U) rather than U = U(z). This change of variables is often used to
make perturbation expansions of (3.34) more convenient [4], [5], but for our
application this is an important step in the analysis. Using the chain rule,

(3.37) yields

aQ

~z(U )= Fiin (3.38)

If we define the inverse-flux as

_ 1 dz 1
JU) = _-F(—U—)-dU = 00 (3.39)
then we obtain
—z(U) d (_L (3.40)
dUu \J )/’ ’

which may be used to write the nonlinear ordinary differential equation for
2(U),

—2—22'2 = D(U)2" — D'(U)7, (3.41)

where the primes now denote differentiation with respect to U. For uni-
formly parabolic equations with D(u) > 0, (3.34) and (3.41) are equivalent
representations.

If D(0) = 0 and D(U) > 0 for U > 0 then the diffusion equation is of

porous media type. Similarity solutions of this class of equation are weak
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solutions with compact support and are of the form
u(z,t) = U@)*, z=z/V, (3.42)

where (w)* = max(w,0) and U(z,) = 0 defines the leading edge of the region
of support (see Fig. 6). Having a compact-support solution of the form (3.42)
means that even though our original problem (3.24a-d) is a boundary value
problem on a finite domain, a similarity solution will exist for a finite interval
of time. For porous media equations, solving (3.41) becomes more convenient
than solving (3.34) [5]. We determine 2, through a global conservation of
mass

% [ v dz = Q) (3.43)

Zu
0

Imposing the conditions that U is continuous and the flux vanishes at the
leading edge yields

~57() [ 20y dv = DQ). (3.44)

Note that (3.44) holds for general D(U); if D(0) > 0 then the similarity
solutions do not have compact support and z, — oo [20].
Similarly, if we integrate (3.34) from 2z, to some indefinite position z and

use the chain rule to write z as a function of U, z = z(U), then [7], [21]
1 U
D) = ~57(U) /0 2(u) du. (3.45)

This is a formula that yields the diffusion coefficient corresponding to a given

similarity solution. We will now extend some of these ideas to study the
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(U(z))*

Tx
Z

Figure 6: A compact-support similarity solution.
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u(x,t)

X

Figure 7: A numerical solution of (3.46a—c).
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0 u, Uy, 1
U

Figure 8: A Cahn-Hilliard D(U) and a multi-valued similarity solution z(U).

reduced Cahn-Hilliard equation, where D(U) becomes negative.

3.7 Multivalued solutions

To gain some insight into the behavior of (3.30a), we conducted some prelim-
inary numerical studies of the initial-boundary value problem on 0 < z < 1

fort >0
u = (D(u)ug)q, (3.46a)

w(0,t=1,  wu(l,t) =0, (3.46b)

u(z,0) =0, (3.46¢)
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where D(u) is a Cahn-Hilliard diffusion equation with D(0) = 0 to obtain
compact-support similarity solutions. Using several finite difference schemes
[2], [16], we obtained consistent results showing the existence of a compact-
support similarity solution with an apparent shock in u (see Fig. 7). Solving
(3.41) numerically with a Cahn-Hilliard diffusion coefficient, subject to the
boundary condition z(U = 1) = 0 and (3.44), yields a nonmonotone solution.
The solution z = 2z(U) cannot be written as a single-valued function U =
U(z) and hence (3.34) cannot be used! The implication of having a Cahn-
Hilliard diffusion coefficient is that the corresponding similarity solution will
be multivalued! This behavior can be shown to be generic; if we assume a
solution z = z(U) > 0 for a multivalued function U(z), then we can make
use of (3.45) to determine the corresponding D(U). Since z(U) is positive,
so is its integral. Since U(z) is multivalued, 2(U) is not monotone and 2'(U)
changes sign, yielding a corresponding diffusion coefficient D(U) which is
negative in some range (see Fig. 8).

As in the theory of nonlinear waves [22], since the partial differential
equation (3.46a) governs the evolution of a physical quantity such as density,
concentration or temperature, a multivalued solution is not admissible. For
waves, multivalued solutions can be replaced by weak solutions that contain
discontinuities.

Recalling section 3, we can write the nonlinear diffusion equation in con-
servation form as

U+ ¢z = 0, (3.47)
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where the flux is given by

q = —f(u)q. (3.48)

In this form we may apply Whitham’s derivation [22] of the condition for the
motion of the shock z, = s(t) to yield

ds _lg] _ [f(u)s]

dt o [

(3.49)

where the brackets indicate the jump across the shock. This condition on
the interface velocity was also derived by Pego [19] through the consideration
of a Stefan problem for the reduced Cahn-Hilliard equation. We note that
for our similarity solution s(t) = 25v/% and (3.49) yields the equation for the
shock position

1 [DU)U']

R 7 (3.50)

Equation (3.49) states that the motion of the interface is driven by a jump
in the flux across the shock. This is a condition that is commonly used in
the formulation of Stefan problems [9].

Similarly, using some of Whitham’s considerations of weak solutions [22],
we can argue that the reduced chemical potential f(u) must be continuous

across the shock. We may take the solution U(z) of the equation
1
—2—zU’(z) =—f(U)" (3.51)

to be of the form

Us(2) 0<2< 2z
U(z) = (3.52)

Ul(z) 2y < 2,
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or, equivalently,
U(z) = Uy(2)H (25 — 2) + U1 (2)H (2 — 25), (3.53)

where H(z) is the Heaviside step function. Substituting (3.53) into the
lefthand-side of (3.51) yields terms like

-%dguwuf-n+~~, (3.54)

where §(z) is the Dirac delta function. In order to balance this singularity,
d?f /dz? must act like a delta function, df /dz must act like a step function

and hence f(U) must be C° continuous at z;,

[fU)]=0. (3.55)

The motion of the shock in a first-order scalar conservation law is con-
trolled by one condition at the shock, given by (3.49). For example, consider

the generalized Burger’s equation
ut + q(u); = €Ugg, (3.56)

where the flux is ¢(u) and the viscosity is 0 < ¢ < 1. In the absence of

viscosity we get the first order equation

ue + q(u)g = 0. (3.57)
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Figure 9: A breaking wave solution of Burger’s equation.



U(z)

90

..

Figure 10: A reduced Cahn-Hilliard solution.
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Solutions of this equation will generally become multivalued breaking waves.
It is possible to insert a shock into these solutions to yield a weak solution
that corresponds to a viscous solution of Burger’s equation as ¢ — 0 (see Fig.
9). In the weak solution, a shock connects the upper and lower branches of
the original multi-valued solution. The position of the shock is determined
by the shock condition. If u is the conserved quantity in the system, then we
get (3.49). If some function P(u) is conserved, then, by multiplying (3.57)
by P'(u) we get

P(u): + Q(u), =0, (3.58)
where
Q) = [ gw)P'(v) v, (3.59)
and we get the shock condition
ds” _ [Q(u)]
dt ~ [P(u)]’ (3.60)

where sP(t) is the shock position. Hence, by specifying the conserved quan-
tity in the system a unique shock equation is determined.

Our problem for the reduced Cahn-Hilliard equation is in some ways more
analogous to a hyperbolic system of conservation laws. The Euler equations
for gas dynamics describe the transport of mass, momentum and energy. So-
lutions of this system of mathematical equations yield breaking waves which
correspond to shock formation in the physical system. At a shock, the gov-
erning conditions, the Rankine-Hugoniot relations, require the conservation

of the three transported quantities. Unlike a weak solution of a single con-
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servation law, a weak solution of a hyperbolic system cannot generally be
constructed from a shock connecting the upper and lower branches of a sin-
gle breaking-wave solution. The solution of the system is in fact composed
of different classical solutions ahead of and behind the shock, related to each
other through the shock conditions. For the reduced Cahn-Hilliard equa-
tion, the weak solution is constructed from a shock that connects the upper
branch of one multi-valued solution of (3.41) to the lower branch of another
multi-valued solution of (3.41) (see Fig. 10).

Requiring that u is conserved and f(u) is continuous does not uniquely
specify a shock position for the the reduced Cahn-Hilliard equation. Consider
finding a weak similarity solution of (3.51) of the form (3.52). U, and U, are
solutions of a second order ordinary differential equation and hence they each
have two unknown constants of integration. Additionally, the shock position
zs is unknown for a total of five unknown parameters in the weak solution.
The boundary conditions (3.30b) for the nonlinear diffusion equation yield
two conditions. The shock relations (3.50) and (3.55) give two more restric-
tions. One more condition is needed. The correct weak solution is selected
by the form of the higher-order viscous terms in the equation. For the Cahn-
Hilliard equation, the shock position is determined by the equal area rule
derived in section 3. In numerical methods for solving the reduced Cahn-
Hilliard equation (3.46a), the form of the higher order numerical viscosity in

the discretization scheme determines the shock selection rule.
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Part 11

Stress-driven diffusion
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Chapter 4

Shock formation in

stress-driven diffusion

4.1 Introduction

Many chemical and biological systems can be described by coupled reaction-
diffusion equations. These mathematical models generally describe the in-
teraction of advection, molecular diffusion and nonlinear reactions in simple
materials. However, many recent developments in emerging technologies re-
quire more sophisticated models to explain newly observed phenomena. Here
we study one such model, called stress-driven diffusion, describing the be-
havior of polymeric materials.

Polymer materials are becoming commonly used in many industries in-
cluding medicine and pharmaceuticals. Many nontraditional effects occur

in these materials. Generically called “anomalous behavior,” these effects
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cannot be predicted from classical models. An example is the nature of the
diffusive spreading of a penetrant liquid in a polymer film. Experimental
studies of polymer sorption behavior show constant velocity spreading of the
penetrant with a well-defined sharp interface. Classical diffusion models can-
not yield such characteristics. As a result, numerous studies have focused on
tying anomalous behaviors to the special material properties of polymers.
Since polymers are very long molecules, some effects can have considerable
characteristic times [30]. Consequently, incorporation of relaxation effects
through viscoelastic models becomes important. Additionally, polymer ma-
terials can undergo a phase transition from a relatively inflexible “glassy”
state to a more responsive “rubbery” state with corresponding changes in dif-
fusion coefficients and relaxation times. We will study mathematical models
that incorporate these effects.

We will review and extend the analysis of models for anomalous “case II”
diffusion in polymers. After briefly reviewing a derivation of the governing
equation given by Wu and Peppas [32], we will relate the model to equations
proposed by Cohen et al. [10], [11], [12], [16], [17], [18], [19], [20] Finally, we
will study some of the phenomena present in a new generalized stress-driven

diffusion model.

4.2 Derivation of the model

In this section we present a simplified derivation of the equations describing a
system composed of a penetrant liquid diffusing in a polymer film substrate.

This presentation, based on [32], introduces many assumptions and neglects
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several effects, but it yields the correct qualitative form for the equations of
motion of the simple one-dimensional model. Rigorous formulation of the
full three-dimensional requires careful consideration of many factors and is
still an active area of research [1], [2], [3], [4]. Properties of the penetrant
will be indicated by the subscript 1, while properties of the polymer will be
indicated by the subscript 2. The densities p; and p, will be taken to be
constants. The local material velocities are given by u; and u,. The volume
fractions of penetrant and polymer ¢;, ¢, are the main quantities of interest.

The penetrant and polymer volume fractions are related through

¢1+ @2 = 1. (4.1)

Initially, the polymer is dry, i.e. it contains no penetrant, so we have ¢;(X) =
0 and ¢o(X)=1at t=0.
From thermodynamic arguments, Wu and Peppas [32] claim that the

velocity of the penetrant is given by

ko
(1—¢1)(1 - 2x¢1

$1wy = —D(¢1) (th + )VP) , (4.2)

where P is the osmotic pressure (or pressure due to the swelling of the poly-
mer), D(¢;) is an inter-diffusion coefficient, k¥ = V';/RT, and  is called the
Flory interaction parameter. By substituting the velocity model (4.2) in the

statement of conservation of mass for the penetrant,

% (p101) + V- (p1é1u;) =0, (4.3)
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we obtain

=V e (o st r) e

Now, consider the conservation of momentum for the penetrant and the poly-

mer
D1U.1

= —VP, 4.5

Py VP + p1p12, (4.5)
Dsyu

P2 = VPt ppn 4V -0, (46)

where P; are partial pressures, p;; are momenta transferred to component
¢ from component j and o is the stress tensor of the polymer substrate.
Summing (4.5, 4.6) yields

Dy, Dsu,

P Dt + po Dt = -'V(Pl + P2) + (p1p12 -+ p2p21) +V.o. (4.7)

The following simplifications can be made to (4.7): the sum of the momenta
transferred between components equals zero, and the sum of the partial pres-
sures is the total pressure, P = P; + P,. Additionally, we will neglect the
inertial terms on the left of (4.7) to yield

VP=V-o. (4.8)

Using (4.8), we may write (4.4) in the form

%q? =V: [—E(¢1) (V¢1 +E(¢1)V - ‘7)}’ (4.9)
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where the stress coeflicient is

_ k6
P =z (410

It is now helpful to consider the elastic deformations of the polymer sub-
strate. Since the polymer and penetrant have constant densities, when the
penetrant enters the substrate, the polymer material must swell in size. If
boundary conditions are being applied at the edges of the polymer material
then we will have to solve a moving boundary problem. We can reduce this
to a fixed-domain problem by changing to the material coordinates associ-
ated with the undeformed polymer substrate. The deformation tensor F is

defined by
0X;

Flj=5"x—]j,

(4.11)

where X; are the present deformed (or Eulerian) coordinates and z; are the
material (or Lagrangian) coordinates. The instantaneous volume ratio for

deformed to undeformed states is given by the determinant of F

deformed volume 1=¢1+ ¢ 1
I =IFl undeformed volume o2 1— ¢ (4.12)

Therefore the change of variables to material coordinates, in one dimension,

is
0

]
ax = (1-d)5 (4.13)
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and (4.9) becomes

T=a-sig b (S BeR)|.

where

D(¢1)) =(1-¢1)D(¢1), E($)=(1-¢)E(@).  (4.15)

The extension of model (4.14) to general multidimensional problems is still
being studied since simple volume flux arguments like those in (4.12) are
insufficient to yield the form of the deformation tensor and hence the coor-
dinate transformation (4.13). Indeed, experiments have shown that compli-
cated behavior, such as buckling instabilities, can occur in multidimensional
problems. Another limitation of (4.14) stems from the coordinate transfor-
mation; to remain in the regime of validity of linearized elasticity, the relative
deformations must be small. Hence we will allow the penetrant to take up
only a small portion of the volume, 0 < ¢; < 1. In the next section we
will complete the description of the model by introducing a stress evolution

equation.

4.3 Stress-driven diffusion

Here we will finish the formulation of our model and relate the above model
to derivations done by Durning (7] and equations proposed by Cohen [10],
[11], [12]. If we change dependent variables by

u=—In(1- ¢) © h=1—-e" (4.16)
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where 0 < ¢; < 1 corresponds to 0 < u < co. Then we get
Ou 0 Ou 0o
where D(u) and E(u) are given by
D(u) = e D(1 —e™®), E(u) =e“E(1 —e™). (4.18)

Observe that (4.17) is a nonlinear diffusion equation for u with an extra term
in the flux to account for the effects of induced stress [12]. In the limit that

¢1 < 1, to leading order we get
u~é¢1, D(u)~D(¢1), E(u)~E(¢), (4.19)

and (4.17) is the leading-order approximation of the original diffusion equa-
tion (4.9). Hence, we conclude that in the low penetrant limit, ¢; — 0, the
swelling of the polymer is a higher-order effect and that the induced stress
is primarily responsible for the observed phenomena. With this in mind we
now focus our attention on models for the stress.

To close the description of the model, it is necessary to relate the induced
stress to the penetrant concentration. In linear elasticity, the strain is given

by € = F — 1. For our problem in one-dimension, this reduces to

1
1—¢

€ —1l=e"-1 (4.20)

Having the strain in terms of u allows us to use the framework of stress-strain
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models from viscoelasticity to describe the stress [6]. One simple model is
the Maxwell model
0o Oe

where )\ is the elastic modulus and # is the ratio of the elasticity to the
viscosity of the polymer. In general, 8 and A will depend on the concentration
of penetrant in the polymer. Consequently, we can write the solution to (4.21)
for initially unstressed, dry polymer (o = 0, v = 0 at ¢t = 0) as the integral
form

t t
o(z,t) =/ e/ AluNds ) (y(z, 7)) uy(z, 7) dr, (4.22)
0

and hence our penetrant diffusion model can be written as a single integro-

differential equation

%g _ a% [D(U) (gfgj- + E(u)g’; JA L Sy )y, dr)] . (42

This form clearly points out the history-dependent nature of the stress. Durn-

ing and Fu [7] present a history-dependent model of the form

ou _
! 2 [D(u) (gg B (G [ & F o0 w)en dr))} -

(4.24)

Note that this equation is equivalent to (4.17) coupled to the stress evolution

equation

68_‘;' + Blajo (g;((:j))g + G(u)) %—? (4.25)
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It is always possible to reduce the integro-differential form (4.23) to a cou-
pled diffusion-stress evolution system. Generalizations of (4.23) can be de-
rived through the use of more complicated stress-strain relations, such as the
general Maxwell or Voigt models, or, equivalently, through considerations of
modified forms of the memory integral (4.22). An alternate approach is to
derive (4.23) from considerations of hereditary contributions to the chemical
potential [12]. Some of the extensions of the integral form lead to a formu-
lation of a “stress-like” quantity that cannot be rigorously derived from a
standard viscoelastic model, hence we will denote the generalized stress by s

to emphasize the generalization of
o —s. (4.26)

These approaches lead to stress evolution equations of the general form

St -+ ,B(U, ut)s = f(u, Uy, utt)' (427)
One such model is
ds 0 ou
5; = é‘t' (G(U)EZ) y (4.28)

which can be related to a generalized Maxwell model or derived from the

elastic limit of (4.21) [32]. This viscous stress model yields the equation

5 = 3 [po) (G + w2 (G@)%))] S )

This equation has been studied as an approximation to (4.23) [7], [24], [31],
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[32]. Later, we will study the traveling wave solution for (4.29). Here, how-

ever, we will focus on the behavior of first-order models for the stress.

4.4 Linear first-order stress models

We will consider a broad class of stress evolution equations that are linear in

the stress and first order in time, given by
st +b(u)(s — S(u)) = (c(u)s + d(u))u. (4.30)

It is hoped that this model is sufficiently general to describe a wide range
of physical problems for general viscoelastic materials. Observe that if S(u)
and c(u) are identically zero then (4.30) reduces to a Maxwell model. Simi-
larly, note that (4.25) is of the form (4.30). In (4.30), S(u) is the equilibrium
induced stress as a function of the local concentration and b(u) corresponds
to the rate of relaxation to that equilibrium. The righthand side of (4.30)
represents the instantaneous stress response with a general elastic modulus
that can depend linearly on the stress state. It is possible to write the solu-
tion of (4.30) in an integral form similar to (4.22) and consequently express
the model as a single integro-differential equation (4.23). However, for the
following analysis it will be more convenient to use the coupled system of a
diffusion equation (4.17) and a stress evolution equation (4.30). Our analysis
will use perturbation methods in the limit of strong diffusion - where diffusive

effects happen much faster than stress relaxation.
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4.5 The problem

To focus attention on the role of the stress, we will consider a simplified
diffusion model, (4.17) with D and E taken to be constants. This simplified
problem does not capture all the properties of the full system, but it is very
useful for understanding some of the qualitative effects of the stress. We
will consider a problem representing a one-dimensional thin-film polymer
membrane, initially dry and unstressed, separating two reservoirs of pene-
trant liquid at different concentrations. This model attempts to capture the
stress-driven behavior induced by penetrant liquid causing a polymer film to
undergo a phase separation into glassy and rubbery regions. The mathemat-
ical formulation is given by the initial-boundary value problem on 0 < z < 1

fort>0

€Uy = Ugg + Sz, (4.31a)

s+ b(w)(s — S(u)) = (c(u)s + d(u))us, (4.31b)
wrz=0=r, ulz=1)=1, (4.31c)
uw(lt=0)=0, s(t=0)=0, (4.31d)

where 0 < 7 < 1, and 0 < € < 1 is a small parameter corresponding to the
diffusion coefficients being large, O(¢™!). We now solve this problem using
perturbation theory and the method of matched asymptotic expansions to
describe the short term diffusive spreading and the long term stress-driven

evolution.
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4.5.1 The initial layer

For € — 0, we expect there to exist a short initial period where the solution

evolves under the influence of the initial conditions. By rescaling time as

T =t/e, (4.32)

the system (4.31a,b) becomes
Ur = Ugg + Sze, (4.33a)
= (c(u)s + d(u))u, — eb(u)(s — S(u)). (4.33b)

We expand v and s using the regular perturbation series,

u(z,7) = Z € Un(z,7) = Up(z,7) + €Uy (z,7) + - - -, (4.34a)
n=0

s(x,7) =Y €"Sp(z,7) = So(x,7) + €S1(2,7) + - - - (4.34b)
n=0

Substituting these expansions into (4.33a,b) and retaining the leading order

terms yields
o, 0%y + 0285,
or  0x? ' 9x2’

(4.35a)

05y

=2 = (e(Uo)So + d(UO))aUO (4.35b)

Observe that (4.35b) can be reduced to the ordinary differential equation

s

T = c(U)S +d(Uy), (4:36)
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by assuming Sy to be a function of Uy, Sy = S(Uy). Note that in the absence
of forcing (c(u) = 0, d(u) = 0), the instantaneous stress S(U) would be
identically zero and hence we would conclude that all stress responses are on
a slow time-scale. We will study this case in an examination of the long-time
evolution equation.

Solving (4.36) subject to the initial condition Uy = 0, Sy = 0 at ¢ = 0
yields a unique solution for S(Up) which may be substituted back into (4.35a)

to yield the nonlinear diffusion equation

oy, 0 AU,
with the diffusion coefficient
Note that we may also write (4.37) as
Uy 6?

where the initial chemical potential W is given by

Therefore, to leading order, the behavior of the concentration is purely dif-
fusive in the initial layer. The stress serves to either increase or decrease the

diffusivity, depending on the derivative of S(Up). If §'(Up) < —1, then (4.37)
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can form sharp interfaces [5].

The solution in the initial layer will be used as an initial condition for
the outer solution governing the system for long times. For this matching
procedure we seek the solution of (4.37) as 7 — oco. This steady-state solution

is given in terms of the chemical potential as

W(ly(z)) = w(=), (4.41)

where

w(z) =W(r)(1 —z) + W(1)z. (4.42)

If W is invertible [5] then (4.42) will yield a smooth concentration profile as

the initial condition for the long time evolution equation.

4.5.2 The outer solution

Away from the initial layer, the solution can be expanded as the perturbation

series
w(z,t) = € un(z,t) = uo(x,t) + euy(z,t) + -, (4.43a)
n=0
s(z,t) = > €"sp(z,t) = so(x,1) + esy(z,t) +---. (4.43b)
n=0

Substituting these expansions in (4.31ab) and retaining leading order terms

yields
uy  0%sg
02 + 0x?

=0, (4.44a)
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as0 aUO
—a—t" = (C(Uo)So + d(’U,o))—a—t— - b(uO)(So - S(Uo)) (444b)

If we define a chemical potential [12] function w(z,t) as
w(z,t) = u(z,t) + sz, t), (4.45)

(where, from here onward, we will drop the 0 subscripts and work with leading

order terms only) then can write (4.44a) as
Weg = 0, (4.46)

with solution

w(z,t) = A(t)(1 — z) + B(t)z. (4.47)

To determine the functions A(t) and B(t) observe that for Dirichlet boundary
conditions on u (4.31c) we can use (4.31b) to determine the surface stresses
at z = 0 and £ = 1. Since (4.31b) has no spatial dependence, it is uncoupled
from (4.31a) at £ = 0 and z = 1, where u is given for all times. These
considerations, along with the initial condition for s (from the initial layer),

yield the stresses at the boundaries:
s(0,t) = S(r) + (S(r) — S(r))e b}, (4.484a)

s(1,2) = S(1) + (S(1) — S(1))e bV, (4.48b)

Similar results hold if the boundary conditions on u at z = 0 and z = 1

were time-dependent, or, more generally, if u(0,t) and u(1,t) were given
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by the solutions of ordinary differential equations at the boundaries. This
allows us to easily extend our analysis to cover problems with time-dependent
nonequilibrium boundary conditions [12]. In these more general cases, the
functional forms of s(0, t) and s(1,t) may be more complicated, but they can
always be evaluated using numerical integration.

Given the stress boundary conditions (4.48a,b), we now determine w(z, t)

to be

w(@,t) = [r+S8(r) + (S(r) = S(r))e™*] (1 - z)+ (4.49)
[1+5(1) +(8(1) - S(1))eV] .

From the definition of w (4.45), we can write s = w — u to eliminate stress

from (4.44b) yielding an evolution equation for u,

Ou _ % + b(u) (w(z,t) — u— S(u))
ot 14 c(u)(w(z,t) —u) +d(u)

(4.50)

Further structure may be attached to (4.50) by decomposing the chemical

potential w into steady-state, relaxational and instantaneous contributions
w(z,t) = w(z) + 0(z,t) + bz, t), (4.51)
where the transient stress-relaxation term is

W(z,t) = —S(r)e (1 — z) — S(1)e "Wty (4.52)
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the instantaneous stress contribution is
w(z,t) = S(r)e M1 — z) + S(1)e Wiy, (4.53)
and the equilibrium chemical potential distribution is
w(z)=(r+S(r)1Q-z)+ 1+ S(1))z. (4.54)

From (4.44b), at equilibrium, the stress is given by s = S(u), and from (4.45)

we may define an equilibrium chemical potential function by
W(u) =u+ S(u). (4.55)
Then, in terms of W, w can be written as
w(z) =W(r)(1 —z)+W(1)z. (4.56)

Observe that the chemical potential w(z, t) smoothly evolves from the initial
distribution (4.42) to the equilibrium distribution (4.56). Using the above
decomposition in (4.50) yields

%zt-‘ — B(u,3,1) [(w + B-(-lu—)%t’f) + (w + b—(lu—)%‘f:) + (@) - W),
(4.57)
where
b(u,z,t) = () (4.58)

1+ c(u)(w—u) +d(u)

This evolution equation governs the long-time asymptotics of u as the system
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approaches equilibrium. The terms involving @ and % in (4.57) are explicit
time-dependent forcing terms. Their presence is a consequence of having a
variable relaxation times given by b(u). If b(u) were a constant, say b(u) = by,
then the forcing terms would vanish identically. Conversely, the analysis for
an inhomogeneous substrate with a given b(z) yields an equation of the same
form as (4.57). Note that while neither the equations (4.31a,b) nor the
boundary conditions (4.31c) in our model explicitly involve time, the stress
relaxation on the boundaries results in explicit forcing in (4.57). The early
behavior of (4.57) is dominated by a competition between relaxational and
instantaneous forces. However, these influences decay exponentially in time,
and the solution will approach an equilibrium at ¢ — oo. In the next section
we will study in detail the influence of variable relaxation-time forcing on the

selection of a steady-state solution.

4.6 Shock formation

We will study the dynamics of the evolution equation

% _ b [(w " 5(2—)%?;) + (wla) - W(u))] (459)

for the case of a bi-stable medium. The formation of stationary shocks in
this problem will be related to the initial conditions and the distribution of

relaxation times. We note that (4.59) could also result from a leading-order
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W (u)

u

Figure 1: The chemical potential function W (u).

analysis of the inhomogeneous, forced reaction-diffusion system
Up = Uz — b(u)(u + s — w(z, 1)) + wy(z, 1), (4.60a)

€81 = €855 — b(u)(s — S(u)). (4.60b)

After a bﬁef discussion of the equilibrium solution of (4.59), we will consider
the dynamics of shock formation and go on to note some extensions to more
complicated problems.

Equation (4.59) admits steady-state shocks if W (u) is a nonmonotone
function; cubic-like potential functions (see Fig. 1) are found in many appli-
cations [33], [12], [34]. In terms of the equilibrium stress S(u), this condition
requires that S’(u) < —1 on some interval u € (up,upr). Ast — oo, we

expect the solution of (4.59) to approach a time-independent equilibrium
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Figure 2: The multivalued, time-independent solution Z(%).

solution %(z). For long times, the transient terms involving 1@ vanish expo-

nentially, and equilibrium requires that
w(z) — W(z) = 0. (4.61)

Substituting (4.54) in (4.61) gives us an implicit representation of the time-

independent solution
~ W(a) - W(r)
U) = et~ 7 4.62
" = W —wm (462)
For nonmonotone W (u), (4.62) can not be the steady-state solution of (4.59)
for any initial-value problem; (4.62) is a multivalued “S-shaped” curve (see
Fig. 2), whereas solutions of (4.59) are necessarily single-valued functions.

What is observed in direct simulations of (4.59) is that solutions develop a
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u(x) ¢

Figure 3: The steady-state shock solution.

shock connecting the upper and lower branches of Z(u) (see Fig. 3). Such

solutions satisfy the equilibrium condition (4.61) pointwise,

u_(z) z <z,
U(z) =< Uu(z) ==z

Uy(z) > x4,

(4.63)

where z, is the shock position and w_, %,, and %, are the lower, middle and

upper branches of (4.62) (see Fig. 2). There is a continuum of such solutions

corresponding to each z; € [z,,,2)] where %, (z) is defined. Which one of

these solutions is selected by the system depends on the initial conditions.

In the case of (4.59), where there is time-dependent forcing, this becomes a

more complicated problem.
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u(z)

r

Figure 4: The direction field for (4.64).

In the absence of the forcing terms, (4.59) reduces to

ou _
i b(u)(W(z) — W(u)). (4.64)

For this equation, the shock position can be readily determined from the
initial data. The curve Z(%) corresponds to equilibrium points where Ju/dt =
0. Away from this curve du/dt is either positive or negative and hence u
increases or decreases monotonically until it reaches an equilibrium point
(see Fig. 4). Similarly, a linearized stability analysis can be carried out to
show that @,(r) is unstable while %, (z) and %_(z) are stable branches of
Z(w). If the initial data, the curve u(z), intersects %,(z) then a shock will
occur where %, (z,) = u(z,). If u(z) does not intersect %, (z), then the shock

will occur at one of the turning points, z, = z,, or z; = z3;. These shock
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position rules can be summarized by defining a shock origin curve (see Fig.

5)

zu) =< u=7l(xr), (4.65)
The shock position z; is then defined by the solution of
z(u(zs)) = x. (4.66)

The addition of time-dependent forcing in the system makes the study of
shock formation more complicated. Several aspects of the arguments given
above break down because there are no fixed equilibrium points while the
forcing is nonzero. This introduces some subtle changes to the nature of
shock formation that will be examined below.

Insight into the behavior of (4.59) can be gained by recasting it as a
phase plane system with a bifurcation parameter. Equation (4.59) is purely
evolutionary - it contains no spatial coupling. It depends on the position
z only parametrically through the functions w(z) and w(z,t). Therefore,
we will view (4.59) as an ordinary differential equation in time with fixed
position z, for all z € (0,1). By using the change of variables

v=e

—b(r)t, (4.67)

we can eliminate the explicit time-dependence in (4.59) to yield the au-
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Figure 5: The shock origin curve for shock position determination.
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Figure 6: The phase plane representation.
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Figure 7: The attracting property of the separatrix as v — oc.
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Figure 8: The time evolution of z(u).
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Figure 9: The u,(z) branch.
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Figure 10: Shock formation from a uniform initial condition u(z) = u.
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tonomous phase plane system

‘fi—;‘ = F(u,v;7) = b(u) [(w + Z)Tlu‘)%%) + (@) - W), (4.68)
D = oy, (4.68b)

where
w(v;z) = =S(r)v(l — z) — S(1)vz, o= -Z—E% > 1. (4.69)

System (4.68ab) has equilibrium points at v = 0 at the roots of the time-
independent equilibrium condition (4.61). Depending on the value of z, there
may be one, two or three fixed points. Linear stability analysis yields the

exponential growth rates, y; o, at the fixed points

_OF

= S0 = H@W@, = =b(r) <o0. (4.70)

H
The eigenvalue y; is the same as in the unforced case (4.64) and ps is a result
of the change of variables (4.67). In this representation, %, and @_ corre-
spond to stable nodes while %, is an unstable hyperbolic saddle point. For
T < Ty, and T > Ty, the phase plane has a single stable node, corresponding
to the unique equilibrium solution of (4.59) in these domains. We will briefly
discuss the degenerate behavior at the turning points z = z,, and = = z,
in the appendix, but here we focus on shock formation for z,, < z < z.
When Z(%) is triple-valued, qualitative information about the shock can

be gained from an interpretation of behavior in the phase plane. Except for
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points on the stable manifold, the separatrix, of the saddle point, all points
are on trajectories that will approach one of the two stable nodes as ¢t — 0o
(v — 0). The separatrix is the boundary between the basins of attraction for
the two stable nodes. Points on the separatrix will approach the saddle as
t — 00. On the line v = 0 are heteroclinic connections from the saddle to the
stable nodes; this is the unstable manifold of the saddle, which corresponds
to a shock connecting the stable branches of Z(@). If the initial condition
u = u(z,) at t = 0 (v = 1) is on the separatrix for the phase plane system
at parameter z, then as ¢ — oo, u will approach the unstable branch of Z(%)
and will form a shock at z, connecting it to the stable branches at infinite
time, v = 0 (see Fig. 6). This line of argument is consistent with the fact
that system (4.31a-d) can not form shocks in finite time (8], [9].

The phase plane can also be used to obtain quantitative information about

the influence of the time-dependent forcing. By putting (4.68a,b) in the form

du  F(u,v;1)
i T (4.71)

we can easily obtain the integral curves for the system. If there is no forcing
and hence F' is independent of v, then the lines u = U_, u = %, and u = T,
are invariant curves, as for (4.64). The addition of time-dependent forcing
makes these curves time-dependent. In the case of the stable nodes %, and
u_, these curves are typical of a continuous set of trajectories in the plane
attracted to the stable equilibria as ¢t — co. For the saddle point %,, there
is a unique trajectory, the separatrix, that approaches @, as v — 0 (see Fig.

6). Moreover, calculation of the separatrix is of interest since, as described
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above, it gives the position of the shock. We seek the separatrix at time
t=0 (v=1),call it u,(z). The shock position is then given by the position
where the initial condition intersects u,(z), u(z;) = u.(zs). A generalized

definition of the shock origin curve is then

Tm 8> U (Tm),
zw) =497 u=u,(), (4.72)
Ty U< U (Tym)

In the unforced case u,(r) = u.(z) and we recover (4.65) from (4.72). The
curve u,(z) is defined as u(v = 1;z) for the solution of (4.71) with initial
condition u(v = 0;z) = T.(z) for all z € [y, zp] Where T, (z) is defined.
The right-hand side of (4.71) is an indefinite form at the saddle point u =
U, (z), v = 0; but an application of ’'Hopital’s rule yields an applicable initial

condition as v — 0

u(v = Av; ) ~ T, () + %Av, (4.73)

where

du e __ b@m)+b(n)S(r)
dv |z, v=0 b(r) + %g b(r) — b(u,)W'(u,

(1-2). (4.74)

Further, this scheme for computing u,(z) is stable since the separatrix is
an attracting set in the phase plane as v increases (t — —oo) (see Fig. 7).
Following this procedure, we observe that at v = 0 we begin with the initial

condition (4.65), the “steady” shock origin curve. As v increases, the curve



124

smoothly evolves to (4.72) at v = 1 (see Fig. 8). The nature of this evolution
process is determined by the function b(u). Some qualitative statements can
be made about the effects of the forcing. In (4.71), the time-dependent

forcing terms are

1

((b(u)—b(r))S(r)(l—x)+(b(u)—b(l))S(l)v“‘lx). (4.75)

By considering the form of F, it can be shown that if b(u) is an increasing
function, then F works to drive the growth of u. Conversely, if b(u) is a
decreasing function, then F opposes the motion of v and serves to damp
the evolution of the shock origin curve. In connection with our application
[12], we studied increasing b(u) functions and have observed the following
behavior: wu,(zp) will generally be different from u,,, but it will remain
finite, and, more significantly, as £ — z,,, u,(z) appears to diverge (see Fig.
9). This last point is very important since it implies that the time-dependent
forcing has effectively reduced the domain on which shocks can form and has
created a “forbidden region.” To see this consider the general class of smooth
initial conditions u(z) for (4.59) on 0 < z < 1 bounded by 0 < u(z) < 1.
As remarked in the discussion of (4.64), in the absence of forcing, this class
of initial conditions can yield shocks on z; € [z,,, z5s]. With forcing, these
initial conditions can only yield shocks on the reduced set z; € [z(1), z] (see
Fig. 10). Hence shocks can not form in the interval z, € [z,,,z(1)). Since
F is invariant under rescaling of b(u), b(u) — kb(u), it is not the magnitude
of the relaxation time, but rather the variation of b(u) and other properties

that govern the formation of forbidden regions.
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Z(um, y)

Figure 12: The curved shock z;(y) and the “forbidden region” (shaded) in
the shock formation domain T(up,y) < < T(um, y).

This work can be extended in several directions to apply to more complex
systems. For a two-dimensional extension of the system (4.31a-d) considered
in [12], we show that curved shocks are excluded from a region in the unit
square (see Figs. 11, 12). There is also considerable interest in systems with
many coexisting stable states that support different, competing shocks [33],
[11], [35]. These problems have more complicated W (u) potential functions;
we present the results for two generic cases of a tri-stable system (see Figs.
13, 14 in which shading indicates forbidden regions for shock formation).
Here there are two shock origin curves, one associated with each unstable
branch of Z(%). For Fig. 13, solutions will always contain two shocks, while
for Fig. 14 nearly the entire upper unstable branch is a forbidden region and

solutions may have either one or two shocks. We will now conclude with a




127

"~
S
—_

Figure 13: Shock formation for a tri-stable system. Shading indicates for-
bidden regions for shock formation.

brief discussion of another aspect of the dynamics of shock formation - the

evolution of the shock layer thickness.

4.7 Shock-layer thickness

In studying the dynamics of (4.59), we always begin with a smooth initial
condition that will yield a steady-state shock profile. Hence, at the shock
position z,, the gradients of u must diverge as ¢t — oco. Here we give a brief
analysis of the effects of time-dependent forcing on this rate of divergence.

For the unforced case (4.64), if we linearize u in the neighborhood of the
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Figure 14: Shock formation for a tri-stable system. Shading indicates for-
bidden regions for shock formation.
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shock
u(zs + Az, t) ~ U () + m(t) Az + O(Az?), (4.76)

where m(t) is the local slope and we take Az — 0, then we obtain the

linearized equation for slope evolution at O(Ax)

dm Ny f e |
— = b(@) (@ (z,) = W'(w.)m). (4.77)

Therefore, the long-time behavior of the slope is

m(t) = O(exp|=b(@.)W' (T, )1]), (4.78)

where W'(,) < 0. Taking the layer thickness to be inversely proportional to

the slope we see that the unforced shock thickness decays exponentially like
O(exp[b(z.)W'(wm,)t]). (4.79)

In the time-dependent case we proceed similarly. Now we linearize about
the time-dependent solution wu,(z,,t), the trajectory corresponding to the

separatrix,
u(zs + Az, t) ~ u,(z,,t) + m(t) Az + O(Az?), (4.80)

to yield the slope evolution equation

<z

'(u.)

?(ua)

my.

(4.81)

<

=t | (e + 52+ e - (e +

¥[E
S’
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From our earlier examination of the phase plane system (4.68ab), we know

the long-time asymptotics of u,(z,,t) are given by

F,
Uy (T5, 1) ~ Ty — o e

OrY t — oo. (4.82)

A crude estimate of the shock layer thickness as ¢ — oo is then

0 (exp {b('ﬁ‘*)é% (W(u) _ b—(%%t—w) mtD . (4.83)

Note that while the time-dependent forcing has had a significant effect in

shock placement, it only contributes an exponentially small change to the

long-time shock formation rate.

4.8 Mass-uptake characteristics

In polymer-penetrant diffusion experiments observations typically include
mass-uptake calculations, measurements of the amount of penetrant ab-

sorbed in the polymer film at each instance of time
1
M) = / u(z, t) dz. (4.84)
0
In the results of Vrentas, Duda and Hou, the mass-uptake curve initially
shows a rapid increase, obtains a maximum value, slowly decreases, and then

adjusts to a steady-state value; this behavior is called sorption overshoot.

We examine how this behavior is manifested in our model. As in [12], we use
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the stress evolution equation

U
where
14w 1-w u—urg)
b(w) = — + ——tanh (———-—5 , (4.86)

(see Fig. 15) to focus on the influence of the phase transition. For penetrant
concentrations less than the rubber-glass transition point, u,4, the polymer
will be in the glassy state with a slower rate of viscoelastic relaxation b ~
w < 1. For the polymer in the rubbery state, the relaxation rate is b ~ 1.

Additionally, we take the equilibrium stress to be

S(u) = 77?1:7) (4.87)
therefore, at steady state, the glassy state is under more stress than the
rubbery state. In this simplified model we will show how the separation in
relaxation rates can cause the overshoot behavior.

The observed rapid initial increase and gradual decrease behaviors of
M (t) can be readily explained in terms of the two asymptotic regimes used
for the model. For a short range of initial times of order ¢ the absorption of
the penetrant is governed by the classical heat equation (Fickian diffusion).
The analysis of the mass-uptake for this problem is well known [13], [14] and
yields the rapid rise on the fast initial time scale 7 until the steady state
is reached. For large finite times the behavior of the system is dominated

by the interaction of the viscoelastic relaxation of the polymer with the fast
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Figure 15: The inverse relaxation time function b(u).
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Figure 16: Long-time evolution of the concentration profile.
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M(t)

t

Figure 17: A mass-uptake curve showing overshoot behavior.

diffusive equilibration of the penetrant. The steady-state, Mo, = M (t — 0),
is determined by the position of the shock (as given from the results of the

previous sections)

Mo= [ (z)ds+ | 1 7, (z) dz. (4.88)

To understand the behavior of the outer solution for finite time it is conve-
nient to assume an approximate form for the solution away from the shock
and determine how rapidly it converges to the steady-state. The ansatz and
consistent approximations used for the following analysis are given by (see
Fig. 16)

wlz 1) ~ {r(l —z)+ k() =<z (4.89)

@)1 —-z)+z >z,
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away from z; |u — urg| > O(9), (4.90)

LT, u<LUy, blu)~w,

T>r,  uD Uy  blu)~ 1

Observe that if ko(0) = 1 and k;(0) = r, then the ansatz satisfies the initial
condition (4.31d) and the boundary conditions (4.31c). Combining (4.89),
(4.90) with (4.59) yields

%9 ~ —(1 4+ w)ko(t) + 2w + (1 — w)e™¥, (4.91a)
dkl —wt
Tl =2k () +r(1+1/w) +7(1 — 1/w)e ™, (4.91Db)

and consequently

M(t) ~ -;—(ko(t) F k() — 7 = 1)z + (r — ki(8))z, + %(k1 ) +1). (4.92)

Clearly ko(t) will have exponential decay rates 1 + w and 1, and k;(¢) has
exponential decay rates w and 2. From Fig. 16, time-evolution of k;(¢) tends
to increase M (t) while evolution of ko(t) tends to decrease M(t). Therefore,
depending on the values of w, and r, we might observe M(t) to have a local
maximum or minimum then decay to a steady-state, or simply monotonically
go to a steady-state depending on whether the contributions from ko(¢) and

ki(t) compete or one dominates. Therefore the Cohen-White model yields
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epRratn,

Figure 18: The phase plane at a turning point.

several possible classes of sorption behavior with overshoot being possible in

a broad parameter range (see Fig. 17).

4.9 Appendix: shock formation at turning
points

At the turning points z = z,, and z = z,; there are some qualitative differ-
ences in the phase plane description of shock formation. At z = z,,, the two
branches %, (z) and %, (z) coincide at u = ups, and W (ups) = 0, so we have

a nonhyperbolic fixed point resulting from the coalescence of a node and a
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saddle. The situation at £ = z,, is similar, so we will study a simplified

model for the behavior at z = z,,:

du

au 2 _ 01 .2 .
prima u(l — u)?, (4.93a)
dv
— = —bv. ' 4.
o bv (4.93b)

Here, the terms in v = e~ represents the time-dependent forcing and we have
taken U_(z,,) = 0 and up = 1 as the equilibrium points. At (u,v) = (0,0)
we have a stable node with eigenvalues y; = —1, py = —b. At (1,0) the
eigenvalues are pu; = 0, yp = —b. The stable manifold of this equilibrium
point, the trajectory with pure us motion, is a separatrix that separates
regions of the plane with different classes of behavior. Pure y; motion on
the v = 0 axis, the unstable manifold, in the neighborhood of u = 1, u(t) =
1 + z(t), is always decreasing since 2 ~ —22 < 0. The part of the unstable
manifold connecting u = 1 to u = 0 corresponds to a shock connecting
Uy (Tm) t0 U_(Zm). Combining these factors, we can give a global description
of the phase plane.

Trajectories to the right of the separatrix are attracted tou =1 asv — 0,
hence the equilibrium point behaves node-like. Trajectories to the left of the
separatrix are attracted to the node at 4 = 0, and 4 = 1 has a saddle-
like influence on these orbits. Shocks are formed by all trajectories that are
attracted to u = 1 as v — 0 (and then connect to u = 0 along the unstable
manifold). We see that in this case, the separatrix is a limiting case of a

continuous set of trajectories that form shocks (see Fig. 18). By comparison,
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in the generic case of shock formation on z; € (z,, zar), the separatrix is the

unique trajectory that yields a shock.
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Chapter 5

Case II traveling waves

5.1 Introduction

Polymer materials are being used in an increasing number of technological
applications. To optimize performance and further extend applications of
polymers, their physical properties must be well understood. One area of
active research is the study of diffusion of a penetrant liquid in a polymer
substrate. This work has applications to many physical problems including
the effect of humidity on thin polymer films, the use of polymer materials
as liquid seals, and controlled-release pharmaceuticals. We will present a
mathematical analysis of Case II polymer diffusion.

The terms “Case II,” “non-Fickian,” and “anomalous” are commonly
used to describe the occurrence of various nontraditional effects that cannot
be predicted from classical Fickian diffusion models. For example, for Case II

diffusion, experimental studies of polymer sorption behavior show constant




D(v)

Figure 1: The diffusion coefficient

velocity spreading of the penetrant with a well-defined sharp front. Diffusion
models for classical materials do not yield such characteristics. As a result,
numerous studies have focused on tying anomalous behaviors to the special
material properties of polymers. Since polymers are very long molecules,
some effects can have considerable characteristic times [1]. Consequently, in-
corporation of relaxation effects through viscoelastic models becomes impor-
tant. Additionally, polymer materials can undergo a phase transition from a
relatively inflexible “glassy” state to a more responsive “rubbery” state with
corresponding changes in diffusion coefficients and relaxation times. These
effects will be incorporated in our model for Case II diffusive transport.

We study the diffusive spreading of a liquid into a one-dimensional semi-
infinite layer of initially dry, unstressed polymer material (0 < z < o).

Following a derivation given in [2], [3], we obtain the model for the penetrant
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concentration in the polymer,

ou 0 Oou do

ou _ 0 ou oo 1

ot oz [D(u) (6$ +EB(u) 6x)] ’ (5.1)
where D(u) is a diffusion coefficient, E(u) is a stress coefficient and o is the
stress induced in the polymer material. As in [4], we will take the diffusion

coefficient to be

1 1- — U
D(u) = ;;€+ 266tanh(u 6u)’ (5.2)

where 0 < € < 1 is a small parameter corresponding to the large diffusivity
of the polymer in the rubbery state (see Fig. 1). The critical penetrant-
concentration u, marks the rubber-glass phase transition in the diffusivity.
We will examine this diffusion coefficient in the limit of sharp phase tran-
sitions (0 = 0), but we will also consider the influence of moderately steep
transitions with 6 > 0. Using perturbation methods in the limit of € — 0,
our solution will be a steady-profile traveling wave for the penetrant concen-
tration applicable sufficiently far within the polymer material (see Fig. 2).
Namely, we will neglect induction time and surface boundary condition ef-
fects and assume that the penetrant concentration far behind the wave front
is at equilibrium (u = wu,) (2], [5], [6]. The new mathematical presentation
of this model given here will include an analytical solution of a simpliﬁéd
Thomas and Windle model [4], [6] as well as analysis of more general vis-

coelastic stress evolution models.
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Figure 2: The Case II solution
5.2 The viscous model

In the elastic limit, we may reduce (4.21) to the viscous model [2]
0
o= G(u)glti, (5.3)

where G(u) = A(u)/B(u). This stress model yields the diffusion equation

x_2 [D(u) (gg + () (G(u)%?m - (5.4)

This higher-order partial differential equation has been studied as a simplified
model of the viscoelastic integro-differential equation (4.23) [2], [4], [5], [6].
We will show that for the problem of Case II traveling waves, both models

can be studied in the same framework of phase plane analysis.
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Consider a steady-profile traveling wave solution of (5.4) of the form
u(z,t) = U(z), z=1z—ct, (5.5)

where we require that the solution satisfy limiting behaviors far away from

the transition front. Far behind the wave front,
u(z = —00) = ugp > U, (5.6a)

where wy is the equilibrium concentration, determined from a boundary con-
dition on the chemical potential at the surface of the polymer [2], [6]. Simi-

larly, far ahead of the front, the polymer is dry,
u(z — 00) — 0. (5.6Db)

Observe that the equilibrium concentration is assumed to be greater than the
critical phase transition concentration u.. Hence the wave front marks an
interface between wet, rubbery and dry, glassy regions. It will be shown in
the analysis that the phase transition for ug > u, is essential for the existence
of the traveling wave solution. Substituting form (5.5) into (5.4) yields the

ordinary differential equation

_c%g_ = Ed; [D(U) (%g — cE(U)gz— (G(U)%%—))] : (5.7)

which may be integrated once, subject to the boundary condition (5.6b), to
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Figure 3: Comparison to Fisher-like nonlinear reaction terms.
yield
dUu d dU

Interestingly, we may relate (5.8) to the classical model for traveling waves
in reaction-diffusion systems. A well-known model in population dynamics
and other applications is Fisher’s equation [11], [12],

Oou 0 Ou

—=—|Du)=— | + F(u), 5.9

= 2 (pw3) + 7w (5.9
where D(u) is a diffusion coefficient and F(u) is a nonlinear reaction term of
a specified form [13]. This equation has traveling wave solutions connecting

homogeneous, isolated solutions of F(u) = 0 (for example u = 0 and v = 1,

see Fig. 3). The corresponding traveling wave ordinary differential equation
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for Fisher’s equation is

% (D(U)%—) + c% +F(U) =0, (5.10)

for u given by (5.5). Our model for stress-driven traveling waves, (5.8), may

be put in a similar form,

“ hoall —_— _ — (). 11
dz dz 0 (5.11)

d dU 1 dU U
(G(U ) cE(U) d= | DO)E(D)

In this form we note that the elastic modulus G(U) takes the role of the
diffusivity in (5.10) whereas the diffusion coefficient D(U) appears only in

the nonlinear reaction term

FU) = D’(‘u‘?ﬁ(‘ﬁ}' (5.12)
There are, however, some significant differences between (5.10) and (5.11).
For € — 0, the reaction term F'(U) in (5.11) vanishes to leading order for all
U > wuc; this characteristic will lead to the determination of a unique wave
velocity for Case II diffusion, whereas the same is not possible for Fisher’s
equation. Mathematically, this arises from differences in the nature of the
singular boundary value problem defining the traveling wave [14].

We can write (5.8) in the form of an autonomous phase plane system by

defining the traveling wave stress profile S(z) as

S = —cG(U)%g, (5.13a)
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Glassy Rubbery

Figure 4: The phase plane for the viscous model.
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then (5.8) becomes

ds s U
4 =BG  EO)DO)’ (5.13b)

and (5.13a,b) is the phase plane system. A complete asymptotic analysis for
a similar system is studied in [12]. Here we will study the solution to this
system away from the phase transition layer at U = u.. For definiteness, we
will assume that the transition occurs at z = 0, U(z = 0) = u,. Solving in

the outer regions, for U > u., z < 0 with D ~ ¢! yields the equations

dU S
dS S cU
@ " cEOCT)  CEDY’ (5.14b)
and for U < u., 2 > 0 with D~ 1
dUu S
’d—; = _CG(U), (515&)
ds S cU (5.15b)

dz _ cE(U)GU)  EU)
Our solution procedure will consist of solving the two phase plane systems
above to leading order in € and then matching the solutions together through
the transition layer.

We will first solve the problem for the simplified, but illustrative, case of
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Figure 5: The traveling wave solution U(z).

constant coefficients with

EU)=E, GU)=¢G. (5.16)

To account for the significant effects of the rubber-glass transition on the

viscoelastic properties of the polymer material, a much more realistic model

for G(U) is
Gr U> Ue,
GU) = { (5.17)
G U< Ue,
as in the model (5.2) for D(U). This piecewise constant model for G(U)
is handled by our phase plane system in exactly the same way as (5.16)
and yields a solution of the form given below, though with a slightly more

complicated dependence on the parameters Gy and G¢ for the velocity ¢
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than (5.23). The desired traveling wave solution is a separatrix connecting
fixed points in the phase plane (see Fig. 4). The glassy system (5.15a,b)
has a saddle point at U = 0, S = 0. The rubbery system (5.14a,b) however
has a continuum of fixed points at S = 0 for all U > u,.. Significantly this
means that phase transition traveling waves connecting dry polymer (U = 0)
to rubbery polymer (U = up > u,) can exist for all values of u, greater than
u.. Hence, there is no problem satisfying the equilibrium surface boundary
condition, and this analysis might be extended to also cover non-equilibrium
surface conditions [6]. In fact, this problem is a linear system with the closed-

form outer solution (see Fig. 5)

ug + (ue — up)e?/(CEGR) 7 <,
U(z) ~ 0+ (e = wo) (5.18)
u.e™* z>0,
where
_1-T¥4PEGg
m=—Y a2 <. (5.19)

At this point, our solution is completely specified except for the velocity c,
which will be determined from considerations of the transition layer.
Solving (5.13a,b) for general E(U) and G(U) requires more sophisticated
analysis, but yields qualitatively similar results. The derivation of the model
given in section 2 suggests that £(U) should be of the order O(U) as U — 0.
This change, however, makes system (5.15a,b) singular at the origin. We can

eliminate this problem by using the coordinate transformation

4 _ gyl (5.20)
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Separatrix

U

Figure 6: Phase plane for the nonlinear saddle point.
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suggested by Murray [11], to yield the new, non-singular, glassy system

dU __E(U)S

dz ~  GU)’ (5:212)
s S
i~ o) Y (5-210)

Like (5.15a,b), (5.21a,b) has a saddle point at the origin with a separatrix
corresponding to a unique traveling wave solution (see Fig. 6); however,
in this case it is a nonlinear (non-hyperbolic) saddle point which is more

complicated to analyze mathematically.

5.3 Transition-layer behavior

In the phase transition region, the form of the diffusion coefficient D(U)
becomes important for determining the structure of the solution. We will
study the limit of sharp transitions in D(U) as § — 0. This analysis will yield
some observations about the stress, as well as the traveling wave velocity c.
For studying the transition region, it becomes useful to represent the

phase plane system (5.13a,b) as

s FGUU 1
dU ~ E(U)D(U)S E(U)

(5.22)

This is a first-order ordinary differential equation for the stress as a function
of the concentration. In the transition region, S > 0 and it can be shown that
the terms in (5.22) are non-singular and bounded. Hence we can conclude

that the stress is continuous. If the transition is very sharp (6 ~ 0), then the
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Glassy Rubbery

Figure 7: Transition layer dependence on § in the phase plane.

Co —

)

Figure 8: Velocity dependence on 4.
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stress will be roughly constant across the interval. Continuity of the stress
can then be enforced by matching together the solutions in the rubbery
and glassy regions. For our linear constant-coefficient problem, (5.16), with
d = 0 we simply make the first derivative of (5.18) continuous at z = 0. This

condition yields the velocity

co=c(V) =\l (5.23)

where the concentration ratio is v = u./up < 1. When the transition layer
has finite thickness, 6 > 0, then (5.22) must be integrated directly to obtain
the stress, and the form of the diffusion coefficient will modify the velocity
and the outer solutions. Significantly, we note several trends that occur as
the transition layer thickness increases: the maximum stress increases, and
it becomes broader and occurs ahead of the front, in the glassy region (see

Fig. 7), and the traveling wave velocity c increases (see Fig. 8).

5.4 The viscoelastic model

We will now show how the phase plane method can be applied to more
general stress evolution models. General viscoelastic models can be written
as single integro-differential equations of the form (4.23), however we will use

the coupled form

% _ ?% [D(u) (g% + E(“)g%ﬂ , (5.24a)
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Glassy Rubbery

(4 Uy

Figure 9: The phase plane for the viscoelastic traveling wave solution.

) )
79% + Bu)o = )\(u)—éi;—. (5.24b)

We consider a Maxwell model (5.24b) for our analysis, however the approach
is very similar for other equations, such as Durning’s model (4.25).
Again, searching for steady-profile traveling wave solutions moving into

dry, unstressed polymer material, let

u(z,t) = U(z), o(z,t) = S(z), z=1x —ct, (5.25)
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then (5.24a,b), subject to boundary condition (5.6b), become

—cU = D(U) (%g— + E(U)%g—) (5.26a)
dS BU), _ dU
— - S=MU) (5.26b)
or in a more standard form
T = PO - EW)QW)S, (5.27a)
—i—g = -MU)PU)U + Q(U)S, (5.27b)
where
PO =) Q) = ZBW)RD), (5.28)
and
R(U) = T¥ NOEQD) (5.29)

In this representation, the influences of diffusion and stress-relaxation are
given respectively by the functions P(U) and Q(U). As in the viscous model,
in the limit of a sharp transition, we can separate (5.27a,b) into two simpler

phase plane systems. In the rubbery region for z < 0, U > u,,

%g. = —-E(U)Q(U)S — eR(U)U, (5.30a)
ds

- =QU)S ~ AV)ROYY, (5.30b)
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and in the glassy region for z > 0, U < u,,

O = ~RO - EWU)QW)S, (5.31a)
ds
= = “MU)RU)U + QU)S. (5.31b)

These systems of equations are more complicated than in the viscous case
but they share the same qualitative characteristics. Like (5.15a,b), (5.31a,b)
has a saddle point at the origin. Unlike the viscous model, for (5.31a,b), the
origin is always a linear saddle point independent of the form of the stress
coefficient E(U). Similarly, as € — 0, system (5.30a) has fundamentally the
same dynamics as (5.14a,b). Not surprisingly, we obtain a very similar phase
plane plot for (5.27a,b) (see Fig 9). However, there are significant qualitative
differences in the traveling wave profile.

To better understand the influence of some of the physical effects on the

solution we again study a simplified constant-coefficient model with

EU)=E, BU)=pF AU)= (5.32)

As in the case of the viscous model studied in the previous section, to prop-
erly describe the influence of the rubber-glass transition on the viscoelastic
properties of the polymer material, 5(U) and A(U) should be piecewise con-
stant in the rubbery and glassy regions. Again, the solution of this extended
problem has the same form as that of the solution with (5.32), except for
a more complicated parameter dependence in ¢ (5.38). This model can be

expected to capture most of the qualitative properties of the general model,
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Figure 10: The viscoelastic traveling wave profile.

Figure 11: The corresponding viscoelastic stress profile.
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and it also admits the closed-form analytic solution

up + (ue — ug)e?* 2<0
Uz) ~4 " (e = ua) (5.33)

u ™Rz z2>0

where

- - +¢2)2 + 4B RE

o Br \/(ﬂR )%+ 4Brc*Ar <0, (5.34)
2¢?

Q be c (5.35)

TitacE) T TeaE
The form of (5.33) is the same as the viscous solution (5.18), but differences
in the nature of the stress yield a significantly different penetrant profile
(see Figs 10, 11). The structure of the wave front is governed by the wave
velocity ¢, which is determined by matching the stress across the transition
layer. From the phase plane systems (5.30a,b) and (5.31a,b), the stress can

be expressed as a function of U(z). In the rubbery region

1 dU
and in the glassy region
c? 1 dU

Observe that in the rubbery region, the stress (5.36) is of the form (5.13a),
suggesting that a viscous model is sufficient to describe the penetrant behav-
ior in the rubbery polymer. However, the glassy stress (5.37) shows that a

full viscoelastic model is needed in general. At the rubber-glass transition,
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we have U(z = 0) = u, and matching stresses (5.36) and (5.37) yields a

formula for the wave velocity with § = 0

1—7y
@ =el)= \/7((1 +AE)y - 1)’ (5:38)

where v = u./up. We note that the characteristics of this wave profile
strongly resemble results obtained from numerical simulations [2], [6] and
from experimental observations [15]. In particular, below are results from
the numerical computations done by Fu and Durning for a Case II transport
initial-boundary value problem (see Figs. 12-14). Their calculations suggest
that the penetrant concentration profile is a slowly evolving (nearly steady)
traveling wave. Comparing corresponding figures (10 and 12), (11 and 13),
(9 and 14) shows that our very simple analytical model has a very good level
of qualitative agreement with the solution of the general nonlinear transport

equation.
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u(z,1)

xz

Figure 12: The Fu and Durning numerical concentration profile.

1000

s(z,t)

T

Figure 13: The Fu and Durning numerical stress profile.
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1000

u(z, 1)

Figure 14: The Fu and Durning numerical approximate phase plane.
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