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(F) ACCURACY OF NUMERICAL RESULTS BASED ON AN

ASYMMETRIC NETWORK

1. Problems Studied and Network Used.

_To further investigate the effect of asymmetry on the accuracy
of the approximation solutions, the numerical results for the transient
problem used in Chapter III, section D, and for the steady-state
problem mentioned in section C of this chapter can be studied and
compared with their corresponding continuous solutions. Both of
these approximate calculations are based on the asymmetric network
in Figure III-1.

The transient problem is described in Chapter III, section D.
Briefly, a solid with a unit square cross-section is initially at a unit
temperature, and at time zero the surfaces are held at zero temper -
ature. This problem is important as the eigenvalues and eigenfunc-
tions for this problem are the same for any transient problem in the
unit square with a different initial temperature distribution and with
surface temperature a function of space and time; hence, the accuracy
with which the asymmetric approximation solves the above transient
problem is an indication of the accuracy of the transient part of the
approximate solution. In this problem only the triangular one-eighth

of the cross-section bounded by € = 0, £ = -7, and the surface, N = -},
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as shown in Figure III-1, need be used, because the temperature
distribution is always symmetriic abouf both the hypotenuse (E = -T)

and the vertical boundary (£ = 0). Thus, the problem can be considered
to be just the triangle with the surfaces at § = 0 and § = -T) adiabatic,
“and the surface at T = - at zero temperature. The details of the
approximate transient calculation are given in Chapter III, and the
continuous solution is given by equations III-34 and IIL-35.

The steady-state problem has been described in section C of
this chapter. It is to find the steady-state temperature distribution in
a unit square with its horizontal surfaces at unit ;cemperature and its
vertical surfaces at zero. The steady-state solution is the remaining
part of the complete solution for the problem ’of transient temperature
distribution; the complete continuous or apprc»ximafe solution actually
is often found by finding the transient and steady-state parts separately
and then adding them (see Chapter II and reference (1)). Thus, the
results of this study can be used as an indication of the accuracy of
the steady-state part of the approximate solution. Further, the errors
in this solution are a direct result only of the space discretization
error; and hence, this study gives an understanding of the practical
effect of zero-order error terms in the expansion for the space dis -~
cretization error. The continuous solution of this problem is given in
equation V-32. The temperature distribution for this problem is sym-

metric about the vertical (§ = 0) axis and anti-symmetric about the
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hypotenuse (€ =-N). Therefore, again, only the 1/8-cross-section used
in Figure III-1 need be considered, as a problem with the surface at
E=0 adiabati;:, the hypotenuse (g = -T) at a temperature of &, and the
surface at 1| = -3 at unit temperature.

The arrangement of points used for both problems is shown in
Figure III-1. This arrangement was deliberately made very irregular
so that the effects of asymmetry could be studied and it is far from
the optimum, which would probably be a network of squares. Further,
the network contains only 8 or 9 points at which the temperature is to
be found; this is an extremely coarse network equivalent to about 3
points for a one-dimensional problem.

The surfaces of the triangle are described by the two types of
nodes; the first, located on the 7 = -0.5 boundary, follows MacNeal's
rules by being on the boundary. However, the nodes along the vertical
boundary and the hypotenuse, except for node 9, are located inside the
solid so that part of the boundary of the nodes follows the boundary of
the solid, rather than the node being located on the surface boundary.
The location, calculation of the conductances and capacitances, and the
advantage of this type of node are discussed in the next section.

Although the arrangement of the points for the two problems is
the same, the Y matrices are different because of the different boundary
conditions along the hypotenuse. In the transient problem the heat-

transfer coefficient is zero, but it is infinite in the steady-state problem.
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Thus, the Y matrix for the transient problem is 9 x 9, but because
the temperature at node 9 is specified in the steady-state problem it
is fixed at + and the Y matrix for the steady-state problem is 8 x 8.
However, the approximation is in reality the same for each problem.
This can be seen by considering the square which is 3 of the original
square rather than the triangular 1/8. Now all that has been changed
is boundary temperatures, which do affect the coefficients of the

derivatives in the expansion for the discretization error.

2. Transient Problem.

The approximate solution to the transient problem was stepped
out for each of several time increments for each of the most common
values of the weighting factor of y, of 0, 3, and 1. Table V-10 is an
abstract of errors for each of the nine points at 6 times for several
different combinations of the time differencing parameters. The
results at temperature points 1 and 6 were studied in more detail
for only four combinations of time differencing parameters. These
studies are shown in semi-logarithmic graphs for both the continuous
and approximate solutions for the temperature versus dimensionless
time. The graphs for point 1, for short, intermediate, and long times,
are in Figures V-9, V-10, and V-11, respectively; and for point 6 for
short and long times in Figures V-14 and V-13, respectively. After
determining the effect of the time differencing parameters the effect of

the space discretization errors can be studied.
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Time Differencing Parameters. The solution labeled analog

solution in the table and on the graphs actually is the fourth-order
Runge-Kutta method of integration for a system of ordinary differential
equations. Three such calculations w.ere made with time increments
of 0.01, 0.001, and 0.0001. The calculations with the last two time
increments agreed to within at least the fourth significant digit for most
points even at very early times. Because of this and because of the
reported high accuracy (18) of the Runge-Kutta methods, this calculation
was assumed to be essentially the analog solution.

Several observations can be made by studying Table V-10.
First, for all points and all times, with the exception of point 1 at short
times, the analog solution has approximately the same error as do the
difference solutions with relatively small time increments (AT < 0.0005)
for all values of weighting factors, and difference solutions witha v
of 3 for time increments up to and including 0.0015. This would be
expected from the conclusions about the time differencing parameters
for the one-dimensional problem. In Chapter IV, section E-4, and
from Figure IV-15, it was concluded that the damping factors for
approximate solutions with a small time increment, for a weighting v
of % , are very close to those of the analog solution. Thus, this
dependence on time differencing parameters for an approximate solution
in two dimensions would be expected, because the form of the expansion
for the time discretization error is the same for both one- and two-

dimensional approximations.
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Second, the approximate solutions for the largest time increment
.of 0.01 for weightings vy both of $ and 1 show relatively large errors,
although both solutions are stable. The large error in the approximate
solution for a weighting of % is caused by excessive oscillation (see
Figure III-3). The large inaccuracies for the run with the weighting
of one agrees with the conclusion in Chapter IV, section E-2, where
it was shown that this weighting gives the least accurate damping
factors for a fixed time increment and a fixed number of points. Note
also that, of the approximate solutions that are like the analog solution,
the solution with a v of 1 and time increment 0. 0005 shows the poorest
agreement with the analog and also is the least accurate of the approx-
imations.

Third, the solutions for node 6, and its neighboring nodes 4,
7, and 8, have the largest errors. Further, these errors for node 6
do not change much over a wide change in time differencing parameters.
However, the errors for nodes 1, 2, and 3 are much smaller, and
these errors do depend upon the time differencing parameters. This
effect can be explained by the space discretization error and is discussed
in the next section.

The graphs of temperature versus dimensionless time for the
continuous solution and for each of several approximations are shown
in Figures V-8, 9, and 10 for node 1 and in V-11 and V-12 for node 6.

In the graphs the analog solution is shown and considered to be
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reprcscentative of the solutions with small time increments (A1 <0.005)
or with weighting + of $.1p to time increments of 0.0015. Also
shown are the two backward difference solutions with time increments
of 0.0005 and 0.01 and the forward difference solution with a time
increment of 0.001.

As shown in Figures V-8 and V-9 the continuous temperature
at node 1 decreases very rapidly with time because it is close to the
surface. This means that the smaller damping factors have a relatively
large weighting in the solution for this node and give a significant
contribution to the solution at short times. The approximate solutions
for node 1 are the most sensitive to oscillations because of this rela-
tively large weighting for the smaller damping factors. Moreover,
the significant contribution of these smaller damping factors causes
the disagreement between the approximate difference solutions ard
the analog solution at short times. Probably even smaller time
increments would be required to make these smaller damping factors
agree with those of the analog solution. In Figure V-10 the temperature
at node 1 becomes linear on the semi-logarithmic paper at long times,
as expected. The behavior of the continuous and approximate solutions
at nodes 2, 3, and 4 is like that at node 1 except that the weightings of
the smaller damping factors are not as great at these nodes.

In contrast to the behavior at node 1, the continuous temperature

at node 6 remains about constant for a short time after the surface
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temperature is changed, and then decreases almost linearly with time

as shown on the semi-logarithmic graph, Figure V-11. This indicates
that at most only one or two damping factor terms give a significant
contribution to the solution at node 6. The straight line behavior actually
begins when node 6 has reached a temperature of 0.65 compared to

node 1, which does not show this behavior until a temperature of 0. 007

is reached. This behavior of both the continuous and approximate
solutions at node 6 is like that at nodes 5, 7, 8, and 9.

From a study of the graphs for long times the following important
observations about the straight-line portion can be made for both nodes.
The approximate solution for the backward difference calculation (y = 1)
with a large time increment, 0.01, decreases more slowly than the
central difference calculation (y = %) as represented by the analog
solution. The central difference calculation (y = %) , in turn, decreases
more slowly than the explicit calculation {y = 0) with a time increment
of 0.001. This means that the slowest-decaying damping factor, ApfAX
for the backward difference calculation is greater than that for the
central difference calculation which is greater than that for the explicit
calculation. From the behavior of the approximate solutions, this
ranking of damping factors probably also applies for the smaller damping
factors. This is the same dependency of the damping factors on the

weighting y which was shown in Chapter IV, section E-4, for the

one -dimensional problem. Such a similarity in the behavior of the
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damping factors and the weighting y between the one-dimensional
regular network and the two-dimensional asymmetric network would
be expected bécause the time discretization error has the same form
in both cases. Thus the conclusion can be made that the approximate
transient solution for a weighting v of 1 decays much too slowly,
compared to the continuous solution, and this is the reason for its
inaccuracy.

However, a discrepancy does occur between the regular one-
dimensional approximation and the two-dimensional asymmetric
approximation. This is that for the one-dimensional approximation
the solution with a weighting of 4 gives damping factors larger than
the corresponding damping factors of the continuous solution; for a vy
of zero damping factors less than the corresponding damping factors
of the continuous solution are obtained; and a v of Y, gives damping
factors very nearly equal to those of the continuous solution. However,
for the asymmetric approximation even the explicit solution with a vy
of zero and a time increment of 0.001 decays more slowly than the
continuous solution, indicating damping factors larger than those of the
continuous solution. A possible reason for this discrepancy is that the
space discretization error for the network used was too large to obtain
the necessary compensation with the time discretization error. The
large discretization could be caused either by the asymmetry or the

coarseness of the network, but most probably by the asymmetry.
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Other observations based on the graphs are:

(1) The approximate solution for the explicit calculation with
the relatively large time increment of 0.001 oscillates too wildly at
node 1 at short times to be useful. However, for node 1 at long times
and node 6 it is one of the most accurate solutions.

(2) The implicit calculation with y of 1 and a large time
increment of 0.01 is inaccurate almost all of the time.

(3) The approximate solutions that give results equivalent to
the analog solution give reasonably accurate solutions despite the
coarseness and asymmetry of the network. The important calculation
in that group of approximations is the one with v of %, which does not
require too small a time increment to give an approximation close to
the analog.

Selection of Time Differencing Parameters for an Asymmetric

Network. The numerical results obtained above and the form of the
time discretization error are very much alike for both the one-
dimensional regular mesh and the two-dimensional asymmetric network.
Consequently, the rules for selecting the time differencing parameters
are also similar. However, since there does not appear to be a specific
optimum weighting, vy o’ for the asymmetric network, the accuracy
restriction is somewhat arbitrary, and it is suggested that the weighting
v not be larger than 3. It should be pointed out that, for the asym-

metric network above, using any weighting other than zero increases
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the errors, and the weighting factors that give the most accurate AKX
are negative. Thus, using a large weighting factor, approaching one,
for an asymmetric network can introduce significant errors.

The oscillatory restriction that assures that the maximum
oscillatory contribution is less than V at the initial time of interest is
found by writing equation IV -295 for an arbitrary minimum matrix

norm, M:

T [AT TO/A'r

VvV >> 3(v) 0 - @[MS{AYT)_AIT'I] (V-81)

Thus, using this equation, the allowable time increments for a fixed
network of points with v's of 0 and % can be found; also, the weighting
v can be found which will allow the use of the minimum practical time
increment.

In order that an implicit solution involve less time-consuming
calculation than the explicit solution, the ratio of the time increment
for the implicit solution to that for the explicit must satisfy the following

relationship,

S ,
5U + 28 + y w2
A‘TI /. i
— LIS i=l (V-82)
Ex 2U0 + S

where U = total number of off-diagonal elements above diagonal in
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S

Y/A matrix = Z u,
3 1 1
i=

and u, = number of off-diagonal elements above diagonal in ith ow
in Y/A matrix

This is based on the number of non-zero multiplications required to
advance one time increment where the implicit calculation is carried
out according to the elimination method discussed in Chapter III,
section E. If u, does not change much from node to node, the sum-

2
mation of the u, terms can be approximated by
1

S
2 -

z ui ~ u U (V"83)
i=

S

where u = ( B‘ u, )/S = one-half the average number of nodes that
L 1
i=l

surround each node in the network.

If a rectangular network is used, a node has four neighbors, u, is two,
1

and the relationship becomes:

> 2= =3.,2 (V-84)

If the network contains equilateral triangles, each node has 6 neighbors,

and u, is three; the ratio becomes:
i
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AT .

Im 26 _ 3 45 (V-85
AT T

Ex

For most asymmetric networks the average u is probably somewhere
between two and three and thus A T m must be somewhat larger than
about 3.5AT Ex for the implicit calculation to be more efficient. This
is the same ratio found for one-dimensional problems with a regular
mesh where vector-matrix multiplication is not used (equation IV -305).
Based on these results, it is probable that for most asymmetric
networks the weighting v of % should be used with a time increment
about the maximum given by equation V-81. Altlzhough this might not
give the most accurate solution possible with the specific network, in
all probability it should give reasonable accuracy with no significant

oscillations, and should require about the minimum calculations.

Space Differencing Parameters. One of the effects on the approx-

imate transient solution, which is probably attributable to the asym-
metric location of the temperature points, is that the eigenvalues of
the Y/A matrix are sufficiently different from the eigenvalues ujz of
the continuous problem, so that the damping factors of the approximate
solution are greater than those of the continuous solution for any
reasonable combination of weighting and time increment.

The other inaccuracy in the transient solution caused by the
space discretization error, as indicated in Chapter II, section D, and

Chapter IV, section E-2, is the error in the intercepts of the transient
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terms, when plotted versus time on semi-logarithmic paper. This
difference is (_ajbij - gjcij)' On the long-time plot for nodes 1 and 6,
Figures V-10 and V-12, the straight-line portion is extrapolated to

zero time to find the intercept corresponding to the maximum damping
factor for both the continuous and approximate solutions. This shows
that the error in this quantity is much larger for node 6, about 0.09,

or about 10 per cent error, compared to 0.01, or about a 3 per cent
error, for node 1. Further, since in both of the approximate intercepts
the quantity 2, is the same for both nodes, the larger error for node 6

is caused by the fact that its component ¢, . in the first eigenvector is

61

more in error than the corresponding component ¢ 1 for node 1.

1
Moreover, none of the approximate solutions for node 6 give the very
slow changes in temperature for very short times (v < 0.005) in com-
parison with the analog solution for node 1 which is relatively close

to the continuous solution. This indicates that the intercepts for node

» for the remaining terms in the approximate solution are quite

6, g.c,,
856

inaccurate, but that the corresponding intercepts for node 1, gjclj’
are accurate. In both cases, much of the difference in accuracy must
be due to the fact that the elements in row 6 of the eigenvector matrix
do not agree with the eigenfunctions evaluated at node 6; but row 1 in
the eigenvector matrix agrees with the first several eigenfunctions

evaluated at point 1. Secondary reasons for the higher accuracy for

node 1 are that its approximate solution might contain higher weightings
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of the approximate transient terms which are more accurate, and that
errors in the several terms which are significant at short times might
compensate.

The relative accuracy and behavior of the transient terms for
nodes 1 and 6, and for the other nodes, can be explained qualitatively
in terms of the error propagation equation and the space discretization

“error expansions with only a superficial knowledge of the derivatives.
First, the expansions for the space discretization for nodes 1 and 6
are shown in Table V-9 as nodes O and P, and these expansions have

non-zero coefficients of the zero-order error terms, which are the

2 2
hyperbolic derivative term ( é—% - -a-—-I& ) and the mixed derivative
g am

(sz/a E3MN). Examination of the network in Figure III-1 indicates that
these terms would be expected for all but node 3 which is an irregular
rectangular node with the first term in the expansion for its discret-
ization error proportional to a linear distance in the node (see node C,
Table V-9). A consideration of the symmetry of the temperature dis-
tribution 6r the adiabatic condition for the vertical boundary ( = 0)
and the hypotenuse boundary (€ = -T) allows the following conclusions

about the derivatives in the zero-order error terms.

2 2
T
(1) The hyperbolic derivative term ( g—zz - 9——-2 } is small for
0E Al

nodes 1, 2, 3, 5, and 7, located close to the hypotenuse, because

2 2 2 2 .
3 T/3E and » T/3M are the same size and have the same sign.
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(These second derivatives are equal on the hypotenuse.) The mixed
partial derivative in this region is probably intermediate in size.

(2) The hyperbolic-derivative terms for node 4, located very
close to the horizontal surface and relatively close to the adiabatic
boundary (£ = 0), and node 6, located very close to the adiabatic boundary
(€ =0), are large as the derivative 3 2'I'/ET\ 2 has a large absolute value,
but 3 Z'I‘/B g . is small. The £ derivatives are small on the vertical
boundary. The mixed derivative is very small for these nodes.

(3) The space discretization error for node 9 is small because
of the low rates of heat transfer from this node,and because of symmetry.

(4) Both the space and time derivatives at each node are zero
at zero time and increase to a maximum value when the temperature
gradients become large. This maximum value is attained at different
times for different nodes, occurring at short times for nodes 1, 2, 3,
and 4, but at long times for nodes 6, 7, and 8. After this maximum
is reached the derivatives go to zero as the steady-state condition of
a uniform zero temperature is approached.

Based on these considerations, both the discretization error
di,n and the averaged discretization error ai,n would be expected to
be relatively large for nodes 4 and 6, and relatively small for nodes 1,
2, 3, 5, 7, and 9. The larger discretization errors for node 4 should
occur at short times; the larger discretization errors for node 6 occur

at somewhat longer times. As discussed previously, and as seen from
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equation V-22, the discretization crror associated with each node is
~now multiplied by the node's area to find the area-weighted averaged
discretization error vector elements A,ai 0 The elements in this

1 1,

vector, although less in absolute value than those in ai,n’ are increased
for the large nodes 4, 5, 6, 7, and 8 relative to the size of errors at
the small nodes 1, 2, and 3. This is particularly true for the weighting
at node 6 because it has the largest area of any of the nodes.

The quantities which are the relative weighting of the area-
weighted discretization error in the error at each point are the elements
in the inverse conductance matrix Y_le This matrix is in Table V-1.

It shows that the large discretization error for node 4 at short times
should contribute more to the error at nodes 4, 5, 6, 7, 8, and 9, than
at nodes & and 3, and it should contribute almost insignificantly to the
error at node 1. The errors in Table V-10 indicate qualitatively that
this is true. The errors for dimensionless times of 0.003 and 0.006
are largest for nodes 4 and 6; the next larger errors at nodes 2 and 3
are probably caused by discretization errors at those nodes in addition
to the contribution from node 4. Further, the error at node 4 is almost
independent of the time differencing (except for the oscillatory run,

v =0, At = 0.001), indicating that its discretization error is mostly
caused by the space differencing parameters. On the other hand, node
1, despite its asymmetry, has a very accurate solution, because it is

not affected by nodes other than 2 and 3, which probably have a low

discretization error.



431

At intermediate and long times the discretization errors at nodes
I, 2, 3, and 4 become very small and most of the approximate solutions
become accurate at these nodes. However, the space discretization
error at node 6 is now large and because of its large area this discret-
ization error contributes to the large error in its own approximate
solution, and to the errors of nodes 5, 7, 8, and 9. In particular,
node 9 is known to have a very small space discretization error, and
yet its solution is not accurate, because of the dominant effect of the

large area-weighted discretization error at node 6, Aéaé n

3. Stcady-State Problem.

In the steady-state problem only the space discretization errors
need be considered and only for one time. The analysis of the effect on
the errors in the approximate steady-state solution follows much the
same pattern as above. In the transient problem just discussed, the
temperatures approach a constant value throughout the solid and the
discretization error, and hence the error in the solution approaches
zero with time; however, in the steady-state problem, the boundary
conditions are such that the temperature distribution is very non-
uniform. This problem was selected particularly because of this non-
uniformity, as a test of the space discretization error.

As pointed out previously, despite the radically different boundary
condition along the hypotenuse, (£ = -T), the coefficients of the deriv-

atives in the expansion for the space discretization error are the same
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" as for the transient problem; however, the values of the derivatives
at the several nodes are radically changed. As this is a steady-state
problem the continuous temperature distribution satisfies Laplace's

equation and the hyperbolic derivative becomes

N Y L N L
e e e (V-86)
0g 3T RS Al

Consequently, the hyperbolic derivative is very large in regions of

high net energy flow in the § or T direction. From a consideration

of the boundary conditions, one such area is the corner where nodes 1,
2, and 3 are located. In this region the mixed second partial derivative
is large also. Thus, nodes 1 and 2, which contain these terms in their
expansions, would be expected to have very large space discretization
errors. The expansion for node 3 is given as node C in Table V-9,

and although the zero-order error terms are not present, the third
derivatives are also high, as can be seen by writing the expansion for

the steady-state problem at node 3 as

2 3
3°T d3°T
o, gg = 0-118 3:55 4 0.0115 ——-—-i-»§§ +... (V-87)
g 3! I

where E' is perpendicular to the hypotenuse and 7' is parallel to the
hypotenuse.. Although the third derivative along M' is small, the one
along &' perpendicular to the hypotenuse is large and causes the dis-

cretization error at node 3 to be large. This is true even though the
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expansion for node 3 contains no zero-order error terms.

The discretization error would be expected to be decreased as
one moves along the hypotenuse toward the origin; thus, the discret-
ization errors for nodes 5, 7, and 8 should be significantly smaller
than those for nodes 1, 2, and 3. Node 5 would be expected to have a
larger discretization error than nodes 7 and 8.

On the other hand, at node 6, not close to either boundary of
specified temperature, but located close to the adiabatic vertical
boundary (£ = 0), the second partial derivative BZT/B E g is much
smaller than in the corner region. The mixed second partial deriv-
ative is also smaller, and it would be expected that the higher -order
derivatives are also small. Cuonsequently, the space discretization
error at node 6 should be small.

The space discretization error for each of nodes 1 to 8 has
been calculated directly from the definition of this error, equation V-4,
using the continuous solution temperatures, as computed from equation
V-32. These results are summarized in Table V-7 (1) for the case
when the boundary temperature vector is taken as the continuous boundary
temperature vector. A study of the space discretization error di,SS
does indeed confirm the qualitative expectations mentioned above.
That is, nodes 1, 2, and 3 have very large discretization errors com-
pared to node 6, and larger errors than nodes 5 and 7. Node 2 has a

significantly smaller discretization error than 1 and 3, as it is located

somewhat farther from the hypotenuse. Node 4 has a large error as
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it is located close to a region where BZT/B g 2 is high, due to the
closeness of the boundary with a specified temperature (£ = -0.5).
Consequently, we conclude that the series expansions for the space
discretization errors are valid, and, more importantly, that, with only
a very superficial knowledge of the expected temperature distribution
or its derivatives, the relative size of the space discretization error
can be predicted. |

The discretization errors shown in Table V-7 for the nodes in
Figure III-1, with the temperature distribution of the steady-state
problem, are much larger than the errors shown for nodes J and L
in Figures V-5 and V-6, for a steady state which is similar to that
under consideration here. There are two reasons for this. First,
nodes J and L. were located on the semi~infinite solid on the vertical
axis of symmetry and fairly well into the interior, which would cor- |
respond roughly, for the problem considered here, to a point located
at £ = 0 with the same T coordinate as node 6. Thus, these nodes
are positioned at a point where the derivatives are small rather than
at the corner where the derivatives must be large. Second, if the two
problems had their space dimension scaled in the same way, the
largest dimension A for nodes J and L would correspond to about
0.03 instead of 0.10 as shown. Thus the largest nodes J and L. have a
dimensionless area of 0.0009 compared to the areas of the nodes in

 Figure III-1, which range from 0.0034 to 0.0242, and the calculations
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for J and L are for nodes in a much finer network.
The area-weighted discretization error Aidi ss and the errors

in the approximate solutions vi,SS are also shown in Table V-7. The
area weighting of the discretization error for the small nodes 1, 2,
and 3 reduces the large discretization error relative to the area
weighting of the discretization errors at the larger nodes. This area-
weighted discretization error is largest for nodes 1 and 4; and this
error at nodes 2, 3, and 51s significantly larger than at 6, 7, and 8.

th )
The error in the approximate solution for the i node is found by

.th th
by the j  element in the i row of the inverse

multiplying each A'jdj, ss

conductance matrix. This matrix is in Table V-2. In general, those
nodecs in a rcgion with high discrctization errors should have the largest
errors in their approximate solution; nodes with smaller discretization
errors should have more accurate solutions, if they do not have large
conductances to a large area with large discretization errors.

These results are confirmed in Table V-7, which shows larger
errors at nodes 1, 2, 3, and 4, than at 5, 6, 7, and 8. The approximate
solution for each point, if rounded to two significant digits, would
agree, within a difference of one in the last digit, with the continuous
solution, similarly rounded; this is true despite the large discretization
errors caused by the asymmetry and the coarseness of the network.

This surprisingly good agreement is partially accounted for by the
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compensation caused by the discretization errors having different

. -1 . - .
signs, and by the Y = matrix containing only negative elements.

4. Summary of Conclusions--Numerical Studies.

The conclusions that can be made based on the numerical results
for the transient and steady-state problems are:

(1) In spite of the coarseness and the asymmetry of the network,
both the approximate transient solution and the approximate steady -
state solution are reasonably accurate. This means that the eigenvectors,
eigenvalues, and the resulting initial vectors for an asymmetric dis-
tribution of points can be of reasonable accuracy.

(2) The relative accuracy of these solutions at different points
and at different times is at least qualitatively predictable on the basis
of the series expansions for the discretization error and a consider-
ation_of the quantities in the equation for the propagation of this error.
This can be done by considering the derivatives for the expected tem-
perature distribution, and the relative areas and conductances between
the points.

(3) The error in the approximate solution for each point in a
fixed network is largely dependent on the second- and higher-order
space derivatives for the specific temperature distribution being
approximated. That is, a network which gives an accurate approximate

solution for nodes in a certain region for one problem might give a
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rather inaccurate solution for another problem, where the temperature
distributions are different.

(4) The time differencing parameters, time increment and
weighting factor v, influence the approximate solution based on an
asymmetric network about as they do for a one-dimensional problem
with a regular network. In selecting these parameters for a fixed
network of points, the oscillatory criteria probably limit the size of
time increment that can be used. The weighting factor v should
probably not be much greater than %, if accuracy is important, but

the solution for a vy of % should give an adequately accurate solution.
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(G) RULES FOR LOCATING A LIMITED NUMBER OF POINTS

Because Richtmyer's consistency condition is based on how the
discretization error changes as the network is refined, it is not directly
useful in many practical situations where the network contains only a
limited number of points. Although networks of 100 to 1000 points in
each space coordinate direction have been suggested by Forsythe and
Wasow (10), to obtain moderate or fine detail, in most practical cases
approximate solutions of adequate engineering accuracy can be
obtained with a coarse mesh of less than thirty points. Furthermore,
computers that can handle such a large number of points are not always
available. In simulation problems, where the transient temperature
distribution calculation is only a part of the total calculation, only part
of the memory capacity of the computer is available for the transient
calculation, and the time allowed for the calculation might also be
limited. Consequently, even with the large high-speed computers
currently in use, approximate methods which do not require a large
number of points are important practical tools to obtain solutions that
are of sufficient accuracy for engineering purposes.

In these cases, where a relatively coarse network of less than
thirty points is to be used, the accuracy of the approximation is affected
by the discretization errors of the network to be used, and the way in

which the discretization changes as more points are added is not
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of practical significance (unless these points are actually added).
Consequently, the expansion for the discretization error (equation V -57)
is important in this situation because if allows an estimate of the
discretization error with only a minimal knowledge of the temperature
distribution. Further, for a relatively coarse network, the first- and
second-order error terms can be as large as the zero-order term; and,
since the network is not to be refined, the zero-order term has no
special significance. The primary concern is the space discretization
error, which is the sum of all terms. Moreover, the numerical results
just discussed show that solutions of reasonable accuracy can be
obtained with a coarse asymmetric network that is probably very dif-
ferent from the best network for the problems approximated. In the
light of the above remarks, and also the numerical results, a properly
selected asymmetric network used to describe a solid with irregular
boundaries should not be rejected merely because series expansions
based on Cartesian coordinates for some nodes in the network contain

a zero-~order error term.

The following is a summary of several general rules on locating
nodes in a solid with irregular boundaries and, possibly composed of
materials of different thermal properties. The rules assume that
MacNeal's rules are to be used in locating the points and in calculating
the conductances; however, on the basis of the results of Chapter IV,

a modification is proposed to the location of the points that follow the
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curved boundary. In most instances the rules are based on physical
considerations or mathematical analogies rather than rigorous mathe-
matical proofs. The discussion is divided into two parts; one on the
location of the adjacent nodes that describe the boundary; and one on
the location of the interior points within the solid.

It should also be pointed out that because of the general nature
of the problems that can occur, and the usual lack of all but a superficial
knowledge of derivatives, these rules cannot predict quantitatively the
error for a fixed network, or how many points are necessary to obtain
a certain desired accuracy. However, a qualitative estimate of the
expected relative accuracy can be obtained, based on an analysis like
that used in the discussion of thc numerical results. A quantitative
study would require a series expansion for the discretization error and
quantitative estimates of the derivatives at each node. Thus, in the fol-
lowing discussion, the maximum number of points that can be used is
assumed to be relatively small and known. The average area for each
node in a uniform solid can then be estimated by dividing the total area
of the solid by the number of nodes. The average distance between

nodes can be estimated by taking the square root of this number.

1. Location of Adjacent Nodes.

MacNeal's original idea of thc asymmetric network was to follow
g y

a curved or irregular boundary by actually locating the points on the
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boundary. The argument for this is that any errors introduced by the
resulting asymmetry are expected to be less than the errors caused
by making the solid boundary conform to a regular network or other
approximation. Locating the points on the boundary is a generalization
of method G based on mesh A& for the cne-dimensional problem;
hence, this technique is subject to the same disadvantages that are
associated with method G. A method of following the boundary exactly,
but locating the nodes a short distance inside the boundary, is sug-
gested. This location of the adjacent nodes is a generalization of the
one-~dimensional method C based on mesh AE /2, and it is shown to
preserve the advantages of method C.

Two types of boundary conditions are discussed separately.
The first is the heat-transfer coefficient condition given by equation
V-42. This equation applies to the external surfaces of the solid which
are exposed to the fluid. Since the heat-transfer coefficient is allowed
to vary from zero to infinity inclusive, this condition includes the
adiabatic boundary condition, and the specified temperature boundary
condition. The second type of boundary equation considered is the
interface boundary condition between two solids of different uniform
thermal properties in a composite solid. This condition assumes

perfect thermal contact:



442

3 TI 9 TII
kIS"‘,]‘.‘—' (%‘1’ni,T) = kII 'a—;ﬁ—‘— (gi: T,i:'r) (V—88)
and
Tl(gi’qi’T) = TII(gi’ni’T) (v-89)

where TI(§ i,'ﬂ_ i T) = temperature of solid I with thermal conductivity
I evaluated at the interface with solid II,

and TH(§ i i i T) = corresponding function for solid II.

Fluid Boundary Condition, 0 <h < co. The disadvantage of

locating the points directly on a boundary surface in contact with a
fluid, as shown in Figure V-1, are:

(1) Heat capacity is associated with the boundary surface tem-
perature in the approximate method, but no heat capacity is associated
with the surface in the continuous formulation; consequently, the
approximation is not a direct discretization of the continuous boundary
condition, equation V-42.

(2) For infinite heat-transfer coefficient, some heat capacity
of the solid is neglected.

(3) For very large heat-transfer coefficient, heat capacity of
the surface node must be neglected, or the stability and non-oscillatory
criteria become very restrictive because the minimum norm M of the

Y /A matrix is directly proportional to the heat-transfer coefficient.
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All of the above objections can be avoided and the curved
boundary followed exactly if the adjacent nodes are located a short
distance inside the surface rather than on the surface. This gives a
generalization of method C based on mesh A§ /2.

A portion of such a network is in Figure V-13. This can be
constructed easily by first drawing a curve that is approximately
parallel to the boundary and inside the boundary by about half the
average distance between nodes. The adjacent nodes are then located
on this curve. From each of these adjacent nodes a line normal to the
boundary is drawn. The interior nodes can be located, and the net-
work and perpendicular bisectors constructed, in the usual manner.

The equation for the adjaccnt nodes is based on an energy
balance on the area bounded by the perpendicular bisectors and a portion
of the boundary of the solid. This area is cross-hatched for the ith
node in Figure V-13, and it is the area used for the heat capacity.

(The fcature that distinguishes this type of adjacent node from interior
nodes is that a boundary of the adjacent node is also the 'boundary of the
uniform solid.) The energy into the node from the fluid at temperature

t,  can be found by using the concept of thermal resistances. The
«?
i
resistance between the fluid and the surface of the solid is I/Af h, and
i
between the surface and the node is ﬂi ¢ /Af k. The conductance between
i i

the node and the fluid is then the reciprocal of the sum of these two

series resistances, divided by kO to make the expression dimensionless.
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b

Yig = i [____{___ ] (V-90)

Use of this dimensionless conductance, together with other dimension-
less conductances found in the usual way and the dimensionless heat
capacity found using the area bounded by the perpendicular bisectors and
the solid boundary, gives all the elements in the Y/A and YB/A. matrices
in the row of the ith adjacent node. This energy balance is shown in
Figure V-13 1n dimensional coordinates. Comparison between the
equation above for the dimensionless conductance and the derivation for
mesh AE /2, equation IV-32, shows that this formulation is analogous

to method C, where Af is one and li ¢

1 1
to the fluid temperature approaches a constant value as the heat-transfer

is A€ /2. The conductance

coefficient goes to infinity.

lim i
T — -91
hooo Vi,f. k.4, (Vv-91)
whereas equation V-2 shows that the analogous conductance for Mac-
Neal's boundary nodes goes to infinity as h goes to infinity. Thus, the |
minimum norm M of the Y/A matrix does not become large, and,

when only modified adjacent nodes are used, the minimum norm of the

Y /A matrix approaches a constant as h becomes large and does not give
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restrictive stability conditions. Moreover, even for an infinite heat-
transfer coefficient no heat capacity of the solid is neglected. The
conductance in equation V-91 goes to zero when h is zero, and thus,
the modified adjacent nodes are suitable for adiabatic boundaries.
. . th .
If the temperature of the solid boundary opposite the i adjacent
node must be known it can be found from the following equation, which

is derived using thermal resistances.

h
ll,f,
i
—_—t + L
* »
¢ _ k fi,n i,n (V—92)
i,n
hil,fi
- 401
k

ale

* . .th .
where t, = surface temperature opposite the i adjacent node.
i

The asterisk means that this surface temperature is not associated
with a heat capacity, and it does not add a degree of freedom to the

approximate calculation. Rearranging, this equation results in

B(t, - £) =k [ 1—;1———1——9— ] (V-93)

which is a direct discretization of the continuous boundary condition,
equation V-42,
It appears that this modified type of adjacent node can be made

to follow the boundary exactly and the conductances and capacities are
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as easily calculated as for the MacNeal adjacent node. In addition,
such nodes meet all the objections raised about the nodes located on the
boundary. Specifically, the advantages are:

(1) They give an equation which is a direct discretization of
the boundary condition equation for a heat-transfer coefficient or for an
interface with a second uniform solid.

(2) They can be used for all values of heat-transfer coefficient
from zero to infinity, inclusive, directly without neglecting any of the
heat capacity of the solid and, of equal importance, without causing
restrictive stability conditions.

In addition to these two advantages, and on the basis of the
comparison between methods G and C in Chapter IY, we would expect
approximations using these modified nodes to be more accurate than
those where the nodes are on the boundary. Even without this expectation
of accuracy, the less restrictive stability conditions that result when
the adjacent nodes are located away from the boundary would justify
their use. This technique is one of the simplest for obtaining a good
non-oscillatory solution for many problems without using a very small
time increment or a value of v that is so large that it introduces inac-
curacies.

In order to show that a more accurate approximation results

from using adjacent nodes which follow the boundary, and which are
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located away from the boundary, we would require valid series expan-
sions for the discretization error for these nodes. This has not been
done.

Interface Boundary Condition. The location of a MacNeal node

on the interface between two uniform solids is shown in Figure V-14.
From a generalization of his rules, the dimensionless heat capacity

of the interfacial node is

(Area), . 0. C_ _ + (Area), g.C
A = il II »l _ ill "II plI (V-94)

where the (Area), _ is an area within the polygon of perpendicular
1

I
bisectors of solid I with thermal properties subscripted by I and
(Area):.L 1T is the corresponding area for solid II. The conductance to
other nodes on the interface is assumed to be the sum of two parallel
conductances, one in each solid:

st s Tt in R

Y. =
1
i kOﬂi,l

(V-95)

where r, 11 is the length of perpendicular bisector of Ii 1 within
1, 3

solid I, r.

111 is the length of this perpendicular bisector in solid II,
i,

and £, 1 is the distance between the nodes, as usual. The conductances
i,
' to neighboring nodes wholly within either solid are computed in the

usual manner, equation II-26.
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This type of adjacent node for an interfacial boundary, like the
same type for a fluid boundary, associates a heat capacity with the
interfacial temperature, which the continuous formulation does not,
and does not give a direct discretization of the boundary equation V-88.
Another disadvantage of this type of node can be seen from Figure V -15,
which relates the temperature along the normal to such an interface
versus the normal distance for two solids with widely different thermal
conductivities. Solid I, with the high conductivity, shows a relatively
slowly changing temperature with distance, but the temperature in
solid II, with a low conductivity, changes very rapidly, particularly
at the boundary. In such a situation the temperature of a node at the
interface cannot accurately represent the average temperé.ture of its
surrounding area, because of the discontinuity of the temperature
distribution.

Both of the above objections can be eliminated by locating the
nodes away from the intcrfacial surfacc. Such a location gives a direct
discretization of equation V-88, allows an interfacial temperature to
be calculated from thermal resistances (no heat capacity), and each
node contains material of uniform thermal properties. A portion of a
network for an interfacial boundary is in Figure V-16. The adjacent
boundary nodes, i and i', for each solid are located on a common normal
ii' to the interface. The conductance between them is found by taking

two thermal resistances in series:
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. ] (V-96)

A
g i [ 1
--,_
DKy Lo Ao
K

+
I kII

where A.ﬁ‘ is the length of interfacial arc bounded by the perpendicular

bisectors, ,Ei 1 is the distance along the commmon normal from node i

in solid I to the interface, and £, is the corresponding distance for
1

I
node i' in solid I. The heat capacity for each node, i and i', is based
on the area bounded by the perpendicular bisectors and the interface.
The conduction to the other necighboring nodes is found in the usual

manner. The interfacial temperature, as found by linear interpolation

using thermal resistance, is

kptg ki tog

1 7
% - s
oo i1 i Il (v-97)
ii k k

1 1

2 T2

il i1

This expression can be rearranged to give an expression which is a

direct discretization of equation V-88.

o *
-t t,.,-t
11

t

il ii' om i'1I

k \: - | =k [ ———————-—] (v-98)
IL ii 1 J II 1,1, 11

Thus, each adjacent node contains only material of uniform thermal

properties, and a direct discretization of equation V-88 is obtained.
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However, a disadvantage does occur for adjacent nodes that are
located away from an interface. In order that the perpendicular bi-
sectors of the network legs between adjacent nodes meet at a comnﬁon
point on the interfacial surface (e.g., point C in Figure V-16), the
network surrounding the interface must be of isosceles trapezoids,
which are the most general quadrilaterals for which this can occur.
(Some networks other than of isosceles tré.pezoids can be made, in
principle, but their construction is more difficult.) This network can
be constructed by drawing normals to the interfacial boundary at
selected intervals. Then, after an i and corresponding i' are selected
for one normal, the rest of the nodes can be located by drawing a line
from i to the normal next to it on the boundary, so that the angle of
intersection with this normal is the same as with the first normal. A
line parallel to this is then drawn for node i'. The nodes on the next
normal are thus located, and the trapezoidal network can be constructed
surrounding the interface. In closing this network, the position of a
normal can be changed by trial and error. If the perpendicular bi-
sector s do not intersect at a common point on the interface, then the
series resistances could be multiplied by different arc lengths. This
would be equivalent to multiplying the left side of equation V-98 by Ai

I

and the right side by Ai , where Ai is the length of arc bounded by

'11 1

the bisectors for solid I, and Ai' II is the same for solid II. However,

this node location now obviously no longer has the advantage of giving
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a direct discretization of the boundary conditions; the advantage of
having no discontinuities in temperature gradient within a solid
remains.

Additional studies are required to show whether the modified
‘adjacent nodes for interfacial boundaries would improve the accuracy

of an approximate solution.

2. Location of Interior Nodes.

The location of the points within the interior of a uniform solid
obviously should be done in such a manner that the space discretization
error is as small as possible for the number of points to be used,
for the particular geometry and fluid temperature functions. The
following is a discussion and presentation of rules and guide lines,
based on the analytic and numerical studies for arranging the interior
nodes. However, because of the wide range of conditions possible in
probléms of transient temperature distribution, exceptions to the rules
do occur. Although many of the exceptions are mentioned, it is not
possible to anticipate all possible situations. Consequently, these rules
should be used as guide lines but not as rigid rules.,

Nodes. The series expansions in Table V-9, based on Cartesian
coordinates, show that any asymmetry or irregularity in dimension
of an interior node probably increases the space discretization error.
Asymmetry which consists in having different angles or different

lengths to neighboring nodes usually results in an increase in the
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coefficient of a low-order term in the series or the addition of a new
lower -order term to the series. (Although at times this might produce
a compensating effect, it is not assured, and is not probable.) Thus,
the interior nodes should be selected from those which have only small
coefficients for the second-order terms.

The best shapes are the square node E and the hexagonal node N
shown in Table V-9. Both of these nodes are located at the center of
the surrounding area and have equal branch lengths separated by equal
angles. Nodes which have equal branch lengths in opposite directions,
but unequal lengths in the two perpendicular directions, such as the
rectangular node D, also are located at the centroid, and are particularly
useful in problems which have much larger gradients in one direction.
They can then be oriented with their short dimension parallel to the
direction of highest gradient. Among other nodes like the rectangle,
which have not been studied, butvwhich should have an error expansion
like the rectangle's, is a distorted hexagon {like node N) with the net-
work shape of isosceles triangles instead of equilateral triangles.

Both the irregular rectangular node C and the trapezoidal node I are not
located in the center of the surrounding area; however, their error terms
would still be expected to be small. The irregular rectangle is often
useful in fitting irregular boundaries; the trapezoidal node is useful

for radial geometry. Further, small errors probably also result from

nodes that deviate only slightly, in angles or in lengths, from the type
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of hexagonal nodes (node N) which form networks of equilateral
triangles.

Networks. The networks in which these nodes are to be used
are also restricted. Assuming a uniform solid, where the temperature
gradients are fairly uniform throughout, and where equal accuracy is
required throughout, several characteristics of a good network should
be pointed out. The areas of the nodes should be about equal. The
conductances throughout also should all be about the same. This then
keeps the ratio of conductance to capacitance from being too large at
any one point. The diagonal elements in the Y/A matrix are about the
same size, which keeps the minimum norm low, and thus a severe
stability restriction does not result. The requirement of equal areas
and equal branch lengths also dictates that the network be very regular
in the interior. That is, the interior nodes should approach or be the
rectangular node D or the hexagonal node N.

However, a network that does not meet the requirements for
equal area, equal conductance, and equal ratios Yij/Ai is the trapezoidal
network of a radial network of nodes bounded by arcs and radii as shown
in Figure V-7. These networks are useful for many problems in radial
symmetry. In this case MacNeal's trapezoids give an approximation
to a direct discretization of the Laplacian operator written in the
cylindrical coordinate system. The network is thus distorted based on

a relationship with the boundary which is conveniently represented in
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the cylindrical coordinate system. Further with this network the nodal
heat capacity Ai goes to the differential volume element dV in cylindrical
coordinates as the network is refined. Thus, because this makes the
several finite summations for the difference solution more like the
integrations for the continuous solution, it might be expected that this
type of a network would have eigenvectors cj, eigenvalues A ,, and

initial vector g that are closer to those of the continuous solution for
many problems than those obtainable when a rectangular mesh is used
in the interior of the circle.

Although for a problem in cylindrical symmetry a convenient
orthogonal curvilinear system based on the boundary is known, for
problems with a general curved boundary the distortions required for
a curvilinear network in the interior would have to be estimated from
the boundary geometry. Also, because the isosceles trapezoid network
shape is the most general quadrilateral allowed by MacNeal's rules,
networks for geometries other than cylindrical would have to be based
on a distortion of a network of equilateral triangles. It would be hoped
that a series expansion based on the curvilinear coordinates (not
Cartesian) would show that such nodes give a high-order approximation
to the Laplacian in that coordinate system. This expansion probably
could not be carried out.

Further, more than one orthogonal curvilinear coordinate sys-

tem can be used to describe the boundary. Thus, rather than use an
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Aobvious coordinate system, based only on the geometry of the boundary,
one might select a network distorted accérding to an orthogonal curvi-
linear system tilat would follow or be parallel to the streamlines and
iso-potential lines. This would give a very fine network in regions of
high gradients, as desired. However, in a transient problem these
- lines obviously can be functions of time, and only an average grid
could be used. For problems with sufficient symmetry so that the
streamlines are not a function of time it might be possible, in principle,
to eliminate a space dimension, as the use of cylindrical éoordinates
/ does for some problems; however, it is highly doubtful that one can
take advantage of this for most problems with irregular boundaries.
Thus, for most problems, if a distorted network is to be used, it is
probably simplest to use a distortion based on the curvilinear coordinate
system most convenient for the geometry of the boundary.
Consequently, there are two types of networks which use the
best nodes and can give good approximate solutions. In both the
adjacent n.odes follow the boundary exactly but are centered a short
distance from the boundary. In the first network, the interior points
are located in as regular a manner as possible. All the node shapes
approach as ‘closely as possible either rectangles or regular hexagons.
The larger the number of points or the more regular the boundary, the
closer this approach can be made. In the second type of network the

interior nodes are deliberately distorted in a pattern related to the
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boundary or an expected temperature distribution. ¥Examples of both
types of network applied to a thick C-shaped solid are shown in Figures
V-17 and V-18.

In Figure V-17 the adjacent nodes are located on straight lines
that are approximately parallel to the curved boundary. This allows
square nodes to be used throughout the interior of the solids; only the
_ adjacént nodes have any irregularity, and only they require special
calculation for conductances and capacitances. In addition to this
advantage, the network is very simple to lay out, and the expected space
discretization error is small for the nodes. Also it should be mentioned
that this network shows that, by locating the adjacent points away from
the boundary, and only approximately parallel to it, one can make the
interior network quite regular even with a limited number of points. |

The actual network shown contains 30 points. It can be made
considerably coarser without destroying the description of the boundary
by removing each alternate row of points or possibly‘ only the center
row. (Some small adjustments in point location would be required to
maintain a good description of the boundary.) This would make the
interior points rectangles, which for a problem with a constant initial
temperature and a different constant boundary temperature, might give
almost as good an approximate solution. This would be so because the
higher gradients would occur in the horizontal direction more than in the

vertical direction. Thus, the removal of the alterhate rows means that
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the solid can be described very well with only 18 points and a regular
rectangular network of nodes can be used in the interior.

In Figure V-18 a triangular network is used on the same cross-
section. This network is an attempt to distort a network of equilateral
triangles (node N) for this particular geometry. This network contains
26 points which is about a 13 per cent saving in points, but each point
is asymmetric and the Y/A matrix must be computed for each point.

The triangles are constructed so that they should be approx-
imations to curwvilinear triangles for an orthogonal curvilinear coordin-
ate system convenient for the particular shape; and it would be hoped
that a series expansion for the space discretization errors in these
curvilinear coordinates would show that the error should be small.

In general the distortion of the hexagonal nodes in the central section

is what would be expected for the particular solid. In the region inside
of the '""prongs'' of the thick C-shape, the geometry indicates that the
nodes should be very small, much as the nodes become small at the
center of a circle. Since the network is to be coarse, these nodes were
combined to make all the nodes about equal in size. Further, the
specific network used does not appear to describe the '""prongs'' as
satisfactorily as does the rectangular network in Figure V-17.

Consequently, as the series expansions in the curvilinear
coordinates cannot be readily found, there is no assurance that this

network can give better or even equivalent results to a rectangular
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network. Moreover, in addition to requiring a special calculation for
each node to find the conductances and capacitances, this network is
not as easily constructed as the rectangular network. Such a construc-
tion involves several trial and error network constructions until the
location looks satisfactory, and the restrictions are satisfied. Thus,
practical considerations of laying out the network and individual cal-
culations for each point limit the use of nodes which are distorted in
relationship to a curvilinear coordinate system to shapes where the
convenient curvilinear coordinates are well known. Any improvement
in accuracy using such an approximation could be determined by
comparing, for the circular cross-section, a continuous solution with
approximations using a direct discretization of the Laplacian operator
in cylindrical coordinate systems with nodes bounded by arcs and
radii, MacNeal trapezoids, a square network, and a network of equi-
lateral triangles. This has not been done.

Other Rules. Tn addition to the discussion above about the type

of node and the general network, several other points should be made
concerning location of the points.

In regions where very accurate results are desired, or where
the second- and higher -order derivatives are large, a small rectangular
network or a network of equilateral triangles should be used. = This is
true even in the distorted network, as, when these nodes are refined,

they tend to become rectangular. This finer mesh should also extend
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away from the region of interest far enough so that any errors in the
nodes where the network size is changed, and beyond, should not affect
the solution at the particular nodes of interest. Since nodes used to
change the network size often have zero-order terms in their expan-
sions, they should be located in a region of low second derivatives

if possible. If not too many nodes axe -required in changing the mesh
size, equations V-72 to V-76 might be solved for each of the nodes to
improve the accuracy. The space discretization error of any node
much larger than the otiler nodes should be investigated, even though
it might be some distance from any region of interest. This is true
because the discretization error for this node is weighted so much
more, and can cause errors in the solution for nodes with small dis-
cretization error located some distance away.

A converse of the above rule is that, in regions where very
accurate approximations are not needed, and where the space deriv-
atives are small, a coarse network can be used. Of course, both this
region and that where the network size is changed should not be close
to nodes where high accuracy is required. An example of such a
region, where a coarse network can be safely used, is the region in the
center of a circle when the conditions of the problem are such that the
derivatives with respect to the angle parameter are small. In this
case relatively large square nodes could be safely used without affecting

the accuracy of the solution at the surface.
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A corollary of the above remarks is that, for problems where
the temperature differences are larger in one direction than in the
perpendicular direction, a rectangular node oriented with its short
dimension in the direction of the larger gradient is appropriate. This
gives equivalently a small discretization error for each node without
using a square node with a short dimension in both directions. Thus,
the rule about having equidistant nodes can be modified under the above
conditions to mean that the temperature difference between each
neighboring node and the ith node should be kept constant. This rule is
primarily useful in a solid with one dimension longer than the other,
with constant initial temperature, and constant surrounding temper -
atures.

A's mentioned previously, the nodes should be located so that
the ratio of conductances to areas does not vary widely.  Although this
rule is secondary to the above comments about different~sized net-
works, it is of practical importance not to have one very small node
with large conductances. The row or column sum associated with
such a node very probably determines the minimum norm as a large
number, which gives more restrictive stability and non-oscillatory
criteria. Moreover, by keeping the elements of the Y/A matrix
relatively in scale the effects of round-off error are somewhat reduced.

A practical application of this rule of having approximately equal

ratios of conductance to capacitance is that it indicates for a composite
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solid that relatively larger nodes should be used in parts of the solid
where the thermal conductivity is very high, or the volumetric heat
.capacity low. In the extreme it helps one recognize when nodes should
be combined. Further, if even the use of a large node still results in
high conductance to capacitance ratio, the heat capacity of that region
can be neglected. These approximations are justified by physical
reasons in the Longwell report (9); however, the above rules tell us
when these approximations are satisfactory.

It should be pointed out that if the transients are important in
regions of high thermal conductivity, the large conductance to capacitance
ratios should be used. Then a small time increment must be used not
only because of stability considerations, but primarily because the
temperature in such a region changes so rapidly that unless a small
time increment is used the transients in that region cannot be observed.
This indicates that there is no justification for including the heat
capacity for such nodes, and then using the inaccurate weighting vy of

1 to allow use of a large time increment.

3. Summary--Location of Nodes.

The main rule for the location of nodes where a relatively coarse
network is to be used, and where the limiting number of points is known,
is, fof adjacent nodes:

The adjacent nodes should not be placed on the boundary, but

should be located on a line approximately parallel to the surface about
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half a branch length inside the surface. The solid surface forms one

of the boundaries for the node . This applies both to external boundaries
in contact with a fluid with a heat-transfer coefficient of 0 to infinity,
inclusive, and to interfacial boundaries of a composite solid. The
advantages of this type of adjacent node used to describe the boundary,
over nodes located on the surface, are:

(1) This type of adjacent node can be used for all values of
heat-transfer coefficients, without neglecting any heat capacity of the
solid and, more importantly, without giving a severe stability restric-
tion.

(2) An equation can be derived that shows that this type of
adjacent node gives a direct discretization of the continuous boundary
conditions.

(3) This somewhat flexible location of the adjacent nodes allows
the internal network to be more regular, and thus it can approach
more closely or be a rectangular network or a network of equilateral
triangles.

The main rule for the interior nodes is:

The interior nodes should be located so that the interior network
is as regular as possible. That is, each node should be as close to
either the rectangular node D or the hexagonal node N, as allowed by
the number of points and the boundary. The only exception to the above
rule is that, if the boundary can be described in a well known curvi-

linear coordinate system, the nodes can be distorted as dictated by the
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Laplacian operator written in those coordinates. The advantages of a
regular internal network are:

(1) Thlere are no zero-order error terms and the total dis-
cretization error should be small.

(2) The network can be relatively easily construéted, and the
conductances and capacities easily found.

Two other subsidiary rules for locating the nodes are, first, a
finer network of more regular nodes should be uscd in regions of high
gradients or in regions of special interest. The corollary to this rule
is that a smaller branch length should be used in directions with the
largest temperature changes. Second, the ratio of conductance to
capacitance should be kept about constant; nodes which have high ratios
can be combined, and, if necessary, their heat capacity can be neglected.

The actual location of the adjacent nodes also follows the same
general rules as indicated above for the interior points. Indeed, in
actually constructing a network, obviously both the interior and
adjacent nodes must be laid out on the basis of the above rules, and

taking into consideration the interrelationship of their positions.
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(H) SUMMARY AND CONCLUSIONS

A study has been made of the accuracy of approximate solutions
for transient temperature distributions in irregular solids based on an
asymmetric network of points. In this investigation the relationship
between the error in the approximate solution and the discretization
error, caused by replacing the continuous operators with differences,
was derived as the solution of the difference equation for the propagation
of the error. The discretization error caused by both the time and
space differencing was studied using series expansions. The validity
and usefulness of these relationships were shown by explaining the
errors in numerical results for both a transient and a steady-state
problem, with only a superficial knowledge of the derivatives. The
important conclusions about the effects of asymmetry on the discret-
ization error and the rules for locating the nodes and selecting the
time differencing parameters are summarized below.

The series expansion based on Cartesian coordinates for the
discretization error associated with the space differencing for a
general asymmetric node is different from those for regular rectangular
or equilateral hexagonal nodes, in that terms of lower order occur in
the series for the asymmetric nodes. Thatis, the expansion for an
asymmetric node usually contains a zero-order error term that depends

only on the shape of the node and the second space derivatives, and
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does not depend upon the size of the node. This is in contrast to the
expansion for regular nodes mentioned above, which has as its first
term in the series a second-order term that is proportional to the area
of the node and the fourth space derivatives. Consequently, an approx-
imation based on a network containing asymmetric nodes is not con-
sistent in the Richtmyer sense, and the approximate solution cannot be
made arbitrarily accurate by the addition of more points and using
smaller time increments, if each succeeding network contains asym-
metric nodes geometrically similar to those in the original network.
However, the consistency condition can be satisfied as the network of
nodes can be made regular by changing the shape of the asymmetric
nodes during the refinement. Thus, the consistency condition has
practical significance only for very fine networks, and it means that
when a great many points can be used, they should be located in a
regular network to take advantage of the small discretization error of
small regular nodes. This is also dictated by practical considerations,
first, that the boundaries of even an irregular solid can be followed
closely with a fine regular network, and second, that the conductances
and capacities are very easily determined for such networks.
However, for a relatively coarse network the size of the dis-
cretization error is important, and not how the error changes with the
size of the node. Thus, the zero-order terms in ‘;he expansion have no
special significance. In these cases the guide line summarized in a

previous section (G-3) should be used.
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Briefly, these rules are: (1)The adjacent nodes should be
located not on the boundary but on a line approximately parallel to the
boundary, about a half branch length from the boundary. One boundary
of the nodal area coincides with the solid surface. The reasons for
this are that a less severe stability restriction results, that the interior
nodes can be made more regular with the same number of points, and
that higher accuracy is expected because there is a better approximation
to the continuous boundary equation. The spacing and location of the
adjacent nodes also should follow the next several rules for the interior
nodes and should allow the interior nodes to follow them.

(2) The interior network should be made as regular as possible
with the nodes having as small a deviation as possible from regular
rectangles or regular hexagons; any distortions should probably have a
relationship to the boundary or to the expected streamlines for heat
flow. All nodes should have about the same area associated with them
and about equal conductances to their neighbors, with the following
exceptions, listed as (3) and (4).

(3) If possible, the average branch length should be shorter in
regions where a highly accurate solution is required or where the
temperature gradients are large. A smaller branch length should be
used in the direction of the largest gradients. For regions where the
accuracy of the solution is not important and the gradients are small,

a coarser network is satisfactory.
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(4) The ratio of conductances to capacitances should be kept
about constant to avoid having a severe stability restriction. This rule
indicates, in the absence of other considerations, when nodes should
be combined or when the heat capacity of a node should be neglected,
and is particularly useful for composite solids of widely different
thermal properties.

The selection of the time differencing parameters AT and vy
for a fixed network of points is based on the stability or non-oscillatory
criteria. The accuracy requirements for most problems are probably
satisfied if the weighting factor v is equal to or less than %. In
section F -2 a procedure was shown to allow the selection of differencing
parameters that would keep the calculations close to a minimum and
that would give negligible oscillations. However, the numerical
transient solution indicates that the continuous damping factors cannot
always be bracketed by changing the time increment and the weighting
factor +v, but that the inaccuracy caused by using high weighting factors
is more severe for an asymmetric network than for regular networks.

Consequently, for many solids with curved or irregular
boundaries, approximate solutions of adequate engineering accuracy
can be obtained using relatively coarse networks of less than 30 points.
This can be done by locating the points according to the above rules by
following the boundary exactly and tolerating, but minimizing, any

required asymmetry in the interior.
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(I) SUGGESTIONS FOR FUTURE WORK

Of the many possible further investigations of approximate
solutions to the diffusion equation, the following two projects show
promise of giving results of important practical significance.

First, a valid expression or expansion should be developed for
the discretization error for adjacent nodes with a heat-transfer co-
efficient conductance to a fluid. This would allow a firm conclusion
to be made about any improvement in accuracy that occurs when these
adjacent nodes are located away from the boundaries. Preliminary
attempts to use a Taylor series to find such an expansion have not
been successful even for one-dimensional problems, probably because
the difference equation was not compared to a proper combination of
the boundary-condition equation and differential equation. However,
future studies based on the Taylor expansion or other method should
give a useful expression for this error.

Second, a relation should be developed between the error
propagation analysis, used in this chapter for the asymmetric network,
and the error analysis based on the complete difference solution, used
in Chapter IV for regular one-dimensional networks. This would involve
setting the error as given in equations V-13, V-19, or V-22 equal to
the error given in equation IV-209, or other appropriate equation in

Chapter IV. Such a study should allow conclusions to be made about
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how the discretization error affects the error in each part of the differ-
ence solution.. That is, one might be able to make precise conclusions
about how the discretization error affects the error in the particular
solution, damping factors, eigenvectors, and initial vector of the
analytic expression of the difference solution. This would then allow
the conclusions from the series expansions for the discretization error
to be applied quantitatively to the error in these parts of the solutions.
Since the discretization error expansions are more easily obtained

than are the complete difference and continuous solutions for very
general problems, this would allow a precise quantitative error analysis
for very complicated problems based only on the discretization error.

Three other suggestions that are of somewhat less importance
are:

(1) The series expansions in Cartesian coordinates for the
space discretization errors for several other node shapes should be
derived. Among the node shapes that should be studied are (a) a node
associated with an equilateral pentagonal area. The node is surrounded
by five neighboring nodes, each equidistant from the node and from each
other. (b} A node associated with an equilateral heptagonal area, sur-
rounded by seven neighboring nodes, each equidistant from the node
and from each other. Both of these nodes should have sufficient sym-

metry to give a good approximation of the Laplacian operator. Although
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a network cannot be constructed merely from one of these two types
of nodes, they might be useful in other triangular networks.

Another type of node that should be further studied is the
hexagonal node. A sequence of irregular hexagons can be studied,
like the sequence of irregular quadrilateral nodes shown on Table V-9,
nodes C to I, which can be arranged to progress from a square to
trapezoidal nodes.

(2) An investigation should be made of the elimination of the
zero-order error terms in the space discretization error expansions
by solving a system of equations. Equations V-72 to V-76, when solved
for the ith node, give a corresponding row in the Y/A matrix. Equa-
tions V-77 to V-80, when solved, would give the set of lengths of p ‘ij
for the ith node that could be used to compute the elements in the ith
row of the Y/A matrix. The specific studies required to make this
into.a useful technique for the solution of the diffusion equation are
mentioned in section E-3. The results of such a study might give
weightings to use to eliminate the zero-order error term from the
expansion for irregular nodes used to change the network branch
length. Further, it would be hoped that a set of geometric conditions
of a node and its neighbors would result under which satisfactory solu-
tions could be found to these equations, so that the zero-order terms
could be eliminated from irregular interior nodes close to the

boundaries.
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(3) A study should be made of the distortions of both the rec-
tangular network and the network of equilateral triangles according to
a curvilinear coordinate system based on either the boundary or an
expected temperature distribution. The first part of such a study
should be to determine if any improvement in accuracy occurs when
such a curvilinear, or approximation to a curvilinear, network is used.
This could be done by comparing the numerical results for the several
possible networks for problems in circular symmetry with the continuous
solution. If an analytic solution can be found for the one-dimensional
partial difference equation of diffusion in cylindrical radial coordinates
with z-transforms some analytic comparisons would be possible. If,
the cylindrical coordinate network or MacNeal's approximation to this
network does give significantly more accurate approximations when
using the same number of points, then the rules for distorting both
rectangular networks and networks of equilateral triangles for a general
curved boundary or expected temperature distribution must be found
so that such a distorted network would give a good approximation for
a particular geometric boundary. This study could then result in
finding a set of rules for locating temperature points in an asymmetric
fashion throughout the solid in such a way that a regular: mesh might

require more points to give the same accuracy.
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Curved Boundary

Connectors
——~=— Perpendiocular Bisectors

Enerey Balance for ith Surface Ncde:
SEIT) |
hit, =t,) A, + k ;Zi Lt -ty ) = Net Energy In
£ e 4 [=fij J 6] at Time ¢ |
' dti
Cpa(Area)i 'Y = Accumulation at Time ¢

(Are;.}i = Cross~-Hatched Area

Figure V-1. Macleal's approximation for surface node on
curved boundary with finite non-zero heat-
transfer ccefficient.
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Lines connecting nodes, length designated by xij (see Xi 5)

———~ Perpendicular bisectors of lines connecting nodes. length
designated by Pij (se6" Py, L)

Figure V-4 ., General asymmetric node, two-dimensional problem
showing geometry in dimensionless coordinates.
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Connectors

— ——— Perpendicular Bisectors

Boundary of Nodes for Usual Cylindrical Coordinates

Fizure V-7 . Comparison between annular network and network of
trapezoidal nodes for eylindrical coordinates
based on Maclleal's rules; annular network is usual
approximation.
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Fisure V-11. Temperature at node 6 (Fig. III-1) versus
dimensionless time; short time.
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Figure V-13. Modification to MacNeal's approximation for adjacent
node on curved boundary with finite non-zero heat-
transfer coefficient; analogous to mesh A& /2.
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MacNeal Interfacial Node

Figure V-14. MaclNeal node for interfacial boundaries between
uniform solids of different thermal properties.
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Ficure V-16. Modified nodes for interfacial boundaries between
uniform solids of different thermal properties.
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Network to aoproximate solid with curved boundary;

uses only square interior nodes.

Number of Interior Nodes:

Number of Adjacent Nodes:
Total Number of Nodes:

Figure V-17.
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Number of Adjacent Nodes 17
Number of Interior Nodes 9
Total Number of Nodes 26

Figure V-18. YNetwork to approximate solid with curved boundary;
distorted triangular network of distorted
hexagonal nodes.



