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Chapter 2 

Mechanical Characterization of Released Thin Films by Contact 

Loading 

 

2.1   Introduction 

The design of reliable and functional micro/nano electro mechanical systems 

(MEMS/NEMS) relies on the knowledge and understanding of the mechanical behavior of 

their materials [1-3]. Due to surface effect and grain size, the material properties may not 

be the same as the bulk material. Moreover, the manufacturing processes such as etching, 

temperature, and humidity affect the material properties significantly. For these reasons, the 

on chip testing is desired for MEMS devices to obtain the properties. Meanwhile, it is 

desirable to be able to test each device individually and protect the untested devices on the 

same chip/wafer as the tested sample. 

The trend to reduce the dimensions of the MEMS devices’ structures such as free 

standing thin films, membranes, and cantilevers, warrants load and displacement sensitivity 

in the sub-mN and sub-µm scales. For typical metal or ceramic materials in the sub-mm 

geometric dimension of MEMS devices, the required load is in the range of from 1 mN to 

1N, and the displacement measurement is in the range of 1 µm to 100 µm. These 

requirements cannot be satisfied by the traditional mechanical characterization tools such 

as MTS and Instron instruments. On the other hand, nano-indentation systems, which work 
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in pico- to nano-Newton loading range and sub-micron displacement range are suitable for 

local characterization but not sufficient for micro device characterization. Therefore, there 

is a great interest in developing new techniques that allows testing in the gap between the 

capabilities of these two well-established methods. 

Recently, many efforts on new testing methods were made by different research groups 

to explore the mechanical properties on free standing thin films [4-16].  A wide variety of 

new methods for testing the mechanical behavior of thin free standing specimens has been 

developed. These methods typically impose a fixed displacement by means of a nano-

positioning motor [9-15] or an on-chip actuator [16] and measure the load. Displacement-

control experiments are suitable for large specimens and/or for ductile materials, which 

exhibit relatively high fracture toughness. However, the fragile nature and the nonlinear 

behavior of part of the MEMS structures raise the possibility to have a transient load, which 

may cause failure under displacement control. Therefore, it is desirable to test fragile 

MEMS structures in a load-control instrument, i.e., an instrument that imposes a force and 

measure the displacement. Displacement-control instruments can be adapted for load 

control by means of a feedback loop. But, there are severe limits on the response time and 

this is effective only for quasi-static tests instead of dynamic testing. Further, the possibility 

to have large undesired transient load still exists. Therefore, it is demanding to develop new 

techniques, which operate under load control nature for measuring mechanical properties of 

fragile MEMS devices. 

Moreover, part of the MEMS structures can be studied only by dynamic load controlled 

experiments. These include micro-actuators, which are evaluated by the load they can 
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overcome, and active materials such as shape memory alloys, electrostrictive, and 

magnetostrictive materials, in which the load (i.e., the stress and not the strain) determines 

the driving force for microstructural changes such as domain switching. These advanced 

functional devices require being studied under a combination of a controlled-load and a 

dynamic electric/magnetic/thermal loading. Such experiments are currently beyond the 

scope of existing techniques. 

In this chapter, a new technique is presented for measuring the static and dynamic 

mechanical response of free standing thin film MEMS structures under load control. The 

developed apparatus consists of inexpensive off-the-shelf products and can be used for 

dynamic electro/magneto/thermo mechanical characterization experiments. The capabilities 

of the technique were demonstrated by testing the behavior of amorphous Si3N4 membrane 

structures and the results demonstrated ability to avoid local or transient stress 

concentration during the entire experimental process. 

2.2   Experiment   

2.2.1   Experimental setup 

The requirement of the loading and displacement range and as well as the fragility of 

the sample increase the difficulties in designing a new characterization method for MEMS 

devices.  

The traditional methods for displacement measurement such as the strain gauge and 

linear variable differential transformer (LVDT) require partial or entire sensor to be directly 

attached on the surface whose displacement needs to be measured. These methods are 
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impossible to be used on the fragile sub-micron thick free-standing thin films and 

membranes. To overcome these difficulties, laser beam and the position sensing device 

(PSD) were used to avoid contacting the sample directly. 

Designing an appropriate loading method is also challenging. In principle, load control 

can be obtained if the spring constant of the apparatus, i.e., the mechanical structure that 

transmits the load from the motor (or actuator) to the specimen, is significantly smaller than 

that of the specimen. In this situation the applied force, F, is directly determined by the 

displacement imposed by the motor, S, via F ≅ K0S where K0 is the effective spring 

constant of the apparatus. However, this condition requires a very small K0 value, which 

results in a low resonant frequency of the apparatus and limits the application of dynamic 

experiments. In this work, this problem is overcome by applying the load via a magneto-

static interaction in which the response time is much faster.  

A schematic of the experimental setup is shown in figure 2.1. The load is applied by a 

tip, which is attached to one end of a substantially rigid beam. The force applied to the 

sample is proportional to the magnetostatic force being applied to the other end of the rigid 

beam. The later force is controlled by changing the distance between a pair of permanent 

magnets; one is attached to the beam and the other is attached to an external post and is 

able to move vertically. The upper magnet is aligned in the horizontal plane, using an X-Y 

micro-stage, such that it is situated exactly above the bottom magnet and no lateral forces 

are applied on the rigid beam.  
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Figure 2.1. Schematic illustration of the experimental setup. 

A wide variety of methods have been suggested in the literature for measuring 

specimen displacements (or strains) in micro-mechanical testing apparatuses. These include 

imaging techniques [9-12], interference patterns [13-14], diffraction spots [15], and 

capacitance measurements [16]. These methods are either limited by low sampling rates or 

not having high enough resolution for large deformation. Some of these methods need 

special treatment of the samples which can alter the sample structure. In order to enable 

dynamic experiments, the loading tip displacement which is the same as the displacement 

of the sample at the contact point, is measured by monitoring the deflection of a single laser 

beam, which is reflected from a mirror attached to the end of the rigid beam. The reflected 

laser beam is sensed by a Position Sensitive Detector (PSD) (Hamamatsu, S3979), which is 

attached to an external post, and the resulting voltage signal is recorded using an 
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oscilloscope (Nicolet, Model 40) (see figure 2.1). The PSD circuit allows sampling rates of 

up to 100 kHz and has a typical precision of about 1 µm. A Y-Z-θ stage was designed to 

mount the PSD and helped with the alignment of the sensor.  

In figure 2.2, the contact tip displacement is u, the horizontal distance between the 

mirror and PSD sensor is L, between the tip and the pivot point is l0, the initial angle of the 

laser beam is α. Then, the deflection angle θ and magnified displacement D, which is 

measured by the PSD, satisfies the following equations: 

0l
u=θ  

θα LD cos2=  

In the current setup, the parameters are fixed: l0 = 10 cm, L = 54 cm, α = 15o, then the 

geometrical magnification is computed to be 10, i.e., D ≅ 10u.  

 

Figure 2.2. Illustration of the displacement measurement system. 
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Due to this geometrical amplification a typical resolution of 0.1 µm can be obtained in 

the tip displacement measurement. 

The sample is mounted on an X-Y-Z micro-stage and its alignment with respect to the 

tip is monitored by a long working distance optical microscope equipped with a CCD 

camera connected to a computer with digital frame grabbing hardware (EPIX Inc, PIXCI 

SV4) and software (EPIX Inc, XCLIBV2.2-DWT-U and XCAPLITE-WIN-V2.2).  

Note that all the controlling and monitoring components, i.e., the upper magnet, the 

laser, the PSD, and the microscope, are isolated from the rigid beam. This fact significantly 

reduces the vibration and noise and protects the very fragile structures that are being tested.  

The choice of the loading tips is critical in this technique since these tips are employed 

to apply contact loading to fragile specimens. Thin films grown by MEMS fabrication 

methods like MBE or CVD will have various surface roughness, in the range of 1 ~ 100 

nm, depending on the fabrication process and film thickness. To reduce the local load 

concentration, the smoothness of the loading tip surface is critical. A wide variety of tip 

shapes and dimensions are commercially available, which can provide a variety of loading 

conditions, including point load and line load conditions. A ruby ball tip is chosen in the 

current setup. The tip has the required well-defined surface, and is relatively large in 

diameter (~ 300 µm) to avoid stress concentration and prevent damage to the fragile 

specimens of ceramic thin films. The SEM images of the loading tip in figure 2.3 shows the 

smooth surface of the loading tip. The largest possible tip is chosen relative to the size of 

the specimens studied. 
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Figure 2.3. SEM image of the ruby ball tip. 

The magnetostatic force is actually determined by the difference ∆d = d0 – d, where d0 

is the initial distance between the magnets at the point where the tip first comes into contact 

with the sample and d is the distance between the magnets at some arbitrary moment during 

the experiment (see illustration in figure 2.4). The working conditions are chosen in which 

d0 = 100 mm and ∆d varies in the range of up to 13 mm. Under these conditions the sample 

(or load cell) displacements at the µm scale are negligible in comparison to ∆d, and hence 

∆d ≅ ∆z, where ∆z = z0 – z relates to the absolute readings of the upper magnet position (see 

figure 2.4). Thus, the load is determined directly by the upper magnet position and load-

control conditions are achieved. Moreover, since d0 >> ∆z, there is nearly a linear relation 

between F and ∆z as is demonstrated by the calibration curve presented in figure 2.4, which 

was measured by placing an 50 g load cell (Omega, CF50g) instead of the sample. It can be 

deduced from the curve in figure 2.4, left that 1 µm change of ∆z results in load change of 

1.5 µN. Thus, load sensitivity in the µN scale can be easily obtained by moving the upper 

100 µm 3 µm
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magnet with any micro-positioning device. Note that different calibration curves, which 

provide different load range and different sensitivity, can be obtained by choosing different 

d0 values or by placing different magnets.   
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Figure 2.4. Calibration of the loading system. Left, calibration curve of the loading system 

The applied force, F in mN, as a function of the change in the position (displacement) of 

the upper magnet, ∆z in mm for the identical z0 as in the experiments. This response curve 

was obtained by applying force on a load cell; right, illustration of the geometry relations. 

In principle, the sample should be placed at the same height as the load cell in order to 

obtain the same d0 value. Nevertheless, changes of d0 in the range of ±1 mm results only in 

subtle changes of the calibration curve and hence small changes of the sample height will 

not have significant effect on the calibration curve. On the other hand, an accurate 

determination of z0, i.e., a clear identification of the point where the tip first comes into 

contact with the sample, is essential in order to accurately determines ∆z. Figure 2.5 

demonstrates that z0 can be determined with an accuracy which is equivalent to the 

resolution of the micro-positioning device that is used to move the upper magnet. In this 

figure, two distinct regions are clearly observed in the plot of the tip displacement, u, as a 
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function of z. During the initial movement of the magnet, the tip does not touch the sample 

and hence its displacement is proportional to the displacement of the upper magnet and the 

slope is relatively large. At the point where the tip contacts the sample the slope changes 

abruptly, as the tip displacement is now equal to the sample displacement and is in the µm 

scale. The obvious change in slope makes it very easy to identify the contact point. The 

resolution of determining the contact point has the same resolution of the z measurement, 

i.e., the resolution on the order of 0.1 µm. As a result, the error in contact force is on the 

order of sub-micro-Newton. 
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Figure 2.5. The tip displacement, u, as a function of the position of the upper magnet, z. 

2.2 .2  Material 

Amorphous silicon nitride (Si3N4) is widely used in MEMS industry because of its 

superb material chemical properties. It is also often used as an etch stop in multi-layered 

devices. Since it is very resilient, Si3N4 is an ideal material for thin film growth support, 

such as the widely used TEM windows. MEMS devices can be grown on it with various 
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methods, such as MOCVD, MBE, or sol-gel method. It is also a widely-studied thin film 

material. Bulge tests, micro-tension tests, micro-bending tests and other methods have been 

performed for characterization of the Young’s modulus E and other parameters of this 

material in free standing thin film geometry. For different deposition conditions and post 

processing procedures, the elastic modulus varies greatly in the range from 101 to 373 GPa 

[17]. For these reasons, it is an ideal material to illustrate the new technique’s capability. 

2.2.3   Results  mechanical response of Si3N4 film 

 

Figure 2.6.  Pictures of Si3N4 TEM window. (a) Illustration of the cross-section view of a 

TEM window, (b)(c) SEM images of a TEM window. (SEM images are from SPI2.com) 

The capabilities of the new method are demonstrated by studying the membrane 

samples as shown in figure 2.6. The SEM images (from 2SPI.com) of the single TEM 

window are shown in figure 2.6 (b) and (c). The samples are 0.47 mm squares with 75 nm 

thick free standing thin films on the 200 µm thick silicon substrate. The overall dimension 
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of the TEM holder is 3 x 3 mm. An array of TEM windows (figure 2.7) is also used to 

check the repeatability of the technique. 

The membranes were produced by SPI Supplies, by depositing a Si3N4 film on a 200 

µm thick silicon (Si) wafer and etching square windows in the Si. Note that Si3N4 is a 

brittle ceramic material and that the very large ratio between the membrane’s span and 

thickness (of about 6200) makes the mechanical structure very fragile to handle. 

 

Figure 2.7. Array of TEM windows and labels of each sample. 

The results presented here were taken using a ruby ball tip, having a radius of R = 150 

µm. Large tip radius are desired in testing square and rectangular membranes in order to 

limit the indentation stress and prevent membrane rupture. As shown below, although the 

tip radius is a significant fraction of the membrane span, the radius of the contact region, rc, 

is much smaller than the span. This fact significantly simplifies the analysis for 

interpretation of the data. 

Figure 2.8 shows the applied force as a function of the measured tip displacement 

during loading and unloading processes. The two curves coincides each other with no 
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significant hysteresis, which means that the structure behaves elastically. The highest tip 

displacement is 37.5 µm, which is ~ 500 times the film thickness. This means that the 

bending stresses are negligible in comparison to the stresses due to stretching, i.e., to a very 

good approximation the thin film behaves as a membrane.  
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Figure 2.8. The mechanical response of a 75 nm thick free-standing amorphous silicon 

nitride (Si3N4) film during loading and unloading. 

Figure 2.9 shows a series of optical images of the membrane, which were taken under 

different loads. The deflected membrane forms a tent-shape where the angle of deflection, 

θ, increases as the load increases. The repeatability of the new technique is demonstrated in 

figure 2.10, which presents the load-displacement curves of five membranes located at 

different regions of the same wafer. All the curves almost coincide with each other. 
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Figure 2.9. Series of optical images of membrane during loading. 
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Figure 2.10. A wafer consisting of 6x6 devices (see figure 2.7) was tested at various 

locations. The mechanical responses of five membranes located at different regions of the 

same wafer are highly repeatable.  
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A geometrical calculation under the assumption of the membrane theory shows that the 

radius of the contact region is given by rc = Rsinβ, where R is the radius of the ruby ball tip, 

β is the thin film deflection angle. Therefore, for reasonable values of β, rc << R and hence 

rc << a, where a is the span of the thin film. In these conditions the deflection angle can be 

assessed by tanβ = 2u/a. Thus, for the highest tip displacement of u = 37.5 µm, β and rc 

take values of 10.2o and 26 µm respectively.  

For the membrane theory approximation, the stresses at the contact region are uniform 

and the balance of the total forces along the z-direction yields the following expression for 

the membrane (stretching) stress 

2

2

8sin2 tRu
Fa

tr
F

c πβπ
σ ≅=                                        (2.3) 

where t is the membrane thickness, i.e., 75 nm, that of the thin film. The expression on the 

right hand side in Eq. (2.3) is obtained by making the small angle approximation, i.e., sinβ 

≅ 2u/a. A substitution of the highest tip displacement, u = 37.5 µm, at the largest force, F = 

16.6 mN, results in membrane stress, σ = 9.2 GPa. 

The attainment of such high stresses and large deflections reflect the high quality, i.e., 

very small flaws, of the Si3N4 membranes. This also attests to the capabilities of the 

developed technique to avoid local or transient stress concentrations during the entire 

approach, loading, and unloading phases of the experiment. This fact illustrates the 

capability of the new technique for studying highly fragile and micro devices and 

structures. 



 

 

30

2.3   Modeling  

The mechanical problem of contact loading by an indenter on a square membrane is very 

complicated. The complication is caused by two reasons. One is due to the nonlinear nature 

of the contact loading process. As the loads increased, the contact area changes and the 

maximum displacement is directly related to the shape and size of the indenter. The other 

reason is the large deformation associated with this problem, i.e., the non-linear effects 

should not be omitted in the geometrical relations. As a result, the governing equations are 

strongly coupled with severe non-linearity even for a simple structure as a membrane, for 

which the effect of bending is neglected.  

For the contact problem mentioned above, Begley [18] recently investigated the 

axially-symmetric case and obtained a closed form solution while considering the indenter 

size effect. For the two-dimensional (2-D) membrane under pressure loading the solution to 

strongly coupled second-order partial differential equations were obtained numerically. 

Yet, finding analytical solutions for the combination of these two cases is still an open 

problem.  

 In the present investigation the finite element method is used to simulate this 

complicated mechanical problem. The indenter is simulated by a rigid sphere and the free 

standing film, is simulated by the same geometry as in the experimental sample, i.e., square 

geometry. The elastic modulus and Poisson’s ratio are the unknown parameters for a thin 

film that remains entirely elastic during the loading. Different values are assumed for these 

parameters to obtain the best fit. The loading process is similar to the traditional indentation 

loading process, i.e., the sample is loaded by a specified indenter displacement, and the 
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resultant strain and stress field are obtained. In addition, the relation between the indenter 

load and center point displacement is obtained form the finite element analysis. In the case 

of thin films, the residual stress in the film is also an important parameter, which is also an 

unknown prior to the analysis. The values of Young’s modulus (E), Poisson’s ratio (ν) and 

the residual stress (σo) for thin film are specified within the range of expected values. The 

resulting load-displacement curves are fitted with the expected solution with unknown 

constants, which is discussed below in detail. The experimentally obtained load-

displacement curves are then fitted with these constants and the unknown elastic modulus 

and initial stress are obtained by evaluating the best fit between the two solutions. The 

details of the finite element analysis, such as the modeling, meshing and boundary 

conditions and contact information are discussed below.  

2.4    Finite element modeling 

The geometry of the structure that is to be modeled has two parts. One is the 470 × 470 × 

0.1 µm thin film on a substrate, the same as the sample in the experiments. The other part is 

a rigid sphere with 300 µm in diameter, the same as the indenter in the experiments.  

 

Figure 2.11. Illustration of 4 sides clamped plates. 
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The thin film is clamped on all four sides (figure 2.11) to simulate the boundary 

condition of being bonded to a rigid substrate. This corresponds to specifying both the 

translation and rotation of the thin film to be zero at all edges. The indenter is confined 

such that only translation in the z direction (normal to the thin film) is allowed. Translation 

in other directions and rotation in any direction are constrained for the indenter. The contact 

between the thin film and the spherical indenter is assumed to be frictional. 

The loading is applied by specifying the axial displacement of the indenter. The pre-

stress which is assumed to be equi-biaxial in σxx and σyy is added as an initial condition in 

the simulations. 

 

Figure 2.12. The center part (about 100 microns in diameter) of the thin film FEM element 

mesh used in the simulation. 

The finite element simulations are performed using a commercial code, ABAQUS 

Standard Version 6.4.1 [19]. The elements used for modeling are 6 or 8 nodes 3D 

continuum elements (C3D8 and C3D6) in the thin film, which can model large deformation 

problems and provide high accuracy in problems involving contact. There are 14,007 nodes 

and 7338 elements in the thin film. The position of each node and the geometry shape of 
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each element are carefully designed to have nearly equal sides in lateral dimension in order 

to avoid irregularity, and this information is supplied in user-developed input files. The 

refined region covers the center area of the thin film with 100µm in diameter. Within the 

refined region, the largest element is about 5 µm × 5 µm, and the smallest element size is 

0.5 µm × 0.5 µm. The refined mesh is shown in figure 2.12 and the over all model 

including both the film and the indenter are shown in figure 2.13.  

 

Figure 2.13. FEM mesh for the numerical simulation. 

The user-developed modeling and analysis code uses a complete thin film and indenter 

geometry instead of part of it, thus no additional symmetry conditions is imposed. 

The initial material properties for the thin film amorphous Si3N4 are chosen to 

approximate the properties close to that of the bulk ceramic Si3N4. Accordingly, the elastic 
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modulus and the Poisson’s ratio are chosen to be 300 GPa and 0.22, respectively [17]. The 

linear elastic material model (elastic constitutive model of ABAQUS) with large 

deformation capability is chosen based on the experiment observation where there is no 

hysteresis in the loading-unloading process as indicated by the load-displacement curves  

(figures. 2.9 and 2.10) and the film appeared intact without any cracks after loading when 

examined using a high magnification microscope. The equi-biaxial residual stress in the 

film is specified to 370 MPa in the simulations corresponding to the nominal value often 

found in the literature for this type of thin film [17]. 

To model the contact problem, the top surface of the film is defined as the slave surface 

and the spherical surface of the indenter as the master surface in the contact pair. Because 

both of the materials are ceramics which tend to have large adhesion and the high stress 

inside the film indicate that the contact pair could have very strong interaction. According 

to these reasons, rough surface interaction is assumed and the friction coefficient for the 

contact is set to be 0.8. 

There are two ideal situations of surface interaction: frictionless and non-sliding with 

friction coefficient of 0 and 1 respectively. The situations in reality usually are 

combinations of these two cases. For typical indentation tests, which are different from 

normal friction related situation, “small sliding” interaction is selected with typical friction 

coefficient of 0.8. 

The indentation displacement is increased monotonically to a maximum displacement 

of 50 µm in 200 steps. This is much larger than the measured experimental displacement. 

The geometrically non-linear solver for large deformation in ABAQUS is employed for 
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solving the boundary value problem. At the end of each step, the stress component in the z- 

direction (vertical) of the indenter is integrated in the contact area to obtain the total 

indentation force. Thus, the force-center displacement curve is obtained.  

 

2.4.1 Results 

0

25

50

75

100

125

0 10 20 30 40 50

Tip Displacement (microns)

Fo
rc

e 
(m

N
)

 

Figure 2.14. Load-deflection (F-d) curve obtained from the finite element simulation 

and is used to obtain the shape factors in eqation. (2.4). The solid curve is the fit and the 

solid dots are the finite element analysis data. 

The load verses center-deflection curve (F-d curve) is shown in figure 2.14 for the 

geometrical and material parameters specified in the previous section. It is critical to 

choose the right form of the relation between the indentation force (F) and the center 

displacement (d). The solution to corresponding one-dimensional problem [18,19] indicates 
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that two terms should be included in the F-d relation: a linear term and a cubic term with 

respect to d. The linear term dominates the small deflection regime and is strongly affected 

by the residual stress. The cubic term dominates the large deflection regime is strongly 

influenced by the modulus of the material. The research on a square membrane under 

similar contact conditions still remains an open problem. However, it is reasonable to 

assume that the solution to the square membrane is similar to the circular membrane, 

except for coefficients (shape factors) to describe the shape difference effects. 

Based on the arguments outlined above, the force-displacement (F-d) relation is 

assumed to have the following form 
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The equation (2.4) can be rewritten in the following form 

 3
31 dAdAF += ,                                                      (2.5) 

where A1 and A3 are coefficients corresponding to the linear term and cubic term 

respectively. The least square fitting of the force-displacement F-d curve in fig 2.1 results 

in the coefficients, A1 = 0.134 mN/µm and A3 = 9.047x10-4 mN/µm3. 

Then, for the assumed material properties in the finite element simulations, E = 300 

GPa,  ν = 0.22 and σo = 370 MPa, the two dimensionless coefficients C1 and C2 can be 

derived from the following equation as C 1 = 3.62 and =2C 1082.1 × 11, 
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C1 and C2 are shape factors, which are independent of material. Therefore, the experimental 

sample with the same dimensions as the simulated one obeys eq. (2.4) with the same values 

of C1 and C2. Using these parameters and the least square fitting coefficients from the 

experimental results for Si3N4, the elastic modulus and residual stress can be extracted. 

This will be explained in detail in the following section. 

The finite element analysis was used to visualize the stress distribution inside the film. 

Figure 2.15 shows the displacement profile and figure 2.16 shows the maximum principle 

stress distribution for 30 µm displacement of the indenter, which is similar to the 

experimental loading case. The stress visualization suggests that the film is subjected to 

large stress. Most of the film has the tensile equivalent stress between 1 GPa and 2 GPa. 

The stress is especially high inside the contact region, which reaches to 6.2 GPa. This is 

very similar to the estimated stress in previous section. However, for larger indenter 

displacement such as 40 µm, the stress can be as large as 15 GPa, which is about 6% of the 

Young’s modulus and at the same level as the theoretical strength. In this case, new 

mechanisms may occur to affect the mechanical behavior significantly. As a result, the 

linear elastic behavior will no longer be able to describe the phenomena. For this reason, 

data with indentation depth smaller than 35 µm are used in the analysis thereafter. For a 
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membrane device under concentrated load in the center, not only the contact region but also 

the clamped edges need to be considered in designing from a reliability point of view. 

 

Figure 2.15. FEM result of displacement profile (side view). 
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Figure 2.16. FEM result of distribution of maximum principle stress. Indentation 

displacement is 30 microns. 

2.4.2 Mechanical properties analysis 

Figure 2.17 shows the least square fitting of the experimental force-displacement (F-d) 

curve. By fitting the F-d curve using equation (2.5), the fitting coefficients, A1 and A3, can 

be obtained as A1=0.123 mN/µm and A3=2.38×10-4 mN/µm3. 
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Figure 2.17. Least square fitting of force-displacement (F-d) curve of the experimental data 

for extracting material properties using equations. (2.8) and (2.9). 

From previous section, the dimensionless fitting parameters C1 and C2 are 3.62 and 

1.82×1011, respectively. Then, by using the following equations, the initial stress σ0 and the 

elastic modulus E in the thin film can be obtained as σ0 = 451.5 MPa and E = 248.2 GPa, 
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tC
A

1

1
0 =σ                                                              (2.8) 

( )
aCC

tAE
21

22
3 1 ν−

=                                                       (2.9) 

The above results, 248.2 GPa for Young’s modulus and 451.5 MPa for residual stress, 

agree very well with the characterization results of the same sample by a different 

technique, pressure bulge test (see chapter 3 for more details). Compared with the Young’s 

modulus of thin film Si3N4 characterized by other group, these numbers are in very 

reasonable range. 

The errors in the tests come from the displacement and the force measurements. 

Typical error from displacement measurements is about 0.1 µm over the displacement 

range of 30 µm, which is less than 1%. Errors in the force measurements include a 5% 

error from the load cell and a less-than 0.1% error from the micrometer. Therefore, the total 

error in the analysis is about 5.5%. 

The F-d curve is very sensitive to the values of Young’s modulus E and residual stress 

σ0. For a given F-d curve, the fitted E and σ0 are unique. 

2.5   Discussion 

Thin film structures under transverse loading, whether distributed or concentrated can have 

either linear response or non-linear response. This means the center displacement (d) versus 

the loading (F) relationship is either linear or non-linear. For circular plates under 
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concentrated or pressure loading, a parameter λ has been used to determine the type of 

response. 

( )[ ] 







−= 4

2
2/32112

Eh
Paνλ  

Table 2.1. Critical values of λ (adopted from reference 18). 

 Clamped Simply supported 

 Plate Membrane Plate Membrane 

Point loading 85 3×104 20 1×104 

Pressure loading 300 2×103 40 100 

Critical values of ( )[ ] 







−= 4

2
2/32112

Eh
Paνλ  plate/membrane response. 

In our experiments, λ=108 >> 103, which is the critical value for membrane behavior as 

shown in Table 2.1. Hence, the loading vs. maximum deflection curve should be expected 

to be non-linear. This was shown previously and the response is in agreement with 

theoretical predictions. 

From equation (2.4), one can see that the pre-stress makes the film stiffer, i.e., for the 

loading with the same magnitude, the pre-stressed (tensile) film will have less center 

deflection. This feature can be used in MEMS devices to improve the performance. The 

pre-stress can be as much as several hundred MPa, and this can cause a difference in the 

center deflection as much as 20%, which can affect the performance of the MEMS devices 

significantly. 
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2.6   Conclusions 

A new technique for the mechanical characterization of released thin films under 

concentrated load has been developed. This technique can be used to apply load in the 

µN−mN range by either load control or displacement control. The displacement can be 

measured to high accuracy to within 0.1 µm. The capability and reliability of this new 

technique has been demonstrated by studying Si3N4 free-standing membranes. The elastic 

modulus and residual stress of Si3N4 free standing thin film are around 250 GPa and 400 

MPa, respectively. These values are in close agreement with values obtained using a 

different technique and as well as those found in the literature. The significance of the 

residual stress in design and performance of MEMS devices is discussed. 
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