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ABSTRACT

This thesis begins with a.brief review of observations of
cosmological interest and with a sketch of the "standard” spatially
homogeneous and isotropic cosmological models of our Universe taat
are currentiy in vogue. TFollowing this introduction we investigate
in greaf detail anisotropic cosmologies arnd cosmological models of
Bianchi Type I. Our primary goal is to understand the consequences
of expansion anisotropies in the general relativistic, hot big-bang
theory of cosmology.

We use the Einstein field equations with vanishing cosmo-
logical constant, and Maxwell's equations, to study the temporal
evolution of anisotropic Bianchi Typé I cosmoliogies. These cosmologies
are spatially homogeneous, but anisotropic;-yand they have ano rotatiocn.
We consider only cosmologies with the "flat", diagonel, Bianchi Type I
metric d32 = dte - A.E(t)dx2 - Be(t)dy2 - Ce(t)dza.

We begin by étudying the general prope;ties of Bianchi Type I
cosmologies. Then we consider the stress-energy tensor for massless-
particle gases (either degenerate or non-degenerate) which decouple
from thermal equilibrium and become freely-propagating in ocur diagonal
Bianchi Type I metric. We investipgate the dynamical effects of aniso-
tropic neutrino stresses, and we show how neutrino viscosity damps cut

most of the existing expansion anisotropies when neutrincs decouple.
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Finally,'we.elucidate the structure and properties of the
Eihstein field equations for anisotropic Bianchi Type I cosmologies
by deriving a large number of analytical and numerical solutions 4o
these equations. Our.stress-energy tensor consists, in general, of

perfect-fluid matter with the barotropic equation of state

pY

n =7 Py (0 <7 <1), and a uniform comoving magnetic field, with

energy-density pb, aligned along the z-axis. We first consider the
PERFECT-FLUID case where pb = 0. We find the general analytical
solution (for all ¥), and construct semi-realistic cosmological'models
of our Universe using this solution. Then we consider the PERFECT-
FLUID-MACNETIC case where Py f 0. We derive several analytical solu-
tions, find the behavior'néar the initial phaysical singularity for
the remaining cases, and study those remaining cases by numerical
integration of the field equations. We then consider semi-realisﬁic
PERFECT-FLUID~MAGNETIC cosmological models of ocur Universe.

In ocur semi-realigtic cosmological models we study the
possible effects of expansion anisotropies and of a uniform primordial
magnetic field upon the follcﬁing: (a) the type of initial physical
singularity, (b) the thermal history and temporal evolution of our
Universe, (¢) primordial element formation, (d) the time when expan-
sion anisotropies become small, and (e) the temperature isotropy of

O i 1 R
the observed 2.7 K cosmic microwave radiation.
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I. INTRCDUCTION

"oo. what's past is prologue; what to come,

In yours and my discharge”.

William Shakespeare, The Tempest,
Act II, Scene i, Line 252,

I. A, THE FHILOSOFHY OF THIS THESIS

One of the "evolutionary" characteristics of the scientific
method ié the impetus given to theoretical investigations by new
observational data and the similar stimulus provided the experimental-
ist by new theoretical formulations and predictions. In receant years
the field of relativistic cosmology and astrophysics has been vigorQ
ously reawakened by this phenomenon. A host of startling observations .
has transformed relativity theory from a quiet, philosophical endeavor
into a iiving, breathing science. This thesis presents some rssearch
into anisotropic cosmological models of our Universe ~--- research
generated by and made possible by the current "revolution' in
cosnology.

Why do we study anisotropic cosmological models? Isa't
it true, as McCrea (1968) implies, that the rash of recent observa-
tional discoveries --- in particular, the apparent observation of

the primeval fifeball as 2.7 % cosmic microwave radiation ===



‘vindicates the "standard" isotropic, Lemaltre ncdels® of our Universe?
No: All observations to date merely show that fhe general features
of hot, big-bang cosmology are correct and that the "standard" Lemaftre
models are a reasonable representation of the recent evolution of our
Universe. The data give us no secure handle on the early stages of
cosmic evolution, which might well have béen anisctropic. There are
many good reason for considering anisotropic cosmological models of
our Universe, as we do in this thesis:

a) The "standard" Lemaftre models are unique end extra-
ordinarily simple. To be able to interpret any observational tests
of these models we must inveStigate the structure and consequences
of other, less simple, cosmological models. For example, the recent
observations of the degree of spatial isotropy of the 2.7 %K cosmic
microwave radiation (see beiow) are meaaingless without an explicit
set of anisotropic coémological models with which to compare then.,

b) In anisotropic cosmological models the observed 2.7 OK
cosmic microwave radiation can exhibit spectral distortions of its
initially blackbody spectrum and can have non-zero polarization,
whereas such phenomené cannot occur in the "standard" Lemaltre models.

Hence, the study of anisotropic cosmological models suggests new

lThe current "standard" medels contain both "dust" and "radiation”,

and are more properly termed Lemaitre models than Friedmann modals.
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observational possibilities for the experimentalist.

c) We stated abové that the observational data to date
tell us essentially nothing about the earliest stages of cosmic
evolution. Several qﬁestions connected with the "initial conditioné”
of the Universe naturally arise: (1) Shall we adopt the philosophy
of C. W. Misner (1968) of a chaotic origin for the Universe at an
initial physicel singularity? His idea is that we should assume
completely random, 'white-noise" initial conditions (i.e., chaos) and
then try to demonstrate that the ﬁheory of general relativity ﬁredicts
the subsequent evolution of the Universe into its preseant organized
state. In this program the *standard" Lemaftre models form cnly a
subset of measure zero of the possible general relativistic cosmo-
logical models which satisfy the current cbservations. (2) In
what type of initial physical singularity did the Universe originate?
In the "standard" Lemaftre models we have an initial POINT physical
singularity and all regions of {the models are spacelike to one ancther
(i.e., they have no causal comnection) in the earliest stages of
cosmic evolution. This lack of initial physical interaction between
regibns leads one to be skeptical of the assumptions of perfect
spatial isotropy and homogeneity which lead to the Lemaftre models.
Some classes of aniéotropic cosmological models exhibit initial
CIGAR physical singﬁlarities where regions arbitrérily far apart are

always in causal contact along at least one spatial sxis. (3) Was



there, in fact, an initial physical singularity at the beginning of
our Universe? A physjcal singularity #ppears when at least one of
the world lines of the matter cannot be extended to arbitrary values
of its affine parametér. It is well-known that all world lines of
matter end at a pﬁysical singularity in the spatially hdmogeneous
and iscotropic, "standard" Lemaf{tre cosmological models and in all

cosmologies of Bianchi Type I and IX (see the references cited in

Hawking and Ellis 1968). A mathematical singularity occurs when at

least one timelike world line terminqtes; this does not imply that
any of the world lines of matter terminates. By combining extremely
powerful mathematical analyses with the results of observations of
the 2.7 %k cosmic microwave radiation, Hawking and Ellis (1968) have
shown, in the context of standard general relativity theory, that

our Universe must have encountered a mathematical singularity in its
past. It is not yet Known whethei our Universe originated in a
physicsl singularity. The equation of Raycheudhuri (1955, 1957) ---
relating the cosmic "expansion", "shear", end "rotation" to the
matefial content of the Universe via the Einstein field equations ---
indicates that cosmié rotation might determine whether the initial
singularity was physical or mathematical. The fact that the presence

of both cosmic expansion and cosmic rotation necessarily implies the

existence of cosmic shear (anisotropic expansion) has been

nade very clear by Heckmann and Schucking (1962), as well as by

Shepley (1965). In order to better understand the nature of the



original singularity and the effects bf cqsmic rotation we would like
to0 become intimatel& acquainted with the properties of anisotropic
cosmologies.

d) There are scme indications that several of the proper-
ties of the "standard"” Lemaitre models might be at variance with the
present observational data: (1) The.recent work of Wagoner, Fawler,
and Hoyle (1967) shows that primordial helium (AHQ) production in
the primeval fireball of the Lemaftre models yields 25% -~ 30% helium
by mass. If the recently measured 8% reduction in the lifetime of
the neutron is confirmed, this prediction is lowered to 23% - 28%
helium by mess (see Tayler 1968, and the references cited therein).
The only observations which seriocusly disagree with this prediction
are observations of the atmospheres of some o0ld Population II halo
stars in our Galaxy (see Sargent and Searle 1966, and the references
cited therein}, and oﬁservations of the atmospheres of some blue
horizontal-branch stars in globular clusters (Sargent 1G67). These

observations imply a primordial helium abundance less than 5% by

mass, unless these stellar atmospheres are helium deficient due to
some mechanism like gfavitational segregation of the elements.
Though this problem is still unresolved, the thecretical sludies of
Faulkner and Iben (1966), Faulkner (1967), and Iben and Faulkner
(1968) on the evolution of Population II stars strongly suggest that
though the stellar etmosphercs arc helium dcficien‘b the interiors

are not. Should the primordial helium abundance actually turn out



to be much less than 20% by mass, howéver, the simple Lemaftre models
would have to be abandoned. The studies of Hawking end Tayler (1966)
and Thorne (1967) on cosmological models with anisotropic expansion
show that primordial helium abundances below 20% by mass (end down to
almdst 0% by mass) can be obtained if spatial anisotropy is introduced
and if large quantities of ionized hydrogen (H II) existed in our
Universe at redshifts of less than 105. The primordisl helium abun-
dance can also be lowered appreciably by spatial inhomogeneities at
the time of element production, by the rapid expansion rates in the
Brans-Dicke theory of cosmology (Dicke 1968), and by a huge excess

in our Universe of leptons ovér antileptons or antileptons over lepions
(Wagoner, Fowler, and Hoyle 1967). A second possible conflict of
observations with the "standard" Lemaltre models is this: (2) The
"standard" Lemaitre models do not admit large~scale, ordered, cosmic
magnetic fields. For exémple, & uniform primordial magnetic field

in our Universe would indicate a preferred direction (the axis of

the field) and, hence, directional anisotropy. Galaxies are obscrved
to have very strong magnetic fields, of the order of 10"6 gauss,
which.are "theoretically impossible" to generate during the lifetime

of therniverse2 (éee Hoyle 1958), but which might be remnants of

2Cameron (1967 ) suggests a method for generating these fields which

might overcome the difficulties pointed ocut by Hoyle.




a primordial magnetic field. Thorne (1967) shows that if the magnetic
fields were primordial, they must have produced large anisotropies in
the early stages of cosmic evolution. Cosmic magnetic fields of fhe
order of 10-8 gauss tdday have also been suggested by Peebles (1$67)
as & way to solve the "problem" of the energetics of galaxy formation,
another headache of the Lemaitre models.

e) A final reason for investigeting enisotropic cosmo-
logical models is curiosity. The intellectual satisfaction derived
from studying the Einstein-Maxwell field equations and better
understanding their properties i1s enough of a reason for an inquisi-
tive man to tackle the project.

Armed with these fairly interesting reasons for considering
anisotropic cosmologies, we must now decide which theory of cosmology
to use. Many theories of cosmology havg been put forward, but the
histories of even the_.most successful theories have heen chequered.
Adequate accounts of theories of the past are contained in McVittie
(1949), Bondi (1961), Dicke (196%, 1967, and the references cited
therein), and North (1965). The only theories which currently
demand consideration ére: (a) the steady-state theory of Bondi
and Gold (1948), (b) the scalar-tensor theory of Brans and Dicke
(1961), (e) the standard tensor-gecmetric theory of general
relativity of Einstein (1915), and (d) the theory of general

relativity with a cosmological constant (A) explored most vigorously
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by Lemaftre (1.9Q7).5 Of these four theories, the first and third are
to me the most aesthetically compelling, while the latter three are
the more observationally well-verified. It appears very likely that
recent observations ——- especially those of thé 2.7 %% cosmic micro-
wavé radiation, of the Hubble expansion and deceleraticn rates, and
of the space volume counts of radio galaxies --- militate strongly
against the steady-state theory. I base my rejection of this theory
here upon these observations. I eliminate the operationally-
beautiful Brans-Dicke scalar-tensor thcory on two rather weak grounwz
(1) In my opinion, the excellent pre-1967 agreement between the pre-~
diction of general relativity'and the observations, concerning the
perihelion shift of the. orbit of the planet Mercury, is prohably not
fortuitous but actual; and (2) the introduction of a scalar field
merely complicates the investigation of cosmology without, in my
mihd, having sufficient justification. Finally, I consider the
introduction of the cosmological constant A rather ad hoc, and though
observationally permitted, an inelegant appendage to the elegant
geometrical picture of the simple Einstein theory of general

relativity.

3Lema'itre, when asked "What is the greatest contribution that general
relativity has made to intellectual thought?" is reported by
S. Chandrasekhar to have replied, without hesitation, "The cosmical

constant'.
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Hence, usihg the principle of simplicity and the observa-
tions of the cosmic microwave radiation as my principal justifications,
I choose in this thesis to consider only the hot, big-bang, general
relativistic theory of.cosmology with vanishing cosmological constant A.

The format of the remainder of this thesis is, in outline,
the following: We conclude Chaptgr I with a brief review of observa-
tions of cosmological interest and with a sketch of the currently
fashionable "standard" Lemaftre cosmological models, which are spatially
homogeneous and isotropic. In Chapter II we present the results of |
our investigations into anisotropic cosmological models of Bianchi
Type I. Blanchi Type I cosmologies are spatially homogeneous, but
anisotropic; and they cxhibit no .rotation. In an appropriate
coordinate system they have the diagonal, spatially-Euclidean metric

ds2 = dt2 -,'Aa(t)dx2 - }3‘2(1;)dy2 - c:?"(t)az2 . (1.4.1)

We study the Einstein-Maxwell field equations in this metric, with our
stress-energy tensor T“V consisting, in general, of perfect-fluid

matter with the equation of state

P, = 7P, (0<r<1) , (1.A.2)

and a uniform comoving magnetic field, with energy density pb, aligned .
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along the z-axis.

In particular, we first consider the PERFECT-FLUID case,
wherein the magnetic field vanishes. The general analytical solution
to the entire problém is obtained, and we use this solution to con-
struct semi-realistic cosmological models of our Universe. Secondly,
we consider the PERFECT~FLUID-MAGNETIC case, wherein the magnetic
field does not vanish. We find several analytical solutions, investi-
gate the behavior of the equations near the initial singularity, and
"solve" the entire problem uasing m:mgiical integration. Finaliy, we
construct semi~realistic cosmological models of our Universe with a
primordial magnetic field.

In these semi-realistic models which we have built we study
the effects of departures from isotropy and of a uniform primordial
magnetic field upon (a) the thermal history and temporal evolution
of our Universe, (b) the character of the initial physical singularity,
(¢) primordial element formation, (d) the time when the expansion
anisotropies effectively become small, and (e) the possible tempera-

ture anisotropy of the observed 2.7 °K cosmic micrgwave radiation.
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I. B. COSMOLOGICAL OBSERVATIONS

In his task of constructing believable cosmological models
the cosmologist is absolutely constrained by the available observa-
tional data. In this thesis we shall constantly be referring to thg
current observational data of cosmology; hence it will be to our
advantage to list the pertinent data here before we begin. This list

will mainly be a simple paraphrasing of the more complete coverage

| provided by the works of Sandage (196la), Dicke (196%, 1967),
Zel'dovich (1965a), Schiicking (1966), Kristian and Sach (1966),
Zel'dovich (1966), Wagoner, Fowler, and Hoyle (1967), Chiu (1967),
and Novikov and Zel'dovich (1067). The references cited in these
reviews give excellentlcoverage. AThe observations most pertinent
t0 cosmological model construction are:
1) GEOMETRICAL OBSERVATIONS |

(a) The spatial homogeneity of our Universe is inferred
from number counts of galexies versus their apparent magnitudes, from
number counts of radio galaxies versuslthe energy flux received from
them, and from the observations of the isotropy of the spatial distribu-
tion of extra-galactic sources. On the small scale the Universe is popu-
lated with galaxies and clﬁsters of galaxies, and is quite inhomogeneous.
Averaging over dimensions greater than forty megaparsecs, however,
reveals statistical homogeneity out to distances of about 2 X 109

light-years from us. The work of Holden (1966), Longair (1966),
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and Pooley and Ryle (1968) on number counts of radio sources indicates
statistical homogeneity out to redshifts z = 3 or 4, where the
luminosity function appears to héve a cut-off (i.e., this appears

to be the epoch wheré'galaxy formation occurred). The extreme
isdtropy of the observed 2.7 ®k cosmic microweve radiation (see below)
implies a high degree of homogeneity out to redshifts of at least 9.

(b) The spatial isotropy of our Universe is deduced from the

angular distribution of extra-galactic radio sources, from the spatial
distribution of the redshifts of extra-galactic.objects, and from the
temperature distribution (over thé sky) of the observed 2.7 %% cosmic
microwave radiation. Holden (1966) and Hughes and Longair (1967)

find that, out to redshifts z =~ 3 or 4, the distribution of extra;
galactic radio sources is statistically isotropic over angular

scales larger than 1/2°. According to Kristian and Sachs (1966), the
anisotropy in the Hubble expansion rates of galaxies and radio galaxies
is less than 30%. The measurements of the directional isotropy of

the temperature of the 2.7 °K cosmic microwave radiation (Wilson and
Penzias 1967; Partridge and Wilkinson 1967; Wilkinson and Partridge
1967; Conklin and Bracewell 1967a, b; Epstein 1967) show that the |
temperature anisotropy | AT/T I, is probably less than 3% over the
entire Northerﬁ sky, less than 0.15% (root mean square fluctuations)
over angular distances greater than 10' at + 40.6° declination, and
less than 0.20 (0.10) % in the magnitude of the 12 (2% )-hour harmonic

of anisotropy around the celestial equator (actually at_-8°
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declination). These limits to the temperature anisotropy imply
cbrresponding limits on the large~scale anisotropy of the Universe's
expansion rate out to redshifts z > 9 |
2) XINEMATICAL OBSERVATICONS

“ (a) 1If our Universe began in a hot big-bang the ages of
its constituent parts should bg less than the age of the Universe
itself. In general relativistic cosmology (with vanishing cosmo-
logical constant) the observed Hubble expansion rate of our Universe
at present (sce below) sets an upper limit of about 18 X 107 years
to the age df our Universe. From Dicke's (1964) compilation of
data =--~ the most recent and. extensive that I could find --~ we see
that elliptical galaxies might be older than 16 X 109 years and that
some globular clusters might be older than 25 X 109 years. These
excessive ages are based upon the currently popular theory of stellar
evolution and rather crude studies of galactic content and evolution,
and they muét. be considered highly uncertain. For example, Sandage
(1962) and Faulkner and Iben (1966) have shown that a high primordial
helium abundance (in' the vicinity of 30% by mass) can reduce the
deduéed ages of the oldest globular clusters to a value nearer
15 x 10° years. The most recent work by Iben and Faulkner (1968)
indicates that globﬁlar cluster ages near 9 X 109 years follow from
the assumption of ~ 30% by mass primordial heliuxjn‘. Hence, the age

of our Universe probably lies in the range from 8 X 102 to 18 x 10°
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years, and my personal preference (considering all the data) is in
the neighborhood of 10 X lO9 years.

(b) The average Hubble expansion rate of our Universe is

derived from the observed correletion between the redshift and the
appérent magnitude of brightest members of clusters of ggléxies. The
excellence of this correlétion has beén taken as evidence that the
Hubble expansion law applies out to distances of sbout 2 X 109 light-
years (these distances are extrapolated from independent measurés of
distance on a much smaller scale). If we take R to be the disi;ance
scale factor and let a subscript zero (o) denote the present time,
then from Sandage (1968, and the references citea therein) we have

for the present average expansion rate:

- _ 1 -1
o = <j% %% = (75 % 25)km sec” ~ Mpe . (1.B.1)
| [13 £ 5) x 109 years]-1 |
(¢) The gravitational attraction of the material within

our Universe, as described by classical general relativity theory,

implies a deceleratiqn of the cosmic expansion. We represent this

deceleration by Sandage's deceleration poarameter, Qe ‘The most
reasonable observaticnal limits updn this parameter are those of

Sandage (196l1a), who gives:

2 ‘
q, = - é‘F -i;% = +1x(3) . (1.B.2)
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If the evolution of galaxies is taken into account this value is
lowered (see Sandage 1961b).
(d) If the Hubble expansion of our Universe is not isotropic,

there is cosmic shear. In our previous discussion of the spatial

isotropy of our Universe (above) we presented the current observa-
tional limits on the isotropy of the cosmic microwave radiation.
From this data we conclude that | &H/H | (a reasonable measure of

expansion anisotropies) is probably less than 0;2% back to a redshift’

of at least 9 (see Thorme 1967; Jacobs 1968).

(e) Thnere is cosmic rotation in our Universe if extra-

galactic objects exhibit proﬁer motions with respect to the local
inertial reference frame of ocur Local Clﬁster of gelaxies. According
to Clemence (1957), Kristian and Sachs (1966), and Wayman (1956)
the present limit to such proper motions is rather less than one
second of arc per century. Impressive as this limit may seem it is
aétually extremely weak in a cosmological context: angular
velocities of.the order of the Hubble rate are consistent with it.
This limit should improve considerably when the extra-galaétic

: systém of proper motions is firmly established in about five years
(Waymann 1966) and when impioved isotropy measurements of the 2.7 °x

cosmic microwave radiation are available (Sciama 1967).
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3) OBSERVATIONS OF MATTER AND RADIATION
(a) Oort (1958), Van den Bergh (1961), and Abell (1965)

find that the present average mass-density of visible matter

(essentially the luminous matter in stars and galaxies) in our
31 -30

Universe lies in the range from 3 X 10~ gn en™> to 3 x 10 em ™2,
On scales larger than abou# forty megaparsecs the distribution of
this matter is homogeneous, while on smaller scales it is extremely
heterogeneous --- aggregating preferentially into stars, galaxies,
and clusters of galaxies. 

(b) The viriel theorem applies only to equilibrium,bound

systems. Applying this theofem to our Galaxy, which most likely is
a bound, quasi-equilibrium configurationﬁof stars, Oort (l965,uand
the references cited therein) finds that about 50% of the mass of
our Galaxy must reside in "invisible" matter. It is quite possible
that the virial theoreﬁ is not applicable to clusters of galaxies.
If, however, the theorem is applied to clusters of galaxies, it is
found (see Conference on the Instadility of Systems of Galaxles
1961; Woolf 1967, and the references cited therein) that the
amouht of undetected material necessary to bind the clusters is
endugh to give our Universe an average mass-deﬁsity of between

-28

10729 gm ca™> and 10 gn cm™>.  Abell (1965), however, feels

-

strongly that this figure should be below 10729 o e o,

(¢) The fossil radiation from the primeval fireball of

our Universe has apparently been cbserved as the cosmic microwave
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radiation. This radiation was predicted by Dicke, Peebles, Roll,

snd Wilkinson (1965, and the references cited therein). Observations
of this radiation in the wafelength range from decimeters to milli~-
meters are consistent with a blackbody spectyrum with a characteristic
temperature of 2.7 * 0.1 %K (Penzias and Wilsan 1965; Roll and
Wilkinson 1966; Field and Hitchcock 1966a; Thaddeus and Clauser

1966; Howell and Shakeshaft 1666; Field and Hitchcock 1966b; Welch,
Keachie, Thornton, and Wrixon 1967; Wilkinson 1967; Stokes, Partridge,
and Wilkinson 1967; Dwing, Burke, and Staelin 1967; Penzias and
Wilson 1967; Puzanov, Salomonovich, and Stankevich 1967). The

equivalent mass-density of this radiation today is (4.5 £ 0.7)x :Lo“”1L

gm cm-s. .

(d) The equivalent mass-density of starlight ian the meta=-
galaxy is, according to Felten (1966), about 2 X 107%° gm cn”.
This represents only a small perturbation to the total mass-density
of radiation in our Universe (Schiicking 1966).

(e) As a consequence of nnmerou# observations, our esti-

mate of the abundance of primordial helium (uHe) in our Universe

appeérs to be stabilizing at about (25 % 5)% by mass. Only the
atmospheres (1) of some hot halo B stars of Population II and (2)

of some blue horizomtal-branch stars in globular clusters are
"helium-deficient” compared to this value, and the present consensus

is that this deficiency is indicative anly of the surface evolution
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of these stars and nét necessarily of a uwniversally low primordialv
helium abundance (Sargent and Searle 1966; Greenstein and Munch
1966; Strom and Strom 1967; Sargent and Searle 1967; Sargent 1967;
Cayrel 1968; Sargent and Searle 1968).

(f) The observed energy spectrum of cosmic-ray electrons

is beautifully compatible with the spectrum of backsround X-rays and

gamma_rays obsexrved above the Earth's atmosphere, if the latter are
considered to be Compton recoil photons from collisions of the former
with a universal 2.7 %K cosmic blackbody radiation (Felten and
Morrison 1966; Felten, Gould, Stein, and Woolf 1666; Brecher and
Morrison 1967; Silk 1968). |

(g) At present the temperature and hydrogen content of

intergalactic space are fairly well delineated (Field 1962; Field
and Henry 1964; Gunn and Peterson 1965; Gould and Ramsay 1966;
Bahcall and Salpeter 1966; Field, Solomon, and Wampler 1966;

Weymann 1966; Koehler and Robinson 1966; Koehler 1966; Rees and
Sciama 1967; Weymsnn 1967; Penzias and Scott 1968; Henry, Fritz,
Meekins, Friedmann, and Byram 1968). Only two pictures are consistent
with ﬁhe observational data on absorption lines in quaéar spectra,
with the upper limit to the free-free (bremsstrahlung) x-ray
background observed; and with the limits on distortions of the
blackbody spectrumlof the 2.7 % cosmic microwavenradiation: (1)

The temperature of intergalactic space is about O ?K and the
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present mass-density of H I (H,) is below 5 X 10'36 (5 x 10“3”) om cm”
or (2) From the present back to a redshift of at least 2 the inter-
galactic medium has consisted almost entirely of ionized hydrogen

(1 II), with a mass-density of less than or about 10729 gn e in

the temperature range 10" % ST < 106 %K with less than 1% admixture
of H I and Hy. The picture which is currently popular 1s 2).
(h) In the "standard", hot, big-bang, Lemaftre models of

our Universe where neutrinos and gravitons are in thermal equilibrium

near the initial physical singularity their present equivalent ﬁass-
density should be about the same as that of the primordial photon
gas at present (Chiu 1967). The only observationaiv statement that
is possible at present is this, that the upper limit on q, implies
an upper limit of about 10-28, gm en™> for the equivalent mass-density
of these massless particles today.

(i) Galactic magnetic fields of the order of 10"6 gauss

appear to imply the existence of large-scale primordial inter-

galactic magnetic fields [see Hoyle 1958; note, however, that

Camercn (1967) has suggested a method which may solve the problem
of the origin of galactic magnetic fields v_rit‘nout invoking cosmic
fields.]. The observational upper limit on the maganitude of such
a pervasive field is about 10"6 gauss also, which implies an
equivalent mass-density of about 1070 gm cm > (Schiicking 1966;

Thorne 1967). If the galactic fields were trapped from an inter-

3

-

2
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galactic field during galaxy formation we would expect the present
magnitude of the intergalactic magnetic field to.be of the order of
10-8 gauss (or about 1079 gm cm's). Presently popular (and
reasonable) values for the intergalactic magnetic field lie in the

range from zero to about lOJT gauss.
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I. C. THE "STANDARD" ISOTROPIC COSMOLOGICAL MODELS

The cobservational data of § I. B. suggest that cosmological
models exhibiting perfect spatial homogeneity™ and isotropy> should
be good,first-order approximations to the actual Universe. Within
the context of standard, hot, big-bang, general relativity theory
the assumpiion of perfect spatial homogeneity and isotropy has led
to thé currently fashionable "standard" models of our Universe. Here
we shall content ocurselves with a brief s.ketch of the current picture
of these models. For aﬁ' éxcellent review of the history of their
development sec Tolmen (1934), North (1965); Herrison (1967), and
the references cited in these works.

The Einstein field equations (with vanishing cosmological
constant ) are:>

J‘Homogeneity implies that every observer in our Universe sees the
same general surroundings. |

2I'.m't;ropy implies that all observations are independent of the
direction in which an observer may look,

sThroughout this thesis the signature of the métric is -2, the
summation convention is used with Greek indices running from O to 3,
and geometrized units are used (wherein the sPéc_ad of light, ¢, and

the gravitational constant, G, are set equal to one).
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The assumption of perfect spatial isotropy, which implies perfect
spatial homogeneity, leads directly to the Robertson-Walker line
element:

sin b

2=dt —R(t) [d)c2 (de +sin9d¢2 . (1.C.2)

sinh .4

Here ¢ is cosmic proper time and R is & distance scale factor pictur~
esquely referred to by some as "the radius of the universe". In
equation (I.C.2) we have (sin?X, X?, sinh?X) when the curveture of
the space sections is positive ("closed"), zero ("flat™), and

negative ("open"), respectively. In the "standard" models, the stress-
energy-nomentum tensor, T“v, is assumed to be that of & perfect

flaid:

= (p + p) u u, - P 6uv 3 (1.C.3)

where 2 is the uniform mass-density and p is the isobropic pressure

of the fluid. From equation (I.C.1) follow the Bianchi identities

GH =0 , (I.C.k)

o =0 . (1.0.5)
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With the metric of equation (I.C.2) equations (I.C.1l),
(.¢.3), and (I.C.5) reduce to:

2
2
(%) - (%t_ T | (1.C.6)
a(p R° a R |
!dtl +p S =0 , (I.Cc.7)

where # equals ( + 1, 0, ~ 1) when the space sections are ("closed",
"flat", "open"), res;;ecﬂvely. Equations (I.C.6) and (I.C.7),
together with an equation of state p = p (p), completely determine
the evolution of the “standard" cosmological models of our Universe.
In the “standard” models the material content is idealized
+o be presureless "dust” plus isotropic "radi;ticn". large-scale
primordial megnetic fields are excluded, s;nce they are inherently
anisotropic (the field direction defines s preferred direction).

Therefore, we have
P =Py + P, (1.c.8)
and the equation of state

P = pg+tp.=p, = PJ5 , (1.c.9)

where the subscripts 4 and r dencte "dust"” and "radiation”,

respectively. The "dust” represents all forms of matter with
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finite rest mass (intergalactic, primeval gas; clusters of galaxies;
etc.), while the'radiation" is & mixture of isotropically distributed
photons, neutrinos, and éravitons. The final idealization made in
the “standard" models is that (DdRs) is a constant for 21l time.

This means that the total material mass-energy is conserved, and
hence, that there is no interaction between the "dust™ and the
"radiation". This assumption of non-interaction is an excellent
approximationh from the time when electroun-positron pairs disappear
at a temperature near 5 X 109 °k wntil the present. From the bonstanqy

of (pd33) and equations (I.C.7) and (I.C.9) we have:
o, = o, ®E)S , o = b, (R/R)™ (1..10)
d do (o) ? Tr ro o * e

Here the subscript zero (o) denotes the pfgsent value of a quantity.

hIn the "standard" models neutrinos and gravitons have negligible
interactlon with matfer after the temperature drops below lOlO %
(see Misner 1967, 1968). The enormous heat capacity of the photons
relative to the "dust" insures that the "dust" temperature will be
kept equal to the photon temperature until plasms recombination
(T ~ 3000 OK), without any significant energy exchange occuring.
(See Harrison 1968.) After plasna recombination there is essen-

tially no energy exchange.
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Combining equations (I.C.6), (I.¢.8), and (I.C.10), we
reduce the problem of the temporal evolution of the "standard" models

to quadratures:

t = [ {(8/3)pgg(B/R )™ + o, (R/2)F1 - wr 22 aayr )

(I.c.11)

The solutions to equation (I.C.1l) are well-known (see Chernin 1G65;
Alpher, Gamow, and Herman 1967; Jacobs 1967; Cochen 1967; McIntosh
1968; Harrison 1968; and the earlier authors cited in these recent
works). These solutions may be written as (see Chernin 1965):

R = @ (L=-cos7)+p siny
(Yclosed") . , (I.C.12)

: 1 2
R = 5 an +8 0
(“flat") l . 3 l . 2 32 (I-C.]ﬁ)
t =z o o+ 5 g n

R = & (cosh - 1) + B sinh n

("open™) (1.c.14)

-

t = & (sinhn-1)+8 (coshn=-1)

We have set dt = R dn (0 is a dimensionless variable). The non-negative

constants, & and B, are defined as:

] 2
whe » B =(/3) e rY . (1.c.15)

¢ = (1&{/3) fo]

The analytical solutions, equations (I.C.12) through (I.C.1k), are
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called Lemaftre models since cosmological models containing both
"dust"” end non-interacting "radiastion” were first studied by Lemaitre
(1927, 1930, 1931). When B = O these solutions are known as
Friedmann models, since Friedmann (1922, 192L) first considered the
homogeneous, isotropic models containing only "dust”. Tolman (193k4)
was fhe first‘to study the models containing only "radiation"; hence,

the solutions are called Tolman models when & = O. Egquation (I.C.13)

with @ # 0 and B = 0 is the well-known Einstein-de Sitter (1932)
model. '

The properties of the "standard" Lemaltre models are now well-
known. Their temporal evolution is depicted schematically in
Figure 1. As n »>0 they all behave like the "flat" model of equation
(I.C.13). All of the models emerge from an initial physical singular-
ity (where R~ O and p + ) at t—= 0. The “open" and "flat"” models
expand outward forever, but the "closed" models expand to & maximum
radius and then recontract to a final physical singularity after a
finite proper time. All of the physical characteristics of the
"standard" Lemaitre models may be derived, albeit tediously, from
equations (I.C.12) through (I.C.1k). An approximation procedure which
greatly simplifies calculations is suggested by the observational
data. From § I.B. we see that our Universe is prcbably charécterized
by P, /Py, S 107° (i.e., B/d < < 1). This implies that approximate

models can be constructed by beginning with a Tolman "radiation"
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FIGURE 1

The temporal behavior (schematic) of the distance scale
factor, R(t), in the “standard" Lemaitre cosmological models of our
Universe. All such models are spatially homogeneous and isotropic,
and they are filled with a uniform perfect fluid consisting of "dust”
(7‘ = 0) and/or "radiation" (7 = 1/3). The designation ("closed",
"flat", "open") implies that the curvature of the space sections is
(positive, zero, negative). The "flat" and "open" models expand
forever after emerging from the initial physical singularity at
t = 0, while the "olosed" models encounter a sccond-and final-
singﬁlarity after a finite proper time. The _c}._a_t_gtﬁé_ lines represent
Friedmann models, which contain only "dust". The solid lines

represent general Lemaftre models containing both “dust™ and "radiation®.

Note how, for fixed &, the addition of "radiation" shortens the life-
time of the "closed" model. The quantity ¢ is a non-negative
constant related to the mass-density of "dust" todsy [cf. equation
(1.c.15)].
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model at the i_nitial singularity, joining it smoothly (with R and
dr/dt continuous) to a later Friedmann “dust" model at the point
where P = Pys and continuing with the Friedmann model to the present
time. This procedure is extremely accurate everywhere except near
the join point, as demonstrated for the "flat" model in Figure 2.

To select the "standard" Lemaitre model appropriate to
our Universe we must resort to the observational data: (1) Equation

(I.C.6) immediately tells us that:

> 2 >
e :(3/81:)/ H = e, when« :0 » (1.¢.16)

and

a E (1/2)[2 + 2(p, /0, )] [ + (o /oy )17 = q_ when x 3 0,

<
(1.€.17)

C

where H is the Hubble expansion rate defined by equation (I.B.l) and
q is the deceleration parameter defined by equation (I.B.2). Here
the subscript zero (o) denotes the present value of & quantity. The
criticel values of the total mass-density, o o’ and of the decelera-
tion parameter, q, , are the values for the "flat" model (where

# = 0). From the observations Ho-l = (13 £ 5) X 107 years and, most

probably, (pro/p do)- < € 1, Hence, the critical values are:

~29 3

P = 10 gnem - , q s~ 1/2 e (I.C.18)

co co
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The obscrved luminous matter and 2.7 OK cosmic microwave radiation
imply Py < Peo? while the limits on undetected dark matter, ionized
hydrogen (H II), neutrinos, and gravitons imply the distinct possi-
bility that o, 2 5 .. According to Sandage (1961a), the value of '
q, lies in the range O < qo < 2, with the most likely value being
g, =1 % 1/2. Therefore, the tests implied by equations (I.C.16)
and (I.C.17) are, unfortunately, inconclusive at present.

(2) From equations (I.C.12) through (I.C.15) and Figure 1

we see that the present age of our Lemaitre models is:

< . -1 =
t : (2/3) H, S t,, When x= 0 . (I.C.19)
, _ <
Since Ho'l = (15 * 5) x 10° years, the critical value is:
ty, = (8.7 £3.3) x 107 years . (1.C.20)

Because of the great uncexrtainty in the evolutionary ages of elliptical
galaxies and globular clusters, this test [equation (I.C.19)] is also
inconclusive.

(3) Wagoner, Fowler, and Hoyle (1967, and the references
cited therein) have studied primordial element production in the
primeval fireball of the "standard" Lemaftre models. With P, in the
cbservationally allowed range, 107 - gu cn™ s o, < 10728 gn ™3,
fhey find that the ﬁrimordial helium abundance produced by the fire-

ball should be 20% -~ 30% by mass (as long as the lepton number of
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our Universe does not deviate significantly from zerc). The present
observations concerning primordial helium are still too crude to tell
us the sign of x.

Therefore, current astronomical observations cannot tell
us with'any certainty whether our Universe is best described by the
“closed", "flat", or "open" Lemaftre models. If we still desire to
make a choice, we can only fall back on such intangibles as whims
of fashion, philosoﬁhical predilecticns, intuitive preferences, and/
or a désire for case of mathematica1 computation. In Chapter IT I
shall be investigating cosmological models of Bianchi Type I, in
an effort to understand the properties of cosmic shear (anisotropic
expansion). All Bianchi Type I cosmologies are generaliéations of
the "flat" (zero curvature) isotropic models, an example of which is
the "standard" Lemaitre model of equation (I.C.13). For this reason
I choose to discuss here, in somewhat more detail than above, the
properties of “"flat" isotropic cosmologies.

From equation (I.C.2) we see that the "flat" isotropic
metric can be written as:

as® = at® - BR) (@ + &f +a) (1.C.21)

where (x, ¥y, 2) are Cartesian coordinates and where the scalé factor,
R, is now dimensionless. Egquations (I.C.6) and (I.C.7) can now be

written as:



[E(—I}-g—‘?l T= (%"-) p (%)2 ) (1.c.22)

ale(r/z)°1  al(r/r)°]
——— 4P —p— =0 (1.¢.23)

where the subscript zero (o) denotes the present value of a quantity.
It is very useful to stﬁdy, in addition to the Lemaitre models, also
models containing perfect-fluid matter that obeys the general equation

of state:
p = 7p (7 =constant, 0<7<1)° . (T.c.2h)
Equations (I.C.23) and (I.C.24) then imply:
(ofoy) = (R/RYE*7) (1.c.25)

The analytical solution to equation (I.C.22) becomes:

5'I‘he demand that the pressure be non-negative implies 7 > O, while

7 > 1 is forbidden by causality (see Harrison, Thorne, Wekano, and
Wheeler 1965, pp. 105-106). Zel'dovich {1961) argues that
1/3 < 7 <1 is possible, but Harrison (1965) supports the popular

consensus that only 0 <7 < 1/3 occurs in Nature.
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(R/R ) = '(t/to)2/[3(1+7)3 , (I.c.26)

where the present age of a given model ist ) = (b (1 + 7)2po]'l/2.

The Hubble expansion rate, H, and the deceleration parameter, q,

follow fram equation (I.C.26):
H= (1/R) (@®/at) =2/[3(1 +7) t] p (1.c.27)
a= - (I/RP) (Pr/at?) = (1 +39)2 . (1.C.28)
Note that t_ = 2/(3 H_ (41 + 7)].

The Einstein-de Sitter (1932) "dust" model follows from

equations (I.C.2k) through (I.C.28) when 7 = 0. If such a model is
an adequate representation of our Universe, we have p = O,
-3 2/3
(e/p)) = (R/R))™, (R/R)) = (t/t)) /3, q, = 1/2,
t = (2/3) H -l 9 x 107 years, eand p_ = p ~ 10729 cn™2
o) o 4 ? o co g *
The"flat" isotropic model can better describe our Universe

if we assume that the material content is a mixture of several non-

interacting perfect fluids. Let us take a = -pi and

i
Py =75 Py where the subscript i denotes the ith gspecies of fluid.

Then equation (I.C.23) implies:
(y/05) = (RS 71 (1.€.29)

and equation (I.C.22) yields the temporal behavior:
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-1/2

(bf6gg) = (3/2) [ @/ag) [ $oyofoce) a* ™ = 70]  atwm,).

(1.C.30)

Here P = 1029 gu en™> is the eritical mass-density, and

too = (6n.pco)'l/2 ® 9 X 10° yvears the critical age, of the "flat"
model. Assuming that our fluid species are only "dust" (7 = O0) and
“radiation" (ry = 1/3), we re-derive the "flat" Lemaftre model of

equation (I.C.13) in the form:

(t/5,.) =@, ([a(R/R ) -2 8.1 [a (R/R ) +8 1Y% +25 52 .
| (1.c.51)

Here we retain the generality of equation (I.C.30) by disregarding
the observational data for the moment and by setting Q= 0, /P
(this is the ratio of the mass-density of the "dust" to the critical
mass-density today) and 5, = pro/pco (this is the same ratio for
"radiation" today). In the "flat" Lemaftre model of equation (I.C.31)
we can also find the total mass-dénsity p, the total pressure p, the

Hubble expansion rate H, and the deceleration parameter q:
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(plogo) = (g * £,)/pq = (R/R)™ (8, (R/R,) + 50

(0/p,) = (B /py,) = (8,/3) (R/R)™
5(I.C.32)

( t,0) = (2/3) (8/2))2 [ay(B/R,) + 5 172 = (2/3) (o/p, )M/2

q = (1/2) [ (R/R)) +2 8 1/IQ (R/R ) +8,1 .

Present observational data indicate only that

=30 -3 -3k
do 2 10 gm cm  and pro_z § X 10

models specified by equations (I.C.31) and (I.C.22) are constrained by

o an en™>. The "flat" Lemaftre

observations to lie between the following two extreme cases: (1) The
observed luminous matter is augmented by undetected dark matier and
ionized hydrogen (H II) so that Pao = Py 804 the "radiation” consists

only of the observed 2.7 % cosmic microwave radiation with

3k

p. 3 5 X107 gnm em™>. This is the most widely used and popular

ro
model at present, since there are physical arguments (see Chiu 1967;

Misner 1967, 1968) indicating that undetected neutrinos and gravitons
should have a total mass-density of the order of pro today. (2) Only

the detected luminous matter contributes to Pao = 10750

gn cm—s, while
the 2.7 °k cosmic microwave radiation 1s augmented by undetected
neutrinoes and gravitons so that Pro = Poo® In Figure 2 we display
this range of "flat" Lemaftre models which is.consistent with the

avalilable data.
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An approximation to these "£lat" Lemaftre mcdels, which is
oftentimes mathematically convenient, is to smoothly (with R and
dR/dt continuous) join an earlier pure “"radiation® model (7 = 1/3)
to a later pure "dust" mcdel (7 = 0) at the point where P, = Py
In this case the scale factor goes as:

(26 8 /0y (1/5, M2

(R/RO) = | ‘>when (t/tco):(s/h)Qo”asos/a.
e MR ssx )+ a/n (6 fa )RR |

(I.€.33)

All other quantities of interest may be easily computed from eguation
(I.C.33). The excellence of this approximation procedure is illustrated

in Figure 2.



Figure 2

The expliecit temporal evolution of all possible "flat™
Lemsftre cosmological models of our Universe which are consistent
with present observations. We have plotted the normalized scale
factor (R/RQ) , the normalized total mass-density (p/ P,o)s and the
deceleration parameter (q) versus normalized time ('b/tco). ‘The sub~
script zero (o) refers to the present value of a quantity. The
normallizing parameters are R o’ the present scale factor;
Pao = (3/8n) I-Io2 = 10729 an cm's, the present critical mass-density
necessary to close the Universe [whgre H, is the present ubble
expansion rate, Ho'l = 15 X 107 years]; and
too = (6x o co)-l/ 2. 8.7 X 107 years, the present criticel age of the
model.s |

The solid lines represent the model in which an earlier
"radiation" model is joined smoothly (R and H continuocus) to a later
"dust" model at the point where p » = Pqs in this model we choose

3k

p gn e (the observed 2.7 % cosmic

do P co
microwave radiation). The solid vertical lines at (t/tco) = 2.7 X 1077

and pr°=5XlO

mark the transition frem the "rad\zia'tion" phase to the “dust" phase.
The dotted lines z;epres;nt the exact Lemaftre model of

Jacobs (1967) with the same pi*esent perameters as the solid line

model. Note how closely the two models match (the dotted lines are

coincident with the solid lines everywhere that the former are
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not visible).
The dashed lines represent the other limiting case {wherein

the "radiation”, and not the "dust", provides the critical mass-

0 3

. -3 -
density) with present parameters p = P, and py =10 " emcn

(the present observed luminocus mass-density). In this model the .
"hidden radiation" could be either neutrinos or gravitons.

All possible "flat" Lemaftre mcdels of cur Universe must
lie in regions indicated between the dotted and the dashed lines.
Note that the appearancé. of electron-positron pairs at (R/Ro)m's x 10710

marks the lower limit of validity of all these mecdels,
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II. BIANCHI TYPE I COSMOLCGICAL MODELS

"] have a bii of FIAT 4in my soul,
And can myself create my Little world”.

Thomas Lovell Beddoes, Death's Jest Book,
Act V, Scene i, Line 38.

II. A. ANISOTROPY AND BIANCHI TYPE I COSMOLCGIES

In Chapter I we géve.a brief sketch of the simplest cosmo-
logical models of our Universe within the context of standard general
relativity theory: the "standard" Lemaitre models. These models
followed readily from our basic assumptions of perfect spatial homo-
geneity and isotropy. These two basic assumptions were indicated by
the observational data, but they represent an extrapolation and
idealization of that data. In Chapter i we also saw some reasons for
abandoning the assumption of perfect spatial isotropy and for consider=-
lng cosmologies with spatial anlsotropy. Here, in Chapter II, we will
implement an investigation of spatially homogeneocus, but anisotropic,
cosmological models of our Universe.

In this thesis our fundamental objectives are twofold: (a)
‘to gain as complete and clear an understanding of anisotropic expan-
sion within the context of standard general relativity théory as

possible with a minimim of matheﬁatical complications, and (b) to use
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this understanding to construct anisotrople cosmological models which
adequatély describe ocur Universe. Qur models will be physically
realistic only if they closely resemble the "standard" Lemaltre models
at the present stage of evolution of our Universe. This criterion
and thé desire for mathematical tractability (see belvow) delimit the
class of cosmologies that we shall consider here.

In order to choose a suitable class of cosmologies to study,
we proceed as follows: _ |

a) We first demand that the cosmologies be sPatialiy homo-
geneous. This maneuver is Justifiable observationally due to the
overall homogeﬁei‘cy of the luminous matter In our Universe and due
to the spatial homogeneity implied by the extreme isotropy of the
2.7 % cosmic microwave radiatioﬁ. This demand is philosophically
appealing since it implies that—we do not occupy a unigue position in
our Universe. The most important Justification for this limitation,
however, is that it allows us to avoid the well-known mathematical
difficulties inherent in inhomogeneous cosmologies.

b) Spatial homogeneity implies that space-time consists of
a family of space-like hypersurfaces. These hypersurfaces define a
"cosmic time”. All “observers™ within a givezi hypersurface see exactly
the same surrmmdiﬁgs. This means that the hypersurfaces must admit
transitive groups 61’ motions. From Saunders (1967) we see that this

symmetry restriction implies that we need only consider three- and
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four-parameter isometry groups. These iscmetry groups consist essen-
tially of two kinds. The four-parameter groups admitting no simply
transitive subgroups have been studied extensively by Oszvath (1962),
Doroshkevich (1965), Xantowski and Sachs (1966), and Thorne (1965,
1967). We shall not comsider these cosmologies further here. Bianchi
(1918) and Behr (see Estabrook, Wahlquist, and Behr 1968) have given
equivalent classifications of the three-parameter simply transitive
groups in three-space. There are nine slgebraically inequivalent
types of such groups, and they are designated Bianchi Type I through
IX. The structure constants of these nine distinct Lie groups may
be found in the works of Bianchi (1918), Taub (1951), and Petrov
(1961). Hereafter we shall consider only'thése Bianchi Type cosmol-
ogies.

¢) Within the context of the Bianchi classification, the
generalizations of the "closéq", "rlat",‘ and "open" Lemaitre médels.
are cosmologies of Bianchi Type IX, I, and V, respectively. In order
to most closely mimic the pfesent behavior of the Lemaitre models we
shall restrict ourselves to these three Bianchi types.

d) In § I.C. we saw that the observational data do not yet
permit us to conclude whether our Universe is best described by the
"elosed”, "flat", or "open" Lemaitre model. Hence, Bianchi Type
I, V, and IX cosmologies are all equally valid candidates for considera-~

tion. We finally choose Blanchi Type I as the basis of our investiga-
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tion on the grounds of mathematical simplicity. This simpllcity is
best illustrated by the “flat" Lemaltre solution of equation (I.C.13).
In the investigation which follows we shall see that this choice is,
indeed, a good one.

In the remainder of this section (§ IT.A.) we will consider
the general properties of Bianchl Type I cosmologies. In general,

the Riemannian metric of space~time is:

ase = g, & a’ . (II.A.1)

According to Taub (1951) and Heckmann and Schiicking (1962), spatial
homogeneity means that there is a three-parameter, simply transitive
group of motions operating upon minimim invafiant varieties which are
thrée-dimensional spacelike hypersurfaces. FEisenhart (1626) and Taub
(1951) show that these invariépt hypersurfaces are geodesically
parallel, and that they define a "eosmic time" via a hypersurface-
orthogonal timelike cangruence of geodesics. Then from the Appendix
of Heckmann and Schilcking (1962), we see that the metric can be put

into the form:

as® = at® - gyy (=) axt axd . (II.A.2)

Here the gij are thé coefficients of a positive definite quadratic
form, since our convention is that the metric of equation (II.A.l)

has signature =~ 2. Taub (1951) and Heckmann and Schilcking (1962)
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show that we can always make the decomposition:
' my & , ki b,k
&3 5 (x ) 7ab(t) e; ™) e'j (x™) s (11.A.3)

where the ei (xk) are determined by the group of motions (isometries),
and where the evolution of the 7ab(t) is governed by the Einstein
field equations.

The isametry group of Bianchi Type I is the three-parameter
group of translations in Euclidean three-space. It is an Abelian
group, and hence, all of its structure constants are zero. Bianchi
(1918) demonstrated that the invariant hypersurfaces then have zero
curvature ("flat" space), and that we can always choose> e?_ = 6?
[see also Heckmann and Schiicking 1962 7. Tﬁerefore, the most general
Bianchi Type I metric may be written as:

asf = atd - 755(%) axtaxd (TT.A.4)
where 713.(1;) is a symmetric, 3 X 3 matrix.

The Einsteih field equations (with vanishing cosmological

constant) are:

G, = R, - (1/2) g, R = B Tw (II.A.s)
where GLW is the Einstein tensor, Rw is the contracted Riemann tensor,
and C(.‘w is the material stress-energy tensor. Equation (II.A.5) may

be inverted to give the form:
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Ry = 8r [rr“v - (1/2) €,y 7] . (II.A.6)

For the most general Bianchi Type I metric of equation (II.A.4), a
full set of field eguations is the following [see, e.g., equations
(11-A=2.52) and (11-A~2.53) of Heckmann and Schiicking 1962; also

equations (99.10) through (99.12) of Landau and Lifshitz 19627:
B Ty = Goo = (WBNLGH 7 0% - AT AT F1 ) (amaa =)
8 Toy = oy = © -, (I1.A.7.0)

Brlr, -(1/2)g; 5 T = Ryy = = (1/2)[Fyy = Ty ™Sy + (/207 751

(I1.A.7.¢)

where a dot renotes differentiation with respect to proper time, t.

According to equation (II.A.7.b) there can be absolutely no energy

flow relative to the particular coordinates[ef., equation (IT.A.4)7] of

& Bianchi Type I cosmology.

The coordinate system of equation (II.A.4) is in part
arbitrary. Consider a particular moment of time, to.' On the hyper-
surface t = to we can choose our space coordinates to be a set of

Cartesian coordinates measuring proper distance, 80 that:

7ild| (to) = ailjt _— | ' (II~A-8)
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We can then examine the time rate of change of the metric, ii':j' (to),
in this coordinate system. By & pure rotation of space axes on the

hypersurface t = to we can bring 71.3, into the diagonal forml:
';i!.-j! (to) = ii’i’ (to) 61!3! (no Sum) . l (IIvog)

A complete set of initial value date for Einstelin's fileld equations
(II.A.T) on this hypersurface will be T, Ty1410 and '7"1,1,. These
data are constrained by the initial value equation (II.A.7.a), but are
otherwise arbitrary. The evolution of the metric coefficienté as one
moves off the hypersurface t = to is determined by the initial value

data and by the dynamical equations (II.A.7.C.):

‘7'i5 ('co'). -lGﬁ[Tij + (1/2)_71 jT] + 7im7mk7kj - (1/2)7i57m%m. (II.4.10)
In § II.D. we v;ill be working with cosmological models .

filled with perfect fluid, for whigh the stress-energy tensor is:

‘I'(o;l'g) = (p + p).ud,lﬁ - pgaﬁ‘ ‘o (IT.A.11)

Lihis follows from the fact that 7, p (t), and hence '}’ia. (t), are
symmetric matrices. Symmetric matrices always have three orthogonal

principal axes.
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Hexre u

a is the covarlant four-velocity of the perfect fluid in tThe

coordinate system of equaetion (II.A.ht), and p is the total density
of mass-energy and p is the isotropic pressure of the fluid as
measured in the proper reference frame of the fluid. Fbr a perfect
fluid, energy flow is absent[ef., equation (II.A.7.b)] if and only if

the fluid is at rest in the coordinate system of equation (II.A.hL):

u; =0 =0, uo=uo=l . (II.A.12)

Note that we have made the normalization, u."‘u“l = 1, here. Therefore,

for Bianchi Type I cosmologies filled with perfect fluid we must have:

T(gg)n p(t) s T((I;'g)g o, T(iPFj')z p(‘t) 713 (II.A.ls)

For the perfect fluid of eguation (II.A.13), equation (II.A.10) reads
. : ' K e '
iy (8) == 8 (o= p) 75y + 7im7mk7kj - (1/2)r 7 0y (I1.A14)

It is easy to verify that the initial data of equations (II.A.8) s
(I1.A.9), and (II.A.13) guerantee ~-- via equation (II.A.1%) =--- that
71 3 and 75 i will remain diagonal for all time. Hence, for any

perfect-fluid cosmology of Bianchi Type I the metric can always be

put into the diagonal form

as® = at® - [A3(t) & + BO(t) & ;ca(-t) ] , (II.A.15)
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and the stress-energy tensor takes the form

0 0 i i
‘l‘o=p(t) s Tjno , Tj=-p(t)6‘_j . (I1.A.16)

™ & II.E. we will examine cosmologies of Bianchi Type I with
a source-free cosmological magnetic field present, along with perfect

fluid. Mexwell's equations for such & sourceless magnetic field and

any associated electric fields read:

;B = F ;B =0 ) '. (II.A.l?)

where #IB and *igﬁ are the electromagnetic fiei& tensor and its dual.
In the most general Bianchi Type I metric [equation (II.A.4)] these
equations become expressions for the conservation of electric and
magnetic flux through a given coordinate region:
P 3
-1/2 2 -1/2, 1/2 a0
7R MR - RGN (o

. y, (II.A.18.a)
MR AR e RPN (o

’

or equivalently

A2 530 _gd .

constant throughout all spacetime

.(II.A.18.b)
censtant throughout all spacetime

1/2 *

F'jo

v = BJa

Here 7 is the determinant of 7ij(t)' The stress-energy tensor for
this electromagnetic field has components
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b 1B o (7, /en 15" + 5T ,  (I1.A.19.a)

-1/2 m

byt T(EM) -y €orm3 £lg ,  (II.A.19.b)

. T(EM) = 0 Ty + (2) 72, 17 [ 4B, (11eAu19ec)

where ea576 is the completely antisymmetric symbol w:rhh 60123 = + 1.
IT both perfect fluid and electromagnetic field are present, then

equation (II.A.7.b) implies that the sum of their energy flows must

vanish: ’

(EM) (BF) _ +1/2,-1 PR -
T 05 * T 03 (lyw €0 3 EB + (p +p) Uy 0 « (I1.A.20)
This will generally be impossible unless the two energy flows vanish
individually, since the time dependence of the two will generally be

((1;1;) leads again to the fluid beinz at

different. Vanishing of T
rest [cf. » equation (II.A.12)] in the coordinate system of equation
(II.A.4). Vanishing of T(gg) forces the electric and magnetic

fields === via equation (II.A.19b) === to0 be parallela:

2The energy flow in equation (II.A.19.b) is the Poynting vedtbr,
(EM )(t ) « E X Be ‘This vector cross-product vanishes only when

either E or B vanishes or when E is parallel to B.
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gl =ws' , 1 = constant. (IT.A.21)

From equafionsv(IIuA.l9) we can easily verify that the trace of the
electromagnetic stress-energy tensor always vanishes identically,
T(EM) = 0. Now the dynamical equations for 745 (t) [ef., equation

(1I1.A.10)7] read:
9. .(8) = = 8e(p = D)7ss + (87,7 = 27..7,)7 H(1 + 12)BlED
id ij i2'jm ii’im

* 7im7mk‘}k3 - 3/ 2)7137@71:::: | .(II;A.22)
The initial value equation (II.A.7.a) places no constraint upon either
the magnitude or the direction of the magnetic field at time t = to.
If the magnetic field [and hence, from equation (II.A.21), also the
electric field] happens to lie along one of the coordinate axes
[i.e., principal axes of 7ij 3 i.e., . hprincipal shear directions"

(see below)] at time to’ then Vi will be diagonal at time to, and

J
equation (II.A.22) will guarantee that 7350 713, and 713 always

remain diagonal. But, if the magnetic field is not along a principal

shear axis at time t , then Vij(to) will not be diagonal, and it will

be impossible to diagonalize the metric [as in equation (IT.A.15)1

for all tinme.

We shall henceforth take the electric field to be zero

for all time:
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E= O 5 (IT.4.23)

since no large-scale cosmic electric field could exist in the early,
ionized stage of our Universe. For the sake of simplicity, we shall
confine our attention in the remainder of this thesis io cosnic
magnetic fields aligned along a shear axis. Hence, 7ij(t) will
alwaeys be diagonal, and the metric will always assume the standard
diagonal form of equation (II.A.15). No other investigatibn of
anisotropic Bianchi Type I cosmologies to date has been more general
than this;

As a consequence of our analysis (above), we have restricted

‘ourselves o the consideration of the diagonal Bianchi Type I mebtric:
as® = at® - [A%(s) @f + F(t) af + P(t) a2®] . (II.A2k)

In general, the streamlines of the motion of a cosmic fluid are
charecterized kinematically by their "expension" (@), "shear" (auv)’

and "rotation" (wuv); defined by:

8 = (1/3) u*
.

Oy = (1/?) (uu;v * uv;u) -9 (SMV ) upuv) 5". (I1.4.25)

w“v = (1/2) (uuiv - uVSH)
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From equations (II.A.12) and (II.A.2hk) we immediately find:

[A] = 0

v s (II.A.26.2)

and
@ = (1/3) [(4/A) + (B/B) + (¢/C)] . (I1.A.26.b)

Hence, all cosmic "rotation” vanishes, and the cosmic "expansion”is
just the average Hubble expansion rate of our cosmologies. The “shear”
tensor, which represents the expansion anisotropies, is readiiy found

to have anly the mixed, physical, spatial components:

o) ) = (1/3) 2 (4/8) - (/) - (§/0)]

.c<y)(y)=<1/s> [ - (A/a) +2 (3/8) - ({/)] % . (zr.a.27)

o) 4y = (/) [ (4/a) - (B/8) +2 (/)] |
Therefore, we see that our coordinate axés (x, ¥, 2z) are the principal
axes of the fluid "shear" tensor.

In the diagonal Bianchi Type I metric of eguation (IT.A.24)

the Einstein field equations

(TS VA TR H
G, =R -_(1/2) RS = O T v (II.A.28)

become:
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ab + ac +be = B:tToo

(B+é)+b2+c2+bc =81\:Tll _
' ' S . (I1.A.29)
(é+é)+a2+c2+ac =8¢T22 |

(& +B)+a2+b2+ab = 8“'.12"53

/
Here we dencte the Hubble expansion rates in the (x,y,z) directions

bys

(a, b, ¢) = (i/a, B/B, ¢/c) ,  (II.A.30)

and 'I.'O‘5 is the stress~-energy tensor of the comoving material content
| of our cosmology. The Einstein tensor satiéfies the contracted

Bianchi identities

¢* =0 . (II.A.31)

From equations (II.A.28) and (II.A.31) we readily see that only three
of equations (II.A;29) are independent, if we guarantee ab initio

that the material content of ocur cosmologies satisfies the equations

Sthis ¢ is & variable, the Hubble expeansion rate along the z-axis.

Recall that we are using geometrized units, in which the speed of

light is set equal to unity.
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of motion (conservation equations):
™ =0 . (II.A.32)

The dynamical evolution of our cosmologies is completely determined
when we specify the components of T”v as functions of A, B, and C,
with the constraint of equation (II.A.32). In § II.C. below we shall -
examine some of the general properties of equations (II.A.29) in
greater detail.

There are two inﬁeresting sub~cases of our Bianchi Type I
cosmologies. The axially-symmetric case arises when we assume that
the z-axis is a symmetry axis and set A = B for all time. Then we
mast have Tll = ‘Iaa , and the system of equations in equation (II.A.29)

reduces to:

Y
a2 +2ac = 8x Too
(8 + &) + e +c® vac = 8n Tll o (IT.4.33)
28"+38.2 n&fTss
/

Note that only two of these equations are independent, if équation
(IT.A.32) is satisfied already by the stress-energy temsor. In § II.B.
below we shall see that this sub-case has already been studied
extensively. The second interesting sub-case is’the isotropic limit.

In this case we set A = B = C = R(t) for &1l time, and there is no
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preferred direction (i.e., no anisotropy). Thence, we must have
Tll = Tg2 = T33, and the dynamical evolution is governed by the
Friedmann~like equation: '

®/R)° = (&nf3) 1°, (II.A.5k)

and by the conservation equation (II.A.SE), Note that we have gotten
back to the 'flat" isotropic metric of equation (I.C.21), and that all
of our considerations there concerning "flat" models are applicable

here also.
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II.B. PREVICUS WORK ON BIANCEI TYPE I COSMOLCGIES

A greal deal of research ~-- most of it very recent ~-- has
been done on Bianchi Type I cosmologies. In order to have an over~
view of the context of our work here, I shall now give a synopsis of
the previous work in this field. A brief statement on terminology
is in order, however, before I begia.

The most general anisotropic Bianchi Type I metric is

as® = at® - gij(t)dxi. ad . (I1.B.1)

When there is no a piiori preferred direction this metric may always

be written in the diagonal form
Cas® = at® - [A%(1) &° ¢ (et ¢ F(8)af] . (II.B.2)

When A = B for all time, we have the axisymmelric case

2 )
as? = at® - [A2(t) (@ + ay®) + B(t)az2] ,  (II.B.4)

with the z-axis being the axis of symmetry. The limiting isotropic

case occurs when A = B = C = R(t) for all time:

as® = at® - Ra_(t) (dx2 + dya + dze) , (I1.B.%)

and there is no longer any spatial anisotropy.
The material content of any cosmology is specified by its

stress-energy tensor Tuv. We shall only be concerned with diagenal
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stress-energy tensors in the comdving reference frame here. A PERFECT~
FIUID is characterized by Too =P, Tll = T?Q = TSS = -~ p. The perfect

fluid has a barotropic equation of state (see Zel'dovich 1961) if
P=7P (0<rxl) . (II.B.5)

The most important ceses of equation (II.B.5) are called DUST (y = 0),
RADIATION (7 = 1/3), and ZEL'DOVICH (7 = 1). The stress-energy tensor
for a uniform comoving magnétic field, of energy-density pb, aligned
along the z-axis is.characterized by Too = 'I‘s3 = pb, Tll = Teé = - pb.
We call this the MAGNETIC case. Finally, when T = O we have the
VACUUM cese.

The previous investigatiqna of Bianchi Type I cosmologies are
the following:
1) THE ISOTROPIC CASE

TheAdiscussion and references cited in § I.C. above give
adequate coverage of this case.
2) THE AXISYMMETRIC CASE

(a) Rosen (196k4) gave the general solution for the FURE-
MAGNETIC case. '

(b) In s comparison of the Newtonian and Einstenian formula-
tions of cosmology Zel'doviéh (1964) gave the general solutiﬁn for the
DUST case, and he described the singularity behavior of this solution.

(¢) KXompaneets and Chernov (1964) gave the general solution
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for the DUST case, and they discussed the singularity behavior of the
RADIATION case. They also found the general solution when the material

content consists solely of isentropic gas with the equation of state

p=Mn+kat *® |, paskat *® (II.B.6)

Here M and K are constants, n is the number density of the gas
particles, and & is the "isentropic index" (a constant parameter).
(d) Zel'dovich (1965b) mentioned this metric in & qualitative
discussion of universal primordial magnetic fields.
(e) Doroshkevich (1965) proved that all PERFECT-FLUID-MAGNETIC
cagses have an initial physical singularity end that all those with
7 < 1 become isotropic ags t » co. He gave the general solutions for
the DUST case and for the ﬁADIATION case, and described their singu-
larity behavior in detail. He presented the general solutions for
the ZEL'DOVICH case and for the DUST-MAGNETIC case. Finally, he
solved the ZEL'DOVICH-MAGNETIC case (leaving the time dependence in
the form of én integral), and he investigated in detail:the singularity
behavior of the RADIATION-MAGNETIC case. In a second paper,
Doroshkevich (1966) studied the evolution of density perturbations
in the DUST, RADIATION, and ZEL'DOVICH solutions of his first paper.
(f) Hawking and Tayler (1966) mentioned some of the singu-
larity properties of this metric in their brief discussion of the

effects of expansion anisotropies upon primordial element formation
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in the big-bang fireball.

(g) Shikin (1966) solved the DUST-MAGNETIC case. In a later
paper (Shikin 1967) he gave the general solution to the RADIATION case,
and he described some of the properties of the RADIATION-MAGNETIC
case.

(h) Saunders (1967) used the DUST solution in his numerical
evaluation of the current luminosity distance-redshift and source
count-redshift relations in this metrie.

(i) Thorne (1967) gave the general solutions for the DUST
case, for the RADIATION case, and for the DUST-MAGNETIC case. He
found the singularity behavior of all of the PERFECT-FLUID-MAGNETIC
caées. He constructed semi-realistic cosmolpgical models of our
Universe (with vanishing magnetic field) by smoothly joining an
earlier RADIATION solution to a later DUST solution at the point
where P, = Py- Finally, in these semi-realistic models he investigated
the effects of anisotropic expansion upon primordial element formation
and upon the isotropy of the observed 2.7 °K cosmic microwave
radiation.

(3) Ellis (1967) mentioned the DUST solution, both with and
without the cosmological constant A.

(k) Tomita (1968) described the singularity behavior of
the DUST case, and used the DUST solution in his numericel evaluation

of the current apparent magnitude-redshift end number count-redshift
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relations in this metric.
(1) Stewart and Ellis (1968) have found the general solution
for the PERFECT-FLUID cases in this metric.
3) THE GENERAT, ANTSOTROPIC CASE
| (a) We will first consider the VACUUM.case. The general

solution was first given by Kasner (1921) in the form

as? = at? - [tPfaf + %y 4+ PRa?] (II.B.7)
with
f+m+n=f +me 4o =1 . (I1.3.8)

It appears that this solution was independently rederived later by
Narlikar and Karmarkar (1946), Taub (1951), and Lifshitz énd
Khalatnikov (1960). This VACUUM solution was given --- and attributed
to Kasner --- by Petrov (1961), Dautecourt, Papapetrou, and Treder
(1962), ILifshitz and Khalatnikov (1963a,b), Doroshkevich, Zel'dovich,
and Novikov (1967), eand Misner (1968). Lifshitz and Khalatnikov
(1960, 1963a,b) used Kasner's solution in an investigation of the
singularities of Einstein's field equations. They gave the useful

parameterization
(1,mn) = [-s, 8(1 +5), 1L +sl/(1 +5 +s°) , (I.B.9)

with the range of the parameter s being 0 <s < 1. Doroshkevich

et al. (1967) employed the solution in a study of the behavior of
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non-interacting particles (neutrinos and gravitons) in anisotropic
cosmologies. Finally, Ellis and‘MacCallum (1968) gave the general
VACUUM solutions in the case with a cosmological constant, and they
attributed the A = O solution to Kasner.

(b) Raychaudhuri (1958) gave the general DUST solution in
the general anisotropic metric of equation (II.B.1).

(¢) The diagonal DUST solution, which is equivalent to
Raychaudhuri's (1958) solution, was first found by Schilcking and
Heckmenn (1958). [See also Heckmann and Schiicking 1962.] They
claimed that the DUST solutions with a cosmological constant (A) were
also easy to obtain, but they didn't give these solutions nor did they
give references to where these solutions might be found.

(d) Robinson (1961) independently found the general DUST
solution. He described how it behaves near the initial physical
singuwlarity and how it becomes isotropic as t + oo.

(e) Rosen (1962) gave the general solution in the PURE-
MAGNETIC case and also (equivalently) in the case with a uniform
comoving electric field aligned along the z~axis.

(f) Zel'dovich (1965c) mentioned the DUST solution of
Schlicking and Heckmann (1958) while discussing.the inapplicability
of Newtonian cosmolégy near the physical singularity in anisotropic
cosmologies,

(g) Crishchuk (1967) obtained the general anisotropic
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‘Bianchi Type I metric of equation (II.B.l) and gave references to a
few of its knéwn solutions while analyzing a new criterion for spatial
homogeneity in cosmology.

(h) Saunders (1967) derived the general DUST solutions in
the case with a cosmological constant, and he atiributed the A =0
solution to Heckmann and Schiicking (1962). He also analyzed the
singularity behavior of these DUST solutions, and he made some brief
comments on the priﬁordial helium abundanée, the 2.7 OK cosmic micro-
wave radiation, and the.DUST-plus-RADIATION case in Bianchi Type I
cosmologies.

(i) Doroshkevich et al. (1967) gave the general solution
. (leaving the time dependence in the form of an integral) for the case

where the stress-energy tensor is characterized by TO = -TS = P,

[

Tll = T22 = O« [This stress~energy tensor corresponds 4o non~interact-
ing, massless particles (gravitons, neutrinos, or photons) all moving
in the z-direction.] ~They also mentioned a case where the metric
coefficients exhibit damped sinusoidal oscillations (see below).

(§) Ellis and MacCallum (1968) derived the Friedmann-like
'éqnation and the metric-dependence of the mass-density p in the case
of a PERFECT-FLUID with the barotropic equation of state [equation
(II.B.5)]. They also gave the general DUST solutions for the cases

with & cosmological constant (A % 0).

(k) Misner (1967, 1968) has given the most complete analysis
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_.to date of the general anisotropic Bianchi Type I cosmologies. He
referred to the solutions of Heckmann and Schiicking (1962) and Thorne
(1967). He considered the following subjects: .the stress-energy
tensor for collisionless particles, the temperature anisotropy of the
photon gas, a Lagrangian for the anisotropy with the anisotropy
"energy" being deriveable from a potential, and the effects of viscous _
stresses. Finally, he gave solutions for the following general cases
(and constructed heuristic models from these solutions): anisctropic
expansion with isotropic stresses, the viscous demping of anisotropy
(using neutrino viscosity in an electron-positron gas), small aniso-
tropy in a RADIATION dominated cosmology (this is where the metric
coefficients exhibit damped sinusoidal oscillations), large anisotropy
in general, and small anisotropy in a DUST dominated cosmology. He
used his results to predict an upper limit to the temperature aniso-
tropy of the 2.7 % cosmic microwave radiation.

(1) Jacobs (1968, 1969) has also studied anisotropic Bianchi
Type I cosmologies in great detail. In § II.D. below I shall give
an expanded version of Jacobs' (1968) work, while in § II.E. the
same will be done with Jacobs' (1969) work. The meat of this thesis
is contained in these Lwo papers.

In the first paper, Jacobs (1968) found the general solution
of the PERFECT-FLUE case with the barotropic equation of state

[equation (II.B.5)]. He used this soclution to construct semi-realistic
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cosmological models of our Universe, and in these models he investi-
gated in detail the effects of expansion anisotropy upon the following:
the evoluticnary history of our Universe , primordial element produc-
tion, and the possible temperature anisotropy of the observed 2.7 %k
cosmic microwave radiation.

The second paper (Jacobs 1969) dealt with the PERFECT-FLUID-
MAGNETIC case in the diagonal metric of equation (II.B.2). Solutions
were obtained for the FURE-MAGNETIC, ZEL'DOVICH~MAGNETIC, HARD~MAGNETIC
(axially-symmetric), and DUST-MAGNETIC (axially-symmetric) subcases.
The singularity behavior of all PERFECT-FLUID-MAGNETIC cases was found,
and all unsolved subcases were "solved" by numerical inﬁegration.
Finally, the effects of a uniform, comoving, primordial msgnetie field
upon primordial element formation and upon the isotropy of the 2.7 OK

cosmic microwave radiation were briefly considered.
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II.C. SOME USEFUL FRELIMINARY RESULTS IN BIANCHI TYPE I COSMOLOGIES

We begin our analysis of anisotropic cosmology by deriving
several interesting preliminary results in Bianchi Type II cosmologies.
These results are collected together in this section either because
of their specialized interest or because of their general, and
prefatory, nature. We will first consider some of the general
properties of the field equations (II.A .29). Then we will derive
the stress-energy tensor for any non-interacting gas of messless
boson or fermion particles (including the degenerate cases) in the
diagonal metric of eguation (II.B.2), and we will use it to study
| oscillatory damping of anisobropy by non-interacting paz'ticies. This
analysis supplements the work of Doroshkevich, Zel'dovich, and
Novikov (1967) and Misner (1968). Finally, we shall present a more
exact analysis of Misner's (1968) work on the damping of snisotropy
by neutrino viscosity. |
1) GENERAL PROPERTIES OF BIANCHI TYPE I COSMOLOGIES

Let us consider the diagonal metric of equation (II.B.2).
We shall be using this metric almost exclusively later. 1In § II.A.
we found that the comoving observer in this metric sees "expansion"
and "sheé.r", but neo "rc.a'bation". - If we constrﬁct a Hubble expansion

matrix from eq_uatioh (I1.A.30):



a 0 0
| Hij = ° b 0 (1,3 = 1,2,3), (II.C.1)
0 0 c

we see that the "expansion" is just the average of a,b, and ¢ or
@ = (1/3) Trace(Hij) = (a+b+c)/3 . (1IT.C.2)

The "shear" is essentislly the traceless part of Hy;- It has the

mixed, physical components:

2a~b-¢ 0 0
(1)
gy = Hij - ®8ij = (1/3) 0 2b-a~c 0 . (1I.C.3)
0 | 0 2c¢-a~b

With our diagornal metric, the Einstein field equations (II.A.28) lead

to equations (II.A.29). We want to consider equations (II.A.29) in
greater detail here.

Let us define a "volume" scale factor V by

V = ABC | [ (IIQCO)'I‘)
It has the properties that:
(V/V) = (a+b+c) = Trace(Hij) = 30 , (1IT.C.5)

and when V + O we must encounter a physical singularity. By a rather

straightforward manipulation of equations (II.A.29) and (II.C.5)
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we find:
V = bxv [2T°° + Trace(T" )] . (I1.C.6)

For any physically'reasonable stress-energy tensor T“V'the right~hand
side of equation (II.C.6) is non-negativel. Therefore, since scale
factors are nén-negative by definition, equation (II.C.6) implies an
initial physical singularity (V = 0) for any expanding Bianchi Type I
cosmology .

If the components of the stress-energy tensor, T“v, in our
coordinate system [equation (II.B.2)] depend only upon V (as is the
case for a perfectlfluid with a barotropic equation of state), we may
immediately find V(%) By solving the non-linear, second-order differen-
tial equation (II.C.6). It is this property which will guide us to
the general solution of the FERFECT~FLUID case in a later section.
This property is also the keystone to our understanding.of primordial
element production in Bianchi Type I PERFECT-FLUID cosmologies, since

the only dynamical quantity needed for this problem is (V/V).

lFor a perfect fluid at rest in our coordinate system we have

ZTQO + Trace(T“v)‘w 3(p-p), So the causality condition p < p guarantees
that the right-hand side of equation (II.C.6) is non-negative. For

an arbitrary electromagnetic field it follows from the positive-

definiteness of the energy-density and the characteristic'zero trace.
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Let us now consider the consequences of specific symmetry

properties of the components of the stress-energy tensor, T“v, in

our coordinate system. In most of our later work we have Tl = T2 -

1 2
If this is the case, equations (II.A.29) immediately have the first
integral:

(a - b) V = constant . (xz.c.7)

are equal, a similar first integral

If any two of Tll, T? s &and T35

is obtained. When we have

3
'.T.‘ll = 1‘22 =T, | , (1I1.C.8)

only two independent first integrals result since:

(a = b) V=c, = constant s

1

(a=¢e) Ve ¢, = another constant -, ) (II.C.9)

(b=c)V=c, = ¢y = ¢

S 1 *

Similarly, if TV, = - T°

1 o’ Ve obtain the first integral

(a + ¢) V = constant . (11.C.10)

We can easily see that only two independent first'integrals result if

two or more of T1 3 ng, and 'I‘s3 are equal to - To

1 0°

The inverse situation is also true. Symmetry restrictions

imposed upon the metric constrain the stress-energy tensor (and, in
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some cases, the equation of state). For example, if A = B for all

time (the axisymmetric case) we must have Tll = T22.

stringent limitation imposed by the metric occurs when A = B = ¢ for

The most

all time (the iéotfopic ¢ase). Then we must have Tll = T22 = Tss.
This limitation would guarantee the absence of large-scale magnetic
fields. |

Whenever equations (II.A.29) admit two first integrals of
the form of equation (II.C.7) and/ér equation (II.C.10), we find that
only one more general condition is needed in order to immediaf.ely
reduce the problem of equations (II.A.29) to quadratures. This final
condition, which we will meet again in a later section, is that the
quantity (V’2 Too) --- by virtue of the particular form of TOO ~~= be
a function of only one of the variables A, B, C, or V. Most of the
general salutions which we obtain bel'cw, follow from this préperty of
equations (II.A.29). | |

In the diagonal Bianchi Type I metric of equation (1I.8.2),

the equations of motion (II.A.32) reduce to a single equation:

W 1 -
= T FTEA T I‘“VT“)\.

0 1
0,0 " 10

0o .1 o .2 3 o 3.
=T (7 o~T 1) + rzao (T o-T 2) + T2, (T o~T 3) S (II.Cc.11)

105 + A/a)(20p-1)) + (3/3)(2°1%,) + (S/e)(x0py)
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Using equations (II.A.30) and (II.C.5) we can write equation (II.C.11)

in the convenient form:
(v1%,) - (e, + b7, + 1% ) V=0 (II.C.12)
o l 2 3 } - . L] L ]

When our stress-energy tensor is that of a perfect fluid [see equation

(1.C.3)], equation (IT.C.12) reduces to the familiar form:
d(pV) + p AV = 0 . (11.C.13)

Equation (II.C.12) is the final general property of our Bianchi Type I
cosmologies that we shall consider here.

2) THE STRESS~ENERGY TENSOR FOR NON-INTERACTING PARTICLES AND
OSCILLATORY DAMPING OF ANISOTROFY

In this sub-section we shall derive some new, and interesting,
results in Bianchi Type I cosmologies. In the diagonal metric of
equation (II.B.2) we will study the forh of the stress-energy tensor
for gases consisting of one type of boson or fermion. The particles
of the gas will be massless, and we shall consider both the degenerate
and non-degenerate cases, In particular, we shall investigate the
evolution of the form of the stress-energy tensor for a gas of masse
less particles initially in thermal equilibrium, which then decouples
from its surroundings‘(when its intergction cross-section with its
surroundings becomes sufficiently small) to become freely-propagating
and non-interacting. We shall also examine the effect of the

resultant anisotropies in the stress-energy tensor on the anisotropic
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expansion of the cosmological model.

A thorough understanding of the "classical" statistical
mechanics of boson and fermion gases is a necessary prerequisite to
the study of statistical mechanics in general relativity theory, since
we will be dealing with local --- as opposed to global --- gas
properties. Such an understanding is provided by the works of Morse
(1962), Kubo (1965), Chiu (1967), and the references cited therein.
The transition to general relativistic statistical mechanics is
adequately covered in the works of Tauber and Weinberg (1961),
Chernikov (1962a,b,c, 1963), Bardeen (1965), Vignon (1966), and
Lindquist (1966). Here we shall only consider the general relativis-
tic case.

In the diagonal metric of equation (II.B.2) the metric tensor

is:
1 0 o - 0
- 2
g, = o ~A~(t) 0 0
H ‘ 5 . (II.C.14)
0 0 -B~(t) 0
o 0 0 -Cz(t)’
The contravariant four-momentum of a gas particle is

# =, FF, R, (II.C.15)

end it is related to the covariant four-momentum by



T2
e
By = gaﬁrﬁ = gy,F (no sum) e (II.C.lS)
The stress-energy tensor is defined as:
b ne P P 1/2 -1 .. 1.2 .3
™ = [T NG, 7)) PR, (-8)7T ()T apt aF® aF  ,  (T1.C.7)

where N(xa, ﬁa) is the scalar distribution function in relativistic
phase space, and g 1is the determinant of g“v. The number-density of

gas particles is given by:

n = [ a6%, @) (B2 et o o ,  (I1.0.18)
(3)

. Note that equation (II.C.l%4) implies (--g)J'/2 = (-(3)g)l/2 =V

where g is the determinant of the space part of the metric tensor,

gij
here.
We are considering only massless particles (photons, neutrincs,

and gravitons) here. The generalization to massive particles is

completely straightforward, but it eventually leads to complicated

mathematical expressibns and it is also not of great cosmological

interest. TFor massless particles we know that
PP o (mass)® |
&up = (mass)” =0 s (11.C.19)
which implies

P o[t « BFR)R « (PR, (I1.¢.20)

We know, however, that the contravariant physical components of the
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four-momentum are:

1/2 £ (no sum)

P o | gy |

(IT.¢.21)

Therefore, we can introduce spherical coordinates (PO, 0, ¢) into the

four-momentum phase space, so that:

O 3
P sino© cos ¢

]

p(1) o ap?

P(2)==BP2=POsinesincp > .

P(s) = CP3 = PO cos ©

/

Then we see that equation (II.C.20) is satisfied identically.

calculate the transformation Jacobian, we find that:

2 -
dPl aF ar = vt (Po)2 arP ag

where V = ABC as before and the angular element is

aQ = sin © do dap

(1I.C.22)

When we

(I1.C.23)

(Ir.c.2k4)

Let us first consider the case of thermal equilibrium. Here

the characteristic interaction time of ocur massless pé.rticles is much

shorter than the dynamical expansion time of our cosmological model.

The scalar distribution function is given by

2

units.

Note that Boltzmann's constant, k, is equal to one in our geometrized
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N, = (in=3) { exp[(Pp/T) - p) 2}t , (1I.C.25)

where the (+, -) sign denotes (fermions, bosons), respectively. Here
; is the multiplicity of spin states of our particles (E = 1 for
neutrinos and for anti-neutrinos; L =2 for photons and gravitons),

h is Planck's constant, D is the degeneracy parameter of the gas,
and T is the thermodynamic temperature of the gas. Chiu (1967)

shows that D vanishes for massless bosons, and that D is a constant
during the adiabatic expansion of a massless fermion gas (the case
under consideration heré). In Appendix A we show how equations
(1I.C.17), (II.C.18), (II.C.23), and (IX.C.25) 1lead to the thermal

equilibrium properties:
n (#) = (min™®) 7 ) ()
%y (#) = i) ¢ £3) ()

, L, (IX.C.26)
T (2) = T, (2) = T (2) = - (1/3) 1% (®)

™ (2) =0 (u#v)
where
fz(i) (D) = j? <A+ [exp(x-D) % l]°l ax . (II.C.é7)
o _

We see that the thermal equilibrium configuration of massless particles

is a perfect fluid with the equation of state p = p/3.
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Let us recall that D = O for massless bosons. In Appendix
B we investigate the properfies of equation (II.C.27). From the
results of Appendix B we find the following forms of equation (II.C.26)
for massless bosons (photons or gravitons) and for non-degenerate
(D = 0) massless fermions (neutrinos and anti-neutrinos):

PHOTONS OR GRAVITONS

[16x072¢(3)] T°

=]
]

po= T° = arT L, . (IT.c.28)

p = - Tii (no sum) = p/3 = (a/3) T

NON~-DEGENERATE NEUTRINOS OR ANTI-NEUTRINCS

n = (3/8) [16a~3¢(5)] T°

o = (7/16) & T | > - (1I.C.29)

p = p/3=(7/48)a 1" )

Here a = (an/lShS) is the Stefan-Boltzmann constant, and {(Z) is the

Riemann zeta-function defined by the series:

@ -t
)=z k . (II.0.30)

k=l
The above results are fairly well-known (see Chiu 1967). We

will now proceed intoalmost virgin territory and consider the effects
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upon equétions (II.C.26) when the massless particles decouple from
their surroundings. These particles then become non-interacting, and
they experience adiabatic expansion while propagating freely in the
metric of equation (II.B.2). Thorne (1967) briefly considered such
'a situation for photons during an analysis of the temperature isotropy .
of the cbserved 2.7 °K cosmic microwave radiation. Doroshkevich et al.
(1967) considered the effects of anisotropic expansion upon the stress-
energy tensor of neutrinos and anti-neutrinos in such a situation in
Bianchi Type I cosmologies. Finally, Misner (1968) has analyzed this
situation in great detail, in é manner which is complementary to our
present analysis.

Let us first assume that our gas of massless particles is in
thermal equilibrium (see above). We idealize the decoupling of the
gas from its surroundings by specifying that total decoupling occurs
at the time to. In the remeinder of this discussion the subscript
zero (o) will denote the value of a quantity at the time of decoupling.
For t > to the gae is wholly non-interacting, end Licuville's theorem
implies that (N,) [see equation (II.C.25)] is a constant throughout
all phase space and for all time. The degeneracy parameter, D, is
also a constant since we are assuming adiabatic expansion. Therefore
[ef. equation (II.C;25)], as the eﬁergy (Pp) of a particle is red-
- shifted, the temperature which characterizes the distribution function

in jts neighborhood is also redshifted by the same amount:



7
(PO/T) = constant - (II.C.31a)

or equivalently, the redshift factor for a particular particle is equsl

to

0,,0v
P/(P),

i

¢ = (2/1) . (II.C.31b)

in neighborhood of particle

The evolution of the form of the stress-energy tensor depends only upon
the function §, which we now determine. From equation (II.C.20) we .

have:

(PO)Q = [(APl)‘:"; + (BPa)i + (CPs)i 1/2 , (I1.C.32)

but we know that P Ib, and P% are constants of the motion in our

l)
Bianchi Type I cosmologies. Therefore, we have:

(AP]‘)Q = - (p/A), = - (pl/Ao) = (&/a) (aft) (II.C.33)

and similarly for (BI?)0 and (CPS)O. Using equations (II.C.22) and

(I1.C.32) we quickly find that:

. 2 . . 2 2 ,-1/2
A sin © cos B sin 6 sin C cos @
;(g,q;)g[ ( A (P} + = B x (P s} ) H
o] 0. o)
' (Ir.c.34)

where (9, @) characterize the direction of motioﬁ of the particle in
whose neighborhood the redshift{ factor { is measured. From equation
(II.C.34), we see that the characteristic teﬁperature of our.gas is
direction-dependent. Thorne (1966) arrives at essentially the same

conclusion by a somewhat different means. Note that, when
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A =3B =C=R for all time (the isotropic case), we have

T« RT , (11.C.35)

the weli-kncwn standard behavior of the temperéture.

Using equations (II.C.SlS) and (II.C.3%) and the method of
Appendix A, we can calculate the components of the stress-energy
tensor at a time ¢ > to after decoupling of the gas parbticles from
each other and from their surroundings. The calculation is identicalﬁ

to that of Appendix A except that the angular integrations aie

altered:

2
n =n [(u«)‘l [ap | sin o a g3(o,q>)] , (I1.C.36)
(o (o]

2x =
"o | ()™ [ap [ sin 0 as c“(o,cp)]

=
L

(T

1

3 2 o - b 7
T = (T 1)o (3/4) [ cosp do [ sin” 6 a6 {(6,9)
be 0 0 -

L, (IT.C.37)

. o -
TEE (Tga)o (3/1&‘) j' sinch d,:p f sin 0 do ¢ (G,(P)
. (o]

-l

+3
L

2x T -
5 (Tss)o {(S/hn) g do g 0052 © sin 0 A0 QH(G,Q)_

T“v -0 (e 7 v) . (II1.c.38)

The vanishing of all off-diagonal terms in the stress~energy tensor

again follaws from the fact that there is an odd function of angle in
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one of the angular integrals in each case [see egquations (A.9) and
~(II.C..'SI»)]. Note that in the isotropic case (A = B = C) we ance
again recover equations (II.C.26) and (TT.C.27). Therefore, in the
isotropic case, our gases behave exactly as they would in thermal
equilibrium, even though the gas particles are completely decoupled
from each other and from their surroundings.

Let us now simplify cur notation by setting

& = (aA), B = (8/B), X = c/c)) - (II.€.39)

and
@ ,Q %o
n o= nj Jgr T = (T o‘)0 Ty (no sum) . (1T.C.40)

The J's are angular integrals over (©,¢9) resulting in functions of
(&, B, x). Only Jo cen be evaluated in terms of elementary runctions

in the general case. This is accomplished as follows:

Iy = (14,:)'1 fj' aql(&@ sin © cos cp)2 + (B sin @ sin cp)2 + (X cos 9)2]'5/2
a . :
2 1 ?
-0 T a | ax (ae) + Ble) £T2
o o
(II.C.%1)

whexe we have A(9) = (O cos cp)2 + (f sin cp)2 and B(9) = ;(a - A(p), and

we have made the change of variable x = cos 6. The integral over =x



80
(dummy variable) is standards, giving us:
- 2“:
Iy = (2xX) 1 5 do [ cos® ¢ + 32 sin’ m]’l . {(1T.C.h2)
o .
The integral over ¢ is also standardh, and our final result is:

Iy = 1&521'1 = (Vo/V) s (II.C.L43)

where V is the "volume" scale factor of equation (II.C.%4). This result
. tells us the cbviocus fact that the number-density of particles, n, is
inversely proportional to the volume factor V (conservation of-
particles).

We can regdily see that the qxz‘s can be expressed in terms
of elliptic functions, Sut such a reduction serves only to obscure
their properties. The most useful form for the qxz's is an integral
form. By using the known integrals [equations (S7a) and (58¢c) an

page 102 of Grobner and Hofreiter 19507]:

/2
J/ dx (a.a cosgx , 10 s.m2 x) 2 . X (a2 + b2)/1+_ %> » ab> 0, (IT.C.Lk4)
A _

and

-3/2 12

51t is [ ax(a + Bxg-) = (x/A) (A + Eca)'

n/2
Y1t 1 J/ a9 (& cos® ¢ + B su® o)™t = (n/2/3B]).
o :
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x/2
J/ ax(A cosox + B sinex)(aacosax F B2 sinax)-aa n'(JBa.2 + Ab2)/1+ asbs, ab>0,
o

(II.C.L5)

we can straightforwardly reduce the Joa's to the beautiful form:

&2+52) l (1 + &) dx ‘

00 " |\ 55585 : [+ B2 (L + 62) TR

(1L - xa) dx
[ + er)s(l + G:ce)]l/2

OC—p - .

3
J, o= =
o ()

{ . (II.C.146)

R T Q- ax

22 " 23| o [(1+ R +ex) PR

- 3G + B° ?: X (1 + B2) ax

33 25553 ¢ Taard@ e )T

Here we use the functions

o () 2 e |

Qi
Wi X

& g

Note that in the isotropic case (A = B = C = R) all of the Joo 'S are

=

(II.C.47)

equal to (RO/R)h.
Equation (II.C.46) is especially useful for studying various

asymptotic limits of the Jm's. For example, a violent relative
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contraction along the z-axis for t >t _ implies that X < <& or B.
The integrals in equations (II.C.L6) can then be expanded using the

binomial expansion, and integrated term by term. In this limit we

find:
I =3 dgg 5 Jpq = Jpy =0 . (11.C.48)
This means that
0 s - 70 T o~ T m 0 (II.C.k9)
3" "0 ? 12 ¢ ’ - e

which is exactly the form of the stress-energy tensor considered by
Doroshkevich et al. (1967) (see § II.B.) in the Bianchi Type I cosmology
characterized by the diagonal metric of equation (II.B.2). They found

the general solution for this case:

. (ke_ 1) ]
Bt [0 TR () an
G+x)  G-x -
(4,B,¢) =[A, n° - , B, 7 » Ce 1 exp(n)] L
«(II.C.50)
0 ( 3 S
8 T = [ty 7 exp(n)]
-l2<k<+1l/2 , 0<nN<ow

/

Here t,, A,, By, and C, are constants, k 1is a parameter, and 7 is
the independent vafiable. We note here that the integral for the

time-dependence of ‘equation (II.C.S50) can be evaluated approximately
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‘in the following fashion:
2 1 )
(K - F)
fn exp(n) dn

i

(t/ty)

ka-%a»z)

0 (
zz (/¢ ) J‘ 1 an

2 3
K +3) ® !
= 'q( oy e , . (II.C.51)
| t=o | £:[(2 +1) + (¥~ 7)]

2

(x° - %) 00 n(l + 1)

& - )
Mo B [exp(n) - 1]

)
Our approximation here consists in setting [(k? - %)/(2 + 1)] equal
to zero, and it is justified by the fact that O < <1/,

The general solution of equation (II.C.50) shows that the
ehormous pressure - Tss = TOO along the z-axis converts an initial
rapid contraction along the z-axis into a very rapid expansion along -
the z-axis, while affecting the initial expansion in the x - and
¥y - directions vefy little. This implies that the stress-energy

tensor has the limiting form of equation (II.C.49) for only a short
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period of time, and that the solution of equation (II.C.50) is valid
only during this short epoch. After this epoch, we find.a violent
expansion along the z-axis, but only a‘very mild expansion along the
x- and y- axes. For a time we must once again consider the general
behavior of the stress-energy tensor indicated in equations (II.C.46)
and (II.C.47). Eventually, however, the violent z-expansioﬁ leads to
ancther, different limiting form of the stress-energy tensor. We shall
study this second limiting form, and its effect upon the metric, in
detail below. '

In the general case, equations (II.C.46) and (IT.C.47) can-
not be evaluated in terms of‘_ elementary functions. Such an evaluation
can, however, be accomplished in the axisymmetric case (e.g., A = B).

Then & = B for all time, and we have
-
E=F=0Gg= (XQ) -1 . (11.¢.52)

When X <&, we set r = |X/&] and obtain:

1/2 -1

1/2 (1+ )1/2-!- (1~ )l/2
Joo = 2542 (1-%) (1-17) 2, 2 ’ (1;)1/2-. (1_:)1/2 l
3 ' 1/2 : (l+r)l/2+ (1..1-)1/2
= 1- .
= { 12 (L1 )3/2 ] () o } (l+r)l/2- (l-r)l/2
Ip1 = Jpp = (3 3y - Ig3)/2 (II.C.53)
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The behavior of equations (II.C.53) as a function of r is illustrated

in Figure 5. When r =1 we are at t = to, and the thermal equilibrium

results of equations (II.C.26) and (II.C.27) hold. AS r + O, the
relative contraction along the z-axis leads to the stress-energy

tensor of equation (II.C.49).. When X > @&, we set s = |G/X| and obtain:

00

' 2.1/2
J.n = (2 &4)-1 s (1_32)-1/2 arctan [ il:igliﬁ— } + 50

2 | 2 2 7
3z = { —.—Eé_-s_—é—. 1 {s (1-52)-1/2 arctan [Qi-t{.. t - 321
L , -

J
- s
2a ' (1-s") | 4 J

Jpy =9pp = (3 Joo = Jss)/2 (II.C.54)

The behavior of equations (II.C.54k) versus s is displayed in Figure k4.

L]

At s =1(t = to) we have thermal equilibrium.- As s + o there is
expansion along the z~axis relative to the x-~ and y- axes, and the
pressure in the z-direction becomes less than that in the x- and
y— directions.

For an extremely violent expansion along the z-axis relative
to the x- and y- axes, equations (II.C.54) and (II.C.40) have the
asymptotic form: Tll = Tga a - (1/2) TOO, 'l"s5 ~ 0. Tet us here
consider a stress-energy tenéor of this asymptotic form in the diagonal

metric of equation (II.B.2). In Appendix C we show how the Einstein

field equations (II.A.29) and the conservation equation (IT.C.12)
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FIGURE 3
The dependence of the stress-energy tensor on the anisotropic
expénsion parameter r for a gas of non-interacting massless particles
in an axisymmetric (e.g., A = B) Bianchi Type I cosmology. Here we
have contraction along the z-axis _relaiive to the x- and y- axes. The

1). The sub-

gas decouples from thermal equilibrium at t =t (r
sequent anisotropic expansion is parameterized by r = (CAO/ACO), and
the changing stress-energy tensor is deseribed by Taa = (Taa) o ‘oo
(no sum). As the anisotropic expansion increases (r + 0), the metric
pumps energy into the TS3 component, until we reach the limit:

Tzs RS- Too, T‘-j':L = '.[‘22 = 0. Tn this limiting state our gas consists
of only two beams of partiéles, one flowing in the z- direction and

the other (with identical properties) flowing in the minus z- directiom.
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FIGURE &

The dependence of 'the stress~energy tensor on the anisotropic
expansion parameter s for a gas of non-interacting massless particles
in an aiisymmetric (e.g., A = B) Bianchi Type I cosmology. In this
case, there is expansion along the z- axis relative to the x- and
y- axes. Tne ges decouples from thermel cauilibrium at t = to (s =1).
The subsequent anisotropic expansion is parameterized by s = (ACO/CAO) y
and Taa = (Taa) o Yoo (no sum). As the snisotropy becomes more extreme
(s +~ 0), the metric depletes the energy in T33 and distributes equal
quantities of energy to Tll and T22. In the limiting case, essentially
all of the gas energy resides in particles moving in directions that

1 2 3

lie in the x-y plane, and we have: T, =T, = - (1/2) Too, T", =~ O.
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may be solved in this case. The solution, which is new so far as I

know, can be written in the form:

N

(&/A,, B/B,, €/Cy) = {f exp[-(3-K)n], £ exp(-(1+k)n], exp(n)}

)
(t/t,) = | # exp(-n) dn

5«(I1.C.55)
0 ) 3
O =-21 =27, =0 , T =0
8rp = (‘t:_)(_2 f‘s)ml exp(2n) ‘
where
f=4n (l+k2) exp[(l+k2)l/2n} {1-n exp[(l+k2)l/2"'l]}-2
»(II.C.56)

x = [(a2)Y2 | (1aB)2P

and
cl<k<+l , 0<n< @)Y (i) . (mm.c.s7)

Note that the axisymmétric case (e.g., A = B for all time), the only
case for which the assumption Tll = T2 2 is reasonable when the stress-
energy is due to non-interacting particles, occurs when k = 0. In
this case, fhe remaining integral in equation (II.C.55) is readily

evaluated, and we find the behavior:

A=3B «'t2/5 , C o (constant) - (another constant) t'l/s .

(11.0.58)
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This axisymmetric solution [equation (II.C.58)7 was previously found
by Doroshkevich et al. (1967). Equations (II.C.55) through (II.C.58)
imply that the lack of pressure along the z-direction causes the
initial rapid relative expansion in the z-~direction to quickly slow

down (approaching a state with no expansion in the z-direction),

while the slower expansion in the x- and y~ directions continues. As
a result, the consition T, < < T, is soon viclated, and the solution
of equations (II.C.55) through (II.C.58) soon loses its validity.
Once.again, we must consider the general behavior of the stress-energy
tensor indicated in equations (II.C.46) and (II.C.47).

From the analysis abofe, we can see that the dynamical effects
peculiar to non-interacting massless particles are the following: The
VACUUM metric of Kasner (1921) induces a stress-energy tensor of the
form of equation (II.C.k9). The stressf energy then reacts upon the
metric [see equation (II.C.50)7] to generate a stress-energy tensor of

the form:

1 2 o .3
Tlmmaw-(l/a)To,Tswo . - (II.C.59)

This stress-energy [equation (II.C.59)] generates the metric

behavior of equations (IT.C.55) through (II.C.58), and leads again to
a stress-energy tensor of the form of equation (II.C.49). Doroshkevich
et al. (1967) were the first to demonstrate this oscillatory behavior

of both the stress-energy and the anisotropy; They also showed-that
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.the anisotropy is damped by the expansion of the cosmology. Subse-

quently'Misner (1967, 1968) found that there is oscillatory damping

of the anisotropy in general Bianchi Type I cosmologies containing

both RADIATION and non-interacting massless particles. When the
anisotropy is "small" compared to the mass-energy of both the RADIATION
and the non-interacting massless particles, Misner (1967, 1968) showed

that {with giéa = R(t) exp[Bij(t)]}:

R(t) « M2

3 | (11.C.60)
Byy(8) = £ san0® m (8/8,)]

vhere K and t, are constants. Equation (II.C.60) explicitly shows the
oscillatory damping of the anisotropy.

Here I summarize 'the above analysis. We began by briefly
reviewing the statistical mechanics of a gas of massless particles
in thermal equilibrium in general relativity theory. We considered
both the non-degenerete and degenerate cases. Then we analyzed, in
detail, the metric dependence of the stress-energy tensor for.a non-
interacting gas of massless particles.in & Bianchi Type I cosmology.
To closely mimic the actual physical situation, we let a gas in thermal
equilibrium decouple completely from its surroundings at a time to,
and we studied the subsequent evolution of the form of its étress-
energy tensor. We mentioned the analysis of Doroshkevich et al.

(1967) in one limiting case, derived a new general anisotropic
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-solution to the field cequations in another limiting case, and pre-
sented our own evaluation of the stress-energy tensor in the axi-
symmetric case (e.g., A = B). Finally, we studied the dynamical
effects peculiar to nan-interacting particles in anisotropic Rianchi
Type I cosmologies. In particular, we considered the oscillatory
_damping of anisotropy (previously discussed by Doroshkevich et al.
1967 and Misner 1967, 1968). Our results here are directly applicable
to the decoupling of gravitons, neutrinos and anti-neutrinos (at

0%° %K), and photons (at T ~ 3000 °K). We did not consider gases

T=1
of massive particles because they retain a thermal equilibrium stress-
energy tensor until T < 3000 OK, and the effects of expansion aniso-

tropies upon their stress-energy are extremely small alter that.
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3) VISCOUS DAMPING OF ANISOTROFY

In the previous subsection we studied the general metric
dependence of the components of the stress-energy tensor for massless
particles which decouple from their surroundings and become freely-
propagating in Bianchi Type I cqsmologies. When we étudy anisotropic
cosmological models of our Universe in §§ II.D. and II.E., we will
neglect all of the dynamical effects peculiar to non-interacting mass-
less particles. In this subsection our objectives are threefold: (1)
To summarize end critize the present state of knowledge concerning the
dynamical effects of non-interacting massless particles in Bianchi
Type I cosmological models. (2) To derive some new results which
refine Misner's (1987, 1968) analysis of the wviscous damping of aniso-
tropy. (3) To justify, as far.as is possible, our neglect of the
peculiar dynamical effects of non-interacting massless particles in
our anisotropic Bianchi Type I cosmological models in 8§ IT.D. and
IT.E.

At equation (II.C.6) we saw that all Bianchi Type I cosmol-
ogies encounter an initial physical singularity --- i.e., they have
& hot, big~bang beginning. Near the singularity, Lifshitz and
Khalatnikov (1960, 1963a,b) have shown that the.dynamical effects of
the anisotropy dominéte those of the material conteat, and that
Kasner's (1921) VACUUM solution [equations (II.B.7) and (II.B.8)1

holds. Very near the singularity the temperatﬁre is high enough



(T > > 102 %

)} that all particles are in thermal equilibrium -=-- i.e.,
they behave like perfect fluids. The thermal egquilibrium of all
massive particles and photons is maintained by the strong and electro-
magnetic interactions until the photon temperature falls below 3000 °K.
For T < 3000 %k the observed temperature isotropy of the 2.7 %% cosmic
| microwave radiation implies that the anisotropic stresses of all
massive particles and photons are negligible. Gravitons and neutrinos,
which participate oniy in weak interactions, are the only particle

10 OK)

species which can decoupie near the singularity (when T > 10
where large expension anisotropies exist. Therefore, we must consider
the possibility bf large anisotropic stresses due to non-interacting
gravitons and neutrinos. |

Let us now summarize and eritize all investigations to date
of the dynamical effects of non-interacting gravitons and neutrinos
in anisotropic Bianchi Type I coamologies:

. {(a) The decoupling of gravitons has been mentioned by
Doroshkevich et al. (1967) and Matzner (1967a), but no serious investi-
gation of the anisotropic stresses of a free graviton gas in an
anisotropic cosmology has yet_been undertaken. The bhySical state of
our Universe at the time that gravitons decoupled and the processes
by which they decoupie are both very uncertain at present. Due to

this uncertainty, we choose here to simply assume that the dynamical

effects of free gravitons are always negligiblé. Let us remember,
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however, the distinct possibility that free gravitons might dominate
the dynamics in the early stages of anisotropic cosmologies. Let us
also remark that, in analogy to the neutrino viscosity considered

below, & gravitcon viscosity which eliminates most of the expansion

anisotropies at the time of graviton decoupling is also a likely
possibility!

(b) There is a general consensus of opinion on the properties
of the decoupling of muon-neutrinocs (vu). The v“ decouple at approxi-
mately the same temperature that the ui pairs recombine (T = TI.O:IJg °K).
This decoupling of the Yy has been considered by Doroshkevich et al.
(1967) and Misner (1968). The possibility of neutrino viscosity (see
below) does not arise here, since the pi pairs necessary for (p vu)
weak interactions disappear rapidly due to recombination, Anisctropic
stresses now begin to develop in the vu gas due to the large expansion
anisotropies near the initial singularity. The subsequent evolution
of these anisotropic vu stresses and of the Bianchi Type I ¢osmologies
depends critically upon the processes which occur during the decoupling

L op _ 3010 %, poroshkevich

of the electron-neutrinos (ve) at T =~ 10
et al. (1967), who neglect the possibility of Vo viscosity, say that
the anisotropic stresses induced in the neutrinc gases have very
important dynamical éffects upon the subsequent evolution of these

anisotropic cosmologies. However, Misner (1967, 1968), who first

introduced the concept of v_ viscosity, argues that the dynamical
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effects of anisotropic Vu stresses cannot manifest themselves before
'~ they are eliminated by the v_ viscosity (see below).

(c) We see that the evolution of anisotropic Bianchi Type I
cosmologies for T < lOlO % depends critically upon the physical pro-
cesses occuring dur.ing Ve decoupling. If there exists no reasonably
efficient mechanism for damping out expansion anisotropies at
T> lolo OK, then we must accept the conclusion of Doroshkevich et al.
(1967) that the anisotropic v stresses will dominate the dynamics
long after T = lO:Lo oK. ‘These anisotropic v satrcsscs (as we 'sa.w in
the previocus subsection) cause enormous oscillations of the expansion
factors (A, B, C), and these oscillations are damped onl& by the
general adiabatic expansion of these cosmologies. The two most impore
tant consequences of such oscillations are: (1) Primordial element
formation at T ~ 10° % - 105 % is quite different from the results
found in ¢ II.D. and in ﬁhe "standard" isotropic cosmological models.
(2) The primordial neutrinos which exist today will probably have a
highly anisotropic momentum distribution (i.e., they will probably
exist in high-energy beams).

Misner (1967, 1968), however, has shown that a v, viscosity
arises. during the decoupling of the Ve at T = .'I.Ol:L % - lOIO ). He
argues that this viséosity will damp out most of the expansion éniso-

tropy in this epoch,’and that the anisotropic neutrino stresses which

are generated after Ve decoupling will have very smell dynamical effects.
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[Misner's work was subsequently extended to anisotropic Bianchi Type V

and IX cosmologies by Matzner 1967b.] We will (below) derive same new

results which refine Misner's analysis of Ve viscosity, but first we

must critize the analyses of Doroshkevich et al. (1967), Misner (1967,
1968), and Matzner (1967b). The fesults of Doroshkevich et al. cannot

| be strictly correct, since they neglected the anisotropy-damping

effects of Ve viscosity. The investigation of Matzner is also incorrect,

since he apparently assumed cosmologies containing only Ve aeutrinos

during Ve decoupling while neglecting the other particle specieé which

exist at T > lOlO OK. Misner greatly overestimated the damping effects

of Ve viscosity in his approximate solution of the damping of aniso-
tropy (see below). The true situation following Ve decoupling must be
the following: Expansion anisotropies have been substantially reduced
by the vé viscosity, but enough expansion anisotropy probably remainsA
to generate non-negligible anisotropic neutrino stresses.

Tn §§ IT.D. and II.E. we will construct anisotropic Bianchi
Type I cosmological models of our Universe in which we neglect all of
the poSsible dynamical effects of anisotropic neutrino stresses when
T <10 %K. oOur conclusions above and our analysis below indicate
that these models are & poor representation of ﬁhe actual situation
in the interval 10° K < T g 10™0 %K, but that they are an adequate

representation when T < 109 °K (where primordial element formation

begins). In other words, the Ve viscosity places limits upon the
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amount of expansion anisotropy with which our models may begin at
T = lOlo °K, and it reduces the dynamical effécts of anisctropic
neutrino stresses to the point where they can reasonably be neglected
for T < 107 %K.

 Let us now consider the damping of expansion anisotropies by
| v, Viscosity in Blanchi Type I cosmologies. We begin by giving an
abbreviated version of Misner's'(l968) analysis. Misner began by
1]l o

~assuming thermal equilibrium for T > 10 X, so that the diagonal

Bianchi Type I metric of equation (II.B.2) holds. Hec made the change

of variables:

(4, B, C) = R(t) exp(B;, By, Py) , (II.C.6l.a)
with

By (£) + By(%) * Bz(t) =0 . (II.C.61.b)

Here R(t) represents the "mean expansion", and Bi(t) the "anisotropic
expansion", of these cosmologies. Then the Friedmann-like field equa-

tion (II.A.29)

ab +ac +be = BrI® (I1.D.62)

O 2
takes the form:

(#/R)° = (8x/3) [1°, + p,] . (11.C.63)

Here we have defined the "anisotropy energy-dehsity", P, which represents
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the "kinetic energy of shear” by:

. ‘ 3, )
Py = (161:)":L z Bf
i=1
= (L) [(2a-b-c)® + (2b-a-c)® + (2c-a-b)°] L . (II.C.64)

= (480)F [(a-d) + (a=c)® + (b-c)®]

Proceeding in this fashion, Misner derives the remaining Einstein field

equations and the conservation equation. When there is Vo viscbsity

0

and pa >>T 0

his equations are:

L}

(&/R)® = (8x/3) o, , (II.C.65.8)

- 16an(t) (éiﬁz) (i =1,2,3) , (II.C.65.b)

—~~
Do
[ N
=+
w
~
[
n

) = -z (t) (o,5)

(II.C.65.¢)

-

-2 _

+

(paRé)' R =0 . (II.C.65.4d)

Here 07 is the energy-density of all important thermalized particle
species present (electron-neutrinos, et pairs, and photons). The Ve
viscosity coefficient is n(t), and the Ve viscosity is due to small
anisotropic Ve stresses as the Ve begin to decouple. ZEquation (II.C.65.d)
shows that the wviscous damping of anisotropy transfers energy'from Py, to

Py Equation (II.C.65.d4) is where Matzner assumed incorrectly that

only the neutrinos experience viscous heating. In actuality, all of
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the thermalized particle species are heated by the viscous damping,
but only the energy-density of the ve(pv) contribﬁtes to the value of
n(t).

In equations (II.C.65), n(t) = (4/15) p t_ is the coefficient
_ of Ve viséosity. Here tc is the mean collision time for all important
weak interaction (e ve) processeé. From equation (II.C.29) and

Matzner (1967b) we have:

=
(it

(4/15) b,

(4/15) [(7/8) 3T"] [o(1.22) bsar®/ex*TL L . (11.0.66)

i

(0.84) ¢, "1~
Here we have set

t, = (om)h = (g °rPn)t . (II.C.67)

c

In equations (II.C.66) and (II.C.67) a is the Stefan-Boltzmann constant;
n is the number density of electrons and positrons, ¢ is the (V~A)'
weak interaction cross-gection for all important (e ve) processes, and
Gy = 2 X 10°° is the dimensicnless weak coupling constant in our
geometrized units. Equation (II.C.66) is valid only so long as the
collision time is shbrt compared with the expansion time of our cosmol-
ogies, t < (ﬁ/R)-l'[n = O when tc(ﬁ/R) > 1], and only so long as the |

; _
e palrs have not recombined. In equation (II.C.66) we have also
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assumed that the viscous heating is sufficiently slow so that
o, &R and Py = R".6.
In order to solve equations (II.C.65) and (II.C.66), Misner

made the approximation:

5 sec™t s (I1.C.68)

=
]

n, = constant = Lk x 107

where the value of 1 follows from equation (II.C.66) at the point
where tc(ﬁ/R) ~ 0.5, Using the arbitrariness of coordinates in general
relativity theory to place the initial singularity (R = O) at t = 0,

and to normalize to R = 1 as t -+ 0o, the solution to equations (II.C.65)

becoues :
RS_ = [1 - exp(~t/7)] » (I1.C.69.a)
By = E M [1 -~ gxp(-t/r)] (i = 1,2,3) - » (II.C.69.0)
paR6 = (2h«12)"l exp(-at/w)kl » (II.C.69.c)
o R = (o Ry ot (16:5) 0 - exp(-t/)T°(5 + wxp(-t/)]

(II.C.69.4)

Here T = (l6xno)'l 2 4.8 seconds is the viscous-damping time constant,
and the Ei are constant parameters satisfying:
S 3 2

z Ei =0 , = E° =2/3 . (1I.0.70)
i=1 i=1
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This solution [equations (II.C.69) and (II.C.70)7] is valid until

Py > Pge Note thatp7 = p, when t = 7/8, while tc(ﬁ/R) < 1 until
t > 7. |
When Py, > Py and tc(ﬁ/R) < 1, Misner finds:
)
R = tl/2
> e (IIOC.?l)
paR6 ~ exp(-2t/7)
Hence,

pa'continues to decrease rapidly while the v, viscosity persists.

The v, are completely decoupled when tc(ﬁ/R) > 1. Misner

finds that this occurs when t = T and T & 2 X lO10 OK. Non-negligible

anisotropic neutrino stresses now begin to appear due to the expansion

anisotropies which remain. As we previously mentioned in equation

(I1.¢.60), Misner now finds the behavior:

A o .
R ﬁtl/a |

8, = gLk sin[K® In (t) + constant] (i = 1,2,3) b,(II.C.72)

paRS ~ constant

where X is a constant of order one. Hence, the anisotropic neutrino

stresses cause small-amplitude damped oscillations of the expansion

factors (A, B, C) about their average behavior. The effects of these

oécillations become negligible soon after T =-lO10 oK.



1ok

Let us now carry out a somewhat more refined analysis of the
effects of Vo viscosity, and obtain some new results which give us a
more realistic picture of the viscous damping of expansion anisotropies
in Bianchi Type I cosmologies. We will use the form of the viscosity

coefficient given by equation (II.C.66):

nert R . (II.C.73)

Although equation (II.C.73) is not strictly correct during Ve decoupling,

it is a much better approximation than n = constant, and it is étrietly
correct before decoupling becomes significant. Misner's approximation

(n = constant) greatly overestimates the viscosity as T - ® (R > 0).

We shall write equation (II.C.73) as

n(t) = nR(%) , ; (II.C.7H)

where 1, is a constant [determined at the point where tc(ﬁ/R) =1 7.
‘When 1(t) # 0 and Py > Too, we must solve equations (II.C.65)

and (IL.C.T%). From equations (IL.C.65.c) and (IL.C.T4) we have:
(8,/p,) + 6(R/R) = - Z2nn,R x (II.¢.75)
Using equation (II.C.65.a) in. equation (II.C.75) gives:
(PR)" = - 1600, 3°% . (II.C.76)

Now let R be our independent variable, so that:
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2eva _ 2 2. :
(R°R)" = R [4&(R"R)/dR] . (I1.C.77)
We can now immediately integrate equation (I1.C.76) to finds:
16xn,t = fn [(1+R)/(1-R)] - 2 arctan (R) . (11.C.78)

‘In equation (II.C.78) we have used the arbitrariness of coordinates in
general relativity theory to place the initial singularity (R = 0) at
t = 0, and to normalize to R = 1 as t + w. Using equation (II.C.78)
we can easily solve equations (II.C.75), (II.C.65.b), and (II.C.65.d),

and we obtain:

B;(t) = Dy tn R(t) (1 =1,2,3) (II.C.79.a)
paR6 = 6rmo (1-R)? , (II.C.79.b)
ple* = (pYR)*)R:O + thniRa(IS-Rh) - (I1.D.79.¢)

Here the Di‘ are constant parameters satisfying:

5 3,

£ D,=0 , I D=6 . (II.C.80)
. i R i

i= . i=1

SWe use the integral on page 21 of Grobner and Hofreiter (19%9):

j;x?(l-kh)-ldx = (1/4) {m [(1+)/(1~x] - 2 arctan (x)}.
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Equations (II.C.79) end (II.C.80) represent our new, more
realistic, results for the viscous damping of anisotropy when 7 # 0

and p, >p,. From this solution, we find that p, = p, when '

tc(ﬁ/R) = 1. Therefore, expansion anisotropies are not negligible

when the v become completely decocupled. Misner's numerical solution

‘when 1 = 0 [i.e., tc(é/R) >1] and o >0 [see Figure 2 of Misner

1968 ] now shows that anisotropic neutrino stresses are important in

10 o >T > 107 %, However, when T < 10° °k, we have

the inteival 10
pa < pv and equations (II.C.TE) hold. Hence, the expension facfors
(4, B, C) exhibit small-amplitude damped oscillations about their
average behavior, and the oscillaﬁions become negligible soon after
? = 107 OK. We are, therefore, justified in neglecting the dynamical
effects of anisotropic neutrino stresses when T < lO9 k.

To compare equations (II.C.79) and (II.C.80) with the approxi-
mate solution of Misner when p_ > R, [equations (II.C.69) and (II.C.70)],
we must determine 7 . We find that n = N when tc(f{/R) = 1; but

R ~ 3/b4 when tc(ﬁ/R) ~ 1. Therefore, equation (II.C.74) implies

e = (4/3) ng «  (1I.C.81)

We also note that T = 2 X _1010 OK

when tc(ﬁ/R) =~ 1. Comparing our
solution with Misner's approximate solution, we find that R(t) is
practically the same in both cases. The behavior of (paRs) and

(oy/oa), however, is quite different in the two cases. In Figure S
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FICURE 5

The viscous decay of the "anisotropy energy-density” (i.e.,
the magnitude of the shear) with time in Bianchi Type I cosmologies.
Here T = (16;rfxo)"l = 4.8 seconds is the characteristic viscous-damping
time constant. When there is no neutrino viscosity (n = 0), the
dashed line shows that p, « 3'6. When n # O there are two cases.
The solid line is from Misner (1968), who made the approximation
n=n, = constant. The starred line is the new result derived in
this thesis, where we have used the more physical behavior n(t)‘ = R(t).

The wiggly vertical lines indicate the point where p_ = Py (see Figure

7
6). When e, >0, these viscous solutions are no longer valid.
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we plot (DaRs)/(oaR6)R=O versus (t/T), where T = (l6nno)-l = 4.8 seconds,
for the following three cases: (1) no v, Viscosity (n(x) =01,

(2) Misner's approximate solution [n(t) = 0, = constant], and (3) our
more realistic solution [n(t) = n R(t) a:(h/S)'noR(t)]. When n(t) = O,
we have the well-known behavior, Py = R“s. When 1 # 0, we see that

p, decays much raster than R's. In Misner's case (7 = constant) we
see that the effect of Ve viscosity is greatly overestimated as we
approach the singularity, while in our case here (7n « R) we see the
more physically reasonable behavior caused by 4 -~ O as R » 0. " In
Figure 6 we show the viscous heating of 97 due to the damping of Py
In this figure we have assumed the extreme behavior (p7Rh) + 0 as

R -+ 0'in order to meximize the amount of anisotropy present near the

singularity. When (pth)R=o # 0 we attain p_ = P, for smaller values

7
of R than those shown in Figure 6, and the amount of expansion aniso-
tropy remaining efter Ve decoupling is reduced.

As a result of the analysis of this subsection, I have come
to the following conclusions: (a) The dynémical effects of non-
interacting neutrinos (i.e., anisotropic neutrino stresses and the
damping of expansion anisotropies by neutrino viscosity) must be taken
into account in any realistic anisotropic cosmological model of
Bianchi Type I. (b) The true situation following neutrino decoupling

is intermediate between that envisioned by Doroshkevich et al. (1967)

and that envisioned by Misner (1967, 1968). (c) Neutrino viscosity
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FIGURE 6

The viscous heating of the thermalized matter content (07)
during the viscous damping of the expansion anisotropy (pa) in
Bianchi Type I cosmologies. Here R(t) is the average distance scale
factor (the "mean radius”). The solid curve is from Misner (1968),
‘who uses the approximation 7 = no=constant. Using the more physically
realistic behavior, 1(t) e« R(t), we have derived in this thesis the
new result represented by the starred curve. The wiggly horizontal
lines mark the point where p7 =Py When p7 > Py these viscous‘solu-
tions are no longef valid. Note that we have set (ple})R o=01n
this figure so that we maximize p_ as R ~ 0; when (137,RI+)R=‘O 70 we

a
reach o, = n_ at smaller values of R{an

L P, = Ay
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at T =~ 10lO

OK reduces expansion anisotropies to an essentially
negligible levei by the time that primordial element formation begins
at T =~ 107 °K. (d) The "standard" isotropic cosmological models are
en adequate representation of our Universe for T < 10° o.. (e)
Anisotropic cosmological models of Bianchi Type I which totally neglect
| the effects of non-interacting neutrinos and which are constrained
only by the available present-day observations (i.e., those models
considered in §§ II.ﬁ. and II.E.) are grossly inadequate representa-
tions of the early stages of evolution of our Universe. The soiutions
and models presented in §§ II.D. and II.E. are useful and justifiable.
only because of the mathematical insight they provide us of possible
anisotropic solutions to the Einstein field equations. The Einstein
field equations are so complicated that any new analytical solutions
which we can find --~ and we derive many new solutions in §§ II.D.

and II.E. ==~ are extremely useful in elucidating the structure and

consequences of these equations.
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II. D. THE PERFECT~FLUID MODELS
The primary purpose of this thesis is to gain an understand-
ing of the effects of anisotropic expansion in cosmological models of
our Universe. To facilitate this program we have restricted ourselves
to spatially homogeneous cosmologies of Bianchi Type I (see § II.A.)

with the diagonal metric

ds2 - d'h2 - [Aa(t) dx2 + 132(1-,) dye + cz(t) dz2] « (II.p.1)

We saw in § ITZ.A. that Einstein's field equations constrain a éerfect
fluid to be comoving in this coordinate system. In § II.C. we demon=-
strated why we will neglect the dynamical effects peculiar to non-
interacting massless particles here, once the photon temperature drops
below T = 1010 °K in our models. We now begin our investigatioa of
semi-realisticl Bianchi Type I cosmological models of our Universe

by considering the PERFECT-FLUID case. This work has been published,

in condensed form, in Jacobs (1968).

lSemi-realistic models are those which represent the gross features of

the evolution of our Universe, while neglecting such fine-structure

features as the development of density perturbations into galaxies ,ete,




11k

1) THE GOVERNING EQUATIONS

Let us consider cosmologies containing only a perfect fluid,

characterized by the stress-energy tensor:

it nooo T
1 vy = (p +p)u u, - p el v .

(11.D.2)

Here p is the uniform mass-density and p is the isotropic pressure

of our comoving perfect fluid. In the diagonal Bianchi Type I metric

of equation (II.D.l), the Einstein field equations (II.A.29) now

become:

ab +ac +be = + 8p ’
(v + &) + ba + c2 +be = - &rp s
(& + &) + &2 + E rac = - 8xp s
(& + Bj + 8o+ b2 +ab = - 8xp ,

(II.D;S.a)
(I1.D.3.b)
(II.D.3.c)

(II.D.3.d)

where our notation ;s»the same as that of. equations (II.A.29) and

(II1.4.30). As we remarked at equation (II.C.13), the conservation

equation (II.A.32) for & perfect fluid becomes:

a(pV) + p dV = 0 .

(II.D.4)

Here we will study only perfect fluids with the barotropie equation

of state

p=7 (0<7<1) .

(11.D.5)
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Combining equations (II.D.4) and (II.D.S) we have:

ae/[p(L + 7)] = ~ . av/v , (II.D.6.8)

or

ooy (1¥7) . (II.D.6.b)

Our remarks at equations (II.C.6), (II.C.8), and (II.C.9) show that the
general solution to equations (II.D.S) is now straightforward.

In order to clarify the structure of the system of equations
(11.0.3), (II.D.5), and "(II.D.6), let us make thé. change of

variables

(A(t), B(t), C(t)1=R(t) exp[a(t), B(t), x(t)] (II.D.7.8)
with

a(t) +B(t) +x(t) =0 . (II.D.7.b)

We will call (A, B, C) the "expansion functions”, R the "mean radius",

and (@, B, X) the "anistropy functions". Equations (II.D.7) imply
3
V= ABC = R . (IIODOB)

Finally, we define the two independent anisotropy functions "perpen-

dicular to" and "™in" the x-y plane by:

(Mpo)=(@+p, -8y . (11.D.9)
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It is now straightforward to see that the total system of equaticns

governing the PERFECT-FLUID case becomese:.

3&/R)? - [31F + 6°)/4) = Bro, (R/R,)" 5(1+7) , (I1.D.10.8)

1+ 3(R/R) = 0 ,  (II.D.10.0)
g + 3(R/R)S = 0 . (II.D.10.c)

Here the subscript star '(*) denotes the value of a quantity at some
fixed proper time.

2) THE GENERAL SOLUTION

Equations (II.D.10.b) and (II.D.10.c) immediately imply

(7, SR = (M c’r*)Ri = constants , (II.D.11)

and

(n, o) = I (’hx-’ &*) (R/R,x_)-s dt . (II.D.12)

Substituting equation (II.D.1l) into equation (II.D.10.8) reduces the

entire problem to quadratures:

2'.'L‘his approach was developed independently by Misner (1967, 1968), in

a slightly different context.
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1
[} » - -2
& = [{(8rxo/3) (R/R)" YY) 4 (i + )21 (®/R)TH) a(/R,).
| - (II.D.13)
Using equation (II.D.13) we can write equation (II.D.12) in the form:

(M0) = (M) J(R/R) (8o, /3) (R/R, )™ (1157)

. (II.D.14)
2 2 -y, "2 '
+ [(37 + 0,)/12] (R/R,)™} a(r/R,) .
We now mske some notational simplifications. Let
x = t/7T = normalized time s (II.D.15.2)
where
1
T= (1 + 7)"1 (6rp, )" 2 = time scale 3 (II.D.15.1)
and let
1
- 2
y= E(R/R*)S(l ") 4 ] R (II.D.15.c)
where
f = 3+ 9)/Af (3{& + &i) - 2nisotropy (II.D.15.d)

parameter

Note that Q lies in the range 0 < |0 < c0 . Now our general solution

of equations (II.D.13) and (II.D.l4) becomes:
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' 7/ (1~7))]
@)/ (-1 [ &°- &) & (0<7<1)
X =9 ,(II.D.16.a)
\ (1!.*::)2)'"1/2 (R/R*)3 + constant (7 = 1) '
(%5) %’f;—) in ’%ig + constant (0<7<1)
1,91 </ .(II.D.16.b)
(T‘* a*) L 31(1+€22)-1/2 in (R/R_x_)-&- constant (y = 1)

We note that there are two independent "anisotropy parameters” (ﬁ* and
5*) in our general solution to the PERFECT-FLUID case. When O <7<l
it is much more convenient to replace 'ﬂ* and c'r* by two new anisotropy

parameters, € and v, defined by:

€ = -2 (0< le] < ) s (II.D.17.a)
- ° - - 2
T(a*:ﬁ*:x*) = +l:312—1%7} ~sin(y, v ""'33': 1 +_l;3£)
2
(0<\y<33if)

. (II.D.17.b)
Here the (+) sign is for ¢ :O, respectively. Note thet equations |
(II.D.17) are consistent with equations (II.D.7.b), (II.D.9), and
(II.D.15.d), as indeed they must be. The y - parameterizetion has

the interesting and useful properties:
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sin(y) + sin(y + %?) + sin(y + %?) = 0
sizd (y) + sin?( ¥ +‘%§0 b sin®(y + %}). = 3/2

sin(y) sin(y + 25) + sin(y) sin(y + L) + sin(y + L) sin(y + -%) = - 5/

.(I1.0.18)

Finally, we want to express our general solution in terms of
the original variables. The expansion functions (A, B, C) are found by
combining equations (II.D.7.a), (II.D.9), (II.D.16.b), and (II.D.17).
The result is:

£ o 1
/R )Py 22, e 3(1-7)
ko) | TR FFE 0571
R o g
¥ 2
(R/R*)"' 2lelz (b +€7) - o
| (iz.n.19)

where the upper (lower) sign is for € > (<) 0, respectively, where

and where R is given as a function of time, t, by cquation (Ii.D.lS)
or equivalently (II.D.16.a). We obtain the Hubble expaﬁsion. rates

(a,b,c) from equations (II.A.30), (II.D.16.a), and (II.D.19):
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/e, )37 B2 3 20e |z

(a,b,c) = (o < 7 < 1). (II.D.21)

3
3(1+7)r (BR/R.)
From egualions (II.D.6.b) and (II.D.8) we have the behavior of the

total mass-density:
- 3(1+

We have only to perform the remaining integral in equation (II'.D.16.a)
in order to find R(t), the dependence of the mean radius upon proper
time. We will examine this integral in the next subsection.

Let us consider here some of the properties of cur general
solution to the PERFECT FLUID case., Equation (II.D.22) Sshows that
we alwe.ys have an initial physical singnlarity (R ~ 0). Equations
(II1.D.15.¢c) and (II.D.16.a) indicate that R(t) is a monotonically
increasing function of +t. Equations (II.D.19) and (II.D.21) show
that we have a continuous family of solutions for O < 7 < 1, with
the following properties: (a) The initial singularity is of thé
PANCAKE type (i.e., A~ O, B and C -+ constants, as R -+ 0), when
v =x/6 (¢ >0) and y = x/2 (¢ < 0), while it is of the CIGAR type
(1.4, A> o0, Band ¢ -~ 0, as R » 0), for all other allowed values
of ¢¥. (b) Near the initial singularity, the anisotropy dominates
the dynamics and ‘ché metric asymptotically approaches that of

Kasner's (1921) VACUUM solution [see equations (II.B.7) and (II.B.8)].
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(¢) As R (and t) » o, the solutions become isotropic and asymptot-

ically approach the completely isctropic (€ = O) sclutions, which have

A

]

B= =R e 2/ [3(147) 1 . (II.D.23)

(d) The solutions are axisymmetric (e.g., A = B for all t) when
v =x/6 (¢ »0) and ¥ = x/2 (€ < 0). Hence, axisymmetric cases can
have PANCAKE or CIGAR singularities, while non-axisymmetric cases
always have CIGAR singularities.

When 7 = 1, we already have the complete explicit sdlution
[i.e., no unevaluated integral in equation (II.D.16.a)]. This solution
is quite different from the O < 7 < 1 cases. We shall examine this
case, which we term the ZEL'DOVICH solution, in much greater detail a
little later. Here we will only mention this, that the ZEL'DOVICH
solution does not isotropize as R+ o (t » ), but remains highly
anisotropic even in this limit,
3) SOME PARTICULAR EXAMPLES

In general, the remaining integral in equation (II.D.16.a)
for 0 < 7 <1 cannct be performed cxplicitly (i.e., in terms of
elementary functions). This integral form is, however, admirably
suited to evaluation by numerical integration. Here we will examine
those cases in whicﬁa I have been sble to carry out the integration
analytically. For‘bunately, some of these cases happen to be the cases

of greatest physical interest.
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The DUST solution is characterized by 7 = 0 (i.e., Pqg =0,
where the subscript d denotes DUST). Now the integral of equation
(1I.D.16.a) yields directly:

X + constant =y = [(R/R%)3 + Q2]1/2 . (II.D.2k)

By & simple translation along the time axis, we can express equation

(II.D.24) in the form:

(B/R,) = [xy (x4 + ledl)]l/s , (I1.D.25.a)

where

xg=(t +t a)/" 4 = pormalized time

. (IT.D.25.b)

-1/2

Tq = (61rpd%) = time scale

Here © a is a trivial constant of integration. The expansion functions

(A, B, C) of equation (IX.D.19) become:
(&, B, €) «x /3R 1 e /3D (126
while the Hubble expansion rates (a, b, c¢) take the form:
(a, b, ¢) =[x, + |€d|(l 3—22)]/[37dxd(xd + l_edl)] . (1I.D.27)

In equations (II.D.26) and (II.D.27) ‘the upper (lower) sign is for

€y > (<) 0, and Z is given by equation (II.D.20). Finally, the total

mass~-density is:
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(pg/Pax) = [xglxz + Iedl)]'l . (II.D.28)

The initial physical singularity occurs at x g = 0. This general DUST
solution [equations (II.D.25.b) through (IX.C.28)7] was found previcusly
by Raychaudhuri (1958), Schiicking and Heckmann (1958) [see also
Heckmann and Schiicking (1962)7], and Robinson (1961). This solution
has also been given and discussed recently by Saunders (1967), Ellis
and MacCallum (1968), and Misner (1968). The axisymmetric case

(A = B for all time) has been given and discussed by Zel'dovich (1964,
1965b), Kompaneets and Chernov (1964), Doroshkevich (1965, 1966),
Thorne (1967), Ellis (1967), and Stewart and Ellis (1968). When

€4 = 0 we recover the standard, isotropic Einstein-de Sittér (1932)
solution with

A=B=C:.-=R('t)c=xd.2/3 .

(II.D.29)
The RADIATION solution is characterized by 7 = 1/3 (i.e.,

D, = Dr/3’ where the éubscript T degotes RADIATION). Thié cosmology

is filled with either massless particles or ultra-relativistic massive

particles, all with isotroﬁic velocity distributions. The analytical

solution may be written in two different --- but equally useful and

equivalent --- forms: (1) ‘The iﬁtegral of equation {II.D.16.a) is

straightforward, yielding:



. ) . © 2(R/R,) + F , )
= | - P~ |22 II1.D.30
*p (2 (R*) | = TR )
where
2 2 ./2 \
F = [4(r/R,)" + €. ]

x, = (t + tr)/‘tr‘-: normalized time > « (II.D.31)

T = [5/(32npr*)]l/2 = time scale J

Herez-“cr is a constant of integration. From equations (II.D.lQ) through
(II.D.22) we easily find the expansion functions (A, B, C), the Hubble

expansion rates (a, b, ¢), and the total mass-density (pr):

\

(4, B, C)/R « [(F + le_[)/(F - |e )] % 2

(2, b,.c).= (F + 2{er|Z)/[hT¥(R/R*)3] >+ (II.D.32)

P /Py =30 0, = (R/R*)"h
. )
Here the upper (lower) sign is for €. > (<) 0, and Z is given by
equation (II.D.20). Note that R(t)_ is now defined implicitly by
equations (II.D.30) and (II.D.3l). The initial physical singularity
océurs at x, = 0. This general RADIATION solution [equations (II.D.30)
through (IT.D.32)] is a new result. The axisymmetric case was pre-
viously given in essentially this form by Thorne (1967) and Stewart

and Ellis (1968), while Doroshkevich (1965, 1966) ‘and Shikin (1966)
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previously gave equivalent axisymmetric solutions in a completely
different form (see below). When €, = 0 we recover the standard,

isotropic Tolman (193k) solution with

A=B=C=R(t)« xrl/2 . (I1.D.33)

(2) A second --- completely equivalent --- form of the RADIATION
solution consists of two parts. We obtain the er > 0 part of our
RADIATION solution by using the arbiirariness of coordinates in general

relativity theory to set

S=+b, ®R)=RYE -1 . (11.D.34)

Note that the range of £ is 1 < £ < oo. Equations (II.D.30) through

(II.D.32) now take the form:

g + 1
£ ~ 1

(¢ -1)

(2 -1y tez

(A,B,C) « 3

, 3 . | L . (II.D.35)
o - o el [

pr/pr* = 'SPr/pr* = [(§2 - l)/(zﬁ)]u
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This solution emerges from the initial physical singularity
at & = oo with highly anisotropic expansion rates, but beccmes isotropic
as &~ 1. The initial singularity is of the CIGAR (PANCAKE) type when
¥ # 2/6 (¥ = /6). The axisymmetric case, which cceurs when ¥ = 5/6
or /2, was previously given in this form by Doroshkevich (1965,.1966).
We note that this representation of the RADIATION solution- is peculiar
in that it cannot represent the limiting isotropic case. This
peculiarity follows directly from equation (II.D.34) where we have
stipulated € # 0. We obtain the €. <0 case of our RADIATION soluticn

when we set

2

«S=+h, (B/R)=[RYQ-D)T . (11.D.36)

The range of § is now 0 < § < 1. Equations (II.D.30) through (II.D.32)

become:

- 2
_ E(E” +1) 1), L+ ¢
L [(1-5)2}-(5 MR

(4,B,¢) « (1= g2)L gl 22

0, 3 5 S o (II.D.37)
e ] ([ -=

(a,b,c)

1 - g

s /e, = L1 - E)/28)7"

S
%
it
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The initial physical singularity occurs at § = O, and the expansion
rates approach isotropy as £ - 1. The singularity is of the CIGAR
(PANCAKE) type when ¥ ¥ n/2 (y =x/2). When ¥ = x2/6 or n/2, we have
fhe axisymmetric case which was previously given in this form by
Doroshkevich (1965, 1966). Again we can see why this representation
cannot describe the limiting isotropic cases with ¢ = O.
I have been able to find two infinite sequences of explicit

solutions to the integral of equation (II.D.16.a), when 1/3 <7y <1.
I call these the HARD solutione. These solutions are characterized
by ph/s <p, = 7P, < Py where the subscript h denotes HARD. The
solutions split into the following cases: (1) One infinite sequence
of solutions results for.

7/(1 - 7) = n = integer (l<n<w) . (I1.D.38.a)
We then have the following sequence of 7's:

y=n/(n +1) = 1/2, 2/3, 3/4, 4/5, ... . (11.D.38.1)
From page 18 of Grdbner and Hofreiter (1949), we see that the integral

of equation (II.D.16.a) yields:

_ 3/(n+l) , 4 1/2

x, ={[(@n + 1)/4] [h(R/R%) » & ]

3(amv)/( ),(11.3.59)
2 2 Tn-v+l/2)1 3(n=v)/(n+l)
I (- /W)’ (i-‘(»;l:(z‘;ﬂ;ag: (R/R,
where
x5, = (t + “Gh)/'fh = normalized time

. (11.D.40)

T, = [+ 1)/(@n + 1)] (GuDh*)'l/a = time scale
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Equations (II.D.19) through (II.D.22) then become:

[ us t 2(n+1)z/3
(4,B,C) _ < [h(R/R*)S/(nﬂ)_,_ €}21]l/2+ Iehl

R U_"(R/R*)S/(n'l'l)_'_ 67121]1/2_ |"3

l|

B

i 3/ (n+1
(a,b,c) = (n:+1) 3 [+(R/R,) /(o )+ ei]l/a v2le |z
| 3(2n+1)7, (R/R,)

o -3(2n¥1)/(n+1)
PfPpx = (BB /00y = B/R,) ,

. (II.D.lll)

Here the upper (lower) sign is for € > (<) 0, and Z is given by
equation (II.D.20). We note thaf. R(t) is defined implicitly by the
finite series in equation (IT.D.39). This first infinite sequence of
HARD solutions emerges from the initial physical singularity

(at R = O) with highly anisotropic expansion rates, but as X, *
[2(n+Ll)/3(2n+1)]

the soluticns become isotropic with (A, B, C) ~ R(%) « X
This entlre infinite sequence of HARD solutions is new. (2) A secand

infinite sequence of HARD solutions appears for
7/(1 + 7) =m + 1/2 = half-integer (0 <m < c0).(II.D.42.a)
This gives the following sequence of 7's:

_7'5 (2n +1)/(2n + 3) = 1/3, 3/5, 5/T5 7/95 oo« (I1.D.42.b)
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Note that we are retaining the RADIATION case (7 = 1/3) here as a
check on our computations. From pages 36 - 38 of Grobner and Hofreiter

(1949) we see that the integral in equation (II.D.16.a) yields:
X, = 2[(2n + 1):!/m!] (1/4)x (1+Y2 + ei)l'/2

v

-ee .
( 5 ) { <2§15‘§51i T ] £ )

m
Z
V=0

5 m+l
-< .
+ (_EE) m|(1/2) (W + ei)l/a +Y

» (II.D.L3)

where
x, = (t + t,)/r, = normalized time S o (II.D.hk)

Thls’[(Em +3)/ 4(m +1)] (6ﬂph*)-1/2

]
Here t, is a constant of integration. When'm = 0 (7 = 1/3), equation
(II.D.43) immediately reduces to our previous RADIATION solution of

equation (II.D.30). In general here, equations (II.D.19) through
(II.D.22) take the form: |
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- e121)1/2 . le [ (2m+3)z/3)

A,B,C o ' hl }
R L+ )YE e
[ ) 2y1/2 5 L(I1.D.45
(8,5,) L 12(m+l)Th(R/R*)3 ] E(4Y2 ’ eh)' ’ a'ehiZ] pr (TT-D .)

~[12(m+1)/ (2m+3) ]
P/ P = (Bm#3)p /[(mAl)e ] = (R/R,)

s

Here the upper (lower) sign is for g > (<) 0, and Z is given by

equation (II.D.20). The initial singularity occurs at R = 0, and as

h
This entire second infinite sequence of HARD solutions (0 <m < ) is

x. -+ oo these solutions isotropize to (A, B, C) =~ R(t) « xh[(2m+3)/6(m+l)]'

new.

Zel'dovich (1961) (see also Harrison 1965) has discussed the
possibility of matter with the equation of state P, = P, This is the
"hardest" equation of state permitted by causality (see pages 105-106
of Harrison et al. 1965). Here we will say that we have the ZEL'DOVICH
case when 7 = 1, with the subscript 2z denoting ZEL'DOVICH. We have
already found the complete ZEL'DOVICH solution in equations (II.D.16)

above. To simplify our result wé make the change of parametex

b=l G+ 0<pl<1) (I1.D.46)
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where ® is now our new first anisotropy parameter. Equation (II.D.16.a)

then becomes

(8/R,) = x, M/ , (11.D.47.2)

where

x, = (t +1t, )/'rZ = normalized time

. (I1.D.47.b)
T = [(1- ‘62)/(2hnpz*)]l/2 = time scale

Equations (II.D.19) through (II.D.22) ==~ in cur general ZEL'DOVICH

solution ~-=- now take the form:

(4,8,¢) « x&/3)12[8(Z)

L4

(a;b,¢) = (1 £ 2{5]2)/(37,x,) \ . (II.D.:8)

-2

pz/ Ppe = pz/ Pox =%,

)
Here the upper (lower) sign is for & > (<) 0, and Z is given by equation
(II.D.20). The initial physical singularity occurs at x, = 0. The
expansion rates are always highly anisotropic, even as X, + co. The
axisymmetric case of the ZEL'DOVICH solution occurs when ¥ = n/6 or

x/2 (for all 8). In the axisymmetric case we retura to the well-

known behavior (see Doroshkevich 1965, 1966):
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A=Bex ' 2 Cocx(l-av)
Z Z

. « (II.D.49)
(1/3 < v < 2/3)

When & = 0 (all ¥) we return to the standard, isotropic result:

A=B=C=R({E)« le/3 | . (II.D.50)

The general ZEL'DOVICH solution of equations (II.D.47) and (II.D.L8)
exhibits initiel singularities of the CIGAR, POINT (i.e., A and B and
C+>0as R~ 0), and BARREL (i.e., A = constant, B and C - 0 as R - 0)

types, but it has no PANCAKE singularities. In Table 1 we display the

éossible types of initial singularitles in the ZEL’DOVICH solution and
the ranges of & and ¥ within which eéch type is found. This general
ZEL'DOVICH solution is entirely new.

The final case which we will consider here is the DUST-
PLUS-RADIATION case.  These anisotropic cosmologies contain & non-
interacting mixture of DUST (7 = O) and RADIATION (¥ = 1/3). They are
generalizations of the similar isobrepic cosmologies of equations
(I.C.32), which have been previously considered by Lemaltre (1927,

.1930, 1931), Chernin (1965), Alpher, Geamow, and Herman (1967),
Jacobs (1967), Cohen (1967), McIntoch (1968), Harrisan (1968), and

the earlier authors cited in these works.



TABLE 1

Types of Singularity in the ZEL'DOVICH Solution.a

CIGAR® POINTS BARREL
2x 25 P 2q
vz =y, T TV SV<SF TV VET oY
12 (5 < . o .
TPV <V <F =3 Y,
2
/ wo-%<w.<'3$-wo 05W<wo-% ‘k:wo‘%
by -1/2 ‘
§<553 _2_7_\'__ < <g£ __27(
3 " ¥, <¥ <3 V=31,
All ¢ except v =x/6 (8 >0)
i8] = 1/2 v =x/6 (& > 0)
¥ =x/2 (6 <0) v =x/2 (3 <0)
o< 8] <1/2 All ¥
Vo <V <w =V, 0 <V <y, v =¥,
-(3"1/2) <8 <~ % : 2
' meN, <Y <T vo=n-,
x 2n n
-5<9;<-3— o<w<—5 ¥ =0
a=-(3'l/2)
V=%
3
0<W<“‘5- o %'W°<\V<\V° ‘F=%'\V°
-1 <b <= (373 o
Vo < ¥ <5 Vo=,

8The effective range of y 15 0 <y <« 2n/3.

Pye define ¥ bY ¥ = arcsin (1/2]|8]), and it has the range x/6 <Y, < n/2.

®As we approach the singularity A + o, B and C ~ O.
dAs‘ we approach the singularity A, B, and C all - O.
®As we approach the singularity A = constant, B and C + O.
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In the DUST-PLUS-RADIATION case we consider a perfect-fluid stress-

energy tensor with:

P=pyg+P, , P=D. = pr/$ , (I1.0.51)
where the subscripts d and r denote DUST and RADIATION, respectively.
Since the two material constituents are non-interacting, equations

(II.D.4) and (II.D.8) imply:

-3 -4 .
pd/p a* = (R/R,) pszr* = (R/R,) . (II.D.52)
Equations (II.D.3), (II.D.7), and (II.D.10) readily reduce this

problem to quadratures:

(R/R,)° d(R/R,)
(/a7 + 8,0 + (/1

x = g. !
,(II.D.53.a)
(8/R,)™* a(R/R,)

(CZ,B,X) =+ I€iZ'J’
Y LR/RPIR/R,) + 5,0 + <cz/h>}l/‘°'J
where
= (t + E)/Td = normalized time
-1/2 :
Ty = (5:tpd*) / =tim§ scale \ . (II.D.53.b)
Sy = PLu/Pgy = mixture parameter J

Here % is a constant of integration, we have the upper (lower) sign

for € > (<) 0, and Z is given by equation (II.D.20). Note that our
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two independent anisotropy parameters are again € (0 < lel < co) and
¥ (0 <y < 2;(/3). The two integrals in equation (II.D.53.a) can be
evaluated analytically in terms of elliptic functions (see page 17 of
Abramowitz and Stegun 1965; also pages 60 - 61 and 75 ff. of Grobner
and Hofreiter 1949). When this is done, the complete DUST-FLUS-

RADIATION solution takes on the camplicated form:
(A,B,C) =R exp(%, B, X) »(IT.D.5k.a)

X = _{(R/R*)zt(R/R*) +8,] + (ee/h)}l/g

"l-is*

1 + cos @ 2 .2.1/2
STo T )(l-k sin ¢) ]

%) [E((”D,k) +

- (r + s cot @) F(a,k) ,(I1.D.5k.b)

(a,ﬁ,x) ¥ |e] 2 [u/(stan 6 I- r)] < F(2,k)

2 2
-1 &
- (1- (¢, ~==s ,k) - ¢ D, (9, ,k ,
(€ -t [( g0 - Dy "g"gl_; )J

(IT.D.Bh.c)

(r/R, PIR/R,) +8,] + SR 5 20z
(a,b,e) = % - ,(I1.D.54.4)
o STd(R/R*)
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ofoge = (R/R)TIER/AR) +8,]
where
po= [(sin 20)/8]1/2 ;
[(R/R, )-r]-8 cot ©
O = arccos

|

[(R/R, )-r]+s tan @

(1/2) (' %) ]
6= (1 t - R
arctan ,_31/2(Y+ +Y)
Y, ¥ Sy
TE - I: —_—s + (—3—' }

s tan ¢ - r
scob @+

)]«

e

2

~

Ploge = (8,/8)®/R)TF

(I1.D.5k.e)
k= !Sin Ql ,‘1
0<®<nx ;
0<0e<qg/ ;

" {(21.0.55)

Y, - ¥ '
s 31/2 ( +2 -) ;
5 g 3 1/2 1/3
€ *
TE) -+ (-27-) .

In equations (II.D.54) and (II.D.55) the upper (lower) sign is

for € > (<) 0, and 2

PLUS-RADIATION solution is entirely new.

is given by equation (II.D.20).

This DUST~

It emerges from an initial

physical singularity at R = O looking "exactly" like the RADIATION

solution of equations (II.D.30) through
R/

(II.D.25) through (II.D.28). Finally,

Ry

(II.D.32). When

=~ 8, it passes into the form of the DUST solution of equations

it isotropizes to the standard,
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isotropic Einstein-de Sitter (1932) DUST solution as x » . The axi-
symmetric case.(e.g., A = B for all time) occuré when ¥ = x/6 and x/2;
this axisymmetric solution is also & new result. When € =0 (for all
¥) we recover the standard, "flat", isotropic Lemaftre results of
equations (I.C.32) for the DUST-PLUS-RADIATION case.
3) THE CONSTRUCTION OF SEMI-REALISTIC MODELS

We will now use the exact solutibns which we have obtained
‘above to construct semi-realistic, anisotropic, cosmological models of
our Universe. In these models we desire only to represent thé overall
features of the possible evolution of ocur Universe, and to study the
effects of anisoctropic expansioné, especially in the éarly stages of
cur Universe's evolution. We will proceed in three stages.

First, let us consider the material content of our models.
Our models will contain only dust and radiation. Let us denote the
present value of a quantity by the subscript zero (o). We assume that
the "dust" today has the present critical mass-density necessary to

give us the "flat"” space sections of Bianchi Type I cosmologies:

Pao = 10729 gn o . (11.D.56)

The radiation consists solely of the observed 2.7 %% cosmic microwave

radiation (photons)‘with

pro = LI-.S X lO-Sh £gm cm-s' » (II0D057)
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(To include the energy-density in neutrinos and gravitons would probably
change this by a factor of about 2.) We will idealize the dust and
radiation as mutually non-interacting (see footnote 4 of § I. C. for
justification). This implies that our models will be valid only after
the relativistic electron-positron gas has recombined at a temperature
T = lOlO °k. We will neglept any effects due to unobserved gravitons
and neutrinos. Although Doroshkevich et al. (1967) have shown that
non-interacting (i.e., non-thermalized) gravitons and neutrinos are
driven into extremely energetic beams near the initial physicai singu-
larity of an anisotropic cosmology, they have neglected the possibility
of viscous damping which was subséquently pointed cut b& Misner (1967,
1968). In_§ IT. C. above we illustrated and improved Misner's (1967,
1968) argument, that neutrino viscosity in the relativistic electron-

10 ©) will probably largely eliminate those

positron gas (at T é 10
dynamical effects pecuiigr to non-interacting neutrinos by the time
that our models here are really useful (T < 10° %). We will assume
hereafter that the peculiar dynamical effects of non-interacting

neutrinos and gravitons can be neglected in our models. Finally, we

will not consider perfect fluids with p > 0/3 here, because we expect

to encounter such matter --- if ever --- only when

14 - -3
p > pbaryon aflo gm cm , and this occurs long before the pairs
recombine at T = 1011.0 k.

Secondly, we must consider how we will construct our models.
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.we could use the "analytical” DUST-PLUS-RADIATION solution of equations
(II.D.54) and (II.D.55), which is the exact mathematical solution to
our problem. It is easy to see, however, that this DUST-PLUS~-RADIATION
solution is extremely cumbersome to use in practice. Instead, we shall
use the same approximation procedure that we used in § I. C. and in

| Figure 2: We will Join an earlier exact RADIATION solution [equations
(II.D.30) through (II.D.32)] smoothly [i.e., with expansion functions
(A, B, C) and Hubble expansion rates (a, b, ¢) continuous] to a later
exact DUST sélution [equations (II.D.25) through (II.D.28)], at the

point where p. = P This .join point, which marks the transition

a
from the radiation~dominated phase to the dust-dominated phase, occurs

&t the time tJ where

(R,/R,) =S, =0, /p;, =5 X 107° . (II.D.58)

Here the subscript J denotes the JOIN point. The excellence of this
approximation procedure is of the same degree as .that illustrated for
the isotropic case in Figure 2: The approximation deviates from the
exact solution only very near the join point, and then oanly very
slightly. The algebra involved in carrying out this approximation
proccdure is quite straightforward, and the resulting semi-realistic
models are as follows: (i) For t > t; we are in the dust-dominated
phase. Equations (IX.D.25) through (II.D.28) hold here, with equation

(II.D.26) normalized to:
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)(;_/3)(lﬁZ) (II.D.59)

(8,0,0) = x,M/IARL) e |

and with 2 given by equation (II.D.20).The anisotropy parameters

lie in the full rangeé:

0 < led[' < , 0<%y <2/3 R (I1.0.60.a)

and we set:

0. =102 gn e (61:;:&0)'1/2 = g X 10° years. (IL.D.60.b)

#l

do g

Finall;y; the constant of inbegratioa, & turns oub Lo be giveh Yy

ty = (74/8) {(uso?’ + %)1/2 - 4e,|

+ (3/2)80"5/26‘2 n {[2803/2+ (hsos + ei)l/ej/}edl I} , (II.D.61.2)

whez_'e

-5
S, = pro/pdo = 4.5 X 10 . (1I.D.61.b)

(ii) For t <t_we are in the radiation-dominated phase. Equations

J
(II.D.30) through (II.D.32) hold here, in the form:

'b/’rr_': (1/2)[§ F - (65/2) m | (2§ +F)/ ]er] ]] , (II.D.62.a)

(A/A5,B/B},C/C)).

H

2\1/2_
= R (F+}€rl) (e ) -Ie, | , (I11.D.62.b)

P | eV Rege
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(a,0,0) = [F32 Je | 2Y/(r &) , (II.0.82.c)

0./Ppg e , (II.D.62.4)

" where

F= (4 §2 + Ei)l/2
Y« (II.D.62.e)
R= (R/RJ)'

Here the anisotropy parameter  is exactly the same as that appearing

in equation (II.D.60.a), while we have

.| = 30'3/2 ey . (I1.D.63)

We determine the remaining parameters and constants in equations

(II.n.62) as follows:

— -5 )
S = pro/pdo = h.s X 10

-3k -3 ' 3/2
P = Ls X 10" gmem - , T, = (:'S/A‘Jf)sD / T4 = 2000 years

_ >(II.D.6%)
_ -3 -16 -3 [
(RJ/RO) =8, , Py=PRy S, =107 gnen

+ 22/3
(e?i + hsos)l/2+ le 2/

(& + us 2)HE

al

(AJ,BJ,CJ) =8
= !ed'

(iii) Finally, the time of the transition (join time) is given by:
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2 32 , 2 3,1/2
o - (5 8) (€2+h83)1/2_ € N 28 /%, (g + 487
Jg = \a d o og 32 e ]
. (II.D.65)

Thirdly, we went to see what our anisotropic, epproximate,
DUST-PLUS-RADIATICN cosmological.models look like and how they behave.
When we examine the temperature anisotropy of the 2.7 OK cosmic micro-
wave radiation below, we will find that; for two opposite extreme assump-
tions about the material content of intergalactic space, the recent

observational data limit the permissible range of [ed[ to

10'1* for H II

0<le,l = - (II.D.66)

107 for B I
- Here H IT signifies that the "dust' has consisted almost entirely of
ionized intergalactic hydrogen since a redshift of at least
z = (R o/R) - 1 = g; while H I means that the ionized hydrogen from
the primeval fireball recombined (i.e., neutralized) when the photon
temperature dropped below about 3000 °k and the entire intergalactic
"dust"” content of our Universe has remained neutral since then. We
will also find (below) that the observations of the 2.7 °K cosmic
microwave radiation place no restrictions upan the ranée of ¥. Based
upon these observat;onal limitations on the anisotropy parameters
(ed and ¥), I have.explicitly evaluated equations (II.D.59) through
(II.D.65) for a representative series of allowed anisotropic models.

In Figure 7 we compare our anisotropic model with Yy =0and €, =+ :Lo'5

d



143

FIGURE 7

The semi-realistic, anisotropic DUST-FLUS~RADIATION cosmo-
logical model of our Universe with ¥ = 0 and €q = *+ 10"5 (gggggg lines)
compared witﬁ the “flat", isotropic DUST-PLUS~-RADIATION model of
Jacobs (1967) (solid lines). We show the "expansion functions"
(A/AO, B/EO, c/co), the "mean radius" (R/RO), the normelizcd Hubble
expansion rates (a/ao, b/bo, c/co, and H/Ho), and the normalized total
mass-density (pTOT/pdo)’ all as functions of normalized time (t/Td).

-1

The constants which appear are: Ho = 13 X 109 years, 0, ='1O'29

d

-3 _ -1/2 9 s #
gmem ", T, = (ando) = 9 X 107 years, and the "mixture parameter
S = pro/pdo = 4,5 X 10-5. The relativistic electron-positron pairs

o
recombine at R/R0 = 10-10; primordial element formation takes place

in the range R/Ro ~ 1077 - 10'8; the anisotropic model enters the

DUST phese (at t = tJ) at the left-hand set of vertical bars, while
the isotropic models enters at the right-hand set (t = 2000 years);
expansion anisotropies become small for t/Td > 10'5. Note that the
anisotropic model encounters a CIGAR type initial singularity at

t ~+~ 0.
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to the corresponding isotropic DUST—PEUS-RADIATION model of Jacobs
(1967). In Figure 8 we do the same for the anisotropic model with
Y =n/2 and €, = - 10720, These two explicit cases demomstrate all of
the essential features of our semi-realistic anisotropic DUST-PLUS=
RADIATION models. From these two figures we note the following
properties: (a) The period in which the expansian is appreciably
anisotropic moves towards smaller values of t as ]ed] decreases.
(b) The point, at which T = 10%° %K, moves rapidly towards smaller
values of t as ]edl increases. (c¢) The number-density of Baryons
(i.e., protons) is much lower at any given time in the anisctropic _
case than in the isotropic case, during the period of primordial
element formation (when T = 107 %). Put differently, the average
rate of expansion out of the initial singularity is much greater in
the anisotropic case. This fact greatly affects primordial element
. production.
5) APPLICATIONS TO THE REAL UNIVERSE

Let us now apply the anisotropic cosmological models which
we have constructed and illustrated above. We will list and analyze
the important physical proéesses which can take place:

(a) We have neglected éertain processes which take place
during the interval'between‘the initial physical singularity and the
lO‘oK

point (at T =~ 10 ) when our models become valid. In general,

the anisotropy dominates the dynamlcs during thls period, end the
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FIGURE 8
Comparing the semi-realistic, anisotropic DUST-PLUS~RADIATION

cosmological model of our Universe with v = x/2 and €, = - 1070

d
(dashed lines) to the "flat", isotropic DUST-FLUS-RADIATION model of
Jacobs (1967) (solid lines). We show the same quantities as in
Figure 7, and the normelizing constants are the same as in Figure 7.
Expansion anisotropies become small (at t/7 . lo'lu) during the
RADIATION phase, so that the transition to the DUST phase occurs at

t =~ 2000 years for both the isotropic and the anisotropic casés
(vertical bars). As in Figure 7, we have recombination of the
relativistic electron-positron pairs at R/R0 ~ 10710 ang primordial
element formation near R/Ro ~ 1070 - 1078, Note that the anisotropic

model here is axisymmetric (B = C for all time), and that it encounters

a PANCAKE type initial singularity as t + O.
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Bianchi Type I metric which holds is Kasner's (1921) VACUUM solution.
From equations (II.B.7) through (II.B.9) we see that there is only
cne PANCAKE type singularity, whiie in general we find CIGAR type
singularities. As long as all elementary particle species remain
thermalized, the behavior of the metric cannot affect the local thermo-
dynamical behavior of the species, except for the dilution~effect
caused by the expansion of proper volume elements. The gases expand
adiabatically, except when the temperature drops below the mass of a
given species of a massive particle-antiparticle gas. Then, ﬁhe
recombination of that relativistic particle-antiparticle gas causes
heating of the material content. The final heating is due to the
recombination of relativistic electron-positron pairs at T = lOlo OK.
Only gravitons and neutrinos can decouple from their surroundings
wvoen > 1000 %, m § II.C. we showed how electron-neutrino viscosity
in the relativistic electron-positron pair gas largely damps out the
dynamical effects peculiar to non-interacting neutrinos before

Tw lOlo %k (note, however, our qualifying remarks there)., our
ignorance of the possible graviton content of the Universe, and of
the processes in which grayitons'are Tormed in its early stages leads
ue to make the simplifying assumption, thet we can neglect any effects
due to gravitons. Therefore, we assume that our simple models become
valid at T = 10'° k. The work of Doroshkevich et al. (1967) and

Misner (1967, 1968) indicates that this assumption is reasonable,
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-though not rigorously Justifiable.

{(b) The first question to be answered in our anisotropic

models is this, "When do expansion anisotropies become small?" Let

us define the mean-square expansion anisotropy by:

A
H

2 2 2 2
a

where the average Hubble expansion rate is:

H = (athec)/3 i (II.D.67.b)

The largest expansion anisotropy occurs in Kasner's (1921) VACUUM
solution (near the initial singularity) where [see equations (II.B.7)

and (II.B.8)]:

2 2 2 2
(_%g) - 3 | () 2 {m) o+ (@n) | L6 (11.0.68)
( £+m+n)
Therefore, we must have:
0 < |uya| < 642 . (II.D.69)

For t < t;, we are in the RADIATION phase, where equations (I1.D.18),

(1r.p.62.¢), and (II.D.62.e) tell us that:
(s/m)° -6 (1 (2§/Ier!23'l . (11.0.70)

From equations (II.D.61.b) and (II.D.63), we see that expansion
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anisotropies beccme small (i.e., (AH/H) < 17 during the RADIATION
phase, only if |&;] <3 X 207; and equation (II.D.62.a) shows that

in this case the time when the anlsobropy becomes swmall is:
£ < (3.8 X 106) ei Ty = (3.4 % 10" 16) ei years. (II.D.71)

For ¢t >t,, we are in the DUST phase, where cquations (II.D.18),

(1I1.D.27), and (II.D.67.a) tell us that:
(AH/H)? =6 [1+ (2xd/;ed|)]'2 . (11.D.72)

Equations (II.D.25.a), (II.D.6k), end (II.D.T2) imply that
(#5/H) > 1 during the DUST phase only if |e;] 2 3 X 1077; and in
this case equation (II.D.72) tells us that the time when anisotropies

become small is:
t o fe |7, ® (9 X 10%) e | years . (II.D.73)

Therefore, equation (II.D.66) indicates that expansion anisotropies
are always small during the DUST phase for case H I, while in case
H II the expansion anisotropies can be large in both the RADIATION
and DUST phases.
(¢) Next, we want to consider the effects of expansion
anisotropy upon priﬁordial element formation. Primordial element
8 o

formation takes pléce at temperatures in the range T = 109 % - 10 X;

this fact follows directly from muclear physics. In our semi-realistic,
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anisotropic mgdels --~ 83 in the standard isotropic models --- this
temperature range is always encountered in fhe RADIATION phase. To
calculate the final relative abundances of the primordial elements
formed, we need to know the average Hubble expansion rate, (ﬁ/R), as

a function of the total mass-energy, [ef., equation (B.18) and

Pror
the associated discussion in Thorne 1967 ]J. Such a relation, together

with the eguations:

p4/Pgo = (3/30)'3 s Prop/Pro = (R/Ro)'h ,  (II.D.7h)

tells us how the number-density of baryons varies with time during
element production. Using equations (II.D.25) through (II.D.28) and
(I1.D.59) through (II.D.65) of our anisotropic DUST-TLUS-RADIATION
models --- and especially equation (II.D.62.8) ~-- it is straight-
forward to £ind: |

1/2
Bl . (135 x 107) o34 | 2, (81X w0 | sec™t , (II.D.75)
R y TOT d o 1/2 ’ e
) TOT
where pTOT is measured in gn cm’s. This is exactly the same as

equation (B.18) of Thorne (1967)! Therefore, all of the results on
primordial element formation in axisymmetric models, as calculated
by R. V. Wagoner and reported by Thorne (1967), apply directly to ocur
more general anisotropic models here. In particular, we havé the
result (see Figure 1lb of Thorne 1967) that the primordial helium

abundance is considerably below ~ 30% by mass only if ]ed[ >3 X 1077,
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(d) The next major event in the evolution of cur anisotropie
models is the decoupling of the primeval photons (and the attendant
recombination of the ionized hydrogen) when the temperature drops
below T =~ 3000 °K. This process takes place in the DUST phase. Today
we See these primeval photons as the 2.7 °k cosmic microwave radiation.
We shall find (below) that the "average" characteristic temperature

of these photons goes as

Tave < R-l > (II.D076)

while they are non-interacting or in thermal eguilibrium. Then using
equations (II.D.25.a) and (II.D.76) we find that the time of decoupling

is:

ty/Tq = (TO/TD)5/2 1+ {ei/h(TQ/TD)SJ}l/Q- (le41/2) > (I1.D.77)

where the subscript D denotes the values of a quantity at the time

" of decoupling. We have already specified

T, = 2.7 % , T, = 3000 . (II.D.78)

We obtain a reasonable approximation to tD by taking

tD ;_(TO/TD)S/Q Ty = 2.4 X 105 years . - (II.D.79)

(e) We now consider a final application of our anisotropic
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models to the real Universe: The isotropy of the cosmic microwave
radiation. We will primarily study how the observed temperature
isotropy of the radiation restricts the range of values of the aniso-
tropy parameterg (ed and ¥) which characterizé our anisotropic mcdels
here.

First, we want to elucidate equation (II.D.76) above. In
equation (II.C.35) we remarked that, in the isotropic cosmological
models (where A = B = C = R(t) for all time), we have the temperature

behavior:

‘T« R . . (11.D.80)

That equation (II.D.80) also holds in our anisctropic models, when we
have thermal equilibrium, follows directly from the first of equations
(II.¢.26). When a species of massless particles decouples from its
surroundings, its characteristic temperature depends upon direction
in our anisotropic models [ see equation (II.C.34)]. The temperature

of the particles along the (x, y, z) axes goes as:

-1 -1 -1
(Tyy Tgp Tg) = (A7, B, C7) . (11.0.81)

If we define the "average" characteristic temperature T

eby

Tove = (T, T TC)1/3 (II.D.82)

--- as does Misner (1968) =-- we find with Misner that



T « R . (11.D.83)

This result follows directly from equations (II.D.7), (II.D.9),
(1I1.0.16.b), (II.D.17.b), and (II.D.18).

Next, we coausider the temperature anisotropy of the 2.7 OK
cosmic microwaﬁe radiation. Applying Liouville'’s theorem (see, e.g.,
Appendix B of Thorne 1966; also Thorne 1967) to the propagation of
non-interacting photons in the diagonal Bianchi Type I metric of
equation (II.B.2) gives the temperature distribution as a function of
the observation directién. In spherical coordinates [see the deriva-

tion at equations (II.C.315 through (II.C.34)] the result is:

-1/2

T 2 . 2 . 2
T, (€,9) i (AO sin @ cos Q) . B, sin 0 sin m) . (Co cos G)

T A B C

s s °s s

(II.D.8%)
Here the subscripts o and s denote, respectively, the value of a
quantity 'today (to)" and "at the time of the last scattering of the
microwave photons by matter (at ts)". Following Thorne.(l957), I
define the effective time of the last scattering by:

%

| { Kfl(t)dt = optical depth = 1 ) (II.D.85)
s ' ‘

where R(t) is the photon mean free path at time t. If our Universe

has been filled with ionized hydrogen for redshifts z < 9 (case H II),



we have Thomson scattering by the free clectrons and
At) = [(2.67 x 1078y / 86)
= . Dd(t)] years R (11.D.86)

R -3 . .
where Dd is in gm em . Since ts > > tJ, we use the DUST phase equa-

tions, and readily obtain:

K & -1
%F ATH(t)at = [pg T4/ (2.67 x 10777)] ;J; De(x + | )T "ax
s s

-18

X, + ed[

X
b

1+ je
1

|
- In d

= (3.37 X 10"2)|edi'l m

(I1.D.87)

where t =T, and x = ts/'rd. We will see later that it is consis-
tent to assume x_ > > le dl’ and to expand the logarithms in series.

We then find:

2

x =t /Ty % 3.3 X 107 ) (11.D.88.a)

or

g (H II) = 3.0 X lO8 years
(RO/RS)(H II) = 9.8 S . (I1.0.88.b)

z = (redshift) = [(RO/RS)(H II)] - 128.8
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If the ionized hydrogen recombined when the photon temperature dropped
below about 3000 °K and was never reionized thereafter (case H I), we

find [see equations (II.D.77) through (II.D.79)]:

3/2

t, (HI) = (7 /1,)7° 1, %24 x 10° years . (II.D.89)

To see what limits the observed isotropy of the 2.7 °k cosmic

microwave radiation places upon our anisotropy parameters (e d and V),

we write:

1, =T (x/2,0) , T, = T (x/2,%/2) , T,=1(0,0) . (II.D.90)

Then we define the present mean-square temperature anisotropy as: -

2 2 2
2 s (T, = Tp)~ + (T = o)™ + (T - T¢)

2
o (TA - TB + TC)

AT
(ir . (II.D.91)

Substituting equations (II.D.59), (II.D.84), and (II.D.90) into

equation (II.D.91) , and retaining only the lowest-order term, gives
us the following limits --- for all § --- on |e,|:

0< eyl 2 (3/2)"/2 (tg/74) (az/1), . (II.D.2)

Therefore, although the range of allowed values of le dl is limited by
the observed temperature anisotropy and by the assumed DUST content

of our anisotropic models (case H I and H II), there are no'restrictions
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on ¥ (to first-order). Recently, Partridge and Wilkina.
found that the magnitude of the twelve-hour harmonic of the tempe..

ture anisotropy around the celestial equator is:
(AT/T)O < (1.6 £ 0.7) X 1072 . (I1.D.93)

It should be noted that equation (II.D.Ql) defines a measure of
temperature anisotropy over the entire sky, while all precise observa-
tions to date have been performed only over one great circle and over
small portions of other great circles on the celestial sphere.. Also
note that our anisotropic models generate no twenty-four hour harmonics
of temperature anisotropy; any observed twenty-four hour harmonics
will reflect either the eafth's motion relative to the local comoving
frame of the cosmic microwave radiation or types of expansion aniso~
tropy more complicated than those considered in this thesis. ZEqua=-

tions (II.D.92) and (II.D.93) imply that:

(6.5 = 3.0) X 107° H II

0< led{ < for case .(II.D.9k4)

(5.3 £ 2.3) x 1078 HI

Precise observations of the temperature anisotropy have been
carrie& out by.Partridge and Wilkinson {1967) arcund the celestial
equalor at declination - 80, and by Conklin and Bracewell (1967a,b)
and Epstein (1967) over short regions of right'ascensiqn at ab&ut

+ kOo declination. Only the results of Partridge and Wilkinson are



158

useful in equation (II.D.92). Less precise measurements at selected
points over the entire Northern sky have been performed by Wilson

and Penzias (1967), and they provide the much wesker limits

1.2 x 103 H IT

0< led} < for case < (I1.D.95)
107 : HI

If our Universe is approximately axisymmetric [e.g., A(t) = B(t)]
during the DUST phase, there is a 3% probability that the celestial
pole is so close to the axis of symmetry that only the weak limits

of equation (II.D.95) and hot the strong limits of equation (II.D.9k)
apply to ]ed[. It is easy to see that there is a pressing need for
precise experimental lnvestigations of temperature anisotropy along

several complete great circles on the celestial sphere.
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II. E. THE PERFECT-FLUID-MAGNETIC MODELS

It is presently knéwn that large-scale magnetic fields exist
in at least some galaxies in our Universe. The large-scale magnetic
field in our own Galaxy has a magnitude of the order of 10“6 gauss. As
we mentioned in § I.A., Hoyle (1958) has argued that such galactic
magnetic fields do not have encugh time to appear if the age of cur
Universe is about lOlO years, and that they therefore imply the existe-
ence of metagalactic magnetic fields. Cameron (1967), on the other
hand, has suggested a mechanism by which the observed galactic'fields
may be generated, without invoking large-scale cosmic magnetic fields.
Whether Cameron's mechanism will really work is not settled at this
time. If neither Cameron's nor any other reascnable mechanism will
work, then we are forced to‘consider large-scale cosmic magnetic fields,
with magnitudes less thean the observational limit of about lO-7 gauss,
in our anisotropic Bianchi Type I cosmologies. Such fields have
previously been considered in Bianchi Type I cosmologies by Rosen (1962,
1964), Zel'dovich (1965b), Doroshkevich (1965), Shikin (1966, 1967),
Thorne (1967), and Jacobs (1968, 1969). In this section we shall
present & more expanded and detailed version of the work of Jacobs
(1969).

In § II. A. we showed that the most general Bianchi Type I
metric [equation (IT.A.4)] cannot be put into the diagonal form of

equation (II.A.15) for all time, when a cosmic magnetic field is preseunt.
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For the sake of simplicity, however, we shall assume here thgt +the
magnetic field lies along a principal axis of shear, and hence, that
our metric can é.lways be written in the diagonal form [equation (II.A.15)7.
We have also chosén to assume, on reasonable physical grounds, that the
cosmic electric field vanishes [see the discussion leading to equation |
(IT.A.23)], but we will mention here that our cosmological solutions
(below) take exactly the same form if we substitute & cosmic electric
field in place of the cosmic magnetic field. Let us now proceed to
investlgate anisobropic Bilanchl Type I cosmological models containing
both perfect fluid and a cosmic magnetic field.
1) THE GOVERNING EQUATIONS

In the diagonal metric of equation (II.A.15) we have the
Einstein field equations (II.A.29). Our cosmologies contain both a

PERFECT-FLUID with the barotropic equation of state

Pp=7p, (0<7x1) 5 (II.E.1)

(as in § II.D.) and a uniform comoving MAGNETIC field, of energy-density
Py aligned along the z-axis. With the same notation as in equations
(II.A. 29) end (II.A.30), our field equations take the form:

ab + ac + be

(B+é)‘+b2+c2 + be

L

+ 8x (bm o) (II.E.2.8)

it

- 8 (pm + pb) , . (II.E.2.b)

(& +é)+a2+c2+ac

]

- 8 (pm + pb) , (II.E.2.c)

(& + 1) + 8% +1° + ab

(]

- 8r (p, = p,) . (ILE.2.d)
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The subscripts m and b dencte, respectively, the "matter” 4(PERFECT-—
FLUID) and the MAGNETIC field. We will call tile cosmologies we study
here the PERFECT-FLUID~MAGNETIC cosmologies.

The conservation of magnetic flux [see equation (II.A.18.b)]
implies ‘

p, = (4B)7 . (II.E.3)

Note that equation (II.E.3) identically satisiies the conservation

equation (II.A.32) for the magnetic field, T(EM) p'v_u = 0, which we

H

have seen [equation (II.C.12)7] has the form:

(EM)3

(vr )* - (aT + BT

(EM)0
0 + cT

(EM)1 (EM)2
1 2

3) V=20 »
(II.E.4)
Hence, the perfect fluid must have exactly the same properties that we

found in § II.D., where we had:

p. = y={1#7) . (II.E.5)

L

Since equations (II.E.3) and (II.E.5) guarantee that

(T(EM)“V + T(EF)“‘V),u = 0, +¢he Bianchi identities imply that only three
2
of equations (II.E.2) can be independent. Let us write equations

(II.E.3) and (II.E.5) in the form:
P, = (B/8x) v Py = (B/8x) (aB)™= ,  (IL.E.6)

where p and P are non-negative constants. The field equations
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(II.E.2), of which only three are independent, now take the final form:

ab + ac + be + pV"(l+7) + B(A.'B)"2 , (II.E.7.a)

(B + &) + b2 + c2 + be

]

- v ) gag)? , (TI.E.T.b)

(a + &) + &4 P 4 ac - 7pV'(l+7)- B(AB)'Q

, (II.E.T.c)

[

(& +1B) + 82 4 b0 4 ab - 7uV'(l+7)+ fi(AB)'2 « (II.E.7.4)

Subtracting equation (II.E.7.b) from equation (II.E.7.c)

immedistely gives us the first integral:
(a =b) V = constant . (1I1.E.8)

This implies that we have an axisymmetric cosmology (i.e., A =B for
all time) if the Hubble expansion rates a and b are equal at any
given moment of time. The general equation (II.C.6) here takes the

form:
V= (3/2) (L-7) w7 + a(ca/v)‘z o, (II1.E.9)

and immediately implies that any expanding, Bianchi Type I, PERFECT-
FLUID-MAGNETIC cosmology must begin at an initiél physical singularity.
2) SOME PARTICULAR SOLUTIONS |

Equations (II.E.7) are exceptionally difficult to solve
analytically, except in a few special cases. Analybtical solutions have

been found in four cases. I have given these solutions the following’
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nemes: (1) the PURE-MAGNETIC solution ( u =0, B # 0), (2) the
ZEL'DOVICH~-MAGNETIC solution (pn # O and B # 0, 7 =1), (3) an exi-
symmetric (A = B) HARD-MAGNETIC solution (u # O and B # 0, 1/3 <y < 1),
and (4) the axisymmetric (4 = B) DUST-MAGNETIC solution (u # O and
B #0, 7 =0). The HARD-MAGNETIC solution is new. The ZEL'DOVICH-
MAGNETIC solution was found in the general case by Jacobs (1969) and
it is new; Doroshkevich (1965) discovered this solution independently
in the axisymmetric case (leaving the time dependence ﬁ.n the form of
an integral). The PURE-MAGNETIC solution was £irst found by Rosen
(1962, 196k4), and was rediscovered for the general case by Jacobs (1969)
and for the case of axial symmetry (A = B) by Shikin (1966). The
axisymmetric (A = B) DUST-MAGNETIC solution was found independently
53/- Doroshkevich (1965), Shikin (1966), and Thorne (1967). We will
now present the derivetions of these four exact solutions to equations
(1T.E.7).

(a) The PURE-MAGNETIC and ZEL'DOVICH-MAGNETIC solutions are
obtained simultaneously by the following procedure. When 7 = 1 we. can
easily manipulate equations (II.E.7) to obtain the equivalent complete

set of equations:

(a +c) V

H

¢, = constant s (II.E.10.2)

(b+C)V =E

, = another constant,(II.E.10.b)

(ab + ac + be) e

u + e? - (II.E.10.c)
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Then from equations (II.E.10) we readily obtain:

(A'/A)V = e+ G 02)1/2 R (II.E.11l.a)
(B'/B)V = ¢, + (ée - 02)1/2‘ ' , (IT.E.11.b)
@©/e)v = (£ - 02)1/2 R (IT.E.1l.c)
where '
(cl) ca) = 6-1/2 (El) Ea)
} 3 (I1.E.12)
2 = epop - (wB) >0

and where & prime (') denotes differentiation with respect to the

normalized time:

T =2y . (II.E.13)

We now notlce that
Viz(a+b+e)V = (c:'L + c2) ¥ (§2 - 02)1/2 . (IT.E.1L)

From equations (II.E.1l) and (II.E.l4) we sce that we always have

C < |&]. Therefore, let us make the change of variable
X =c¢/|lg] (0<xX<1) . (II.E.15)

Dividing equation (II.E.ll.c) by equation (II.E.14), integrating,

and noting that



165

- 1/2
[1+(1..X;<2)1/2]E [1-(1}2;(2) :l » (II.E.16)

we immediately find:

1+ &

o g , (II.E.17)

where

& =x* [1-(1-)(2)1/23 (0 <®<1)
. . (II.E.18)
o = (e +¢5)/]¢]

Here the +(~) sign in equation (II.E.17) is for C' » (<) 0, respectively,
and the subscript #%* denotes the value of a quantity at X = 1. Now we
can go back and solve equations (II.E.ll.a), (II.E.ll.b), and

(II.E.14) to obtain, finally, the complete solution:

- (A*B* Gte-l)  gt(on)

(o-1) ¥ (o)

5 , (II.E.19.a)

F) = 2 2 '
(a/A,, B/B,, V/V,) = (l}é- S (s 20 ) , (II.E.19.b)
o/ltl = 2¢/@ + &) . (II.E.19.c)

Here V, = A,B,|&|, the +(-) sign is for C' > (<) 0, and we have mede

the notational simplification
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(k5 k) = (6™ (eys ) . (II.E.20)

Our two independent anisotropy parameters here are kl and 'ké. In
our discussion of the possible types of initial singularities (below),
we will find it much more convenient to use two different anisotropy

parameters ([£] and X) detined by [see egquation (II.E.12)]:

(kl, k) = |g{‘l{g2 + (p/ﬁ)];/a(cosh X = sinh X, cosh X + sinh ).
(II.E.21)

The ranges of |&| and X are

0< |E] <o
. (II.E.22)
0<X<oo

Note that when X + - X we interchange k, and k,. Iquetions (II.E.18)
through (II.E.22) represent the four-parameter (u, B, |£], X) family of
ZEL'DOVICH~MAGNETIC solutions; these solutions are new. When u =0
they reduce to the PURE-MAGNETIC solutions (see Rosen 1962, 196L).
These two classes of solution emerge from an initial physical
singularity at T = O with highly anisctropic expansion rates. Near the
singularity the solutions asymptotically approach Kasner's (1921)
VACUUM solution, wheie the aﬁisotropy domina%es the dynamics. These
solutions always remain highly anisotropic, even as T -+ . The

expansion factor C first increases, attains a maximum value of |&],
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and then decreases towards zero as T - oo. Figurés 9 and 10 illustrate
the temporal evolution of these two classes of solution. In these
figures we have normalized to - 1, and we have used the arbitrari-
ness of coordinates toset A=B=C=V=1latt = a/(oa - 1)
(where C reaches its maximum value).

The ZEL'DOVICH-MAGNETIC solution exhibits the following types
of initial singularity: | |
(1) oIt

axisymmetric (A = B.-and C all - O as 7T + O) when X = 0 ,

anisotropic (A, B, and C» O as T » 0) when 0 < X < L 3
(ii) BARREL

symmetric (A -~ constant, B=C > Qas 7~ O) when X = Xo(u/ﬁ = §a),

anisotropic (A -~ constant, B and C +~ 0 as T + 0) when X=Xo(p/Bj-’§2') ;
(1i1)CIGAR

symmetric (A~ o0, B C~+0as t > 0) vhen X = In 2 ~ Xo(0<p/6<§2),

anisotropic (A > o0, Band C + 0 as 7 -~ 0) when X > Xy (in general).

2
"“EL‘H +{n/B | . The PURE-MAGNETIC solwtion
g .

hasg the .following types of singularity:

Here we have used X = (1/2) i

(i) PANCAKE

axisymmetric (A = B + constant, C > O as v -~ 0) only when X = 0;



168

FIGURE g
Types of behavior of the expansion factors (4, B, C) in the
ZEL'DOVICH~-MAGNETIC solution. (Schematic) Notice that the expansion
factor C, along the direction of the magnetic field, is bounded in
magnitude (solid line). Cases with POINT singularities (dot-dash lines)
occur for 0 <X <X ; those with BARREL singularities (dotted lines)
occur at X = X ; and those with CIGAR singularities (dashed lines)

+(g[6) i

occur for X > X . Herex=( )in
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FIGURE 10
Types of behavior in the FURE-MAGNETIC solution. (Schematic)
This solution follows from the ZEL'DOVICH-MAGNETIC solution when p = O.
Again C is bounded (solid line). This solution begins in (a)
PANCAKE singularities for X = 0 (gggﬁgg lines; axial symmetry), and
(b) CIGAR singularities for X > O (dashed lines). Note that X 5 =0

for the PURE;MAGNETIC Case.
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(ii) CIGAR

symmetric (A + co0, B = C+O0as T~ 0) when X = In 2,
anisotropic (A + co0, Band C » O as 1 - 0) when X > 0 (in general).

Note thaﬁ the x~ and y- axes are equivalent in all of these solutions
(i.e., if in any given solution we interchange x and y, and A and B,
we get another solution). Also note that there is only one PANCAKE
singularity, that it is axisymmetric (A = B for all time), and that
it occurs only in the PURE-MAGNETIC solution.

The axisymmetric (i.e., A = B) ZEL'DOVICH~MAGNETIC solution
(found previously by Doroshkevich 1965) occurs when X = 0 (for all &).
In this case, the complete solution is given by equations (II.E.19)

with
k| =k, =o/2= [t [ 4 (W) TR . (11.E.25)

This solution displays only POINT type initial singularities. The
axisymmetric (i.e., A = B) PURE-MAGNETIC solution (found previously by
Rosen'l962, 1964) occurs when u = 0 and X = O (for all £). In this

case, we have the simple result that

k =k, = o/2=1 . (II.E.24)

The complete solution follows from equations (II.E.19) as:
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T = (A§/6) (Se’tl + C«‘:’ts) , (II.E.25.a)
(&AL, V/v.) = [(1 + ea)/ee] @f(lfa) , (II.E.25.b)
(c/|E]) =2e/(L + &) , (T1.E.25.¢)

~ where the +(-) sign is for C' > (<) 0. This solution displays only &
PANCAXE type initial singularity.

(b) The analytical form of the axisymmetric (A = B) HARD-MAGNETIC
solution was discovered by examining certain numerical solutions of
equations (II.E.7). Thié exact solution (note: it is not the general
solution) is essentially idéntical t0 one of the approximate solutions
near the initial singularity given by Thorne (1967). We can write this

HARD~MAGNETIC solution. as:

A=B= xl/a‘ , C= x(l'y)/(lW) (IT.E.26.2)

A

a=bs=@x)" , c=(x)t (@7)/Q%) , (II.E.26.b)

oy = (3=7)[16x7 (147)° T2 ,  (II.E.26.c)

Py = (1=7)(37-1) [.’aax'ra(l+7)2]"lx'a , (II.E.26.d)

where

x = (t/7) + constant ,  (II.E.27)

with T being a constant. Equation (II.E.26.d) implies that 7 can

only lie in the range 1/5 < 7 < 1. This solution always begins in an
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axisymmetiic POINT singularity at x = O. It is always highly aniso-
tropic (even as x >~ ), since (c/a) =2(1 - 7)/(1 + 7) # L. We note
that the ratio of the energy-density in the magnetic field (pb) to that

in the perfect fluid (pm) is a constant for all time:

(e /e,) = [{1-7) (37-1)V/[2(3-7)] = constant. (II.E.28)

Note carefully that this solution exists only for 1/3 <7y <1l. This
exact axisymmetric HARD-MAGNETIC solution is new.

(¢) The axisymmetric (A = B) DUST-MAGNETIC solution is the
remaining known exact solution of equations (II.E.7). It was discovered
independently by Doroshkevich (1965), Shikin (1966), and Thorne (1967).
£ 3
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In the axisymmetric case, with 7 = O, the field equations

(II.E.7) become:

&2 +2ac = +uwtepa™t | (II.E.29.3)
(& +8) + & 4+ 0% vae = - sA"L‘ , (II.E.29.b)
244385 = + aA"l* 5 (II.E.29.c')
where
v = A% . (II.E.30)

Note that only two of egquations (II.E.29) are independent. Using the

relation
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(Asae)' = A% (28 + 3&2) s (I1.E.31)

we find that equation (II.E.29,c) can be immediately integrated to

give:.
M2y 2/3+2) (4 + 65) (& - 35)Y2 . (II.E.32)

Here we have used & = (B/u) > 0. Using equation (II.E.32) in equation
(II.E.29.a) leads at .once to the first-order linear differential

equation:

2A (A - 3B) (dc/éA) + (A - 68) C - 22 -0 . (II.E.33)

The general solution of equation (II.E.33) is:

C =4+ 125 - 7262471+ eal(a - 33)Y/2 , (II.E.34)

where € 1is our sole anisotropy parametér, with the allowed range
0 < |e] < ©. The complete axisymmetric DUST-MAGNETIC solution is

given by equations (II;E.SQ), (IZ.E.3k4), and

Py = (u/8x) (a2¢)~L

. (II.E.35)

oy = (B/8x) 47

Note that & = (B/u) is the ratio of the energy-density of the magnetic

field to that of the perfect fluid when A = C = 1.

The initial singularity is always of the PANCAKE type, and
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it occurs when C = O. The behavior of the solution near the singularity

is:

A=3B«l + (constant) t

. (I1.E.36)
Cet

The solution emerges from the singularity with highly anisotropic
expansion rates, but beccmes, asymptotically isotropic (with
A=B=wn(x t2/3) as t - co. The two qualitatively different types of
temporal evolution of this solution are illustrated in Figure 1l. Note,
especially, how the magnetic field causes the expansion factor C
(along the field direction) to go to zero at the initial singularity.
In fact, the non-magnetic (B = 0) CIGAR type singularity is converted
into a PANCAKE singularity (with € - O) by the megnetic field.
3) ALL SINGULARITY SOLUTIONS

We mentioned above that equations (II.E.7) are extremely
difficult to solve analytically. A case which is of great practical
- interest is the RADIATION-MAGNETIC case (u # 0, B # 0, 7 = 1/3), but
this case has not yet been éolved analytically. In Appendix D we show
how the axisymmetric (i.e., A = B) RADIATION-MAGNETIC case leads to a
highly-nonlinear first-order Abel differential equation. Shikin (1967)
independently arrived at this differential equation in his anélysis
of this case. It is this equation (D.9) which presently frustrates

our efforts to obtain the analytical solution to the axisymmetric
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FIGURE 11

The t&pes of temporal behavior in the axisymmetric (i.e.,
A = B) DUST-MAGNETIC solution. (Schematic) This solution is defined
by u#0, B# 0, ¥ = 0. The initial singularity is always of the
z-PANCAKE type (i.e., A = B > constant and C » O at the singularity).
The solution always lsobtropizes to the bebavior A = B = C P t2/3 aé
t + . When € <O (dashed line and bottom solid line) the megnetic
field affects the dynamics only slightly, whereas when ¢ > O (dashed
line and top solid line) the magnetic field dramatically converts a
potential z-CIGAR singularity (where C + oo at the singularity) into
a z-PANCAKE singularity (where C » O).
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RADIATION-MAGNETIC case. |

| If we want to proceed further in our analysis of Bianchi
Type I cosmologies containing a uniform magnetic field, we must turn
to approximate methods. We have previously seen the general solutions
to the ZEL'DOVICH~MAGNETIC and the PURE-MAGNETIC cases. Hence, the
only remaining cases are those characterized by u # 0, B # 0, and

0 <7 <1: the PERFECI-FLUID-MAGNETIC cases. Only two particular
analytical solutions have been found for these cases; they are our
axisymmetric HARD-MAGNETIC case (1/3 < 7 < 1) and the axisymmetric
DUST-MAGNETIC case (7 = O). The remaining cases must be studied by
numerical integratioﬁ of equations (II.E.?); Such numerical integra-
tion is "computationallylstable" only if we integrate oul of the imitial
singularity; hence we need to know the form of the solutions near the
singularity. To find these "singularity solutions"” we manipulate

equations (II.E.7) into the form:

O=(4 ~B) +(a-b) (@ +Db +c) , (I1.E.37.a)
L+ 7) w7 Z 24 4+ (a +b)(c - a-b) - (4 +B) ,(II.E.37.b)
(1+7) BAB)™ = (7 -1)ab + (a +b)(7c +a +b) + (& +B), (IL.E.37.c)

where a dot ( + ) denotes differentiation with respect to proper time t.

Let us place the initial singularity et t = O, and let us set
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@, B, ¢) = £{1m20) . (I1.E.38)
Then equation (II.E.37.a) becomes:
(1 -~m) (L +m+n-1)=0 " ) (TT.E.30)
" Equation (II.E.39) implies three distinct possibilities:

N\

(1) t=m , f+m+nfl

il
')

(2) i=m , {+m+n S (11.E.40)

]
')

(3) LFm , L +m+n

7

Since Thorne (1967) has given all of the axisymmetric (! = m) singularity
solutions [see equations (A6) through (All) of Thorne 1967], we need
only f£ind the non-exisymmetric (2 7 m) singularity solutions here. Egqua-

tions (IT.E.37) now take the form:

L+n+n=1 5 (I1.E.41.a)
)t~ 7)o - (22+m?+n2)]t'2 , (II.E.41.b)

(l+7)5t'2(1‘n)= (1/2) (r-1) [1-(12+m?+n?)jt‘2 . (II.E.41.c)

Since 0 < 7 <1 equations (II.E.41) imply that near the singularity:

l¥m+n=12+m2+n2=l . (IT.E.b2)
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Therefore, near the initial singularity, all anisotropic (1 # n) PERFECT-
FLUID~MAGNETIC éolutions behave like the anisotropy-dominated Xasner
(1921) VACUUM solution. From equations (II.E.41l) we find that, near

the initiél singularity, the value of p is arbitrary (undetermined),

whereas

0 ; forn<o
P = ‘ . (II.E.43)

arbitrary , forn >0
When B = 0 we have the PERFEC‘I’-FLUID case, which we solved completely
in § II.D.; hence, only the B ¥ O (n > 0) singularity solutions remain
to be considered. Eguation (II.E.k3) shows that a uniform magnetic
field along the z-axis always causes the expansion factor in the
z-direction (C) to vanish at the singularity. We'can satisfy equation

(II.E.42) with the following convenient parameterization:

(2, m, ) = (1/3) [ +2 sin (y, ¢ +2x/3, ¢ + 4/3)] , (TL.E.bb)

with n > O in the range n/2 < ¥ < llx/6. We now see that the only

types of non-axisymmetric (2 # m) singularities are:
(i) anisotropic y~CIGARS (A and C ~ 0, B+ 0 as t - 0) for n/2<y<7=/6,
(ii) & symmetric y-CIGAR (A =C >0, B> w as t - 0) at ¢ = 5¢/6,

(iii) anisotropic x-CIGARS (A » oo, B and C + 0 as t -~ O)for Tx/6<y<llx/6,

(iv) & symmetric x-CIGAR (A~ @, B =C > 0 as t » 0) at v = 3¢/2.
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Note that only CIGAR singularities appear. Also note that at y = Tx/6
an axisymmetric (2 = m) 2-PANCAKE (A = B + constant, C +~ 0 as t = 0)
appeared for P # 0 and 0 <7 <1, but we have not listed it here
because it is already given explicitly in equations (All) of Thorne
- (1967). |

In order tolsee more clearly where we now stand with respect
to the solutions of equations (II.E.7), I have prepared Table 1.
Table 1 lists all possible solutions to equations (II.E.7) for all
possible combinations of u, B, and 7. I have included the non-magnetic
(B = 0) PERFECT-FLUID solutions from § II.D. for completeness. 1In
Table 2 all known analyticel solutions to équations (II.E.7) are shown,
and some references to wﬁere they may be fcund in the literature are
given. Those cases which must still be solved by numerical integration
(see below) are denoted "Numerical”, and they include equations (46)
through (All) of Thorne (1967) and the ! # m singularity.solutions
found above. Fiom Table 1 we see that the only cases which need be
studied numerically are the PERFECT-FLUID-MAGNETIC cases with the

following behavior near the initial singularity (see also Thorne 1967):

(a) isotropic POINT sinsularities (A =B =C =~ 0 as t + 0)
A=B == 2/ BE)] , (II.E.kS.a)

o = [5x(l+7)2 712 i (II.E.45.b)
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o, = (B/6x) ¢~/ BB ,  (II.BAS.c)

B = non-negative constant , 1/3 <y <1l ; (IT.E.45.4)

(b) axisymmetric PANCAKE singularities (A = B - constant, C > O as t » 0)

A=B=1 +-am(l"7) , C=t

s (II.E.46.8)
Py = (@) (1= 7) g~ (147) , (II.E.36.b)
Py = (8/80) [1 - ko)1 ,  (II.E.b6.c)
¢ and B = non-negative constants, 0 <y <1 ;  (II.E.46.d)

(¢) anisotropic y-CIGAR singularities (Aand ¢ >0, B>coas t ~ 0)

(4, B, C) = £ (4mm) , (II.E.b7.a)

(£,m,n) = (1/3) [1 +2 sin(y,¥ + 22/3,y + 4a/3)] (n/2 < ¥ <Tn/6) ,

(II.E.47.b)
o, = (/B ) 4~ (147) s (IT.E.47.¢)
- ~(4/3) [L-sin(y+ix/3)]
Py = (B/82) t »  (IT.E.M47.4)
p and B = non-negative constants, 0 <7 <1 . (II.E.bL7.e)

Note that the symmetric y-CIGAR singularity is a particular case of
equations (II.E.47). Also note that the anisotropic x~CIGAR singularity

solutions are equivalent to equations (II.E.Y¥7), since the x- and y-axes
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are equivalent and interchangeable in all of the PERFECT-FIUID-MACGNETIC
cases.,
L) THE NUMERICAL INTEGRATIONS

To actually perform the numerical integration of equations
. (II.E.7) we must initialize with.the singularity solutions of egquations
(II.E.45) through (II.E.X7), and then we can compute the temporal

evolution with the following convenient form of equations (IT.E.7):

Ve & e E) e PR (kg
a' a o+
b | o= (1/2) (1-7) v (¥7) e s 5(c/v)® . (II.E.48.b)
¢! | e -

Here a prime (') denotes differentiation with respect to the normalized

3

time T = u~t, and we have

V = ABC
. - (II.E.49)
8= (B/u) >0

Trial runs of the computer program using equations (II.E.48) and
(II.E.49) accurately reproduced the following: (a) the known isotropic
solutions with B = O; (b) the anisotropic PERFECT-FLUID solutions of

Jacobs (1968) with 8 = 0, (¢} the axisymmetriec HARD-MAGNETIC solution
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of equations (II.E.26) with B # 0, and (d) the axisymmetric DUST-
MAGNETIC solution of equations (II.E.32) through (II.E.35) with p # O.
Then computer studies of the PERFECT—FLUiD-MAGNETIC cases characﬁerized
by the singularity solutions of equations (II.E.45) through (II.E.L7)
_'ﬁere carried out, with the following results.

The typical temporal behavior of solutions beginning in the

isotropic POINT singularities‘(l/s < 7 < 1) of eguations (II.E.U5) is

displayed in Figure 12. These solutions always remain axisymmetric
(i.e., A = B). The magnetic field accelerates the transverse (A = B)
expansions, while it decelerates the longitudinal (C) expansion.

These solutions become highly anisotreopic as time increases, and
asymptotically (as T + co) they approach the corresponding (same y and
) axisymmetric HARD-MAGNETIC solution of equations (II.E.26). The
magnetic field (pb) has negligible effect on the dynamics as T~ 0,
but its influence becomes comparable to that of the perfect fluid

(pm) as T increases.. The effects of the magnetic field become
readily apparent at a time which decreases.as & increases.

Some examples of solutions beginning in the axisymmetric

PANCAKE singularities ( 0 < 7 < 1) of equations (II.E.46) are shown in

Figure 13. Their behavior is'qualitatively the same as that of the
axisymmetric DUST-MAGNETIC solution of equations (II.E.32) through
(I1.E.35) and Figure 11. They always remain axisymmetric (i.e.,

A= B) while the magnetic field accelerates their transverse (A = B)
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FIGURE 12

The typical behavior of the PERFECT~-FLUID-MAGNETIC numerical
solutions beginning in isotropic (A = B = C) POINT singularities.
(Schematic) These are "HARD-MAGNETIC" solutions (1/3 <« ¥ < 1). They
behave as A =B = C =~ T2/ [3(247)] near the initial singularity, but
the magnetic field converts them into {;he corresponding (same 7)
axisymmetric HARD-MAGNZTIC solution of equation (II.E.26) as
T+00 [A=Bw~ 1'%: and C = 7(1-7)/(1+7) for large 7]. They are highly
anisotropic as T - co. The parameter ® used in the figure neasures

the amount of magnetic field present [see equation (II.E.49)].
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FIGURE 135

Representative types of temporal behavior for PERFECT-FIUID=-
MAGNETIC numerical solutions beginning in axisymmetric (i.e., A = B)_
PANCAKE singularities (0 < 7 < 1). (Schematic) The expansion rates
~ are highly anisotropic near the initial singularity, but they approach
the isotropic behavior A =B =~ C x ga/(5(1+7)] as T » 00. These
numerical solutions have the same qualitative behavior as the axi-
symmetric DUST-MAGNETIC solution. (7 = O) shown in Figure 11. The
term "written in" implies that the magnetic field does not affect
the qualitative behavior of the solution as compared to the correspond-
ing (same y) PERFECT-FLUID (§ = O) solution of Jaccbs (1968). The
term “dramatic conversion" means that a potential z-CIGAR singularity

is transformed into & z-PANCAKE singularity by the action of the

magnetic field.
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expansions and decelerates their longitudinal (C) expansion. They
emerge from the initial singularity with highly anisotropic expansion
rates, but asymptotically approach the corresponding (same 7) isotropic
PERFECT-FLUID (B = O) solution as T - co. The magnetic field affects

the evolution noticeably only at intermediate tiﬁes, and has negligible
effect as 7T+~ O and as T -+ co. The region in which the magnetic field
appreciably affects the dynamics moves to smaller values of 7 as &
increases.

Finally, some solutions which emerge from the anisotrbEic

y-CIGAR singularities (0 < 7 < 1) of equatians (II.E.47) are shown in

Figure 14. These solutions are never axisymmetric. They emerge from
the initial singularity with highly anisotropic expansion rates, butb
as T + oo they asymptotically isotropize to the corresponding (same 7)
isotropic PERFECT-FLUID (B = 0) solution. The magnetic field is
effective only for intermediate 7, where it accelerates the A and
B expansions and decelerates the € expansion. The magnetic field
has negligible effect on the dynamics as 7T - Q0 and as T + oco. The
region in which the magnetic field is effective moves to smaller T

as & increases. Qualitatively there are two types of temporal
behavior: (1) Those anisotropic PERFECT-FLUID (B = O) solutions of
Jacobs (1968) which émerge from x~ or yQCIGAR singularities are
qualitatively unchaﬁged by the magnetic field; we éay that the mapgnetic

field is simply "written in". (2) By contrast, the anisotropic
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FIGURE 1k

The typical behavior of the PERFECT-FLUID-MAGNETIC numerical
solutions which begin at anisotropic CIGAR singularities. They exist
for 0 <7 < 1. (Schematic) The initial singularity is always x~ or
 y-CIGAR, never z-CIGP;R. ‘As T > O the behavior is (4,B,C) =~ (£,m,n)
where (2,m,n) = (1/3) [1 +2 sin(y, y +2x/3, ¢ + 4a/3)] and
x/2 <y < 11x/6. Isotropization of the expansion occurs as T - co,
withAs B~ Cswm 72/[3(l+7)]. There are two types of behavior: (1)
the magnetié field is essentially "wrif‘cen in" --= i.e., it does not
affect the dynamics appreciably -~ (dotted lines), and (2) the
magnétic field dominates the dynamics for a short pericd of time

(dashed lines).
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PERFECT-FLUID (B = 0) solutions of Jacobs (1968) which emerge from a
z-CIGAR singularity are dramatically converted info PERFECT-FLUID~-
MAGNETIC solutions with x- or y~CIGAR singularities, since the
magnetic field always "pulls” C to zero at theé singularity.

When we compare the singularity behavior [equations (II.E.45)
through (II.E.4¥7)] of these PERFECT-FLUID-MAGNETIC numerical solutions
to that of the PERFECT-FLUID solutions (O.S 7 <1, B =0) of Jacobs
(1968), we see that we have made the normalization le| = 1 here. This
normalization of the anisotropy parameter, €, merely means that'the
normalized time, 7T = ul/at, appearing in our numerical integrations
[see equations (II.E.UB)] is scaled so that the expansion anisotropies
due solely to € become small for 7 > 1. We may interpret the effects
of the parameter ¥ as follows: If the singularity behavior of egqua-
tions (II.E.45) through (II.E.47) persisted until T = 1, we would
have & = pb/pm. Therefore, & represents the projected ratio of the
energy-density in the magnetic field to that in thg perfect fluid.
For & > > 1 the magnetic field begins to affect the dynamics at 7 < < 1,
and only the anisctropy due to € remains by the fime that 7 = 1. For
& < < 1 the magnetic field can become effective only at T > > 1, and
large anisotropies persist ﬁntil T > > 1 due to the magnetic field.
5) THE CONSTRUCTION OF SEMI-REALISTIC MODELS

In order to construct semi-realistic anisotropic Bianchi

Type I cosmological models of our Universe, we need to know at least
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the analytical forms of the axisymmetric (i.e., A = B) DUST-MAGNETIC
- and the axisymmetric RADIATION-MAGNETIC solutions. These two solutions
could then be combined, by the approximation procedure of § II.D., to
Torm approximate DUST-PLUS~RADIATION-MAGNETIC cosmological models.
‘Unfortunately, the RADIATION-MAGNETIC solution has not been found yet.
Appendix D illustrates how extraordinarily complicated the solution
of even the simple axisymmetric RADIATION-MAGNETIC case is. Until the
RADIATION-MAGNETIC case is solved, we cannot construct semi-realistic
cosmological models as we did in § II.D.. We need not succumb to total
despair however. Qur numerical integrations of the field equations
(II.E.7) and our knowledge of the existing analytical soiutions in
both the PERFECT-FLUID (B = O) and PERFECT-FLUID-MAGNETIC (B 7 O) cases
provide enocugh information for a qualitative (and in some cases quanti-
tative) analysis of ﬁany important physicai properties of the DUST-
PEUS—RADIATION-MAGNETICAcosmological models of our Universe. In the
next subsection we shall extractyas much information as we can about
such models.
6) APPLICATIONS TO THE REAL UNIVERSE

Let us first consider the initial physical singularity of
our'heuristic DUST~PLUS~RADIATICON-MAGNETIC semi;realistic cosmological
models. In direct aﬁalogy to § II.D., we will say that our models are
describéd by a RADIATION~MAGNETIC solution near the singularity. The

type of initial singularity is of great importance. Thorne (1967)
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suggests that a primordial megnetic field probably could never exceed

a field strength of |B] ~ b4 x 1000 gauss. Otherwise, the

~'critical
field would have been quantized near the initial singularity, and a
large-scale field would probably not have emerged from the initial
. Quantum phase. This conjecture is supported by the work of O'Connell
(1968) who shows that the anomalous magnetic moment of the electron
implies the spontaneous creation of electron-positron pairs in a

16

magnetic field with [B| > 4 (137) [B| = 7.6 X 107 gauss.

critical
However, recent work by H-Y. Chiu and his colleauges (paper in ﬁress)
suggests that electron-positron pair creation might not occur in an
arbitrarily strong magnetic field. The problem of the existence of

a large-scale magnetic Iield after an initial quantum phase must be
considered unresolved at present. Let us suppose that Chiu et al.

are wrong, and 0'Connell right. Then if a primordial magnetic field
originated with field strengths well above ZI.OJ“7 gauss, its energy

‘ would most probably have simply augmented the existing relativistic
electron~positron gas, and no large-scale magnetic field would have
emerged from the quantum phase. This argument implies that only
z-PANCAKE type initial singularities might be compatible with a large-
scale cosmic magnetic field today, in Bianchi Type I cosmologies

(IEI + oo for all other types of singulerities). From Teble 1.we see

that z-PANCAKE singularities occur only for the axisymmetric (i.e.,

A = B) PERFECT-FLUID-MAGNETIC cosmologies with the singularity behavior
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of equations (II.E.46). Therefore, we might expect our models to
have the following behavior in the RADIATION-MAGNETIC phase near the

initial singularity:

A=Bw1l+d tz_/s , Cwmt ; (II.E.50.a)
P, = (a/6x) £~/ ~ (II.E.50.b)
by =~ (B/8r) [ - 4at®/3] ,  (II.E.50.c)

where @ is a non-negative constant and where

. 6 -3 )
B < Boriticar =0 X 10" emem . (TT.E.51)

Althoﬁgh the above arguments are rather weak, they éuggest a serious
need for an analytical solution to the axisymmetric RADIATION-MAGNETIC
Ca8C.

From our numerical results in Figure 13 we see that A (= B)
is a monotonically increasing function of time (t) for the axisymmetric
RAﬁIATION—MAGNETIC casé. Hence, 2R is monotonically decreasing with
t, and after the initial singularity we need no longer be concerned

that |B| might exceed |B] Equations (II.E.50) show that the

critical®
anisotropy dominates the dynamics near the singularity [where the
solution asymptotically approaches Kasner's (1921) axisymmetric
VACUUM solution]. We note that (pm/pb) - oo at the singularity.

Let us now leap-frog to the present state of our "models”,

and work back towards the singularity. Let the subscript zero (o)
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dcnotc the present value of a quantity. Recalling (see § I.B.) that
=7

observations set an approximate upper limit of about 10 ' gauss to
any present-day intergalactic mégnetic field, let us write the present

field strength as:
IBl, = n X 10™7 gauss (0<n < 102) R (IT.E.52)

where 7 is & non-negative constant. If the observed galactic magnetic
fields (w~ 10'6 gauss) were captured during galaxy formation from a
cosmic magnetic field, the most reasonable value for n is 7 = 10 .
Peebles (1967) remarks that such a primordial magnetic field might
also solve the "problem" of the enérgetics,of galaxy formation. In

any case, from equation (IL.E.52) we know that:

n

oo Igia/&: = (4 x J.o'l‘l) n2 g e . (II.E.53)

The value m % 10797 gmoew™® (for 7 ~ 10°) is negligible

(pbo)max ‘
compared to the critical energy-density ( = 10729 gn cm’s) necessary
to have the "flat" space sections of a Bianchi Type I cosmology today.

Hence, a possible large-scale primordial magnetice field can have no

noticeable effect upon the dynamical evoluticn of our Universe teday.

Let us now consider the possible relationship between a
uniform primordial magnetic field and the observed isotropy of the
2.7 % cosmic microwave radiation. Referring back to our analysis

in § II.D. we recall that the observed upper limit to the twelve-hour
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harmonic of temperature anisotropy of the radiation (Partridge and

Wilkinson 1967) was:

(aT/T), < (1.6 * 0.7) X 107 . (II.B.54)

In § IT.D. we considered two extreme cases: (1) the entire matter
content of our Universe has been ionized hydrogen for redshifis

z <9 (case H II), and (2) the ionized hydrogen from the primordial
Tireball recombined and neutralized when the photon temperature dropped
below about 3000 01{, and it wes never reicnized (case H I). Equation
(II.E.54) implies that the expansion of our Universe has been very

nearly isotropic since a time [see equations (II.D.88) and (II.D.89)]:

HII 3.0 X lO+8

t ~ years after the singularity. '(II.E.SS)
HI 2.4 x 107

In an essentially isotropic cosmology we have the behavior:
~ _3 ~ R
p, = (R/R)™ , pp = (BR/R)) , (IL.E.56)
where R, the scale factor for proper lengths, goes as
R o 42/3 , (II.E.ST)

in the DUST phase of our Universe. Therefore, we casily find that:
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(/o) = (po/ons) T/ ( 9 x 107 years) T2/
(3.9 X 10"11) n2 b x 1077 | HII
L f for case .
(4.5 x 1077 ) i 5 X 1072 HI
' (II.E.58)

From equation (II.E.58) we see this, that the observed isotropy of
the 2.7 °K cosmic microwave radiation is consistent with the negligible
dynamical effect of a possible cosmic magnetic field during the time
that the photons of the radiation were freely-propagating (tf.' ts).
Going back even further towards the initial singularity, we
. must consider the time when expansion anisctropies become large. In
cur PERFECT-FLUID models of § II.D. we had only to consider two fairly
distinet phases of the evolution of our Universe: (1) the earlier
RADIATION phase (7 = 1/3), and (2) the later DUST phase (¥ = 0).
When we inelude primordial magnetie fields in our discussion, however,
we introduce the possibilit& of a MACNETIC ?hase where the energy-
density of the magnetic field (pb) dominates that of either the
nradiation"v(pr) or the ”dustﬁ (pd). The situation is not as complicated
as it might be though. From equations (II.D.73), (II.D.9%4), and

(II.E.58) we see that the primordial magnetic field has negligible

effect upon the expaﬁsion during the DUST phase since 1 < 102, and the

time when expansion anisotropies become large in the DUST phase is

still determined by 1€dl via equation (II.D.73). Therefore, a possible
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MAGNETIC phase can only accur somewhere in the RADIATION phase;. large
expansion anisotropies inevitably arise during the RADIATION phase if
either 1 or |€d| # 0. These anisotropies may be attributed to either
€ (the anisotropy parameter), as in equatiohs (II.D.71) for the
PERfECT—FLUID models of § II.D., or to the magnetic field (n). When
the anisotropies are due to- € we may find the time when the aniso~
tropies become appreciable from eguation (II.D.71), but when they are
due to 1 we cannot make any firm guantitative statements since we do
nolt know the analytical RADIATION-MAGNETIC solution.

Finally, we consider primordial element formation in our
"models". Primordial element formation takes place in the RADIATION
phase of ocur Universe at a temperature of about 109 ° « It dis
important that we know how the number-density of baryons varies with
time at that epoch. This variation is governed by the quantity
[(dv/at)/3V] where V = ABC is the volume scale factor. Since the
RADIATION—MAGNETIC case had nét yel been solved analytically, we must
resort to either ﬁumerical integration or fo approximate methods to
calculate the primordial element prcduction in any particular PERFECT-
FLUID-MAGNETIC model of our Universe. However, we can make the
following qualitative statements: (&) if the magnetié field is
merely "written into" (see Figure 13) the dynamics of the RADIATION .
phase element producfion will be qualitatively similar to the results

ol

II.D., while (b) if the magnetic field dramatically converts

Vel
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a potential z-CIGAR singularity into a z-PANCAKE singularity (see
Figure 13) we will encounter a MAGNETIC phase during & small part of
the RADIATION phase and element production may be substantially
different from the PERFECT-FLUID result of § II.D. In the latter
.case.an approximate method which may prove useful is the following:
Use the analytical RADIATION solution of § II.D. until the magnetic
field dominates the "radiation” (pb > > pr). Then match smoothly
[with (4, B, C) and (a, b, c) continuous] to the FURE-MAGNETIC solu-
tion of equations (II.E.19). Continue with the FURE-MAGNETIC solution
until the "radiation” once again decminates the magnetic field
(pr > > pb) --- 25 we have seen it must (aﬁove). Then return smoothly
to the RADIATION solution. This approximate procedure, while con-
ceptually easy, is rather difficult to carry out in practice. The
best program would be to solve the RADIATION-MAGNETIC case analytically,
and to obtain [(dv/dt)/3V] directly. Then the computatioh of pri-
mordial element formation would be straightforward.

| In summary, we can see that our present knowledge of the
anisotropic Bianchi Type I PERFECT-FLUID-MAGNETIC cosmological models
is sketchy at best. We have a few analytical solutions when there
is a magnetic field present, but we are in desperate need of the
analytical DUST—MAGNETIC and RADIATION~MAGNETIC solutions. Without
these solutions, or extensive numericel studies, our FERFECT-FLUID-

MAGNETIC models can be little better than heuristic.
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IITI. CONCLUSION

"The watens 4into which 1 am stepping
have nod yel been croased by any man”,
{("L'acqua ch'io prendo giammai no &4 corse®.)

Dante Alighieri

III. A. A SUMMARY QF THE THESIS

Let us here summarize what we have done and what we have
learned in this thesis.

In Chapter I we gave some useful background information on
relativistic cosmology: In § I.A. we presented our reasons for con-
sidering anisotropic cosmological models of our Universe, and we
decided to use the general relativistic,»hot big-bang theory of
cosmology (with vanishing cosmological constant) as the mathematical
framework for our analysis of anisotropic cosmologies. In § I. B.
we gave an extensive list of the §bservational data pertinent to
cosmoldgy.  In § I. C..we briefly reviewed the “standard" isotropic
Lemaitre cosmological models of our Universe which are currently in
vogue, and we considered the "flat" (zero curvature) isotropic

Lemaitre models in some detail (as a prelude to Chapter II).
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In Chapter iI we implemented our analysis of anisotropic
coémologies. Qur primary purpose in this thesis was to understand the
effects of expansion anisotropies in general relativistic cosmological
models, and Chapter II was where we accomplished this goal.

» To simplify the mathematical analysis, while still retaining
the adequate representation of the currént stage of evolution of our
Universe provided by ﬁhe "standard" isotropic cosmological rodels, we
limited ourselves to the consideration of Bianchi Type I cosmologies
in § IT.A.. Bianchi Type I cosmologies are spatially homogeneous, but
anisotropic; and they exhibit no rotation. In § II.A. we exhibited
the most general Bianchi Type I metric, and we considered the stress-
energy tensor for perfect-fluid matter and/or scurceless electromagnetic.
fields in this metric. We found that perfect-fluid matter is comoving
in a diageonal metric in the most general case, while the electric and
magnetic fields are parallel and uniform in a non-diagonal metric in
the most general case. To further simplify the mathematics, we chose

to consider only the diaganal Bianchi Type I metric:
as® = at® - 22(t)ax® - BP(t)@y® - At)az® . (III.A.1)

In § II.B. we listed the authors and the content of all of
the previous work which has been done on Bianchi Type I cosmologies.
This list indicated the areas of possible research which remained to be

undertaken in these cosmologies.
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The most'important rhysical properties of Bianchi Type I

cosmologies and cosmological models were investigated in ¢ II.C.. In
subsection II.C.l) we explicitly displayed the kinematical properties
("expansion", "shear", and "rotation") of the diagonal metrie of
equafion (IITI.A.1). We also proved that all Bianchi Type I cosmologles
encounter an initial paysical singularity, and we investigated the
important symmetry properties of the Einstein field equations for
‘Bianchi Type I cosmologies.
In subsection II.C.2) we considered gases of massless

pars. o5 (both degenerate and non-degenerate) which decouple from
thermal equilibrium and become freely-propagating (i.e., non-interacting)
in the metric of equation (IIT.A.l). We briefly reviewed the general
relativistic statistical mechanics of massless-particle gases in thermal
equilibrium, and we used the solution to the Liouville equation for
non-interacting massless particles to study the metric dependence
[i.e., the dependence upon (4, B, C)] of the components of the stress-
energy tensor for freely-propagating massless-particle geses in the
diagonal metric of equation (I11.A.1). In general, the components of
this sfress-energy tensor were expressible in terms of élliptic inte~
grals, but we found that we could carry out theAintegrations in terms
of elementary functions in the axisymmetric (i.e., A = B) case. In
one limiting axisymmétric case we presented an analytical solution of

the field equations due to Doroshkevich et al. (1967), and in another
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limi'bing axisymme‘tr'ie‘case we derived a ncw anisotropic solution to
the Einstein field equations. In general, we discussed the dynamical
effects due to the anisotropic stresses of non-interacting massless-
particle gases.

| In subsection II.C.S) we considered the decoupling of
gravitons, neutrinos, and photons in great detail. We found that the
dynamical effects peculiar to non-interacting photons (and massive
particles) are negligible, since they decouple only after_the photon
temperature falls below about 3000 OK;‘ We were forced to negléct the
effects of decoupled gravitons because of the great lack of present-
day knowledge concerning the physics of graviton decoupling. The
dynamical effects associated with decoupled muon-neutrinos (v“) were
found to depend critically upon the physical processes occurring
during electron-neutrino (ve) decoupling. The concept of v_ viscosity,
first introduced by Misner (1907, 1968), was used ia a new;nﬁore
fealistic,.analysis of the viscous damping of expansion anisotropies
near temperatures of about lolo °k. We found that expansion aniso-
tropies are damped to essentially negligible levels by the time that
temperétures are below 10° OK, and that the "standard" isotropic
cosmological models are an adequate representation of our Universe.
after this point! '

In an effort to better understand the structure of the

Einstein field equations and the possible effects of large expansion
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anisotropies, we totally neglected all effects due to anisotropic
neutrino stresses in 4§ IT.D. and TI.E.. We derived a large number
of analytical and numerical solutions to the Einstein field equations
for anisotropic Bianchi Type I cosmologies. In 8§ II.D. our stress-
energy tensor was that of perfect-fluid matter with the barotropic

equation of state p =7 o (0 <y <1). We found the general analyti-

cal solution for all 7 for this case: the PERFECT-FLUID case. We

presented the explicit solutions (in terms of elementary funétions)
and discussed the properties of the following: (1) +the DUST solubtion
(7 =0), (2) the RADIATION solution (7 =1/3), (3) two infinite
sequences of HARD solutions (1/3 < 7 < 1), (&) the ZEL'DOVICH
solution (7 = 1), and (5) the DUST-PLUS-RADIATION solution
(p=pg+p, D= pr/S). We used these analytical solutions to con-
struct semi-realistic, anisoﬁropic, DUST-PLﬁS-RADIATION cosmological
models bf our Universe; In § IT.E. our stress-energy tensor consisted
of perfect~-fluid matter with the barotropic equation of state, and a
uniform comoving magnetic field, with energy~density Py aligned along
the z-axis. We called these the PERFECT~-FLUID-MAGNETIC cosmologies.
We derived several new analytical solutions (in particular, the FURE-
MAGNETIC solution (pm =0, Py #.0) and the ZEL'DOVICH~MAGNETIC solu-
tion (p and p # 0, 7 = 1)}, found the singularity behavior of all
remaining PERFECT-FLUID-MAGNETIC cases, and studied these remaining.

cases by numerical integration of the Einstein field equations. We
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then discussed the properties of heuristic, semi-realistic, anisotropic,
DUST-PLUS-RADIATION-MAGNETiC cosmological models of our Universe.

In all of the semi-realistic, anisotropic, cosmological
models we constructed we studied the possible effects of expansion
anisbtropies and of a uniform primordial magnetic field upan the follow-
ing: (a) the type of initial physical singularity, (b) the thermal
history and temporal evolution of our Universe, (¢} primordial

element formation, (d) the time when expansion anisotropies become
small, and (e) the temperaturec igctropy of the observed 2.7 OK cosmic
microwave radiaticn.

In conclusion, we can say the following: We have gained an
excellent understanding of the possible effects of expansion aniso-
tropies in Bianchi Type I cosmologies and cosmological models. Our
many new analytical solutions have given us useful insights into the
structure and properties of the Einstein field equations. We have
found that non-interacting massless particles and the viscosity assoc-

~iated with Ve decoupling are the fundamental physical factors which
determine the possible evolution of Bianchi Type I cosmologies for

temperatures less than about 109 %.

Expansion aniscotropies are essen=-
tially negligible by the time that primordial element formation begins,
and the "standard" iéotropic cosmological models are an adequate

representation of our Universe thereafter. We see that we can now

reasonably say this, that the obscrvational conseqQuences of Bianchi



209

Type I cosmological nodels are practically identical to those of the

"standard" isotropic Lemaitre models of our Universe.



210

III. B. THE OUTLOOK FOR THE FUTURE

| In this thesis we have learned a great deal about anisotropic
Bianchi Type I cosmologies. Our investigatioh, though extensive, is
not complete. We caﬁ éee many interesting areas of research in Bianchi
Type"I cosmologies which should be studied in the future. Here we will
end this thesis by listing some of the more important research problems
which remain in Bianchi Type I cosmolcgies:

(a) An accurate analysis of the physical and dynamical effects
associated with the decoupling of massless particles near the initial
physical singularity is needed. In particu;ar, the viscous damping of
expansion anisotropies by the decoupling of gravitons, muon-neutrinos,
and electron-neutrinos warrants more detailed study than that given
here. The dynamical properties associated with particles decoupling
in a primordial magnetic field should also be investigated.

(b) When sourceless electromagnetic fields are present in
& Bianchi Type I cosmology, the metric cannot generally be diagonalized
to the form of equation (III.A.l). An investigation of the properties
of such non-diagonal Bianchi Type I metrics and of such general source-
less electromagnetic fields would be very useful now. We are especially
interested in the present-day observationél conéequences of such metrics
and fields.

(c) More'analytical solutions to the Einstein field equations

for the PERFECT-FLUID-MAGNETIC cosmologies of § II.E. are needed. The
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general RADIATION-MAGNETIC solution is of greatest interest here,
especially with respect to the possible effects of a uniform pri-
mordial magnetic field upon primordial element formation. Any new
analytical solution wiil be of great interest, to the extent that it
further elucidates the structure and properties of these field equa-
tions.

(d) The effects of the viscous damping of anisotropy updn
“the growth of density perturbations in anisotropic Bianchi Type I
cosmologies (see Doroshkevich 1966) have not yet been considered. An
accurate analysis of these effeéts is now needed.

When the above research problems have been satisfactorily
solved, our knowledge of all physically permissible Blanchi Type I
cosmologies will be practically complete. Then more difficult cosmol-
ogies, such as those of Bianchi Type V and IX, may be approached with

greater confidence.
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APPENDIK A
GASES OF MASSIESS PARTICLES IIl THERMAL EGQUILIBRIUM
We desire to evaluate equations (II.C.17) end (II.C.18) in
the case of thermal equilibrium. Using equations (II.C.23), (II.C.24),

and (II.C.25), we write equation (II.C.18) as:

2 co
a(t) = > fﬂdcv Tjt‘ sin ¢ o [ (P°)Pfexpl(3%/7)-D] £ 1 171 ar®,  (a.1)
o o) .

[o]

Eveluating the angular integrals end making the change of variable
. _
x=P/T |, (4.2)

we obtain the result indicated in equations (II.C.26) and (II.C.27):
co

n(£) = (bxph™2) 7 I 2 [exp(x-D) * 1']'1 ax . (4.3)
: o)
We obtain 10, by substituting equations (II.C.16), (II.C.25),

and (I.C.25) into equation (IT.C.17):
o (1) = ] () {eml(F/m)0] £ 11T @’ e . (ad)

Evaluating the angular integrals indicated by equation (II.C.24) and
changing variables as in equation (A.2), we obtain the result displayed

in equations (IT.C.26) and (II.C.27):

©°, (%) = (brin™3y o fo x> fexp(x~D) * 1T% ax . (4.5)
o .
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The Tii (no sum) are evaluated in the same way as was Too,
except that equations (I.C.22) must now be used and the angular

integrals are more interesting. We obtain:
i

t
™, (%)

= [T PiPi{exp[(Po/T)-D] £ 111 %ar® aa  (no sum)

> s (4.6)
= W JPT gy (PN (el (8%/0)-0] £ 217 B0 a8 (no sum)

- [P0 an [ (2°)° (expl(3%m)-D] £ 13t a2
Q [
" where

F(0,9) = (sin © cos @, sin © sin @, cos ©) for i = (1,2,3). (A7)

Using equation (A.2) and doing the indicated angular integrations,

we find the results given in equations (II.C.28) and (II.C.27):

1 5 ST NP Sy 1

T () = Fp(8) = 1°,(2) = - (4ei/50°) T [ x*[exp(x-D) £ 177% ax
)

5 (A.8)

= - (1/3) °(®)

Since T”v‘is a symmetric %temsor, it has six independent off-
diagonal terms. All of these of f-diagonal terms vanish in the case

of thermal equilibfium because:



R 2n
Ty =
(o]
25

Tp®) = |

104(2) =

0&—A

L
0'-'3.’__\

Tla(i) -3

1
T 3(‘:) =

n
OLﬂA

Py(t) «

ety
05—

Therefore

T‘*V(t) =0

214

ces @ 4o = 0
sin ¢ d9 = 0
sin 6 cos ® A6 = O

sin 9 cos 9 d9p = 0

cos ¢ ap = Q
sin ¢ dp =0
Tor (u 4 v)

(2.9)

(A.lO).
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APPENDIX B
ENERGY INTEGRALS FOR GASES OF MASSLESS BOSONS AND FERMIONS
In equation (II.C.27) we have the clagss of energy integrals
o .
fz(i) @) = = [exp(x-p) £17 ax . (B.1)
o
Here we will investigate some of the pertinent properties of these
integrals.
For massless bosons (photons and gravitons) we need only

consider fi(') (0) (see Chiu 1967). TIn this case, the integrals zay

be evaluated as follows:

£,0%(0) = Fxt a1 ac = | 1 Ferp(ax)[1-exp(-x) T e
el o

co ©0 . CO -
=5 [ 7 exp(ei) ax = (1a)t B x (42
k=1 o k=1

= (4)!  t{e42) , (3.2)

where ((!) is the Rlemann zeta~function [see eguation (II.C.30)7.

The first few values of {(21) are:

§(0) = - 'él‘ » £(1) = w, t2)= 7\72/6: £{3) = l.éCQ...,C(h) = ﬂh/903"'

(B.3)

In a non-degenerate (D = O) massless fermion gas (neutrinos

" and anti~neutrinos) we must evaluate £(+) (0). Using the procedure
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resulting in equation (B.2), we readily find:

f2(+) (0) = (2+1)1 [1-.2"(“1)] ¢ (242)
‘ L. (B.4%)
= e~y fz(-) (0)

7/

The only case remaining to be studied is that of a degenerate
(D # 0) gas of massless fermions. We must consider the properties of
i ,!(+) (D). Since these integrals cannot be evaluated in terms of
elementary functions, we shall investigate their behavior for both
small and large values of D.

Recall that
f£(+) (D) = 3;9 x4 Lexp(x-d) + 177F ax . (B.5)
o
Let us make the change of variable
¥y = x~D . (B.6)

Then equation (B.5) becomes:
o) :
£, @) = [ r)* fam(y) v 2Ty (B.7)
-D

Using the binamial expansion, we reduce equation (B.T) to:
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00
fz(+)(D) - pi*t [ [exp(y) + 177t ay
' D

vr 1)o7 fo Ty, f il GO
N lexp(y) + 1] * Jy [exp(y) + 1]

Here the binomial coefficieat (R) is equal to
(&) =a! /[(n-m)im] . (B.9)

The first and second integrals on the right-hand side of equation
(B.8) are straightforward, and wz obtain:
‘g 3 1 - -
fz(+)(D) = 0¥ 0 [+ exp(D)]+ T l—%’—j;)—- re-a-(4+L r)] c(242-7) D¥
r=o0 ~°
2

+ 2
r=0

i+

o
il I Al # exp(y)T ay - (3.10)

-D

When D = 0 in equation (B.10) we see that we recover equation (B.l)
immediately. |

Let us now consider the asymptotic behavior of the sole

remaining integral in equation (B.10):

. o '
10)= [ v+ enly) T oy P (3.11)

Our analysis here ié based upon pages 127 and 310 of Gradshteyn and

~ Ryzhik (1965). For small D we proceed as follows:
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o] 241 1 -y/2
I(D) = ‘-I-‘D y [exp(y;}é}))('*yéxig(‘yfz)} i

S ¥y (1/2)[1-teun (y/2)7] ay
-D

= (1/2) [(-1)”1'1' (242-2)~L pPR-T | fD v " Thann (y/2)dy] .(B.12)

Now make the change of variable

z= -y/2 s (B.13)

to obtain, Finally:

o} D/2
-{1/2) j‘ y£+l'rtanh (y/2) &y = (-2)“1"1' j/ 22" Thanh 2 dz
=D ' o

2m : .
. (_1)2"'1-1' 2:0 (2 -l>32m (2m+£+l-r)
= o EmHLT) (Za)t

«(B.1%)

Here B are the well-known Bernoulli numbers, and equation (B.1k) is

velid for 0 < D < x. Therefore, for 0 <D < x we have:

0o (22"‘-3.)32m p(am-1)

I(D) = (_l)£+l'r D2+2-r cg(zé-r)]-l +m§.l (2m+2+l~2‘)(2m)1

.(B.15)

The asymptotic behavior of f i’(+) (D) for small D now follows from
equations (B.10), (B.11l), and (B.15). For example, retaining only

the first-order correction term for D we have (with 2 > 0):
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f2(+)(n) - f£(+)(0) + (241)1 [1274 g(2+1) D + Ordez-(Da) . (B.16)

Finally, we consider the asymptotie behavior of f,(+) (D) for
large D. COur asnalysis above is again applicable down to egquation

(B.11). Let us change our variables in equation (B.1ll) via

uz -y . (B.17)

Then we have:

(B.18)

. D
1(p) = (=1’ [ T [+ exp(-u)]Th au
(o]

Proceeding now as we did in eguation (B.2) we have:

(%) D
10) = (-1 5 (c)F [T exp(eim) au
- k=0 o

~ (_l)ﬂ*l-l'

O Syttt

[e20] co
T gy s (-l)k j‘ pit-r exp(-ku)du
. k=1 0 :

s (-1)31T [(z+2-r)‘l pite-r +<§ (-1)% (241-7)! kf(£+e'r)] .(3.19)
k=1

Equation (B.19) is approximate, because we let ome linit of integration

in the second line go to infinity. Our result, howevef, is very

acéﬁrate for D :: S. Therefore, for D 3 5 we mgy combine equaticns

(B.10), (B.11), and (B.19) to find that the asymptotic behavior of

fz(+)(D) is:
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fl(+)(D) ~ % [ L+ (<15 () G ] . (B.20)

Ti(i42-r )"
=0
This concludes our investigation of the energy integrals [equation

(8.1)].
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APPENDIX C
A NEW ANISOTROPIC SOLUTION OF THE EINSTEIN FIELD EQUATIONS
FOR MASSLESS, NON—INTERACTING PARTICLES

Consider a diagonal stress-energy tensor of the form:

(p 0 0 o]

0 -p/20 0 ,
v = , (c.1)
0 0 -pf20

lo o o o

in the diagonal metric of equation (II.B.2). The conservation equation

(II.C.12) becomes:

(ov)* + (1/2)(a +B) (PV) = 0O » (c.2)

which immediately implies:

(p/p,) = (AB/A*B*)-l/a(V/V*)-l . | (C.3)

Here, all quantities with the subscript ¥ are constants. The Einstein

field equations (II.C.17) beccme:

ab +ac +be = &xp s (C.k.a)
(8 +8) +1° +c +be == kgp o, (C.4 )
(3+8) +a° + ¢ +ac == Yo , (C.k.c)

(8 +5) +a° +12 +8b =0 , (C.k.a)
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and because of equation (C.2) only three of equations (C.4) are
independent .
Subtracting equaﬁion (C.k.e) from equation (C.h.b) gives

the first integral:
(a =~ b) (V/V,) = K, = constant . (c.5)

Similar simple manipulations of equations. (C.4) lead to the system of

equations:

ab + ac + bd = &xp
¢(V/V,) = X, = constant 5 e (c.6)
(a = 1) (V/v,) = K, = another constant

Let us change our time-variable via:
at = (V/v,) a7 . (c.7)

Using equations (II.A.30) and (C.7), the last two of equations (C.6)

may be integrated to:
(¢/c,) = exp(x, T) ) (c.8.2)

(8/8) =(B/B,) exp(i, B . (C.8.b)

The first of equations (C.6), with equation (C.3), gives:
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(1/£) (ag/af) = + [x,° + (1‘13_/2)2 + &up, e 2 (C.9)
where we have set:
(a/m) = 2 el (5, + 2 K ) (c.10)
Integrating equation (C.9) gives us:
£ = bn(@/B)? exp(af) [1 - nexp(@®)]™” , (c.11)
where
N = [(az + B2)M2 a] |
o + g5 1 g
o = 2+ (x/e)f , (c.12)
8 = enp, | /

Let us now make the following simplifying notational changes:

1(2'?1 ’ &tp*t*a =1, k= (Kl/EKE)' (C.13)

i

K=t ,

Then, our geﬁeral solution takes the form:

N\

(A/Ag, B/B,, ¢/C.) = {f exp[~(1~k)7], £ exp[-(1+k)7], exp(W)}

C(/V,) = (8BC/AB,C,) = £ exp(-T)
y, (C.lk)

8xp = (£,2 £2)™ exp(2n)

Q

u
(t/t,) = [ £ exp(-m)an



with

f= lm(1+k2) exp[(l+k2)

and

Note that this general solution is valid only in the T-range

and the ke-range

a2k

1/2

w = [(232)12 - ()2 F

0 <1< ()2

~l<k<+1

M (1 - xexp[(245)

m(1/x)

1/2

e

2

(C.15.2)

(C.15.0)

(C.16.a)

(c.16.b)
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APPENDIX D
A STUDY OF THE AXISYMMETRIC RADIATION-MAGKETIC CASE
The axisymmetric RADIATION-MAGNETIC case is characterized
by.pf0, BFO, 7 = 1/3, and A(t) = B(t). In this case, the field equa~-

tions (II.E.7) take the form:

&2 + 2ac = + V’l*/5 + aA"lL , (D.1.a)

28" + Bat = (--3./3)V-2+/3 + Ba~H

|

; (D.1.1)

where all derivatives are with respect to normalized time:

“1/2 t | ) (D.2)

T =
and where
V= AQC
. (D.3)
5 = B/
Now meke the change of variables
X = (C/A)
» (DOL")
¥ = (a/x)(ax/aa)

Equation (D.l.a) immediately leads to '"quadratures” for the time

dependence of A, if we know C as a function of A:

2/3 +2 o2
T =[x [;Z;ﬁ%] AdA . (D.5)
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Now we must proceed to find € as a function of A (note
that this was how the axisymmetric DUST-MAGNETIC case was solved).

Dividing equation (D.l.b) by equation (D.l.a) we find:

3y(x/a)(da/ax) | _ | -1ssex/> |
[ 3y }~ [3@&:3 . (?6)

Making the change of variable

Z = Bxh/s

, (1)
‘we find, after mich tedious algebra:
[(1+22)/(3+2y)] bz(ay/az) + (122/y) + [(1+92+62°)/ (1+2)] = 0 .(D.8)
A final change of variable

£ = (2y)7" , (D.8)

and a great deal more algebra yields:

at/az = &) (2)¢ + Ay(2)E® + ag(2)® (D.9)

where
(22)(192) (1422) [A 8,8, 1 = [149z462°, 3+51z+kez’, 72247277 .(D.10)

From page T4 of Davis (1962) we see that equation (D.Q) is
an Abel first-order nonlinear differential equation. Analytical

solutions to such an equation can be readily obtained only if there
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exist certain very special relationships between the functions A, A

1’ e’

and A3. Our equation (D.10) does not satisfy these relationships.
The best that we can do is to obtain a transcendental solution for
£(z). I am indebted to Professor Alfonso Campolattaro for showing me
the following transcendental solution to equations (D.9) and (D.10).

‘We can write equaticn (D.9) in the form:

at/az = A L0 - By(2)] [t - Bo(2)] , (p.11)

where Bl and BP are the roots of the gquadratic eguation:

5° + (A2/A3) B + (Al/As) =0 . (D.12)

From equation (D.1l0) we easily find:

(3,8,) = - [1/3, [(149246°)/@h2) (1)} . (0.13)
In general, equation (D.ll) may be written: -
ag =
T (T 5y ~ A R
We now make a partial fraction expansion:
1 _ F(z) , glz) . H(=)
ISl (S0 Il S (= I (= B (9-25)
Let us define:
J(¢,2) = F(z)tn ¢ + G(z) £n(§—Bl) + H(z) ln(C-Be) = K = constant.

(D.16)
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Taking the total derivative of equation (D.16) and using equations

(D.1%4) and (D.15), we have the system of equations:

3
L) ] 1 G B}H. . HBQ‘
F'in ; +G zn(c-gl) + H'un(L-B,) - ffﬁz - E:EE +A, =0
2
Pm{ +Gn(§-B)) +H sn (§-By) ~K =0
(D.27)

where a prime (') denotes differentiation with respect to z in
equation (D.17). Multiplying the first (second) line in equation

(D.17) by H (H') , subtracting, and exponentiating yields the

transcendental solution:

(HF'-FH') (HG'~GH') HGB] H?Bé
c (;‘Bl) eXp |~ -g—__——Bl) g_BE =. exP(" }mg-H|K) .

(D.18)

Since we desire only to illustrate the complexity of the axisymmetric

RADIATION~MAGKETIC case here, we shall not proceed further.
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