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ABSTRACT

The main results of this dissertation are described in the following

theorem:

Theorem 5.1 -

If P is a polynomial of degree r = s(q-1)+t, with0 <t <q-1, in

m variables over GF(q), and N(P) is the number of zeros of P, then:

1) N(P) >q™- qm—s+tqm-s-1 implies that P is zero.
2) N(P) < qm - qIIl"S+tqm"S'1 implies that

N(P) < ¢™-q™" 5, tqm's'1 - cqm-s-2 where

- .
q if s=m-lorift=1andeither s=00orq =>4

or if s = m-2 and q = 2.
q-1 if t=1andeitherq=3and0<s=m-2or
q<4and0<s<m-2.
t-1 if s<m-1 and either 1 <t <(g+5)/2 or 1<t=q-1
if q=4, (g+5)/2 st <q-1,and s<m-1.

C
Lt
where (q-t+3) < ¢ < t-1. Furthermore, there exists a polynomial Q in

m variables over GF(q) of degree r such that N(Q) = ™ - ¢™"% m-s-1

- cqm-s-Z.

+1tq

In the parlance of Coding Theory 5.1 states:
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Theorem 5.1

The next-to-minimum weight of the rth order Generalized Reed-
Muller Code of length q™ is (q-t)qm's'1+cqm's"2, where ¢, s, and t

are defined above.

Chapter 4 deals with blocking sets of order n in finite planes.

An attempt is made to find the minimum size for such sets.
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CHAPTER 1

This dissertation examines polynomials in several variables over
finite fields. The general problem of exhibiting canonical forms for such
polynomials being extremely difficult, this work concentrates on their
sets of zeros. The specific goal of the first three chapters is to explore
the restrictions on the number of zeros of polynomials of degree r in m
variables over GF(q), the field with q elements. Chapter one outlines
the historical development in this area, the basic definitions, and the
motivation for this particular specialization of the general problem.
Chapters two and three contain the results of the author's research on
zero-sets of polynomials. The fourth chapter deals with a related topic:
blocking sets in affine planes. A discussion of the expected fruitfulness
and difficulties of certain approaches to study in these areas occupies the
fifth and final chapter.

The following notation will be used in discussing polynomials over
finite fields:

Let K = GF(q) be the field with q elements.

Let K™ be the vector space of dimension m over K consisting of

all m-tuples @ = (a,,a,,... @), @ €K

Let P = P(X,,X,,...,Xy) be a polynomial in m variables over K.

The degree or total degree of a term of P is the sum of the powers

of all of the indeterminates in that term.

The degree or total degree of P is the degree of the maximum

degree nonzero term of P. The degree of the zero polynomial is -,

deg P will denote the degree of P.



The xi-degree of a term of P is the power of the indeterminate X;
in the term.

The xi-degree of Pis the xi-degree of the maximum xi-degree

nonzero term of P. The x;-degree of the zero polynomial is - .

deg; P will denote the x;-degree of P.

The zero set of P or set of zeros of P, Z(P), is the set of m-tuples
a

(a .., 0 ) such that P(a,,0,,...,ay) =0.

12 2 °

7Z(P) ={a ¢ K™ |P(@) = 0}.
The nullity of P, N(P), is the number of zeros of P.
N(P) = ||Z(P)]|.

The first results establishing restrictions on N(P) were published
by C. Chevalley [4] and E. Warning [13] in 1936. E. Artin had conjectured
that if P is homogeneous of degree r with r < m, then P has a zero besides
0 = (0,0,...,0). Chevalley showed that not only was Artin's conjecture
true, but that it was still true if P was not homogeneous but had a zero
constant term. Warning, using a lemma of Chevalley's, proved the

theorem:

Theorem 1.1: Chevalley-Warning

If deg P < m then the characteristic of K divides N(P).

Warning also showed that if N(P) > 0 and deg P < m, then
It was not until 1964 that these results were improved upon by

James Ax [1]. He proved the following theorem:



Theorem 1.2: Ax Divisibility Condition

Let P be a polynomial in m variables over GF(q) with deg P =r,
Let b =[(m-1)/r], the greatest integer less than or equal to (m-1)/r.
Then ¢ divides N(P).

He also exhibited a polynomial P of degree r in m variablés over
GF(q) such that qb divides N(P), but qu does not divide N(P) where p is
the characteristic of K = GF(q). In this sense, Theorem 1.2 is the best
possible p-adic divisibility theorem.

More recently, results in this area have arisen from the study of
Generalized Reed-Muller Codes in algebraic coding theory. It is not neces-
sary, however to be familiar with coding theory to understand these
results. The following discussion should suffice to illuminate these
results.

Each polynomial P(X) = P(x,,X,, ...,Xy,) in m variables over K gen-
erates a function @ — P(@) from K™ into K. But some different polynomials
generate the same functions. For instance, x?- X, maps every element of
K™ into zero. Since every element of K satisfies a9 = ¢, any polynomial
can be reduced modulo (xfl - X,), (xg1 - X),..., and (x& - xm) to a new
polynomial P'(x) such that P and P’ agree on every point of K™ and

degi P <qg-lfori=1,...,m. This observation leads to the definition:

A polynomial P(x, ... »Xm) in m variables over K = GF(q) is

called a reduced polynomial if degi P<g-lfori=1,2,...,m.

There are qqm reduced polynomials in m variables over GF(q).

There are the same number of mappings from K™ into K. That these



are in one-to-one correspondence may be shown either by proving that
no two reduced polynomials act identically on Km, or by proving that for
each function f : K™ — K there is a reduced polynomial P(x,,X,,...,Xy)
such that P(0,, 0,,...,0p) =£((0,,0,,...,0)) for each
0=(0,,0,,...,0m) € K™. The latter method provides some additional
insights.

For each 0=(0,,0,,...,0p) € K™ define
m

- -1

Fo(X) = I (1-(x-0,)%7)

F-G- is a reduced polynomial. Considered as a function,

1 if 7=0

0 otherwise
This can be seen from the fact that when A € K

0 if x=0
2q-1

. 1 if xz0
Using the FE as a basis, a reduced polynomial which represents
any given function £ ‘K™ - K can be generated as follows:

Let P(X) = ) f(0)F=(X). Then P represents f.
TeK™



From this discussion the following theorem is obvious:

Theorem 1.3

The natural mapping P -~ (¢ ~ P(0)) is a vector space isomorphism
from the space of reduced polynomials in m variables over GF(q) to the

space of mappings from K™ into K.

For the remainder of this work, all polynomials referred to will
be reduced polynomials unless a statement is made to the contrary.

P (m,q) will denote the set of reduced polynomials in m variables over
GF(q). The subset of (P(m, q) consisting of those polynomials with degree
less than or equal to r will be denoted @r(m,q). Since deg (P+ Q) <
max(deg P, deg Q) and deg(aP) < deg P for a € K, G’r(m,q) is a subspace
of ? (m,q).

If the elements of K™ are ordered Q,,0,,...,0 g, the value table
of a polynomial P € ® (m,q) (with respect to this orderi?lg) is the g™~
tuple (P(a,), P(a,),..., P(&qm) ).

The set of value tables for all polynomials of ®(m,q) forms a

vector space of dimension g™ over GF(q) which is isomorphic to & (m, g).

Definition

The set of value tables of polynomials in @r(m, q) is called the
r-th order Generalized Reed-Muller Code of length qm, denoted
GRMr(m, q).

Clearly GRMr(m,q) is a subspace of GRMm( q_1)(m, q) which is the

space of all value tables. The dimension of GRMr(m, q) as a vector space



over GF(q) can be computed by calculating the dimension of the isomor-
phic space @r(m,q). As a basis for @r(m,q) we can pick those poly-

nomials of the form:

. . m
i, 1, 1 . .

X,'%, ... %2 where 0= i <q-1 and Y ij<r.

=1

If p(k,m,q) represents the number of distinct m-tuples (a,,a,,...,a
m

such that 0 < a, <q and ), a; =k, then
: j=1

m)

r
dim @r(m,q) = ) pli+m,m,q)
i=0
The GRM codes are examples of linear block codes. A linear
block code is a subspace of the space of n-tuples of elements of a finite

field. The length of the code is n and the dimension of the code is the

dimension of the subspace. A linear block code of dimension k and length

n is called an (n_, k) linear code. Under this definition:

r
GRM,(m,q) isa (@™, ) p(i+rm,m,q)) linear code
' i=0

The elements of a linear code are called code vectors. The

Hamming distance between any two vectors (a,, a,,...,a,) and

(By,Bszs .- .,By) is defined as the number of positions in which they differ:

((aly'-"an),(Bl)°--,Bn)> = H{i.e{l,...,n} lal:#Bl}H .

The Hamming weight of a vector (a,,...,a,) is defined as the

number of positions in which it is nonzero:



@) | = [ie{t, ..o} Ja, 20} ]| .

The minimum distance of a linear block code C is the smallest

distance between two distinct code vectors:

minimum distance = min (x,y)
xX,yeC
X+y

The minimum weight of a code C is the smallest nonzero weight

of a code vector:

minimum weight = min |x|
xeC
x#0
For a linear block code, the minimum weight and the minimum
m
distance are equal. The natural isomorphism from @ (m, q) onto K4

maps ¢ I,(m, q) onto GRMr(m, q) and preserves weight if we define the

weight of a polynomial P:

|P| = |[S(P)|| where S(P) is the set of support points of P:
S(P) ={a@ e K™ |P(@) 20} .

Thus, the notion of a minimum weight (nonzero) polynomial of
6% r(m, q) is interchangable with that of a minimum weight code vector of
GRMr(m,q). The weight of a polynomial is the dual of its nullity since
S(P) = K™ - Z(P) and ’P] =q™ - N(P). Many results of coding theory
deal with constraints on the weights of code vectors of linear block codes.
Some deal specifically with GRM codes. Through this duality, these
results are directly applicable to the topic of this paper, restrictions on

N(P).



The two concepts of coding theory which encompass such considera-
tions of restrictions on weights are weight enumerators and weight spectra
of linear codes. If Ai is the number of code vectors in a given (n, k)

linear code which have weight i, then the generating function:

n
Alz) = ) Aiz1
i=0

is called the weight enumerator of the code. The weight spectrum of the

code is just the set of i for which Ai >0, (i.e., the set of weights which
actually occur). The gaps in the spectrum are those i for which A; = 0.
The weight enumerator contains the complete information on the distri-
bution of the weights of the code vectors in a form which is convenient for
probability calculations. Thé weight spectrum records all of the restric-
tions on the weights of the code vectors (and hence on the number of zeros
of polynomials in GRM codes).

The minimum weight of the r-th order Generalized Reed-Muller
Code of length q™ (GRMr(m,q)) was shown in 1968 by Kasami, Lin, and
Peterson [ 6] to be (q-t)qm's"1 where r = s(gq-1) + t with 0 <t < g-1.
They also gave canonical forms for polynomials of this weight when q = 2.
In 1970, Delsarte, Goethals, and MacWilliams [ 5] extended these results,
giving canonical forms for minimum weight polynomials in the general
q-ary case. (Proofs of the canonical forms and the minimum weight will
be given in chapter two.) Once the canonical forms were found, Ai was
calculated for i = minimum weight. The canonical forms are represen-
tatives of the equivalence classes under the equivalence described in the

next paragraph.



A substitution of variables is made in a polynomial P by replacing
each X; by a linear polynomial, a,iX; + @,jX, + ... + apjXy + w;. This
substitution defines a new polynomial R(x) = P(XA + w) such that for any
a € K™, R(@) = P(@A+®). If A is non-singular, then P(X) = R(XA™" +
(-wA™")). In this case, deg R = deg P and N(R) = N(P). Such a change of

variables T(x) = XA+ w is called an invertible affine transformation of

variables. It is composed of an invertible homogeneous transformation
X — XA and a translation X = X + w. The notation [ T(X)] ; Will denote
QX +... +a,,;X, +w;. The homogeneous transformations all fix the
origin and so are distinct from the nonzero translations. There are
(qm-l)(qm-q) .. . (g™-g™™") invertible homogeneous transformations and
q™ translations giving ¢™(q™-1)(¢™-q). . . (qm-qm"l) invertible affine
transformation of variables. If R(X) = P(XA + w) for some invertible A,

then P and R are called equivalent. This is clearly an equivalence

relation. Restating what was said above:

Theorem 1.4

If P and R are equivalent polynomials, then deg P = deg R,
N(P) = N(R), and |P| = |R]|.

In the special case, r =2, Robert McEliece [ 9] has given canonical
forms for the polynomials of @ .(m,q) and calculated the Ai for the second-
order Generalized Reed-Muller Codes. The full result is quite complex
and is presented in a series of tables, but the restrictions on the weight

spectrum are simple enough to be given here:
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Theorem 1.5: McEliece

If P is a polynomial of degree < 2 over GF(q) in m variables,
then the number of solutions to P(x) =a is of the form qm-l + qu-j—l

where v =0, +1 or + (g-1) and 0 < j < [m/2].

Another specialized case where significant results have been
obtained is q = 2. The code GRMr(m, 2) is called the r-th order Reed-
Muller Code of length 2™ denoted RM(r,2™). In 1970, Tadao Kasami
and Nobuki Tokura [ 7] characterized the polynomials of less than twice
the minimum weight in Pr(m, 2). This left coding theorists one equation
short of a solution to a system of equations which would yield the weight
enumerator for the code RM(3,2%. In April of 1971 three mathe-
maticians independently found this weight enumerator ; namely,

T. Kasami, R. Sarivate, and J. H. van Tilborg. To fully understand
the nature of this problem and the motivation for this paper, one must
understand dual codes and the MacWilliams identity.

Define a scalar product ¢ - d of two n-tuples of elements of K.

C =(Cy,Cpp---5Cp); d =(dy,dy, ..., dp)

Given an (n, k) code ({ (a subspace of dimension k), the dual of A
is the set of vectors B={b yaed, a-b =0}. (3 is also a linear code,

A is the dual of (\3 and @ has dimension n-k.
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Theorem 1.6

The dual of GRM,_ (m, q) is GRM(q-l)m-l-r(m’q)'

Proof:

If Pe (Pr(m,q) and Qe (m,q), then their product as

(g-1)m-1-r
polynomials PQ is in @(q_l)m_l(m,q). If a is the value table of P and
b is the value table of Q, then a- b is the value table of PQ, so

a-b= E PQ(O‘) That _Z ! m PQ(0o) =0, follows from Lemma 1.7

below. If Q € ? (m,q) Wlth deg Q (q-1)m - r, let one of the highest
im

degree terms of Q be ax1 x2 ... Xy Where 0 < ij < g-1 for
m
j=1,...,m, Z i]. 2 (qg-1)m-r,
=1

anda # 0. Let P(x) = xg'il'lxgl"iz'l e x?n'im'l. Then deg P = (q-1)m -
deg Q <r and deg PQ = (q-1)m. By Lemma 1.7,

a-b= ) PQD) %0
G eK™
This completes the proof given Lemma 1.7.

Lemma 1.7

Let P be a polynomial in ® (m, q), then deg P = m(qg-1) if and only

if ), P(9)=0.
o e K™
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Proof of Lemma 1.7

m
For each 0 € K™, let Fs = 1I 1- (xi' o,i)q’l), then
i=

1 if 7T=0¢
F'a ('T) =
0 otherwise

also FG()—E) = (-l)mxg'lxg'l e xgl'l + terms of lower degree, so any

Pe @(m,q) may be written:

- -1 g-1 -1
Y P(o) xd™xd xrg

Px) = ) POFsx) = ()™
T eK™

7 eK™
+ lower degree terms, so deg P<<mf(qg-1) if and only if Z P(o) = 0.
T eK™

This completes the proof of Lemma 1.7 and Theorem 1.6.

The MacWilliams identity relates the weight enumerator of a linear

code to the weight enumerator of its dual.

Theorem 1.8: MacWilliams Identity

If A(z) is the weight enumerator of an (n,k) linear code,and B(z) is

the weight enumerator of its dual, then

B = 470 - @-02" Ay )

Most recent texts on coding theory contain proofs of this theorem.

See Coding Theory by van Lint, pp. 120-121 [ 11] or Algebraic Coding

Theory by Berlekamp, pp. 400-403 [ 2] for examples of proofs.
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Intuitively, the MacWilliams identity is a tool which can be
used to solve for the two weight enumerators completely if enough of the
Ai and Bi are known. It has been found to be quite useful in this
regard. When r < m, the Ax divisibility condition proves that many of
the Ai are zero where ({ = GRMr(m,q). The minimum weight results
show that A; =0 for 0 <i < (q-t)qm's'l. Warning's result on the mini-
mum number of zeros when r < m shows, in addition, that Ai =0
for ™ -q™ T <i< g™

Because in Reed-Muller Codes, q = 2, a polynomial of weight !Pl
may be mapped into P+1 with weight |P+1|=2"- |P|. In RM(S3,2? all
of the gaps are either less than twice the minimum weight or more than
2% _twice the minimum weight (in which cases they are predicted by the
Kasami, Tokura paper), or they are predicted by the Ax divisibility con-
dition. In 1971, van Tilborg [ 12] revealed four gaps of RM(3,2°) which
were not predicted by either paper: 132, 140 and their reflections 372 and
380. These gaps did fall under the scope of Kasami, Tokura and Azumi's
1973 publication [8] characterizing the code words with weight less than two-
and-a-half times the minimum weight in a Reed-Muller Code.

This paper concentrates on low-weight gaps in non-binary GRM
codes. One specific question which this dissertation seeks to answer is:
What is the next-to-minimum weight in a Generalized Reed-Muller Code ?

Theorem 2.1 gives a lower bound on the next-to-minimum weight.
Theorem 3.1 improves this bound in some cases, shows that it cannot be
improved for others, and for the rest of the cases, reduces the question

of whether it can be improved upon to the case m = 2.
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CHAPTER 2

The goal of this chapter is twofold; first, to prove Theorem 2.1,
and secondly, to develop lemmas which will shed light on the structure of

low-weight polynomials.

Theorem 2.1

Let r = s(q-1) +t where 0 < t < ¢-1, and let

q-1 if t=1
c=¢( q-2 if t=q-1=#1

min (q-t, t-1) otherwise

If P is a polynomial of degree r in m variables over GF(q) such that

|P| > (q-t)qm's'l, then IP’ > (q-t)qm"s"l + cqm-s-z.

The approach of this chapter is motivated by the work of Delsarte,
Goethals, and MacWilliams [5]. In some cases, the lemmas are similar
and will be cross-referenced to the D. G. and M. paper. The first lemma
deals with linear factors, which will play an important role in this

exposition.

Lemma 2.2 (D.G. and M. Lemma Al.1)

If P(xy, ..., Xp,) iS a nonzero polynomial such that P(a) = 0 when-
ever a, = a, then P(x) = (xl-a)lg(x) where deg P - deg P-1 and deglf’ =
deglp'l.
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Proof:
P(a,a, ..., ay) = 0for all @,, ..., ay,. Represent P
— -1 -2
PE) =gl +gx3 ™ +... + 8q-2%1 + 841 where g; = g;(X,, . .., Xm),
then

PX) = P(X) - P(&, Xy, ..., Xm) = g(,(xﬁl'1 -aq'l) ..+ gq_z(xl-a)
= (x,-a) [g(,(xil'2 +... F aq'z) + .. +gq_2]

Lemma 2.3 (D.G. and M. Corollary Al.2)

If P(X) = 0 unless a, = b, then P(F) = (1 - (x,-b)3™1)B(x,, ..., x )
where deg P= deg P - (gq-1).

Proof:
| B if x,=b )
I (x-a)- - B(1 - (x,-b)7h)
a € GF(q) 0 otherwise ,
a+b
where p= 0O y=#0.
v#0

Lemma 2.4

fy)=BX; +... +BmXm +7 and y(a) = 0= P(a) = 0, then
y divides P.

Proof:
Let Xx = XA + @ be an invertible affine transformation such that

w,=7 andaj; =i fori=1,...,m. Let R(X) = P(XA™' -BA™Y) so that

P() = REA+®). Andletd = (0,a,, ..., ay) so that R(@) = P(@A™ -BA™).
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-1

Let7 =aA™' -@A™". Thena - 7A +w so
m m
02“1:w1+23117’i:n+251’)'1
i=1 i=1

so by the hypothesis, P(y) = 0. Thus R(a) = 0. Applying 2.2, RX) =
xlﬁ(i' ). But invertible affine transformations preserve polyhomial
products, so P(X) = RXA+®@) =y - R(XA +).

Separation of a variable is an extremely useful technique which
will be used heavily in chapters two and three. It is refined from a
similar technique used by D. G; and M. and expounded upon in their
Lemmas Al1.6 and A1.7. The concept behind this technique is the iso-

lation of the effect of the variable x;. One may write:
P(X) = P(X}, X5 ..., Xpy) = P(x,X")  where X'=(x,,...,%Xy)

For each P € P(m,q), m > 1 and each A € K = GF(q) define
P,X") = P, X" e P(m-1,q). Then
rekK
where the subscripts on the weight serve only as reminders of the number
of variables on which the polynomial depends.

Given any ordering of the elements of K, A, Ay, ..., Ags define

polynomials P(O), P(l), cens pla-1) by:
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Pifi=0

202) pl) - . .
(202) [P(l-l) -P;(\li—l)]/(xl-xi) for i=1,2 ...,q-1.

That P(i) is a polynomial follows from Lemma 2.2. It is also
evident from 2.2 that
(203) deg P(k) < deg P - k; deg, P(k) = deg, P -k

with the convention that deg, P(k) < 0 means P(k) = 0.
This, and the fact that P is a reduced polynomial imply that
deg, pla-1) < ¢ so that p{a-1) _ P;(%'l). From (202),

pl-1) _ p§31'1) + (xl-)\i)P(i) for i=1,...,q-1

By induction

q-1 .
204) pW - P 1 (x-a)
Ei Ajtlg=i41 = K
_ pli) (i+1)
= P"i+1 + (%, )\Hl)ij+1 + + (X =25,9)
(q-1)
.(Xl'Aq_l)PAq

When i = 0 this becomes

o ]
(205 P = py I (x,-2)
jgo Mol ge1 K

i

PAl + (Xl -Rl)Pgiz) +... + (Xl —}\1) .o (Xl -Aq-l)qu-l)
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From the definition of P)\:

i-1

P(]) %I (hi-hk)
A'j'l'l k:l

(206) PA
=0

i

Py + (Ai-Al)Pg) oo F4=2).. (7\1'7\1-1)1’%-1)

Lemma 2.5

IfPe & (m,q) and A;, « .5 Ag is an ordering of the elements of K

suchthat P, =... =P, =0, thendeg P, <deg P -n fori>n.

Proof:

P(O) = n"l) -

By induction from (206), A T e = P§ 0 so
1 n

i-1

: ]
deg Py = deg Z P)g_ 1 {I M, -2k) < degP -n
1 j=n I+l k=1

from (203).
As an illustration of the use of this technique and also for the sake
of completeness since this theorem will be used in future proofs, a proof

is now given for Theorem 2.6.

Theorem 2.6: Bound on Minimum Weight

Let r = s(q-1) +t, 0 <t <q-1and let d® = (q-t)™ 51, 1t
P e @,(m,q) such that P # 0, then |P| > d]".

Many authors have given proofs of this result including Kasé,mi,

Lin, and Peterson [6 ].
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Proof:

The theorem is trivially true for m = 1. Proceed by induction.

Assume 2.6 is true for m-1. By (201) [P|_ - )EK 1Py Imor I 1

.

P)\ # 0 for all A € K, then by the induction hypothesis IP l m > qdllf1
Otherwise, order the elements of K so that Py =...=P, - 0, but
1 n

P7li #0fori>n. SinceP#0, 1 <n<gqg-1. By Lemma 2.5,

deg P, < r-nfori>n so
i

q . (q-t+n)qm's'2 if n<t
m—
Ply= 2 [Py lp1 > @od = @) _
i=n+1 (1-t+n)q ifn=t
(q-t)qm"s'1 + n(t-n)qm's'2 if n<t
(q-t)qm's'1 + (n-t)(q-l-n)qm"s"1 if n=t
> (q-t)qm"'?"1 since 0<n <q-1 ,

completing the proof.

The parameter n plays a significant role in the above inequalities.
It will be called the linear divisibility of P by x, and will be formalized by
the following definitions.

A variable in P(m, q) is a polynomial y € P(m, q) such that
degy=1.

The linear divisibility of a polynomial P € @ (m, q) by a variable
y in ®(m, q) is the number of distinct A € K such that y - A divides P.
This value is denoted £d(P,y). Since polynomial products are preserved

by invertible affine transformations, and we can always find an invertible
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affine transformation which takes y into X,, there is a polynomial ﬁy such
that AP/y is equivalent to P and ﬁd(ﬁy, x,)=4d(P, y). With the same proof as

2.6 then:

Lemma 2.7

IfPe @r(m, q) P # 0 and there is a variable y in (P(m, q) such
that £d(P,y) = n, then

n(t-n)qm's'z if n<t
m
Pl > a +
(n-t)(q-1-n)q™ 51 if n >t

-1

with equality if and only if |Q, | > 0 = IQ, | = df‘_n for any Q(X) =

P(T(x)) where T is an invertible affine transformation such that T(x,) = y.

Proof:
|P| = liyl because equivalence preserves weight. Apply (201)

and Lemma 2.5 as in the proof of 2.6.

This lemma provides the first step to a proof of Theorem 2.1 since
it implies that
gm-s-1 if t=1
IPl > dX 4+
r m~-s-2
(t-1)q if t>1

unless Ld(P,y) = 0, t, or q-1 for all variables y. If, for some y,
£d(P,y) = q-1, then by Corollary 2. 3,§y(x1, cey X)) = (1- (xl-b)q'l) .
P(x,, .. -y Xp,) where Pe G)r-(q-l)(m'l’ q), and by (201), |P lm = IP'm-l’
so induction may be applied. If, for some y, £d(P,y) = t, then

|p| = IR| whereR='15’y, so that



where deg R"i < s(q-1). Later lemmas will examine this case more
thoroughly.

If £d(P,y) = O for all y, then P has no linear factors. This case
will be examined in greater detail in chapter three, but here a general
lemma is given. The proof requires some knowledge of the relationships
of affine subspaces of K™,

An n-dimensional affine subspace of K™ is a set of vectors
derived from a homogeneous n-dimensional subspace by the addition of
a constant vector to each element. The zero set of a linear polynomial
(variable) is an (m-1) dimensional affine subspace. Conversely,. every
(m~-1) dimensional affine subspace is the zero-set of some variable. Thus,
if a polynomial P(X) is zero on every point of an (m-1) dimensional affine
subspace, then there is a variable y such that y(a)= 0 = P(a) = 0.and, by
Lemma 2.4, y divides P so that P has a linear factor.

If G is an n-dimensional affine subspace of Km, a k-dimensional
affine subspace of K™ which is contained in G will be called a k-
dimensional affine subspace of G or, for brevity, a k-subspace of G.

Given an (n-1)-subspace H, of G, there exist q-1 additional (n-1)-

subspaces H,, ..., Hq of G such that H; » H]- =¢ ifi+# jand

Hi=G.
1

.

q
1=
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The subspaces H,, H,, ..., H, will be called q parallel (n-1)-subspaces

of G.

q

Given an (n-2)-subspace E of G, there exist g+l (n-1)-subspaces

Hy ..., Hy 0f G such that H; n H; = E if i # j and

j
q .
UHizG.
i=0

In this case, the H; will be called the q+1 (n-1)-subspaces of G containing

E. D.G. and M. proved the following lemma in characterizing the mini-

mum weight polynomials.

D.G. and M. Lemma Al.3

If S is a subset of K™ with the following properties:

1) |s]| < ag®, 0<a <q-1, b <m-1, a,b integers

2) For any (n-1)-subspace G of K™ such that S A G # ¢,
S~ G| = ag?L;

then there is an (m-1)-subspace of K™ which does not meet S. -

For the purposes of this paper, a stronger lemma is needed,

namely:

Lemma 2.8

Given an n dimensional affine subspace B of Km, if S is a subset
of B with the properties:

1) |s| <aq® +aq®!

, a,bintegers 0 <a <q-1, b <n-1

2) For any k dimensional affine subspace G contained in B,

either [SAG| = Oor |SnG| = agP -k
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then there exists an (n-1)-subspace of B which does not meet S.

Proof:
If n =1, then condition 1) implies |S| < g-1, so there exists a

0-subset (a point) of B which does not meet S. Proceeding by induction,

assume 2.8 is true for all n < N. Let B be an N-dimensional affine sub-

space of K™ , S a subset of B satisfying 1) and 2). Examine q parallel

(N-1) subspaces of B. One of these, call it H, has fewer than

aqb"1 + :a.qb'2 elements of S. By an application of the induction hypothesis

to S nH as a subset of H satisfying 1) and 2) with n = N-1, there exists

an (N-2)-subspace L of H which does not meet S. Let Hy, H,, ... ,Hq

be the gq+1 (N-1)-subspaces of B containing L. Then

q q
sl = 3 lmnsl-altas| = Y [ nas] .
i=0 i=0

Thus there is an 1 such that
’Hi N S] < (aqb + aqb-l)/(q+1) = a b-1 ,

but by condition 2) with k = N-1, in nsl=0, so H; is the (N-1)-subspace

we seek. This completes the proof of 2.8.

Corollary 2.8.1

If Pe @r(m, q) and P has no linear factors, then
IP] > (q-t)am's"1 + (q--t)qm"’?"2 =(1+ l/q)di,n where r = s(q-1) + t
0<t<qg-1.
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Proof:

'Let S = S(P), the support points of P, and let a = (q-t), b = m-s-1.

Then condition 2) is satisfied by Theorem 2.6. If ]PI < (q_t)qm-s-l +

(q-t)qm's'z, then condition 1) is also satisfied and, by Lemma 2.8, P

has a linear factor.

The next corollary is the first step toward characterizing low-

weight, low-degree polynomials.

Corollary 2.8.2

i Pe ® (m,q) withr < g-land |[P|<(1+ 1/q)dfl, then P is the

product of r linear factors.

Proof:
Certainly true for r = 1. Assume this corollary is true for

r < R-1 and proceed by inductionon r. If P e @R(m, ) and

Pl <@+ l/q)dgl, then by 2.8.1, P has a linear factor, so

-~

P =4¢P where deg 1‘5 < R-1

But |P| < |P|+ q™ ! < (g-Re1)q™ ! « (@-R™2 <1+ 1/q)dg‘_1 S0

by induction, P breaks into linear factors, completing the proof.

Corollary 2. 8.1 establishes a lower bound for the weight of a
polynomial without linear factors. We now turn our attention to low

weight polynomials with linear factors.

Delsarte, Goethals, and MacWilliams [ 5] state the following

theorem as 2.6.3 and prove it in their appendix:
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Theorem 2.9 (D.G. and M, 2.6.3)

If Pe (Pr(m,q) where r = s(gq-1) +t, 0 <t <q-1 and ,Pl = dlr'n =

(q—t)qm's'1 then P is equivalent to a polynomial Q where

s t
x) =2 0 (1-x3Y 1 (- c#EA G 1 #]
(207) Qx) Ai:l (1 X; )j=1 (A] Xs,1) A#0 Alge)\] if i#]j

A proof of this result will be given later in this chapter after
several preparatory lemmas. It may be observed here, however, that
for any r there exists sucha Q, deg Q =r, [Ql = dlrfa, so that the bound
given in Lemma 2.6 is, in fact, the minimum weight. This well-known

result is stated as:

Theorem 2.10 Minimum Weight

m-s-1 where

The minimum weight of GRM (m,q) is di,n = (q-t)q
=s(gq-1) +t, 0 <t <q-1.
Two other types of polynomials have low-weight and are closely
related to (207). These are:

i i# ]

S t-1
%) = - x4-1 -
(208) Qx) = AXg o i~1.—-11 (1 X; ) 'El ()\j Xs+1) A0 A 2 )\J

J

t
.H I"j(Xs+1 ’ Xs+2)

209) Q) = I (147
i=1 j=1

where Lj(xs+1’xs+2) = ajxs+1+3jxs+2 and ajBi # aiﬁj if i+ ]

Both describe polynomials Q such that deg Q =r = s(q-1) + t
0<ts<gqg-landift#1, then |Q| = (-t 51 & (t-1)¢™"5"2. m many
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cases, these are precisely the next-to-minimum weight polynomials, as
will be shown.

The next two lemmas form a starting point for an induction proof
of Theorem 2.9 and of Theorem 2.1. They deal with the case r < g-1
where 2d(P,y) > r implies P = 0.

Lemma 2.11 (D.G. and M., Al.5)

1

If Pe @ (m,q withr <qg-1, and |P] =dy = (q-t)g™ ", then P

is equivalent to a polynomial Q such that

. if i#j (i.e., form (207))

r
Qx) =xr II (kj-xl) A # AJ

j=1
Proof
Corollary 2.8.1 states that P has a linear factor y(x). Let T be
an invertible affine transformation such that x, = T(y) and let
QX) = P(T(X)). Then 2d(Q,x;) >0,and Q # 0 so #(Q,x,) <r. Since
Q| =d", by Lemma 2.7, £d(Q,x,) =r s0 Q = Q 'fI (A;-x,), but

- - j=1
deg Q =0, so Q= A, and the proof is completed.

Lemma 2.12

If Pe @r(m,q), r < g-1 and P has a linear factor, then
m-2

|P] > dIIfl = (q-r)qm'1 implies |P| > drrfl + (r-1)q
Proof:

Without loss of generality, assume x, divides P. Then

0 < d(P,x,) <r. If W(P,x,) =r, then |P| = d;n contradicting |P| >d_".

-2 m-2

Otherwise, by Lemma 2.7, ]PI > df,“ + n(r-n)qm > dxrfl + (r-1)q ,

where n = £d(P, x,).
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Corollary 2.12.1

If 4 <2r <, a next-to-minimum weight polynomial of degree r

in m variables over GF(q) has weight (g-r)g™"1 + (r-1)g™"2,

Proof:

From Corollary 2.8.1, if P has no linear factors, then

)qm-Z m-2 .

| = (q-r)qm'1 + (q-r > (q-r)qm"1 +rq From Lemma 2.12,
it |P|> dxr,n and P has a linear factor, then |P| > (q-r)qm"1 + (r-l)qm'z.
With 1 <r < q, formulas (208) and (209) give polynomials with exactly
this weight, so this is indeed the next-to-minimum weight.

It is, in fact, true that (208) and (209) characterize all of the
polynomials of this weight with r in the given range, as will be proved
in chapter three.

Corollary 2.12.1 is significant,in that given any r > 2 and any m,
it establishes the next-to-minimum weight for all but a finite number of
q.

The next lemma begins the study of another special class of r's:
r = s(g-1). Delsarte, Goethals and MacWilliams did not proceed by

quite this route and so had no similar lemma.

Lemma 2.13

If Pis a minimum-weight polynomial of @r(m,q) where
r = s(q-1), then P is equivalent to:

S
A Il

a (-1 (that is, (207))
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Proof:
d? =q™™5, LetPe G)r(m,q) such that |P| = dIr‘n. By Corollary

2.8.1, P has a linear factor. Without loss of generality, assume x,

divides P. Lemma 2.7 tells us that ¢£d(P,x,) = q-1 and thus

P ~(1-x '1) P(x’) where P is minimum weight of degree (s-1)(g-1).

With this argument as an induction step and Lemma 2.11 as a starting

point, the proof is complete.

The next lemma deals with sums of minimum weight polynomials

and polynomials of lesser degree.

Lemma 2.14

Let Q be 2 minimum weight polynomial in @r(m, q) where
r =s(g-1), 0 <s < m. Let R be a nonzero polynomial in @r_k(m,q)
where 0 <k < g-1. If P = Q+R, then either |P| = kq™ S or
|P| = (k+1)g™"5.

Proof:
When m =1, then s =1. Inthiscase |Q| =1, |R|=>k+l, and
the conclusion |P| =k or |P| = k+1 is obvious. Proceed by induction
on m assuming 2.14 is true for m-1. By Lemma 2.13, it can be
assumed that Q = (1 - x; 'l)Qo(iE Y where Q, is a minimum weight poly~

nomial of degres (s-1)(g-1) in m-1 variables. Separating x, in P

1) Pl, = 2 IPilpe1 = Ro+Qol1+ 2 IRy g (201)
AeK A0
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Order the elements of K, A,,... ,Aq so that: Al = o, ,R)‘i ' =0
fori <n, [R, | >0fori>n+l. SinceR# 0, n <deg R <r-k, so if
i
s =1, (n+k) <g-1. If n =q-1, thens > 1 and ]Pl = IR5+Q0|m_1. In

this case, the induction hypothesis proves the conclusion. Otherwise,

write:
it n — -~ ———
(2) R(x,,X’) =2 'Hl (%~ Ro(x’) + x,R(x,,x")]
1=
where deg Ro<r-(k+n) and deg R<r- (k+n) -1

If P, # 0, then deg P, = deg(Qg+ Ry <max(r-(q-1), r-(k+n)) and

deg P)ti < r-(k+n) for i > n+l so [P{ 2 (g-n-1) ;n (11<+n) dmb1 where

b = min((q-1), (k+n)).
(k+n) > (q-1) implies  |P| = (g-n-1)(n+k+2-q)q™ 5 + g™@~5
= [1+k+ (g-2-n)(n+k - (q--1))]qm"S = (k+1)qm"S

(k+n) < (gq-1) implies ]P! > (q-n)(1+k+n)qm’s'1

= (1+k) g™ + n(q-1-(k+n) )qm—s—l > (k+1)g™"
If P, =0, then Ry = -Q, so deg R, =deg Qg =r - (g-1). This
implies r- (k+n) = r - (g-1), so (k+n) < (q-1).
(k+n) < (g-1) implies deg PAi = deg in
< max(deg R,, deg ﬁ) = r-(k+n)-1

so |P|= (q-n-l)dr (k+n) 1 -(q-—n—1)(k+n+2)qm_s-1

= (k+1)qm S, (1+n)(q-2-(n+k))qm"s"1 > (k+1)qm'S
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The only case left is (k+n) = (q-1). Here |P| > (q-n l)dr (k+n)

= kq™"%, but the equality holds if and only if IRA | = ) for

r 1
i > n+l. Suppose for some i > n+l, fR , > dr (q-1)’ th(;ln from (2)
Rki(x = N[ Ro(X") + A, R (x’)] where A’Ro is 2 minimum weight poly-
nomial in @r-(q-l)(m 1 q) and M. R 4& 0, deg A’AR A <r-(g-1)-1.
Applying the induction hypothesis, IR ] m-1 > q 1mp1ies

’Rki |1 = 2a° °. But this forces fPl > (k+1)q™ ™%, completing the

proof.

Notice that in the preceding proof, the only cases in which
lP[ =kq™"® could occur were n = g-1 and (n+k) = (q-1) with P, = 0 and
IR,| = minimum weight for i > n+1. This observation provides the

basis for the next lemma.

Lemma 2.15

Let P be a polynomial of @r(m,q) where r = s(q-1), 0 < s <m.
If for some A;,2, € K XA # A, [P)\l] = [P)\zl = dlrfl'l, then there is an
invertible affine transformation T fixing x, such that if R(X) = P(T(x)),
then RM = osz for some ¢ € K.

By T fixing x, we mean [ T(X)], =

Proof:
Ifm =2, thens=1; d®! =1 s0 |P, | =[P, | =1. Thus, P
’ T A, A, ) ’
has one support point such that x;, = X, and one support point such that
X, = A,. Call these (1,, 0,) and (A,, 0,). Let
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G,~0
2 1
1 ——

>L2 '}\1

and let T(x) = XA.

(0g- O +X,

Y

=
I

All P((Alyxz)A) = P(An

(05=0 )2 +%,

M,

similarly -

(05- O)A,+X,
Ag-A,

thus, IR)\1 | = thz] =1, so if S(RAI) = S(R)\z)’ then our conclusion
RAZ(OIAZ' O,1,) = sz(az) #0, s02.15 is true for m = 2.

= OR, is confirmed. ButR, (0,1,-0,);) =P, (0,) # 0 and
2 1 1
Now proceed by induction, assuming 2.15 is true for m-1.
Without loss of generality, assume

B, = 1 @-=f)

Lo

i
and write

P(Xl,i—,) = P)\ (x') + (Xl"Al)f)(xl,}?l) deg ﬁ sr-1 ,
1

then P)tz = PM + (AZ-/\I)PAZ(SE’) deg sz <r-1

This is precisely the situation in Lemma 2.14 with k = 1.
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]PAZ l = kdzl?l'l. Separating x,, order the elements of K 0,, 0,,..., oq
sothat o 4 =0, |(Pk2)ori |2 =0 for i < nand ,(sz)ci lpog > 0
for i >n+1. As observed from the proof of 2.14, n = q-1 or
(n =g-2, (P)\z)0 =0 and (PAZ) oq is minimum weight).
Define P*’ o(%,X") = P(x;, 0,x") for 0 €K, and PA, 0(x "
= (P*, O'>K = (P)\)O‘ = P(2, 0’5?')'
- ge1 _|p . . .
I n =q-1, then ,PAI,OI I %, 0 |, so applymg the induction
hypothesis to P, o’ there is an invertible affine transformation T"(x,,x")
b
fixing x, such that if R’(x,,x") = P O(T"(xl,}?”)), then R, = oR/, .
*, 1 2
Let T(x;,X,,X") = (X, %, [ T"(%,,X")] 5, - - . ,[T”(xl,}_:")]m) and let
R(x) = P(T(x)). Then

Ry (&) = Py (o, [T7(x,, ¥, -, [ T"(x, K9] )
0 if x,#0
R'Al if x,=0
fuacd O’R
7‘2

Ifn =q-2, then P, =(1- (x,-3 31y B(x") where P is a minimum
2
weight polynomial in @ (m-2,q) and @ e K @ # 0. Define the
r-(g-1)

transformation T v as follows.

X=Ay

[T, x ) =% for i#£2, [T, X)],=x+a -

Then let S(X) = P(T (X))

=Py and 5 = (1-xITHBEY
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Using the results of the previous case, n = q-1, there is an
invertible affine transformation T’ such that if R(x) = S(T/(x)), then

R, =0OR, and T/ fixes x;. R(x) = P(TaT’(SE)) and TaT' fixes x,.

1 2

Corollary 2.15.1

Let P be a polynomial of @r(m,q) where r = s(q-1), 0 < s <m.

m-1

r then there is an

If for some A;,A, € K, A, # A, ,PK I = IP)l | =d
1 2
invertible affine transformation T fixing x, such that if R(X) = P(T(X)),

then R>tl = R)\ .

2

Proof:
This strengthening of 2.15 is proved by observing that GR)t =R,
2 1

and

R, = R)\1 + (AZ-AI)ﬁ(y—c') where deg R <r-1

Ay

(A-A)R = R, -R, = (1-0)R,

but if ¢ # 1, this implies [R| = |R, | = d?'l < d{fl_'ll a contradiction!
2

The following proof of Delsarte, Goethals, and MacWilliams'
Theorem 2.6. 3 requires more lemmas than does theirs. It is not
intended to be the most concise proof of the theorem, but to be illus-

trative of the techniques to be used in proving 2.1. Restating 2.9:

Theorem 2.9  Characterization of Minimum Weight Polynomials

IfPe¢ @r(m,q) where r =s(gq-1) +t, 0 <t < g-1 and

p| = d;n = (q-t)qm's'l, then P is equivalent to a polynomial Q where
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()\j-xs+1) /\4s0,/\1¢/\j if i#]j

L=

(207) Q(X) = .?11 (-1

1 ]

Proof:
When m =1, s =0 and Lemma 2.11 applies. Proceeding by
induction, assume 2.9 is true for m-1. Corollary 2.8.1 states that P
has a linear factor. Without loss of generality, assume x,; divides P.
By Lemma 2.7, £d(P,x,) =q-1 or t. If £d(P,x,) = gq-1, our induction
hypothesis completes the proof. If {d(P,x,) =t < q-1, then

t
P(Xu ,)N H (xl l)P(Xl’ )'
j=1

Order the elements of K, A,,... ,Aq. Then by 2.7,

A 'm-l Islqu:l) qm-s-l for i > t. By Corollary 2.15.1 we may

assume P P
Airl A2’

where deg P < s(q-1)-2. This gives P X =P t+1+()\i-k,u_l)(J\i-7tt+2)Phi(x')

for i >t+2. By Lemma 2.14, ﬁx_ =0 for i >t+2 so f’)\. - P
i i

|P
S0 P(xl,x) = )\t Lt (-2, 1) (-2 - 2)P(x1,x )

A+l for

t
zt+2and P ~ 1II (x -A. )P which is the correct form by induction.
j=1 R |

It is helpful to prove one more lemma before beginning the proof

of 2.1. This lemma is the restriction of 2.1 to the case r = s(q-1).

Lemma 2.16

IPe G) (m,q), r =s(q-1), and |P| >d = g™ 5, then

|P| > q@8 4 (g-2)q@ 51,

Proof:
Ifm=1,s=1,andq""%=1. |[P|>1= |P|>2. Pro-

ceeding by induction on m, assume 2.16 for m-1. If
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fP! < qm"S + (q-2)qm's'1, then by Lemma 2.7, 2d(P,x,) =0 or
2d(P,x,) =q-1. If M(P,x,) =q-1, then P =(1- x(ll'l)f’(;(’) where

1B] = [P| <q® 5+ (q-2)¢™ % and P e P (m-1,q), 50, by the

r-(q-1
induction hypothesis, |P| =q™"5.

If Ld(P,x,) = 0, order the elements of K A,, ... M- ,Aq,
so that [P, | = q™ 5! for i <k and B, | > @5 Lfori>k K
k =q, then ]P] = qm—s. If k =0, then the induction completes the proof.
k=1, then [P, | > 2¢™~5"! by Lemma 2.14 so |P| = ™51,
2(q-1)g™"5"1 = M-S, (g-1)¢™"5"1, £k > 1, then by 2.15.1 we may

assume that P)\ = P, so that for i > 2

1 2

P)‘i(i’) = PM(}?) + (Ai')\l)()‘i')‘z)ﬁ)\i&')
where deg P <r-2

-s-1 ~ .
If }p)ti] =q™" 5! by Lemma 2.14, Pki =0 so, in fact, P)\i = P)tl
and for i >k,
>/ <! k - — 4
P =P I (x -,
Ai(x ) = Py x')+ 5 (A J)P"i(x )

J

where deg P< r-k .

By Lemma 2. 14, for i > k, fp}\' | = kqm-s-l so |P| > kqm's'l

+ (q-k)l«:qm's"1 = k(q-k+1)q™~5"*. But since 2 <k < g-1,
|p| = 2(q-1)g™5"1 = M5 | (4-2)g™"5"L. This completes the proot
of 2.16.

The proof of Theorem 2.1 splits into a number of cases. The
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basic techniques used are the same as in the proof of 2.16. We begin by

restating the theorem.

Theorem 2.1

Let r = s(g-1)+t where 0 < t < g-1, let d;n = (q—t)qm's'l, and

let
g-1 if t=1
c =¢q-2 if t=q-121
min (q-t,t-1) otherwise
It Pe @ (m,q) such that |P|>d™, then |P| > d™ + cg™ 52,
Proof:

Corollary 2.8.1 and Lemma 2.12 establish this result for s = 0.
Lemma 2.16 proves the case t =q-1if q > 2. If P has no linear factors,
then Corollary 2.8.1 states that |P| > d}' + (a-t)q™"5"2, which satisties
the theorem except when t = g-1 and q > 2 which is covered above.

To be a contradiction to the theorem, therefore, P must have a
linear factor. Without loss of generality, assume x, divides P. If
2d(P,x,) =q-1, then P ~ (1 - xg'l)f’ and induction proves

me-s-~2

| = dIr,n +cq This completes the proof when q = 2.

By Lemma 2.7, the only case left is when £d(P,x,) =t < g-1.
" _

When this is true, P =
. i=

l(xl-)\j)l‘5 where dim P < s(g-1).

Order the elements of K, A,,... ,Aq, so that
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LN et = =™ for i =t41,...,t+k and |y, | = IPA ]>d 1
for i > t+k.
q -~
Pl = 2 IP |
i=t+1
by (201), so if k = g-t, then |P| = (q-t)g™" 51 = dy'. Ifk =0, then, by
Lemma 2.16, ,13)\ , = qm-s—l + (q-2)qm"s-2

P| > (@@ 5+ (@25 = a4 (g-t)(a-2)g™ 5

> drm + cqm's'z

when q > 2. If k =1, then, by Lemma 2.14, |1‘5)L | = 2q™ 5-1 for
i

i>t+1 so

1P| > ¢ 571y (g-t-1)2¢™ 5t = 4 (g-1-t)g™mS7]

> d;n + Cqm-s-?.

since t < g-1.
If k = 2, then, by Corollary 2.15.1, we may assume that

13;\t L= kﬁkt , I P, | =™ 5! for i > tr2, write
+ + i
P)\ =P, h (A, -At+1)(x =N, 2)P where deg P < s(q-1) - 2 which by

Lemma 2.14 implies P = 0. So P th+1 for i =t+1,...,t+k. For

k
i > t+k, P -Pt it 11 (A A, ])R where deg R <s(g-1) -k, so by
+ .

1=
Lemma 2. 14 fP ] > kq™-8-1 for i > t+k. Thus,

Ip| > kqm‘s'l + (@-t-Rkq™ ™5 = d® 4 (k-1)(g-t-k)q™ 51

> d;n + cqm's"1
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since 1 <k < g-t. This completes the proof of Theorem 2.1.

The full power of this approach is not realized in Theorem 2.1.
Chapter three attempts to discover when the bound given by 2.1 is the

best possible, and to characterize next-to-minimum weight polynomials.
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CHAPTER 3

This chapter deals with two questions which arise from the
techniques and results of chapter two: When is the bound given in
Theorem 2.1 the best possible; that is, when is it the next-to-
minimum weight? What is the characterization of next-to~minimum
weight polynomials?

Throughout this chapter, assume P € bor(m,q), where
r=s(q~-1)+t, 0 <t <(q - 1) unless stated otherwise. Theorem 2.1

states that the next-to~minimum weight for fr (m, q) is at least

d;n +c qm-s-Z

m-s-~1

, Where d][r,n = (q-t)q is the minimum weight, and

g-1lift=1
c=q-2ift=q~-1=1

min(t - 1, q - t) otherwise.

The results of this chapter on the next-to~-minimum weight

are expressed in Theorem 3.1,

Theorem 3.1

The next-to-minimum weight of Fr(m, q) is d;n + cqm's'z,

- t) qm's-l

where di,n = (q is the minimum weight, and
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Y if s=m-1 (Lemma 3.2)

t-1 if s<m ~1and1<t <(q +1)/2 (Lemma 3.3)
ors<m-landt=q-121

q ifs=0, t=1 (trivial)

c=( (q-1) ifg<4, s<m -2, t=1

(q-1) ifq=3, s=m -2, t=1 (Lemma 3.4)

q ifgq=2,s=m=-2,t=1

q ifq=4, 0<s<m~2,t=1 (Theorem 3.8)

c, ifq=4, s<m-2, (q+1)/2<t<q -1 (Theorem 3.11)
t

where Ci is defined to be the integer such that dﬁ + ¢y is the next-to~
minimum weight of Pt(z, Q).

Proof:

Each of the possible cases is proved in the result given in
parentheses. The case s =0, t =1 is trivial, merely stating that

the next-to-minimum weight for linear polynomials is qm.

Lemma 3.2

fr=@m-1)(q-1) +t, 0<t<q -1, the next~-to-minimum
weight of}or(m,q) isg-t+1= di,n +1,

Proof:

The next-to-minimum weight is at least d' + 1, and the poly-

nomial
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m-1 t-1
_ _ .s-1 - 3 .
QX) = .Hl (1 X5 ) 'Hl (xm Aj) where )*j =A > i=]
1= ]::

. m _ . m
has weight dr-l =d.;+ 1.
Lemma 3.3

If s<m - 2 and either 1<t <(q+1)/20ort=q-1% 1, with
r = s(q = 1) + t, then the next-to-minimum weight of Fr(m, q) is
d;n + (t - 1)qm-s-2.

Proof:

That the next-to-minimum weight is at least this value follows

from Theorem 2.1. Formulas (208) and (209) give polynomials which
m-s-2

have weight dlgl +(t - 1)q exactly.
S t-1
-1 .
QW =rxgp T (L-xl") T (=%, Ay=2y>i=]
i=1 j=1
S ot
Q) =2 II (1- xg-l) 1] Lj(xs+1’ Xg,9)s Where
i=1 j=1

Lj(xs+1’xs+2) = %oy Bj Xg4g and aiBj - ajBi >i=1].

The caset =1, 1 < s <m -~ 2 runs into some complexities.

Theorem 2.1 states that the next-to-minimum weight in this case is

at least (q - 1)qm-s-1 1) qm-s-2_

+ (q - In most cases, however,
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this is not the best possible lower bound, as will be shown
later.

Whenq=2, 1 <s<m -3, andt = 1, Kasami and Tokura [ 7]
have found a polynomial, x,x, - xs_l(xsxs_’_1 + xs+2xs+3), which
has weight 27573 () = gm8-1 , om=5-2 4 \wine that the bound
from 2.1 is best possible. Ifq=2, s=m ~ 2, t =1, however, all
polynomials must have even weight. This fact follows from the
Ax divisibility condition. It can also be proved by observing

thatr=(m ~2)+1=m -1< m(q - 1), so that, by Lemma 1.7,

) P(0)=0,
o e K™

which implies that [PI is even, since P(0) € GF(2). Thus, the next-
to-minimum weight cannot be 3, which is the bound given by 2.1. There
is a polynomial, x;x, e X .9, Which has degree m - 2 and weight
4, so we can conclude that the next-to-minimum weight of 70m _l(m, 2)
is 4.

Whenqg=3,t=1, and 1 €s <m ~ 2, Theorem 2.1 gives the
lower bound 2.3%7571 1 9 3M=5-2 {01 416 next-to-minimum weight.

The polynomial

s-1
XXgy1¥geg M 'Xzi)
i=1

has precisely this weight, so 2.1 does give the best bound in this case.
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The preceeding discussion proves:
Lemma 3.4

The next-to-minimum weight of ﬁ_(m, q) is:

rzm fr=1
whenq=2,< 2T g i < r s - 2
4 ifr=m-=-1
LZ ifr=m
(ym ifr=1
3m-s-1+3m-s-2 ifr=2s+2 0<s<m ~2
when q = 3, § g9.gm=5-1_ 5 om-s-2ifr=2s+1 1<s<m -2
3 ifr=2m- 1
\2 if r =2m

Inthecaset=1, 1 €<s <m - 2, when q =4, the situation is
not as simple. From the proof of Theorem 2.1 it is evident that if
d;n <|p|< d;n + qm-s-l’ then either P has no linear factors, or
P~(1- xfl'l) P, where deg P=(s~1)(q-1)+1and Lff’! = fP’ Thus, to
complete this crase, a better understanding of polynbmials without
linear factors is needed. ‘

Similarly, if g 24, s <m - 2, and 1<t<q ~ 1, the proof of
2.1 reveals: dI;l <|p| <d§_][l + (t - l)qm's'z implies that either P
has no linear factors or P~ (1 - xil'l) p. Again, better bounds on

the weight of polynomials without linear factors would be helpful.
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In lemmas 2.14, 2.15, and 2.16 such bounds were developed for
the caset = q -~ 1. Similar techniques will now be used to provide

lemmas in the more general case.

Lemma 3.5

Let Q € ﬁr(m,q), r=s(qg-1)+t, 0<t<q-=~1, such that
Q=(1-x3"1)Q ). AndletR e #__(m,q), 0<k <q - 1, such
that (1 - x371) does not divide R. If P = Q + R, then either |P| o>
(q-t+ k)qm's"l, or k = 1 and there exists a A € K such that
1 - (x, - )21y divides P.

Proof:

Separate the variable x,, defining Rx(if') = R(A,X’) and
P, (x’) = P(A,X’). By formula (201),

Ile = f IPKIm-]_ = lQo + Ry lm-l + Z IRhIm-l-
AeK A+0

Order the elements of K, A,,A;e -, xq, so thatx ., =0,

IRMI = 0 for i <n, and [inl >0 for i >n + 1, By the hypothe-~
sis(1 - xil'l) ){ R, we know that n <q ~ 1. By Lemma 2.2,

R(x, X') = M =20) (x5 = Ay) =+ (%, = A )[R, &) + %, R (x,, ¥')],

where deg R, <r - (k +n) and deg R<r - (k +n) - 1,
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If P, # 0, thendeg P, =deg (Q, + R,) <max (r - (q - 1),
r - (k+n)), a,nddegR;\i <sr-(k+n)fori>n+1, so |P|=
(q-n- 1)d¥1_'(11{+n) + drrf_'bl, where b = min((q-1),(k+n)).

(k + n) >(q - 1) implies |P| = (q - n - l)dgl-h}ﬁn) + d?—icll-l)‘

(q=n-1)(k+n) = (q+t-2)) ¢™~° + (q~t) qm-s-l if (k+n)>q+t -1
(@~n-1)((k+n) - (t-1))g™ 571 4 (g-t) ™51 it (kem) < qut-1

kqm"s+(q-t)qm"s"1 if(k+n)=z2q+t-1
kg™ 5 Lg-t) ™57 g (k4 n) <q+t-1

> (g ~t+k) gBs1,

(k + n) < (g - 1) implies IPl B(q-n)dr-(k+n)

(q=-t+ (k+ n))qm's'z if (k+n) <t

=la-n) (1-t+(k+n))qm's'lif(k+n)>t

q-t+X)q™ 5 s nt- @+ K)gP 52 if (k +n) <t
(q-t+ k)qm's'1+(n+k-t)(q- 1- n)qm's"1 if (k+n) =t

>(q - t + k)g™S~L,

with equality only when n + k =t and P)\ are all minimum weight or

Zero.
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If P, =0, thenR; = - Q,, sodegR, =degQ, =r - (q - 1).
This implies r ~ (k + n) = r-{(q-1), so(k +n) < (q-1).
(k+n)<q-1impliesdegR.Sr-(k+n)-1fori>n+1, S0

| = (q-n-l)dr (11<+n) 1

@-t+k+n+ g™ 524 k+n)<t-1

=(@-n-1) —ce
A-t+k+n+ g5 it (k+n)>t-1

(q-t+ k)qm's"1 +(+DEt=-1-(n+ k))qm-s-Z ifk+n<t-1
(q-t+K)g2 s, +k-t-1))(g-2-0)g™ 5 it k+n) 2t -1

> (q - t +K)g™"SL,

with equality only whenn+k =t -1 and P, is minimum weight or

zero for eachA. (Note: n=q - 2 impliesn+k =q ~ 1),

(k + n) = q - 1 implies |P| (g=n- l)dr-(q 1)—k(q-t)qm s-1

- (@-t+k-1)g™ Sy - 1)(q -t - 1)g™S

-s=~1

2(q - t + kK)g™ unless k = 1, sincet<gq - 1.

Ifk =1, thenn =q - 2, and this is the special case which

the lemma allows.
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Lemma 3.6

Let P € ﬂ(m, q), r =s(q - 1) +t,0<t<q - 1. If, for some

A X, € K, Py, # 0and (1 -xg'l)[Px , and 0< lP)t |<
1 1 2
(q-t+1)qm's' 2, then there is an invertible affine transformation T, fixing
x; for i # 2, such that if R(X) = P(T(x)), then (1 - xg'l) le and
1

-1

(1 -x5"R, .
2

Proof:

P(X) = PM(}—Q + (%, - A,) P(X), wheredeg P <r -1, so

P, &) =P, &)+ 0y-2) B, &), deg B, <r - 1.

Lemma 3.5 asserts the existence of a A such that (1 -

(%, ~ A)q'l) IPX . Define T(X) as follows:
’ 2

(Xl - A1)

[T()‘:)]i = x; for i # 2, [Tx)], =x, + 2
A=A
2=y
Let R(X) = P(T(¥), then R, () = P, (%) and Rla(i') = 0 unless
1
x, = 0, so, by Lemma 2.3, (1 - xg" )‘ha’ and the lemma is

proved.
Lemma 3.7

Let P e,vr(m,q) wherer =s(q~-1)+t, withl <s<m - 2,
and 0<t<qg -1, Let the elements of K, A, +--, )\q, be ordered so
that EPMI S oo s Iqu"
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If P has no linear factors, and P can be transformed R(X) =
P(T(x)) by an invertible affine transformation T, fixing x,, so that
- q-l ] = L Y - q-l >
(1 - xS )]RM_ fori=1, -,k but (1 ~x3™%) } Ry, then Ip| =

-g=2
d;n+k(q-k)qm S=a

Proof:

lRI = ]P!, and since T fixes x,, fo} = IPAI for A € K.

R has no linear factors, so k < q. There is nothing to prove if

k = 0, so assume k > 0. Then (1 - x2-1) R, . If |R
1

A |2
k+1
(g - t +K)d™ 52, then by (201),

q k q
RI=Y Ry =0 IR, |+ % [R|
i=1 S | Voeks1 F

k(g - g™ 752 + (g - K)(g - t + K)qP 7S

= d;n +(q - k)kqm's'z, and we are done.
R, | <(a-t+Kd™ 52 write
k+1

—_ ~l, ~ —_ -~ —
R(Xl: Xa, X”) = (1 = Xg ) R(X:u X”) + (x1 - x-]_) tee (Xl - kk) R(xp X, X”),
where deg R<r-k. Then

— -1, = — ~ —
R, (%,%)=(-xI"")R, () Oy M) g g AR, G, B,

k+1 k+
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This is the situation of Lemma 3.5. If (1 - x371) / Ry, q 20
-s-2
IRy ,q| <(@-t+k)q™™®
3.6, there is a transformation T', fixing x,, such that if S(X) =
- xa-1 - -1 - ga-1
R(T' @), then (1 - x17) s, and (1 - ™)[s, . (-8,

for i <k’, but (1 - 1<2q'1)XSAk,+1, then since 2 <k’ <q -1, ISI =

, thenk = 1, But now, applying Lemma

dxrfl +(q - 1)g™"5°2  which completes the proof.

Theorem 3.8

The next-to-minimum weight of ﬁ, (m,q), wherer = s(q - 1)

+1, 0<s<m, and q = 4, is (™5,

Proof:

The theorem is trivially true whenm =1, or s =0 orm-=- 1,
Assume now that m > 2 and 1 €s <m ~ 2, and that 3. 8 holds for
smaller m and smaller s with the same m. The theorem will be
proved for this m and s by contradiction. Assume d;n < |p| < ™75,
Then as observed in the proof of Theorem 2.1, P has no linear
factors. Order the elements of K, A, - ~,kq, so that [P)t | SRR

1
< Iqu,. Then
. 1
m~s=
IPl:-Zl IP)\iI SQ|PKIL SO IPA1{<q .
1=

This implies, by our induction hypothesis, that lP)\ l = dr -1.
1

By Theorem 2.9, it may be assumed, without loss of generality,

that (1 - x37Y) [P, . Assume that (1 - &Y |p, for i <k, but
1 1



50

a-=2hr Then, by Lemma 3.7,

Mg+l
[P[ = dl:l + k(q - k)qm-s-z = qm-s - qm-s-l + k(q - k)qm'S"z.

Thus, k=1, q -~ 1, or q.

If k = g, then P has a linear factor; a contradiction.

Iftk=q -1, then

P(x,, %, 57) = (1 - &) BE) + (1 - (5 =20 Pl B,

wheredeg P < r - (~1)anddeg P <r - (@ -1). Thus,
P, &)= (- A1) BE") + P(x,, ). By (201),

. | ) -
lpx lm-l = Z‘ Ipxq,oim-z = IPX OI + Z' iPO-I = (q.-l)d;ri(q_l)

q 0€eK Q 00
_ m-1
=@-1d, .
. 1 1
SoIPI=Z1 Pyl Z@- D™+ @- 1) a7 =g
1=

(q2—4q+2)qm-s’2 > q™"5.  when q =4

Assume thatk = 1,

If IPK2 | < qm-s-l, then, by Lemma 3.6, there is an invertible
affine transformation T, fixing x,, such that if R(X) = P(T(X)), then
1 - xzq'l) IR)\1 and (1 ~ xg'l) IRAZ‘ Since |P| = |R/|, the above

reasoning may be applied by R to complete the proof.
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Similarly, if (1- (x, -xo)q'l) [P)l , there is such a transfor~
2

mation, and |P| = ™75,

Thus, Py, ,# 0, for at least two distinct
2
o€ K.
Let R (X") = PXZ’ &) = sz(c, x") = P(,, 0,X”). Order the
elements of K, 0,,0,, *°°, oq, so that iRo ] € eveo < IRU | Suppose
1
that R, = Oforis<n, and R

i
n<gq-~1.

q
o # 0. By the above paragraph,
n+l

Since (1 - xzq'l) IP)\ , write
1

1) Py, E) = @ - &THR o @)+ - 2) P o, %),

where deg P<r ~1=s(q - 1). Then

@ RE) ==t P @)+ 0y -2 By, 0%,

so degR < max(r ~ (q - 1), deg P(r,, 0,%")). But deg P (A,, 0, X")
< (r-1) ~n, by Lemma 2.7, so deg ROS r-1=-n, and ,RC_] 2
i

(1 +n)g™ 52 for i >n. Thus,
3) iPA | = (q-n)(1+n)qm's"2=qm's'1+n(q_1_n)qm-s-2.
2
But IP’ = [PX l + (q - 1) ’PA l, and, by aSSumption,
1 2

Pl <q™8, so
|P| <q™5,

@ 1P, [< @%@~ D52 /(q- 1) <gE g R,
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This contradicts (3) unless n= 0. When n = 0, (4) implies

' <qm S= 2 m-s-3

|R , which, together with Lemma 2. 16,

dm 1 me-gs=~2 m ~-g=2

forces {R l = Suppose for i < k’, !R ! = ,
and for i >k' [R |>qm = 2.' Then, by 2.16, for 1>k’ IR |

o
> q™%2 4 (q - 2)q m-s-3, By (201),

By, | =% q®52 4 (q - k)@ - 2)a™"573 + 7577

= ™5 4 (- k')(g - 2g™ 52,

Together with (4) above, this forcesk’ =q -~ 1 or q. By arguments
similar to those used in the proof of Lemma 2. 16, there exists an
i.a.t. T’ (X’), fixing x, such that if R’ (x’) = PM(T,(K’))’ then

R('ji = R’ for i <k’, where R’al,is a minimum weight polynomial.
By making the transformation T(X), defined by [T(i')]i = x; for i 42,
[TE)], =% -0 7(1—%1' , it may be assumed that o =0. Now

q

g™ Sza,nddegRl—r-1=s(q-1).

R,=R,for o+ 0, where lRll =
From (1),
— ~]1 _ " —
P(XL! X, X”) = (1 - qu ) Pkl, 0 (X”) + (Xl - )\1) P (X,U Xn) X”):
SO

Cl'l)

(5) Py (%,X") = (1 =x1"") P, &)+, -1) B (x,%”), where
2 12 2

dengl’O:r-(q-l) anddeg1'57t <r-~-1,

2



53

Since R, = R, when o # 0,
6 P, (%,%") =R,&) + (1 - x371) R&"), where
2

degR,=r-landdegR<r - (q-1).

Combining (5) and (6),
(1) 0a=2) Bloy, £ =R, &) + (L -5 Y[ -B, (&) +RE")].

If §=.= 0,thendeg sz =r. Since this is not true, fa;eo. Letting
%,=0 in (6), R, (x”) =R,(X") + R(X"). By Lemma 2.14, |R, | # (q-2)g™"S-2,
S0 ‘sz | =q™"5"1 § (g ~ 3)¢™"5"2, contradicting (4). This final contra-
diction completes the proof. ‘

A similar proof could be given to establish the next-to-
minimum weight in the case r = s(q - 1) +t, where s <m - 2 and
(q+1)/2<t<q-1, except that no starting point for the induction
has been established. Such a point may be assumed as follows:

Define C; for a fixed q and ’t, 0<t=<q-~1, tobe the difference
between the next-to-minimum weight and the minimum weight of
/Jt(z, ). The minimum weight is & = (¢ - t)a. The next-to-minimum
weight, is, by this definition, (q - t)q + C;. It has already been
established that ¢, = q, and that ¢, =t - lfor1<t<(q+1)/2, by
Lemma 3.3. Fort=q -1, c,=q- 2, by Lemma 3.3. From Theorem

2.1, when (@ +1)/2<t<qg -1, thenc, = q ~ t, and from the weights
of polynomials (208) and (209), when (q - 1)/2 <t <q - 1, then ¢ <st-1,
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The next lemma is analogous to Lemma 3. 5 except that it

deals with the case s = 0, which 3.5 does not cover.

Lemma 3.9

Let P = Q + R, where Q eﬁt(m,q), 0<tsqg~-1;and
R eiot k(m,q), 0 <k <t. If Qdepends only on x,, then either P
depends only on X, or Ip| = dt +k qm'1 =(q~-t+ k)qm-l.

Proof:
P=Q+R.

Order the elements of K, A;, -+-, A_, so that [P>L [< IS [P
From the definition (202) of P(l) P 1) = Q(l) + R(15 P(l) = Q§i) +

+1 i+l
r{Y ) |+ In (206),

i-1 3
P,. = Y [Q(J) + RS) ] o (@, - A,), where
1 j=0 ] +1 ]+1 k=1 1

deg R(]) 1 < t=-k~-jand Qx]) is a constant. Suppose P = 0 if and
Aj+

only if i < n, then P(l) ) =0 for i <n, This implies that
At

]
0 v 1m0y
Jf [Q |+ lj+1] o (A = Ay)s 80
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deg P, . < max (t=k-n, 0). Ifn=t-Kk, then R)(\j_) is a constant
i j+1

for j > n, so P, . is a constant for each i. Thus P depends only on
i

X;.

Ifn<t -k, thendegPliSt-k-n, SO

-1 -2
| =2 d . =(@+k+n-t)g"  and

m~2

2=(q-t+k)qm-]‘+n(t-k-n)q

|P| = (@-n)(g+k+n-t)g™"

1

> (q - t + k)g™"*, proving the lemma.

‘The next lemma proves a starting point for the induction

proof of the following theorem.

Lemma 3.10

Let P e Py(m,q), 1<t <gq-~1. If |p| > d™, then |P| =

-2
dt+ Cy qm .

Proof:

True for m = 1 and m = 2, by the definition of C4- Assume
that the lemma is true for fewer than m variables m = 3. Let P be
a polynomial in m variables, with deg P <t and IPl > dir:n. Order

the elements of K, A;, «++A_, so that IPA l S oo |qu|. Assume
1

q

that Py, =0fori<nandP, # 0fori>n. By Lemma 2.7,
i i
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p| = d{n + n(t - n)qm'z > d{n + (t - l)qm'2 = d{n +cy qm'2
unlessn=0or n=t. If n=t, however, P is minimum weight, If

n=20,

m-1
[PM! >d .

1t [P, | >d™), then by the induction hypothesis, |P, | > a1+
1 1

¢, qm'3, S0

m m=-2
fPIZq]PMI?dt +e gl
Without loss of generality, assume that Px depends only on X,. |
1
Further assume that P, . depends only on x, for i € k, but P,
i k+1 ‘
does not depend only on x,. If k = q, then P depends only on x, and

X,, and the lemma is true. Otherwise, 1 sk <q ~ 1. Write

P(x,, X;,X") = I)(xn X)) + (X = A eee (% - Ak) p (Xy, X5, X"),

where deg P <t - k.

P =B, @)+t Qg ) g ~ M) By (%, X)
Merl Merl k+1 "M k+1 70K A g Xa
m-1 m=2
By Lemma 2.9, iP;\ ‘ = dt + kq , SO

k+1
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) - -1 -
IP| >k o 1+<q-k)(d{“ + kg™
ad +@-Kkqg® 2> +(q 1)q™ 2 >d£n+ctqm'z

Thus, in every case, |P|> d,in > |P| = d{n + ¢y qm'z.

Theorem 3.11

Let P € fr(m,q), wherer=s(g~1)+t, 1 <t<q-1, and

q>4. I [P|>d® = (g - 1) @57, then [P > d® + ¢, 7572,

Proof:

Lemma 3.10 proves this theorem for s = 0. The definition
of Ci makes the theorem true for m <2, Assumem >3, s =1, and
assume that the theorem is true for smaller m and smaller s with the
same m. Prove the theorem for this m and s by contradiction.

Assume

1) A< [P|<dPic @SR+ (¢ - 1S 2

If P has a linear factor y, then by Lemma 2.7, ¢d(P,y) =

q-lort. If £d(P,y)=q -1, thenP = (1 - xg'l) P, where Pe
fr (q_l) - 1 Q) so, from (1) dI‘ (q_l) di‘n < IP] = lﬁi <
dm (3‘1_1) + ey q™ '2, contradicting the induction hypothesis. If

n = t, then as in the proof of 2.1, |P]>d =>[P|>d +qm S-l

Therefore, Phasno linear factors. If [P |>dm -1 , then, by the

ms2

m-s-3 » SO |P]>d +c.d

induction hypothesis, IP [ 2 dm -1 +C.q
Therefore, IP l —dm -1 . Assume without loss of generality, that (l-x2 )
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divides P, . Then, by Lemma3.7, [P|=d™ +k(q - K)q™ 52 for 1 <k <q,
A r

so |P| = di_n +(q - 1)qm-s-2 > di‘n +ey qm-s-Z.

This completes
the proof of 3.11.

Theorem 3.11 completes the proof of Theorem 3.1.

Theorem 3.1 reduces the area where the next-to-minimum
weight of Pr(m,q) is not known, tothe casem =2,(q +1)/2<r<gq - 1.
In this case, if ¢, < (r - 1), then the next-to~minimum weight poly-
nomials of pr(2,q) have no linear factors, by Lemma 2.12, Corollary
2.8.1 gives a lower bound of (g-r) < c,.. The next chapter discusses
attempts to improve this bound by an examination of blocking sets
in affine planes.

The remainder of this chapter characterizes next-to-minimum

weight polynomials of f;(m, q) when0 <r <(q + 1)/2.

Lemma 3.12

Let P € ft(m,q), where 1 <t < q - 1, such that |P| =
dtm + (t - l)qm'z. If P is the product of t linear factors, then P is
equivalent to a polynomial Q(x), such that either

t-1
(1) QX)) =rx I (x -1y, Wherexiz)\j=>i=j,
i=1
or
t
2) QX =x 1 Li(x, X,), where L; = a; X, + Bi x, and
i=1

aIB] = a]BI =i=j.
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That is, Q is of form (208) or (209).

Proof:

If y is any variable, then, by Lemma 2.7, £d(P,y) = 0,1,
t-1, ort. If £d(P, y) =t for some y, then P is a minimum weight
polynomial. If £d(P,y) =t ~ 1 for some y, then P is of form (1)
above. If £d (P,y) = 0 for all y, then P has no linear factors. But
P has t linear factors. Assume that for each variable y, 2d(P,y)
> 0=2d(P,y) =1, Then P is equivalent to a polynomial Q such
that QRE) = LX) LX) +- Lt(ﬂ, where L, (X) = x,, L,(X) = x,, the Li

are all independent linear polynomials.
t i-1
Z@ =\{ [2(Ly) - Z@)n \/1 Z(Ly)],
1= j::

and this union is disjoint. Thus,

t i~1

NQ=tq® - ¥ [|z@w) n\/ Z (Ly)
i=1

Let N, = HZ(Li)I\V Z(L;) ||,and let N = N(Q).

N, =0, N, = q™"%, and for i > 2, N; = ¢™"2,

If, for some i, N; > qm'z, then



60

t
£ - (t-1)g™ 2= - [P =N=tq® - Y N >tg - - 1)g™ 72,
i=1
which is a contradiction. Thus N, = dm-2 for alli>2 .
i-1
]-1

= |lz@) A Z@w) || + [|Z(Ly) A 2(Ly) ||

- [z A 2(Ly) A2y ||

- 2q™2 - ||z A 2w) Ny || = ™7

so ||Z(Ly nZ(L) A 2Ly || = 2.

Thus Z (Li) contains the (mm-2) dimensional subspace of KM
described by x, = x, = 0. But then L;(X) = a;x, + fjX,. The condition

aiﬁj = ajBi# i = j assures that the factors are distinct.

Theorem 3,13

If1 <r <(q+1)/2, then the next-to~-minimum weight poly-
nomials of fr(m, q) are equivalent to either:
r-1

(301) Q® =rxx, M (x; -2,) where}, = xj =>1i=j, or
i=1
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r
(302) Q® =2 I L:i(xl, x,) where L, = o, + Bix, and
i=1

ap = ap; Hi=i.

Proof:

The next-to-minimum weight is d;n +(r - 1)qm"2. If

|p| = di_n + (r - l)qm'2 < d;n +(q - r)qm'z, then, by Corollary
2.8.2, P isthe product of r linear factors. Applying 3.12 completes
the proof.

Given any r > 1, Theorem 3.13 characterizes the next-to-
minimum weight polynomials for all but a finite number of q. The
characterization of next-to~minimum weight polynomials in the
general case requires better bounds on the weights of polynomials
without linear factors. This subject will be dealt with in the next

chapter.
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CHAPTER 4

Using Theorem 3.1 and a complete knowledge of the next-to-
minimum weights di+ c, of @t(z,q) for each t such that (g+1)/2 <t < g-1,
the next-to-minimum weights of all Generalized Reed-Muller Codes
could be calculated. In Chapter 2 it was proved that when
(g+1)/2 <t < g-1, then g-t < ¢; <t-1, and further, that c, <t-1 implies
that a next-to-minimum weight polynomial of Gt(z, q) has no linear
factors. The goal of this chapter is to improve the lower bound on Ci by
improving the bound given by Corollary 2.8.1 for the weights of poly-
nomials without linear factors. This will be done by exploring a related
topic; blocking sets.

Blocking sets may be defined for either finite projective planes or
finite affine planes. Much of the work of A. Bruen [ 3] concerning the
former, can be extended to the latter. This chapter deals mainly with
the affine plans K where K = GF(q), but, where possible, more general
results will be derived, with results for projective planes being given in
square brackets. Bruen gave the following definition of a blocking set.

Given a finite projective plane II, a subset S of II is called a
blocking set in II if and only if each line of II contains at least one point
of S and at least one point of IES.

Clearly, this definition would still be meaningful if I were an
affine plane. For this study, a slightly more general concept is needed.

Let {I be a finite affine [ projective] plane, and let S be a subset

of II. S is called a blocking set of order n in II if and only if each line

of II contains at least n points of S and at least n points of II-S.
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The relationship between blocking sets and low-weight polynomials

is expressed in the following lemmas.

Lemma 4.1

It Pe P2,0), 0<t<gq-1 suchthatd; < |[P|< di + (t-1), then
S(P) is a blocking set of order q -t in the affine plane K, (K = GF(q)).

Proof:
By Lemma 2.12, such a P has no linear factors. The rest follows

from the following lemma.

Lemma 4.2

If Pe @t(z,q), 0 <t <q-1 such that P has no linear factors and
]P[ sdz + (t-1), then S(P) is a blocking set of order q-t in K.

Proof:
Let £ be a line of K. Then ¢ corresponds to the zeros of a
linear polynomial (a variable) y. H L nS(P) H + ¢, for that would imply
y ,P. But P restricted to £ is a polynomial of degree at most t, so
||~ S(P)|| = q-t. Finally, to show that |[2 A S(P) || <t, use the next

lemma.

Lemma 4.3

Let II be an affine plane of order . Let S be a subset of I such
that [[S|| =nq+b, where 0 <b <q-1-n. If, for each line { of o,

||Sn2|| = n, then S is a blocking set of order n inil.
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Proof :
Suppose that for some line £ of H, || £n S|| =q. Let

L, =¢,L,...,L be q parallel lines of iI.

q

- q q
ng+b = [|s|] = [[samf[ = 3 [[saLill=a+ ) [lsnLy]|
i=1 i=2

>q+(q-)n =qn+ (q-n) ,
contradicting b < q-1-n.

Now, suppose that ||£nS|| > q-n. Let x be a point of £- 8,
and let the q+1 lines through x be Lo =£,L,,..., Lq.
q

ng+b = ||S]| = Z HLinSH>q-n+qn>nq+b )
i=0

also a contradiction. This completes the proof of 4.1, 4.2, and 4.3.

Thus, it has been shown that, to each sufficiently low weight poly-
nomial P of degree t without linear factors, there corresponds a blocking
set of order g -t, the set S(P). Whether the converse is true is not
wholly known. The blocking sets of order one constructed in the proof
of a later theorem will indicate that a meaningful converse to this lemma
may not be possible.

Many of the following lemmas concerning blocking sets were

proved by A. Bruen [ 3] for blocking sets of order 1 in projective planes.
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Lemma 4.4: (Generalization of Bruen, Lemma 3.2)

Let S be a blocking set of order n in a finite affine [ projective]
plane II of order q, such that HSH =nq+b. If £ is any line of 11, then
e A s|| <b.

Proof:
If |[2nS]|>Db, thenletx € £-S. Let Lo =2,Ly,..., Ly be the

q+1 lines of I containing x. Then

q
sl = ¥ llLins|[>b+an
i-0

contradicting ||S|| = nq+b.

From Lemma 4.4, one can conclude that a blocking set of order
n in a plane of order q has at least nq+n elements. This conclusion is

precisely the same as one may draw from Lemma 2.8.

The next lemma is a counting argument which will be used later.

Lemma 4.5: (Generalization of Bruen, Lemma 3.3)

Suppose that ¢ objects are packed into a slots, at least n to a
slot, and that an < c¢ < a(n+1). Define afunction f on the objects x as

follows:

1 if the slot containing x contains more than n objects
f(x) =
0 if the slot containing x contains exactly n objects

For each packing P, define A(P) = Zf(x), where the sum is taken

over all the objects x. Then A(P) <(c-an)(n+1).
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Proof:
| If, in the partition P, some slot contains more than n+1 objects,

then, by the restriction ¢ < a(n+1), there is a slot with exactly n

objects. If a new partition P’ is derived from P by removing one object

from the slot with more than n+1 objects, and plécing it in a slot with

exactly n objects, then A(P’) = A(P) + a. Thus, A(P) is maximized when
P has only slots with at most n+1 objects. In this case A(P) = (n+1)(c-an).

For the next portion of this discussion, let II be an affine
[ projective] plane of order q. Let S be a blocking set of order n in II
such that HS H =ng+b. Define k = max Hﬁ nS H, the maximum taken
over all lines £ ofI. By Lemma 4.4, k <b. Let L be a specific line
of Il such that ||L n S]] = k.

Lemma 4.6: (Generalization of Bruen, Lemma 3.1)

With the above definitions, k > n. Furthermore, k =n+1 implies

b=n+1.

Proof:
By definition, k > n. Thus, b >n. Let L,=L,L,,... ,Lq be the

q+1 lines through a particular point x € L n S, then

q
sl = Y llsaL]-q=<(agk-q
i=0

If k =n, then ||S|| <qn + (n-q), contradicting lIs|| > an.
Ifk =n+1, then HSH < (q+1)(n+l)-q = gn + (n+1). So, n+l =k

<b = HSH - qgn <n+l. Thus, b =n+1, and Lemma 4.6 is proved.
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Now, define B, the set of lines of 7 other than L which intersect

L - S and contain more than n points of S:

B ={¢|¢isaline of I, £ # L, such that
2a(L-S)+¢and |[2nS]||>n} .

Define the set of incidences I of points of S with lines of B:
I =1{(x,0)|¢eB and xelnS} .
The next two lemmas count 1.

Lemma 4.7: (Generalization of Bruen, Lemma 3. 4)

]| < a+1)(b-K)(q- K +1]), that is |[I]| < (n+1)(b-K)(q-K) for
affine I, [ ||I|] <(n+1)(b-k)(q-k+1) for projective II] .

Proof
For each point y € L.-S, the nq+b -k points of S- L are packed

into q lines through y. By Lemma 4.5, these lines through y yield at

most (n+1)(b-k) incidences of I. Since there are q-k such pointsy € L.-S

[q-k+1if I is projective], the lemma is proved.

For the next lemma, if B # ¢, define d =max [[2 A §||. Then
{eB

d > n.

Lemma 4.8: (Generalization of Bruen, Lemma 3. 5)

If B# ¢, then ||I|| = (qn+b-Kk)(nk+b-k*~k+q] +k-n])(d-n)"".
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Proof
Let x be any point of S- L. Then |[S|| - 1 =nq+b~1 other points
of S are partitioned into g+ 1 lines through x. Exactly k of these lines
intersect L n'S. Each of these contains at most k-1 points of S - {x} . In
the affine case, there is exactly one line through x parallel to L. This
line contains at most k-1 points of S - {x} . [ In the projective case, no
such line exists.| Thus, in the affine case, there remain at least
nq+b-1-(k+1)(k-1) points of S - {x}, partitioned among the remaining
q-k lines. [In the projective case, nq+b-1-k(k-1) points; q-k+1 lines.]
But, since no line of B contains more than d points of S, the number of

incidences in I of the form (x, £) is at least
(ng+b-k3-(n-1)(q-k)[ +k-n])(d-n)~* = (nk+b-k2-k+q[ +k-n‘])(d-n)'l

Since there are precisely nq+b -k such points x € S- 1, the lemma

is proved.
The next lemma is used to delete d from the inequality.

Lemma 4.9: (Generalization of Bruen, Lemma 3. 6)

(d-n) < 3(b-n).

Proof:
Some line of B, call it L,, contains d points of S. Let x =L n L,,
thenx ¢ S. Let L, =L, and let L, L, ..., Lq be the g+1 lines through x.
q

ng+b = |[S]] = > HLin S|| = k+d+(g-1)n = qn+ (d+k-n)
i=0

sob =>d+k-n.
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Thus, b-n > (d-n) +(k-n). By definition, d <k, so (b-n) = 2(d-n),

proving the lemma.
Combining Lemmas 4.7, 4.8, and 4.9:
(b-n)(n+1)(b-k)(a-k[ +1]) = (b-n) [|1|| = 2(qn+b-k)(nk+b-k2—k+q[ +k-n])
so when B # df, then
(401) (b-n)(n+1)(b~k)(q-k[ +1]) > 2(gn+b-K)(nk+b-k’-k+q[ +k-n])

Furthermore, when B = ¢, then (401) still holds, since the right

side must be non-positive, and the left side non-negative. Observing that

(n+1)(g-k[ +1]) = 2 (nq— K + ngfl ] - fn'l)z(%k))
< 2(ng-k+b), sincen =1 [and b > 1_1_-%_1_] ,
simplify (401) to get
(402) (b-n)(b-k) > nk+b-k*-k+qg[+k-n]
Let

(403) f(k) = (b-n)(b-k) +k’+k-nk-b-q[+n-k] |,

then f(k) = 0.
Evaluating f at 0 and b,

£(0) = (b-n)b-b-q[+n] = b(b-n-1)-q[ +n]

f(b) = b*+b-nb-b-q[+n-b] = b(b-n-1)-q+b[+n-b] = £(0)
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Since f is concave upward, and 0 <k <b, then 0 < f(k) < f(b)
=b(b-n) - q[ +n-b].

This proves the following theorem.

Theorem 4.10: (Generalization of Bruen, Theorem 3. 8)

If S is a blocking set of order n in an affine [projective] plane of

order ¢, such that HSH =nq+ b, then:

(404) ‘ b(b-n) -q[+n-b] = 0

or, in other words,

(405) b >3 (n[+1] + «/(n[-1])2+4q)

In the projective case with n =1, Theorem 4.10 reduces to
Bruen's result, HS H >q++vVg+1. When q isa square, Bruen points
out that a subplane of order Vq is a blocking set of order one with
exactly q + Vg + 1 elelents. When q is not a square, however, this
bound is not necessarily "tight". He improved the bound by "'point
chasing" in specific cases. For q = 10 and q = 11, he expressed his

results in his Theorems 4.1 and 4. 2.

Bruen's Theorem 4.1

Suppose there exists a projective plane I of order 10. Assume
that II contains no projective subplé.ne of order 2. Then if S is a blocking

set (of order 1) in II, we have ||S]|| = 16.
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Bruen's Theorem 4.2

If I is a (projective) plane of order 11, and S is a blocking set

(of order 1) in M, then ||S|| = 17. Further, the case IIS|| = 18 occurs.

Table 4.1 summarizes Bruen's results for blocking sets of order
one in small projective planes. Besides the lower bounds which he
obtained, he gave constructions of the smallest blocking sets which had
been found for planes of small order. Bruen stated two theorems which

deal with the existence of blocking sets.

Table 4.1

Lower Bound on the Size of a Blocking Set S of
Order One in a Projective Plane of Order q*

q Bound from Improved Improvement Smallest
Bruen Th. 3.8 Bound Technique Known

3 l[s]] =6 - - - |[ -m 6

4 ls|| =7 - - - : - - - 7

5 lIs]| =9 - - - - - 9
T s =11 [[s]] =12 : "point chasing" 12

8 s ]| = 12 I8} =13 | "point chasing" 13

9 ls]] = 13 - - - - - - 13
10 lIs]| = 15 ||| =16 | BruenTh. 4.1 20

(if no subplémes of order 2)
11 lIs]| = 16 ||S|| 217 | Bruen Th. 4.2 18
!

*A. Bruen|3].
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Bruen's Theorem 2.1

If I is the projective plane of order 2, then there does not exist

a blocking set in II.

Bruen's Theorem 2.2

If II is (a projective plane) of order n > 2, then there exists a

blocking set S (of order 1) in II with ||S]| = 2n.

Bruen also gave three, more specialized constructions of smaller
blocking sets. His Theorems 5.1 to 5.3 deal with the projective planes
PG(2,q) where q = pt, p prime, which may be derived from the affine
planes AG(2,q) = K°, K = GF(q) by adding a line at infinity.

Bruen's Theorem 5.1

t

Let I = PG(2,q), g =p, pan odd prime. Then there exists a

blocking set S in II such that |[S]| = pt + é—(pt+3).

Bruen's Theorem 5.2

Let Il = PG(2,qt), t = 2. Then there exists a blocking set S in H
with ||S]] =gt + (qt-1)(g-1)"".

Bruen's Theorem 5.3: (Due to Ostram)

There exist blocking sets Sin II = PG(Z,qt) such that
ls]] :qt+ qt"1 +1. (t=2.)

The constructions used in these last three theorems do not readily

adapt to the affine case. The first two theorems are adaptable as follows.
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Theorem 4.11

There are no blocking sets of order 1 in an affine plane of order

q, when q < 3.

Proof:
By Theorem 4.10, if S is such a blocking set, then
lIS]| = q + 31 + V4q+1). But, by the definition of blocking set, II - §

is also a blocking set. Thus,

q+ 3(l+VAq+1) < HSH qu-q-%(1+\/4q+1)

2q+1+vV4g+1 < q2
This implies q > 3.

Theorem 4.12

If 1T is an affine plane of order g with q > 4, then there is a

blocking set S of order 1 in I such that ||S|| =2q-1.

Proof:

Let xy,zy, be a parallelogram in II. That is, if ab denotes the
line through a and b, then Xy, ||zy, and Xy, ||Zzy,. Let w be any point of
V.V, except y, or y,. Let S be the set

S = xy, uxy, vizl v{w - {y} -1y}

The same construction would work for q = 4, except that wz

might contain 4 points of S. We resolve this problem as follows.
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Theorem 4.13

If II is an affine plane of order 4, then there exists a blocking set
S of order 1 in I such that ||S|| =7, if and only if Il + AG(2,4). There

is, however, always a blocking set T of order 1 in IIsuch that ||T || =8.

Proot:

Suppose that for some parallelogram xy,zy, in II, X2 ny,y, # ¢.
Then let w = XZ n ¥,y,, and let 8 =Xy, uxy, v{z} v {w} - {y} - {y.}.
Thus a blocking set S with |[S|| =7 exists if II does not satisfy the
parallelogram condition: the diagonals of every parallelogram are
parallel. I S is any blocking set of II such that HS H =17, then, by
Lemma 4.6, there is a line L of II such that ||[L.nS||=3. LetxeLnS.

Consider the q + 1 lines through x, L, = L,L,,..., Lq.

4
= lIsll = ¥ [lLins]l -
i=0
S0 i‘ |lL;n sl =8. I |[L;n S| >2foreachi=1,...,4, then

S - {x} is a blocking set, and ||S-{x} || = 6, contradiction 4.10. Thus,
there is an i’ suchthat |[L;, N S|/ =3. LetL’=1L;,. Lety € L-S,

y; € L’ - S and let z complete the parallelogram xy,zy,. We have that
Xy, Xy, - 1v.} - {y.} <S. This accounts for 5 points, and leaves 3 lines
unblocked; y,z, y,z, and y,y,. Since y;,y, £ S, z € S. We must also have .
some W € SNAY,¥, - 1.} - {y,f . The line Zw intersects Xy, and Xy,. If
it intersects them in distinct points, it would contain four points of S.

Thus x € zw and w € Xz n y,y, showing that II does not satisfy the
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parallelogram condition. That AG(2,4) is the only affine plane of order 4
which satisfies the parallelogram condition can be established by point

chasing.

To find T, let xy,xy, be a parallelogram. T =xy, vXy, vy,Z
- {x}-{y,}. This completes 4.13.

It is interesting to note that the blocking set
S=xy,vxy,viztv{w} -{y,} - {y,} from Theorem 4.12 is not the
support set of a polynomial P € (¥ q_1(2,q). If it were, then, by Theorem
1.6, if R € (?,(2,q), then

(1) > P(Q)R(T) =0

TeK?

since q = 5.

Let R be the product of three linear factors corresponding to the
lines Xy,, Xy,, and y,z. Then |PR| =1 contradicting (1).

This observation casts some doubt on the conjecture: Every
blocking set S of order 1 in the plane AG(2,q) such that ||S|| < 2q-1 is
the support set, of a polynomial of degree q-1. This conjecture, along
with earlier results on polynomials would imply that no such blocking
sets exist. The conjecture is vacuously true for q < 9, as established
by a computer search. The hope of proving it in the general case as a
| means to establishing a lower bound of 2q-1 on the number of elements
in a blocking set, appears to be useless, however.

The following conjecture would establish that cp =t- 1 for q = 4.



76

Conjecture 4,14

I;et II be the affine plane AG(2,q). If S is a blocking set of order
n in II,then ||S|| = nq + (g-n).

Actually, to prove that ¢, =t-1, only ||S]| > nq + (g-1-n) is
needed, but 4.14, together with Theorem 4.12, would give the size of the
smallest blocking set of order one.

If n > q/2, then 4.14 is vacuously true. If n < q/2, then, by
Theorem 4.10, ||S]| =ng + b, where b > %(n + an_——l_l_q-) . Sincen<gq-1,

n®+4q >n’ + 4n+4. This proves Lemma 4.15.

Lemma 4.15

Let II be an affine plane of order q. If Sis a blocking set of order
n in II, then []SH zng+n+2, (i.e., thecase k =b =n+1 of Lemma 4.6

does not occur).
The next lemma is a bit more difficult to prove.

Lemma 4.16

Let II be an affine plane of order q. Let S be a blocking set of
order n in I such that ||S|| =nq+b. Ifb=n+2, thenn = q/2 - 1.

Proof:
Let k = max Hﬁ. nS H, where the max is taken over all lines ¢ of IL

Let L be a line such that ||[L nS|| =k. By Lemma 4.6, k =b =n+2.

This being the case, every line except L which intersects L - S contains

exactly n points of S. Pick a point x € S-L. Let L, be the line through
x parallel to L. Let L, ..., Ly be the lines through x which intersect




77

LS, and let Lk+1’ ...,L_Dbe the lines through x which intersect L - S.

q
Then
a k
nab = |[s]/= 3 |l nsli-a=(@Rn-a+ ¥ [Lns]
i=0 1=0

so, inusing k =b =n+2,

k
) k- |lL A8 = 2k-q
i=0

But, each term of the sum k - HLi nSs H is non-negative. Suppose
2k-q <1, then ||[Lon S|| 2k-1=n+1, so each line of Il which is
parallel to L. would have at least n+1 points of S. This would imply
HS H >qn+q > qgn+n+2 a contradiction. Thus 2k-q > 2. Substituting
k =n+2, 2n+4 > q+2 or n = (q-2)/2 which was to be proved.

Lemma 4.15 and Lemma 4.16 establish Conjecture 4.14 for
n = (q-3)/2 and the weaker result for n > (g-4)/2. In addition to these
two lemmas, another technique may be used to establish the truth of
Conjecture 4.14 in certain cases. A computer program was written to
run on the Xerox Data Systems 930 computer, which accepts as input,
values for g, n, and b, along with information on how to build the finite
field GF(q). The program builds tables which represent the affine
plane 1 = AG(2,q). It then searches for blocking sets of order n in II
with at most b elements. If it locates such a blocking set S, the program
resets the value of b to HS H - 1 and continues the search. Thus, the
program is intended to find a minimﬁm size blocking set with at most b

elements. The number of subsets of [ which must be tested, to
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determine whether they are indeed blocking sets, is large. The program
uses the technique of backtracking to reduce the number of possibilities
which must be tested. Negative results from such a program must be
accep;ed with a degree of reserve, because the accuracy of the coding of
the program, and indeed, the functioning of the computer hardware, can-
not be verified. Therefore, the lower bounds on the sizes of blocking sets
derived by the computer program are annotated by being followed by
asterisks. The following results, not given by previous lemmas, were

derived by the program.

Result 4.17

Let I be the affine plane AG(2,q), and let S be a blocking set of
order n inlIl. Then

a) q=7,n=1 = HSHan+q-n:13*
b) q=8,n=1 = [|S|| >ng+q-n =15
c) g=8,n=2 = ||s|| =ng+q-n=22"

d q=9,n=1 = ||s|| =nq+q-n=17"

A summary of the results concerning blocking sets of order one
is given in Table 4.2.
Finally, these results on blocking sets of order n in affine planes

may be applied to the prime objective of this paper, by Lemma 4.1.

Lemima 4.18

Let the next-to-minimum weight of @t(z,q) be (q-t)q+c,. If
(q+4)/2 <t <q-1, thenc, > q-t+3. If (g+1)/2 <t < (q+4)/2, then

Cy =t-1.
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Table 4.2

Lower Bound on the Size of a Blocking Set S of
Order One in an Affine Plane of Order q

F

Bound from Improved Improvement Smallest
9 Theorem 4.10 Bound Technique Known
‘ |
4 lIs]| =17 Not AG(2,4) 7
I
lIs|] = 8 for AG(2,4) 8
Theorem 4.13
5 l|s|| = 8 lIs|] =9 : Theorem 4.16 9
7 || = 11 Is|| > 13* | Computer search 13
8 lIs|| = 12 lIs|| = 15" : Computer search 15
9 lIs|] =13 lIs|] = 17* 1 Computer search 17
[
11 lIs]] =15 | 21
!

Proof:
Lemma 4.18 follows from Lemma 4.1 and the application of
Lemmas 4.15 and 4.16.
This lemma will be integrated with Theorem 3.1, to form Theorem

9.1 in the next chapter.
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CHAPTER 5

This chapter begins with a theorem summarizing much of the

work of chapters two through four.

Theorem 5.1

If Pis a polynomial of degree r = s(q-1) + t, with0 <t <q-1,

in m variables over GF(q), and N(P) is the number of zeros of P, then:
1) N(P) >q™ - ¢™ 5+ tq™ 5} implies that P is identically zero,
2) N(P) < q™ - ¢™5 4+ tg™ 51 implies that N(P) < ™ - ™8

m-s-1_ m-s-2

+ tq cq where

(‘
q if s=m-1 orif t =1 and either s =0 or

q=>4ors=m-2andq =2

c =<q-1 if t=1 and either q=3and0<s=m-2 or
qg<4and0<s<m-2

t-1 if s<m-1 and either 1 <t < (q+5)/2 or

L 1<t=q-1.

In the remaining case, (q+5)/2 <t<q-1, s<m-1, q > 4,

g-t+3<c <t-1. Furthermore, there exists a polynomial P € G)r(m,q)

with N(P) = g™ - qm-S+tqm-s-1 _ Cqm—s-z.

Proof: Theorem 3.1 and Lemma 4.18.

In the notation of coding theory, Theorem 5.1 might be stated:
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Theorem 5.1%*

The next-to-minimum weight of the rth order Generalized Reed-
Muller Code of length qm, where r =s(q-1)+t, 0 <t <q-1, is
m-s-1 + m-s=-2

(g-t)q cq . The restrictions on ¢ are given in Theorem 5.1

and displayed in Table 5.1

The rest of this chapter concentrates on methods by which more
knowledge about the weight spectra of Generalized Reed-Muller Codes
might be obtained. Theorem 4. 10 gives better results than Theorem 5.1
in the case (q+5)/2 <t <q-1if

2
(g=t) + v2q" - 2qt+t > q-t+3
2

H

when the smaller of the former expression and t-1 is a lower bound for
c. This improvement in 5.1 is miniscule compared to the improvement
which could be derived from proving Conjecture 4.14. In that case, the
lower bound of t -1 would stand, and it would be a tight bound. A back-
tracking search by computer might establish 4.14 in a few more specific
cases. The smallest case not yet tested would be q =9, t =2. It would
take an estimated fifty hours to complete this case with the currently
implemented program on the XDS 930 computer. The program is
equipped with a means of being interrupted and restarted so that it may
be run during lulls in the computer's schedule. It is probably beyond the
capacity of this program to complete the case q =11 in a reasonable

amount of time.
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1-b>1s g/(g+h)

g/ (6+0) > 1> 1

=2 b= b=>o b=0o b=92] b=0o b=02o I-w=s
1-3}s
1-31=9o0| b= 1-3=0 b=0>9 -b=92;, b=2o Z-w=8>9
s ¢+1-Db
1-3}s
1-3=90| b= 1-3=0 b=o2j1-b=9| 1-b= Z2-W >8>0
s ¢+31-b
1-3s
1-1=0o| b= 1-3=0 b=o2] b=029 b=0>o IT-Ww>Ss=g
s ¢g+1-b
z b ¢=D vNU p=b vNU mnd NHU
- b#
I-b=1>71 ! ' =1

‘g-s-wP? * H-m-sg-s = JYSTOM WNWIUIN-03-3xeN ‘1-Dbs>1>0 4+ (1-b)s=x

9IdYM ‘,T'G W0y, Ag usAl) (b ‘w) WD 30 WSToM WNWIUI-03-1XON UQ SUOTOLIISON

1°G 91qBL
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The computer might also be considered for use in an attempt to
enumerate the equivalence classes of reduced polynomials of degree r
in m variables over GF(qg). Such an attempt does not seem to hold
much promise for the following reason. The number of equivalence
classes of (7 r(m, q) must be at least as great as the quotient of the num-
ber of polynomials in @r(m, q) by the number of invertible affine trans-

formations. From Chapter 1, the number of invertible affine transfor-

mations is g™ (g™ -1)- - - (g™ - qm'l). Also from Chapter 1, if p(k, m,q)
represents the number of m-tuples of integers (a,,a,,...,ay) such that
: m
0<a, sq and 27 a. =k, then
r
(501) dim (Pr(m,q) = Z p(i+m, m, q)
i=0
And, since
m™-1 i m’+m
(502) the number of i.a.t.'s = q~ 1I (g -q) <q ,

1

(503) the number of equivalence classes of @r(m,q) is at least qb where

r
b = Z p(i+m, m,q) - m® - m
i=0

1
-

p(m, m, q)

1
=

p(m+1,m,q)
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in(m-l)/Z if q=2
p(m+2,m,q) =

m(m+2) /2 if q>2

m(m-1)(m-2)/6 if q =2
p(m+3,m,q) = {( m(m-1)(m+4)/6 if q =3

m(m+1)(m+2)/6 if q >3

Thus, from (503), the number of equivalence classes of @3(m,q)

is at least qb where

1+ m(m’-6m-1)/6 if q =2
b =< 1+ m(m°-1)/6 if q=3
1 + m(m®+5)/6 if q>3

In either of these cases, the number of equivalence classes grows
rapidly with m. Therefore, there seems to be little hope of finding
canonical forms for polynomials of @r(m,q) when r = 3 and m is even
moderately large. Since canonical forms have been found for r = 2
(McEliece [ 9]), there is little new knowledge to be gained in this area
without significant new techniques.

There is another way in which digital computers fail to obtain
hoped-for results concerning weight spectra of GRM codes. One might
hope to determine the weight spectrum of a GRM code empirically by a
Monte Carlo method. That is, one might generate polynomials of
@r(m,q) with random coefficients in GF(q), determine their weight, and

tabulate the results. This technique fails because the distribution of
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1

weights is so dense near qm - qm' and so sparse in low weight poly-

nomials that the probability of a random polynomial having low weight is
very small. Since we expect no gaps near the mean weight, qm - qm—l’
other than those predicted by Ax, this process yields no interesting
information.

There is one exception to these gloomy predictions of the useless-
ness of further computer applications in this area. A computer program
may be able to determine, with a reasonable amount of computer time,
~ the smallest subsets S of the plane K , K = GF(q) which correspond to
support sets of polynomials of @r(z, q) without linear factors. Armed
with these results and the results of chapters two and three, it might be
possible to characterize the polynomials in @r(m, q) of less than a certain
weight for some specific r > 2 and q > 2. With enough results of this
kind, conjectures and directions for further study might result.

Even withdut computer aid, the techniques and results developed
in chapters two and three hold the promise of characterizing the low
weight polynomials in certain cases, especially when r = s(q-1) +t,

0 <t<(g+l)/2.

What types of theorems might we be able to prove once we have
more data concerning weight spectra? We might hope to get results
which generalize Kasami and Tokura's classification of all polynomials
with weight less than 23 times the minimum weight when q = 2. In the
general case, however, this bound may be q/(q-1) + (g-1)/q times the
minimum weight, or some similar expression. The McEliece results

on second order GRM codes hint at the possibility of an extension of the

divisibility condition of Ax. McEliece found that if P € ® ,(m,q), then
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N(P) = qm—l N qu—j—l

, where v =0, £ 1 or + (q-1), and 0 < j s[%]
Thus, not only does qb divide N(P), where b = [%] =m - [%—] -1, as
proved by Ax, but also ]N(P) - qm"1 I > g% = qa divides |N(P) - qm'1 [
These two divisibility conditions do not fully characterize McEliece's
results. A condition similar to the second: |N(P) - qm'1 | = bound =>q*

divides |N(P) - qm-l l,

where bound depends on a, q, m, and r; exists
in the general case. Whether bound can be chosen to have a nice
functional form remains to be seen.

In conclusion, more data are needed. Knowing the weight spectrum
of @r(m,q) for specific q > 2, r > 2, m > 2 could prove helpful. Using
the results of chapters two and three, more data on low weight poly-
nomials might be derived. It appears that the general problem of
characterizing all polynomials in @ r(m,q) or even of finding the weight

spectrum, is extremely difficult. More work on low-weight polynomials

could probably improve the results obtained herein, however.
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