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ABSTRACT

Methods fon obtaining improved pernformance from swifching

negulatons with nespect fo thedrn nodise generation characteristics

and dynamic nesponse are developed througn topelogy selection, negine-

ment and generation, and by appllication of modern control techniques
to both continuous and discnete time convernten models,

Reduction in switching noise 45 attained by focusing analysis
and desdgn effornt on renderning the external convernten current wave-
fonms as nean to the {deal de quantities as possible. Three techniques,
not nelying on conventional Low-pass iltering, are promoted and
several new on refined converter topologles are generated with these

methods. In addition, a power-processing elliptic-funciion §ilfer

specifically designed to meet the nequinements of the switching con-
vernsion envinonment and applicable to many common converter Lypes L

presented. Pernformance of the new Low-nodlse conventen topologies 4is

substantiated by sevenal cincuit nealizations and Laboratory measurements.
Switching regulaton dynamic performance L4 optimized by use of
modenn control theory in confunction with the state-space-averaging
fechnigue. State-vectorn feedback coeffdicients which will minimize
transdient ernon excursions are detewmined through use of generally

applicable afgorithms for optimal Linean hegulator design.




iy

An altennative approach is developed that reldies on a discrete-

time formublation of conventen and regulaton dynamics that s the dual

to state-space-averaging. Among the dmpontant nesults are a simple

expression fon duty-ratio-controlled inductive cwwrent bandwidih of

wide applicabllfity, and a genenal sofution for obtaining the fastest

wossible transient response from a switching regulaton. The results

of the contrnol analysis arne convinedngly suppornted with Laboratony

measunements.
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INTRODUCTION

The proliferation of sophisticated electronics in commercial,
military, and aerospace applications is accompanied by numerous demands
for diverse forms of electric power. Electric energy obtained from a
public utility or derived from a primary power source is often in improper
form or fails to meet user regulation requirements. Thus it is freguently
the case that electric energy must be converted from one form to another
and/or regulated to obtain characteristics suitable for operation of modern
electronic and electric equipment.

Power processing technigues are in themselves widely varied in form,
complexity, and performance ranging, for example, from a simple resistive
divider network to highly-efficient feedback-controlled switched-mode
converters employing elaborate logic to adapt to varying source and load
conditions. The spectrum of power processing approaches can be divided
into two general classifications, Tlinear and switching converters or
regulators, even though many schemes may use a combination of both. The
distinction between the two types of conversion 1ies in the fundamental
circuit operation. Linear regulators are essentially dissipative in
nature, using resistors or active devices to effect regulation by di-
verting or restricting the flow of energy from the source to the load.

As the name implies the linear requlator may be analyzed by standard
Tinear circuit analysis techniques without difficulty. Potential advan-
tages of the linear in addition to ease of analysis include wide band-
width and excellent noise characteristics. In contrast, switching

regulators are ideally non-dissipative, relying principally on switching



elements and reactive components to effect the desired processing
function. "Switchers" typically offer smaller size and weight along
with higher efficiency, but are inferior to linears with respect to
bandwidth and noise characteristics. The very switching action
responsible for the converter's attributes also generates undesirable
noise and imposes fundamental limitations on system bandwidth, In
addition the switcher is more difficult to analyze since it is inher-
ently nonlinear.

In spite of the apparent difficulties with switching regulation,
the arguments in its favor are such that there is strong motivation to
gain the advantages of switching while one seeks to alleviate its draw-
backs. Commercial applications for power processing must consider the
benefits of increased efficiency. Low efficiency not only costs the user
for wasted power, but also penalizes him with respect to heat dissipation
requirements. With the increasing price of energy, long-term cost analysis
is moving steadily in favor of high-efficiency conversion schemes for more
applications even if the initial expense is greater. In military and
aerospace projects severe size and weight constraints are often added
to high efficiency requirements making switching regulation the only
effective alternative. Thus topics of considerable interest at present

and in the foreseeable future are those of improvemenft in the noise char-

acteristics of switching converters and éxtension of their bandwidth,

both of which are considered herein,
Part I of this work contains analysis of existing switching dc-to-
dec converter topologies with respect to their input and output current

characteristics. Some converters are found to possess pulsating external



Current waveforms at either input or output, or both. The step discon-
tinuities of current associated with pulsating waveforms interact with
circuit parasitics to generate spurious high frequency ringing and noise
which, in the absence of external filtering, is transmitted directly to
the source or Toad. One family of converters does not suffer as severely
from this additional mode of noise generation since its external current
waveforms are nonpulsating. The analysis effort focuses on this type of
converter with the intent of understanding the sources of its already
small current ripple so that refinements to the converter structure may
further improve its compatibility with other electronic equipment. Three
techniques of ripple reduction are developed which lead to the generation
of several configurations possessing superior current ripple performance
rivaling that of the linear regulator. Two of the approaches are found
to be applicable to many common converter types. It is shown that such
ripple attenuation can be attained with minimal impact on system size,
weight and bandwidth, fn_contrast with conventional Tow-pass filtering
techniques. The important analysis findings and resultant circuit topol-
ogies envisioned are verified by circuit realization and laboratory
measurement of performance.

Part Il of this work addresses the problem of extension of the
dynamic performance of switching regulators by application of generalized
multiple or total state-feedback control. Two approaches are examined.

The first approach makes use of an existing linearized small-signal
system dynamic model in conjunction with the optimal Tinear regulator

problem to derive feedback gains which minimize an integral quadratic



penalty function on state variahle error and exercise of control. This

technique has utility in that it is a general approach to requlation

loop desigd and yields state feedback gains which are the best with
respect to a chesen criterion. Since the most difficult step with this
method is often the definition of a suitable performance objective,
alternatives to penalty function parameter selection are developed in
conjunction with closed-form answers for the optimal return gains, In
certain circumstances it is shown that the engineer may achieve an optimal
design with trade-offs posed in terms of meaningful system characteristics
such as closed-loop bandwidth or feedback gain, instead of the possibly
unfamiliar concept of quadratic penalty coefficients. Thus the config-
uration may be determined by familiar classical control criteria and
practical engineering considerations with additional refinement provided
by optimal control theory.

The second approach establishes generally applicable algebraic
difference equations for the ac propagation of the state vector. The
solution for the system }esponse and for the desired feedback gains may
be effected in either the time domain with matrix algebra, or the z-domain
through use of transform theory. The principal advantage of this approach
is that is uses the switching period TS in the analysis and as such
acquires extended accuracy in circumstances where sampling effects,
inherent in switching conversion, are significant. This discrete model
is promoted as an adjunct to the established classical modelling methods.
As such, the relationships between the existing continuous-time model and

the discrete model are derived so that either may be employed as deemed



appropriate, and the engineer is afforded an easily adjustable point of
view. The advantages obtained are illustrated in an example where the
continuous model is used to design an optimal voltage regulator with
apparent unconditional stability irrespective of closed-loop bandwidth,
and subsequently the discrete model provides a revised stability
criterion which includes the previously neglected effects of sampling.
The example clearly illustrates how one may benefit by using in harmony
the modelling tools available. Since the merits of the discrete approach
center around its ahility to predict high frequency transient behavior, a
challenging regulator design task is undertaken and subjected to time-
domain measurements which clearly demonstrate the power of the modelling
method. A converter is constructed and its regulation determined 1in

accordance with a general solution for the linear feedback that will

produce the fastest possible transient recovery from error. The response

predicted and attained is termed a finite-settling-time response since
the error decay completely transpires in two switching cycles. The
solution for the finite-settling-time feedback gains and the accuracy
of the discrete modelling of converter dynamics are both convincingly
verified by laboratory measurements on the example converter,

The content of this work illustrates how the performance of switch-
ing regulators in terms of noise characteristics and system bandwidth may
be improved through topology selection and control technique, and how such
improved configurations may be implemented without undue sacrifice in
terms of size, weight or complekity. The results are not purely esoteric

in nature but have practical application as evidenced by several circuit



realizations with appropriate substantiating laboratory measurements.
Whenever possible the conclusions of analysis are reduced to simple
conceptual forms without undue mathematical complexity so that they

may be easily retained and understood at least on an approximate basis

suitabie for engineering guidance.



PART 1

ELIMINATION OF SWITCHING
CURRENT RIPPLE
through
TOPOLOGY SELECTION AND GENERATION
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CHAPTER 1
REVIEW OF BASIC DC-TC-DC
CONVERTER TOPOLOGIES

In this introductory chapter four basic converter topologies are
reviewed and discussed. Since three of the four converters have been in
use for some time their action will be discussed only briefly for sake
of completeness. The new converter is given a more complete exposition
including some of its extensions to aid the reader in negotiating the
remainder of this text, much of which is concerned with the unique
properties of this recently developed converter topology. Particular
attention is given to the external current waveforms typical for the
converters since the noise characteristics are in part determined by
the magnitude of the switching disturbance on these currents., The new
converter is found superior in this respect and some of its extensions
are found to exhibit rather curious, potentially very attractive
behavior which provides motivation for its more detailed analysis in
the succeeding chapters of Part I.

In the following four chapters the input and output current
characteristics of the new converter topologies will be analyzed and
exploited. Results include the generation and laboratory verification
of several new configurations with very desirable current ripple and
hence noise characteristics. Such performance is shown to be attain-

able without undue sacrifice of bandwidth or compromise in size and

weight.



10

1.1 The four basic converter topologies

In this context a "basic" switching converter topology is defined
as one which is comprised only of a single switch and the reactive
elements necessary for the proper conversion action without provision
of transformer isolation. With these restrictions there are only four
nossible basic topologies known, the fourth of which was only recently
introduced. Figure 1.1 illustrates the basic topologies with their
ideal switch representation and the corresponding bipolar device real-
ization.

In all of the discussion in this text the converter switches will
be assumed to operate in the constant-frequency duty-ratio-controlled
mode. The switch is in position A for time DTS, the duty ratio D
corresponding to the fraction of the switching period TS that the
transistor conducts. For the remainder of the switching period
T, = 1 - D)TS the switch is in position B indicative of diode con-
duction. Implicit in this description is the assumption that the
converter inductor currents never fall to zero during D’Ts, which
would result in an open diode and transistor and hence a third switch

position. Equivalently stated, constant frequency, duty ratio

modulated, continuous conduction mode of operation is assumed for all

converters considered herein.

Perhaps the most fundamental of all the converters shown in Fig.
1.1 is the buck converter. The switching action in the buck merely
applies a square wave of voltage to the output averaging LC filter.
As such the dc voltage gain is simply V/\!g = [, the relative switch on

time. Note that iout is a nonpulsating quantity since the derivative
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Euck converter V/Vy=D
TR A VAN L
!:*—ur—fm“—» oV \ 7700 oV
I c== 3R %TF in c== 3R
Boost converter V/Vg=1/D

iout _.h__h_ L
o oV 000 4 oV

I c== 3w vg—.:mo-K c== 2=

Buck boost converter V/Vg=-D/D'
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IH oV \ A K3 oV
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éuk corwerter ( boos?-buck) V/Vg=-D/D'
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B0

-[ I 1 GIE SRV %JZ?K v Coﬁ:§ﬂ

The foun basic converterns with input and output current
wavegorms (LLustrated and de voltage convernsion function
indicated; a} ideal swifch representation,b) bipolan device
AmpLementation.
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of i is fixed by the inductor L and the voltages applied. 1In

out
contrast, the input current to the buck labeled i, 1is a pulsating

in
quantity, flowing while the switch is on and abruptly interrupted
when the switch turns off. This input current characteristic is one
undesirable feature of the buck converter since it often necessitates
the inclusion of an input low-pass filter to reduce interference
between the converter and other electronics operating from the same
source.

The boost converter, as its name implies, performs a step-up
voltage conversion given by V/Vg = 1/D'. The switching action first
stores energy in L during the Switch on-time DTS and then releases
energy into C during D'TS. In the case of the boost the input current
iin flows continuously while the output current into R and C pulsates.

The buck-boost converter is an inverting topology with its
conversion function a combination of the buck and boost such that
V/Vg = -D/D'. Since the switch acts to commute the continuous inductor
current alternately between input and output neither iin nor iaut is
smooth.

In sharp contrast to the buck-boost is the Cuk converter 711, a boost-
buck topology named after its inventor Siobodan fuk. This switcher
may also be referred to as the "new converter” since it is the most
recently discovered basic topology. The new converter has the same
inverting dc voltage transfer function as the buck-boost, V/Vg = -p/D*Y,
but at that point the similarity ends. The switching action in the

Cuk converter boosts the input voltage into the energy transfer

capacitor C such that VC = Vg/D'. In turn the capacitor voltage is
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bucked to the output so that V = -DVC. It may be seen that the
capacitor serves as the energy transfer medium in this circuit while
in the buck-boost and the other two the energy transfer element is an
inductor. Further, the input and output currents in the new converter
are nonpulsating, an important property unique to the new topology,
lessening problems associated with electronic interference. Figure 1.2
itlustrates the typical input and output current waveforms for the

Cuk converter. Both input and output currents are smooth with a
roughly triangular inductive ripple current superimposed on the dc
levels. The currents ramp upward during the switch on-time and
downward when the switch is off, but never fall abruptly to zero.

This current ripple behavior is common to the basic Cuk converter and

several of its extensions.

in lout

Fig. 1.2 Typical input and ouiput cunnent wavefowms fon the Cub conventer
showing the nonpulsating nature of the external curhents.
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1.2 Some extensions of the basic 5uk converter

Many extensions to and applications of the basic new converter
have been envisioned and constructed [2-10]. Just a few of these will
be described here to prepare the reader for the discussion of the next
several chapters.

Transformer isolation may be implemented in the basic converter
by use of a split energy transfer capacitor, with the isolation trans-
former placed in the dc blocked position between the two fractions of
the capacitor [2]. Figure 1.3 shows a transformer-isolated Cuk con-
verter. The transformer in Fig, 1.3 is shown 1:1 noninverting, but
the possibility exists for polarity inversion at the transformer making
the converter noninverting, or for different turns ratios affecting the

voltage transfer function. In addition the isolation transformer makes

Li . \Y Vcb=V L2

cu=:V%
— i AFr—or—
o Co

V= _f“l_ﬂo—K AV =—=CcC,

Fig. 1.3 Transfonmen-isolated Cuk converter with de values of voitages on
the split energy-transfen capacitons indicated. The simple case
of a 1:1 noninverting single-output trhansformern Lis Lflustrated.
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possible multiple-output versions of the converter. The converter shown
in Fig. 1.3 operates in a virtually identical manner to the basic con-
figuration with the same desirable current ripple characteristics. The
only significant difference is that now transformer isolation is provided.
One extension of the basic converter that will be the subject of
close scrutiny is the coupled-inductor version [3]. The observation was
made that the voltage waveforms exciting current in L1 and L2 in Fig. 1.1
were identical irrespective of operating condition, which revealed the
possibility of winding both inductances on a single core. When this is

done the coupled-inductor Cuk converter configuration of Fig. 1.4 results.

|1n ' : ; EOUT
L
V% 15:- (:2:::: EEF?
i
1]
ininl AV

Fig. 1.4 Coupled-inducton Cuk converter with input and output currents
indicated.
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The magnetic coupling of the inductors does not change the voltage con-
version or nonpulsating current properties of the converter. It does
however have major impact on the input and output current ripple charac-
teristics. Only under certain circumstances are the typical waveforms
of Fig. 1.2 observed. Some of the deviations observed from typical
behavior are illustrated in Fig. 1.5.

Figure 1.5a shows the two current ripples distorted from the normal
1inear slope appearance in a regular but seemingly arbitrary manner. In
1.5b the output current is ramping downward when the switch is on,
exactly the opposite of the normal inductive behavior. For descriptive

purposes this is called the negative inductance effect since the output

ripple behaves as though it were passing through the physically unreal-
izable but conceptually useful negative inductor. O0f greatest interest
is the condition illustrated in Fig. 1.5c. The output current has

essentially zero ripple. This means that the output current properties

are close to ideal. Similar behavior may be observed for the input

a) " b) c)
' A
. 1 1
| i i |
~ /\l/
N H ! !
lip |

lin i n J |

| ] ] i
0 DTy T4 O DTy Ty 0 DTy Tg

Fig. 1.5 Exteanal curnent waveforms ohserved fon the coupled-inducton Cuk
conventen; al nonlinean behavion, b} negative Anductance effect
on output curnent,c) zero ouiput adlpple.
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current under other conditions, Explanation and exploitation of these
phenomena will be the subject matter of the first part of this work.

The coupled-inductor new converter is amenable to transformer
isolation in a manner similar to the uncoupled-inductor version. Figure
1.6 shows a transformer-isolated coupled-inductor converter. Again the
special case of a 1:1 noninverting isolation transformer is used for
jllustration even though several options are available. The option of

importance to the ripple properties of the converter, as will be de-

scribed later, is that the coupled inductor and the transformer may both

be wound on the same core with the dot convention as shown [11]. Con-

figurations such as this will lead to the possibility of zero current

ripple at both the input and the output.

lin | = iout \V;
- I -~
_____J:_%%§ E%%_______
Vo o Ca Cp D EEF?

Fig. 1.6 Transformen-isolated coupled-inducton Cuk conventer. The
coupled-inducton L and the Lransformen T may be wound on the
same core with the dot convention as shown.
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1.3 Review

The four basic converter topologies have been presented with
emphasis on their input and cutput current characteristics. The new
converter was discussed in more detail, with inclusion of a few of the
extensions on the basic configuration. The only basic topology with
nonpulsating input and output currents was found to be the new converter.
In fact, the coupled-inductor extension of the new converter was shown
to have the potential for a zero-ripple property, in that the output or
input current ripple may essentially vanish under as yet unspecified

conditions., Determination and discussion of these conditions follows.
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CHAPTER 2
BASIC CURRENT RIPPLE CHARACTERISTICS
OF THE
COUPLED-INDUCTOR CUK CONVERTER

In this chapter the coupled-inductor Cuk converter is modelled in
an idealized form for simplicity and analyzed with respect to its current
ripple properties. Insight gained from this basic analysis leads to linear
circuit models for converter current ripple components, The inductive
contribution to the ripples is shown to be of particular importance since

very often it dominates. The associated impedance division model developed

for inductive ripple behavior suggests several easily implementable coupled-
inducter converter configurations with arbitrarily small current ripple at
the input and/or output. The fundamental understanding of the converter
process and the methods realized from this knowledge are applied to and

used in conjunction with more sophisticated technigques discussed in

following chapters.

2.1. Linear inductor and transformer

As a prelude to the examination of the coupled-inductor converter,
it 1s of some use to establish relationships between the winding currents
for linear inductors and transformers and the core flux. The simple case
of the linear inductor is treated first.

Consider an idealized Tinear inductor consisting of n turns of wire
carrying current 1 Tinking a well-defined magnetic path of length £, cross

section AC, and constant permeability p as illustrated in Fig. 2.1.
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£,A. .

Fig. 2.1 Linean inductor model with a well-degined path §on magnezic
sfux ¢ of Length £, cross-section AC and permeablfity v,
Linking n turns of current { passing through window area A=

Maxwell's equations in differential form as applied to the linear
inductor state that the curl of the magnetic field strength is equal to

the current density or, symbolically,

¢XH=4g=D (2.1)

Ay

By Stokes' theorem, the area integral of the curl may be evaluated as a

closed contour integral. Thus integration of (2.1} yields

vaﬁ_'gdA=fﬁ'd£=H£ (2.2)
A
W

where n is a unit vector normal to the window area. Use of (2.1} and

(2.2) results in

HE = fg_ " ndA = ni (2.3)
A
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Application of the constitutive relationship between flux density and

magnetic field strength, B = uH, to (2.3) yields

The total core flux ¢ is ACB, so from (2.4}

_ Acun )
$ = 7 1
or
Acun
ng = 7 i (2.5)

Since Acunzfﬂ is flux linkages per ampere it is inductance, and (2.5) may
be rewritten
ne = Li {(2.6)

which is a useful and possibly familiar relationship from linear inductor

theory.
Another of Maxwell's equations says for the electric field strength

E that

vxg="9% (2.7)
at

where d/dt indicates the derivative with respect to time. Again by Stokes

. - . an dB . ndA (2.8)
Acfvxg_ ndA jgdéﬂ"*cﬁﬁ’

By definition the electrostatic potential v is given by

theorem

v=-]E-dt (2.9)

Application of (2.9} to (2.8) yields

ve, [£ne- 2 (2.10)
¢ | dt dt
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which prescribes the voltage per turn of wire. The voltage of n turns in

series is then

.

vend (2.11)

which is a statement of Faraday's law. With (2.6) and (2.11) established
from basic relationships, we now have firm support for understanding the
transformer in terms of its core flux.

Consider the 1:1 linear transformer with its primary winding excited
by a voltage source as shown in Fig. 2.2. The transformer model shows all
the flux linking both windings which is equivalent to perfect coupling, 50
in this respect the transformer is assumed ideal. The resistances R] and
R2 are included to model effects of winding, source, and load resistance.
From the analysis of the linear inductor each winding is seen to possess

self-inductance L = pAan/ﬁ, and by extension of (2.6) the flux linkages

Fig. 2.7 Linear 1:1 transformer moded with magnetic #lux Linked by both
windings .
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are

e = L (i, + i) (2.12)

Use of Faraday's law (2.11) and Ohm's law to solve for i_ and is from

p
Fig. 2.2 yields

(2.13)

Substitution of (2.13) into (2.12) and manipulation of the result gives the

state equation for the transformer core flux ¢:

R
do . ng o, 2
nat T R R) T RTER, Y (2.14)

where R] // R2 indicates the parallel combination of R] and RZ' Equations

(2.14) and (2.13) combine to specify i_ and is in terms of the core flux.

P

R N4 v
'izmm_mg,_—-—___.i.

p R1 + R2 L R] + R2
‘ (2.15)

i #.___..._E.lwmw f‘f.._ w{g......_.._

s R-E + R2 L R] + R2

Fquations (2.15) represent the attainment of the objective of this section.
Extension of these equations to the case of the coupled-inductor new con-
verter will provide understanding of its most basic current ripple char-

acteristics.

2.2 Basic current ripple properties

A coupled-inductor new converter with arbitrary source and load

impedance is illustrated in Fig. 2.3. The coupling between the inductors
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in out

Fig. 2.3 Coupled-inducton conventern with arbitrary socurce and Load

Ampedance.
Vc"’Vg
i i
n out
R, R,

Fig. 2.4 Capaciton-voltage-induced or ouf-uvf-phase nipple model forn the
coupled-inducton convernten with nesisiive source and Load
impedances.
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is assumed perfect in accordance with the simple transformer model devel-
oped in the preceding section. Assume for the moment that Zq and Z2 are

resistive R1 and Rz. Then, to examine the currents fin and i , One may

out
use the principle of superposition and equations {2.15) to find
R n V - v
P L - T
in R1 + RZ L R1 + RZ
(2.16)

R% i(i VC“"'V

Tut TRFR, T VRER,
The surprising fact is that equations (2.16) are valid during both frac-
tional periods DT, and D'TS. Notice that (iin + iout)L = n¢ as anticipated,
and that current ripple attributable to core flux variation appears in
phase on iin and i . according to the dot convention shown in Fig. 2.3.
The contribution to the current ripples stemming from fluctuation in
capacitor voltage is out of phase. It is fruitful to examine the separate
current vipple contributions from the capacitor voltage and from the core
flux. Figure 2.4 is an equivalent circuit showing how the capacitor voltage
vartations show up as input and output current ripples. The out-of-phase
ripple on 1in and iout is directly proportional to voltage ripple present
on the energy transfer capacitance and inversely proportional to the series
resistance of RT and Rz. This ripple component appears equally on the input
and output currents irrespective of choice of R} and RZ. Some ripple con-
tribution to both input and output currents due to this source is thus
unavoidable. However, choice of a sufficiently large capacitor can easily
make this component of ripple much smaller than the inductive component.
The model of Fig. 2.4 may be conceptually extended to the case where R1

and Rz are again replaced by arbitrary impedances as shown in Fig. 2.5.
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]

cut

Fig. 2.5 Out-of-phase nipple model fon a coupled-inductor new converten
with anbitrany sounce and Load impedances.

tin lout

ng
R'é v )T Re

Fig. 2.6 Inductive-curnent-division on An-phase nippfe model §or coupled-
dinductor converter with nesistive sounce and Load impedances.
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Allowing the presence of complex impedances admits the possibility of
freguency dependence. If 23 or Z2 contains series inductance then the
impedance presented at the switching freguency, the fundamental fregquency
on the capacitor voltage, may be great, causing additional attenuation of
out-of-phase ripple on both input and output.

In many cases the inductive ripple dominates the current ripple
waveforms giving them their characteristic triangular appearance. Figure
2.6 models the in-phase inductive ripple contribution indicated in Egns.
(2.16). It is immediately evident that the core flux induced ripple
divides between input and output according to the resistive current divider
formed by R1 and RZ' Experimentally this may be verified by building a
converter with small capacitive ripple and with R1 = RZ' The observation
is then that the triangular ripple waveform is present in equal amounts

on i, and i

in out” Also if for instance R2 >> R], then the preponderance

of the current ripple will appear on iin'

As in the case of the out-of-phase ripple model let us extend the
model of Fig. 2.6 to include complex impedances. Figure 2.7 illustrates
the extended model. With complex impedances admitted to the model the
behavior of the current waveforms becomes much more difficult to predict.
For example, if Z} is a low source impedance and 22 is R // CZ’ as may be
the case for further voltage ripple attenuation, then the inductive ripple
may divide about equally between input and output but in a complex fre-
quency dependent fashion that leaves neither iin nor éout triangular in
form. These are typical circumstances under which waveforms like those

illustrated in Fig. 1.5a are observed. It should be evident that if one

wishes to reduce the inductive ripple at either input or output this can



28

Fig. 2.7 Model of inductive cuwrent division fon coupled-inducton
converter with arbitrary sounce and Load impedances.

Fig. 2.8 Coupled-inductor new converten with inductance in the output

currnent path using impedance division fo renden output cunrent
nipple-free.
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be accomplished by an appropriate inequality in impedance magnitude be-
tween 21 and 22 effective at the switching frequency and higher. This
again suggests the inclusion of inductance in one of the current paths.

To shed more 1ight on the effectiveness of including inductive im-
pedance in one of the current paths, let us examine the circuit of Fig.
2.8 where inductor L2 is placed in the output current path. A simple but
useful state-variable model of the circuit of Fig. 2.8 may be obtained by
replacing the coupled inductor with an ideal transformer and modelling
source impedance as resistive. Then the order of the system is three and
the system states may be chosen as ij, 12 and V. as illustrated in Fig. 2.9.
If one uses the "zero state response" technique the state equations may be
written by inspection of Fig. 2.9. The procedure is to assume all states
and forcing functions are zero except for the state or forcing function
whose matrix entry is under consideration. The operation relies on the
principle of superposition for linear systems to obtain the complete correct
result when all states and controls are examined individually. In this

manner the state equations may be written for interval DTS as

per—b———.
—— i Spema— o s

=

-R R 1
i -9 9 0 i -
i i
1 L3 L} 1 L1
R R+ R 1 -1
d . g R
- i = -3 - o i + ] e v (2.17)
dt 2 L, L, L, 2 Ly g
v 0 -1 0 v 0
c C c
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Fig. 2.9 State variable model for a Low-output-nipple coupled-inducton
converter with {mpedance {mbakance arising grem external
inducton; a} ideal switch nepresentation, b switch in position
A durning DT, c] switch in position B during 0'T,.
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For interval D'T. the state equations are

R R -1 !
h T =T i -
1 1 Ly ! Ly
Eﬂ. R+ R 1 -1
d_ i = - e d - i + | Vv (2.18)
at 2 Ly Ly L, 2 Ly 9
1 -1
Ve C T 0 Ve 0
bire  sanoned L P . WO

Notice that in equations (2.17) and (2.18) the expression for diz/dt is
invariant. Since 12 corresponds to 1out’ and the output current ripple
is the one we desire to attenuate by insertion of LZ’ it may prove fruit-
ful to examine the differential equation for iz to see how the ripple
characteristics on iout agree with the anticipated behavior based on the
models of Figs. 2.5 and 2.7. Extraction of the appropriate equation from

either (2.17) or (2.18) yields

d R+ R R y
o = ..__.______9_ N “ﬂ . _.....E
at '2 L, 2 * L, * ) (2.19)

Equation (2.19) is a first-order linear differential eguation and hence
the steady-state response of iz to excitation from state variables i1 and

Ve is easily obtained in the frequency domain via Laplace transform. With

s denoting the transform variable, the behavior of iz(s) is

_ Rgia(s) + vc(s)

i,(s) = L, TRV R (2.20)

g

This is precisely the frequency response predicted by the inductive current
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division and out-of-phase ripple models developed earlier. The correlation

with the models becomes quite apparent when (2.20} is rewritten as

Z,(s) 1y(s) + v (s)

ls) = =7y e (2.21)

where Za(s) = Rg and 22 = st + R. The parallel impedance division of

i}(s) and the series impedance attenuation of v_(s) are shown guite clearly.

o
Equation (2.21) and the current ripple models developed earlier are
not useful for quantitative predictions because the excitation terms i1(s)
nqs(_s)/L1 and vc(s) are not known. In principle the equations (2.17)
and (2.18} could be solved subject to matching boundary conditions, and
analytic expressions for f3 and Ve developed. In practice the task is
formidable, unilluminating and lacks general application. However, some
additional observations of a qualitative nature may be made by noting
that d/dt 11 o ]/L3 and d/dt Ve © 1/C where the symbol = implies propor-
tionality. Larger values of LE and C would reduce current ripple in the
absence of L2 and rather bbvious?y will also aid in ripple reduction when
L2 or other impedance is present. Further, if the ripple present on the
system state variables is small compared to their dc components, then the
derivatives of the states are approximately constant. Design criteria
for switching converters often make this constant slope or straight line
approximation to the state variable behavior very accurate. (This point
will be further discussed in Chapter 7.) Using the straight line approx-

imation the magnitude of the peak-to-peak ripple on Ve and i? may be

estimated from the state equations, the steady state duty ratio D, and
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the switching period ?S. Then equations of the form of (2.20) may be

employed with s = jws, w. the radian switching frequency , j = /-1, to

s
obtain an estimate for the magnitude of the fundamental frequency com-
ponent of the ripple. Such an estimate is often sufficient for engineering
purposes since "second-order” effects such as capacitance esr and switch
nonidealities not included in a tractable model become dominant when very

small ripple is sought, and thus render mathematically precise analysis

ineffectual.

2.3 Extensions of the impedance division principle

As mentioned in Section 2.2, the inductive n¢/L contribution to the
converter current ripple often dominates the out-of-phase capacitive con-
tribution, or may be made to do so by choice of sufficiently large capaci-
tance. Under such circumstances control of inductive current ripple by
utilization of the impedance division principle illustrated in Fig. 2.7
can make very significant improvement of the converter input and/or output
current ripple characteristics. The model of Fig. 2.5 suggests that while
increasing Z] or 22 for inductive ripple control one simultaneously
diminishes the effects of voltage ripple on the energy transfer capacitor.
With these facts in mind one is motivated to develop further applications
of the impedance division principle.

Since input or output current ripple can easily be controllied by
design of an appropriate impedance division of the n¢/L current, one is
ted to consider the existence of techniques for reducing input and output
ripple. Equations (2.12) and the inductive ripple model insist that the

currents in the two windings must sum to ne/L. Since storage in and dis-
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charge of energy from the magnetic flux ¢ is part of the heartbeat of the
converter, there must be ripple on ¢ and hence on the sum winding current.
Therefere one cannot simultaneously prevent ripple from flowing in the
input and output windings of the coupled inductor unless a third winding
is present.

The gquestion that immediately arises is whether or not the impedance
division model is directly extendable to three or more windings on the
coupled-inductor core. The answer is yes, and the justification simple.
Faraday's Taw (2.11) tells us that the voltages around each winding must
be the same when n, the number of turns, is constant. The voltage and sum
current constraints on the windings lead immediately to the extension of
the inductive current ripple model (Fig. 2.7) to a similar one with an
arbitrary number of current loops all sourced from one current generator
whose current is ng/L. Each current loop represents one winding on the
core and the impedance associated with it. Such a model is illustrated
in Fig. 2.10.

From Fig. 2.10 one may see that by adding a winding to the core which
has a low impedance path to ground such that 23 is much less in magnitude
than Z1 or 22 for excitations at the switching freguency or higher, the
inductive ripple may be diverted from input and output. One practical
realization of a third winding technique is shown in Fig. 2.11. Such a
configuration as shown was constructed in the laboratory and observed to
give good performance. This configuration however, does not differ signif-
icantly from the application of LC filter sections to the input and output
leads, a conventional approach. Even though the third winding on the core

need only be large enough to handle the rms ripple current, it seems
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Fig. 2.10 TImpedance division inductive current nipple model fon the
coupled-inducton Cuk convenfer with an arbitrary numbern o4

windings on the Lnductor cone.
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Fig. 2.11 Convernter with small input and output current rnipple wtifizing

a thind winding with Low ac Aimpedance To sink <inductive current
rnipple.
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superfluous since C} could just as well be connected from the input or
output lead on the coupled inductor to ground.

A more fruitful application of the impedance division principle is
adding input and output inductances to the transformer-isolated coupled-
inductor single-core éuk converter. This configuration already has two
additional dc blocked low impedance windings to ground which provide the
transformer isolation. Figure 2.12 shows a possible bipolar implementation
of this topolegy. The preponderance of the ng¢/L ripple will exist in the
isolation transformer windings. The technigue of Fig. 2.12 has good com-
ponent utilization. The only added elements to the basic configuration
of Fig. 1.6 are L} and Lz, which typically need not be very high in induc-
tance to provide substantial reduction in ripple. It should also be
evident that ripple attenuation is not very sensitive to component
tolerance when this technique is used. Again we may note that this
technique is tantamount to application of input and output LC sections
to the converter, with the significant advantage that the isolation
windings and the energy transfer capacitors C} and 62 have dual roles
with 1ittle additional stress.

One drawback to the circuit of Fig. 2.12 is that even though L1
and L2 are present to control the ac current waveform they must be made
to stand a dc bias without saturating magnetically. The dc bias reguire-
ment makes L} and L2 larger than a bias-free inductor of the same value.
A size and weight advantage may be gained if one were to envision a way
of reducing ripple without using inductors in the path of dc current.
Considerations of improved topologies that circumvent the dc bias diffi-

culty is reserved for the next chapter.
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Fig. 2.17 1solating new converten with small snipple on external curnents
wtilizing L8olation windings and enengy-thansfen capacitons aa
Low impedance paths fon curnnent rnipple.
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2.4 Review

In this chapter fundamental results from basic electromagnetic
relationships were used with an idealized model for the new converter
to generate basic information concerning its current ripple character-
istics. It was found that the input or output currents on the coupled-
inductor converter could be made to have arbitrarily small ripple com-
ponents by design of an appropriate impedance inequality between the
two windings. The mode] of the division of inductive ripple current was
further extended to embrace multiple windings on the coupled inductor
core. Insight gained permitted one to envision converter topologies
with arbitrarily small input and output current ripple. These extensions
to the basic coupled-inductor converter are easily constructed and repro-
duced owing to their relative insensitivity to component tolerances.
Finally, some observations about the new circuits were made which suggest

possible goals for subsequent chapters,
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CHAPTER 3
THE NEGATIVE INDUCTANCE EFFECT

The basic modelling of the coupled inductor as a 1:1 transformer
developed in the preceding chapter is augmented to include arbitrary
winding ratio. In this manner the extended model gains the additional
degree of freedom needed to explain the zero ripple and negative induc-
tance effects not predicted by the elementary impedance division model,
In contrast with the methods of Chapter 2 the developments of this
chapter show how the ripple may be made to flow in a winding with high
impedance, if that impedance is inductive and of the appropriate size.
Since the inductance value must be chosen precisely as a function of

other circuit parameters, this method may be referred to as the impedance

matching technique. Once established, the impedance matching concept is

used to advantage to generate alternative coupled-inductor topologies
with very desirable ripple characteristics. Some are configured in ways
that result in reduced hardware size and weight by circumventing the need
for additional inductors which carry dc¢ current, as are used in the imped-
ance division technique. The results are substantiated by hardware
realization and laboratory verification demonstrating that the analysis
is correct as well as practically applicable.

In the next two chapters the impedance matching method is applied
to other converter topologies and analyzed in more detail. The detailed
analysis leads to greater understanding of the ripple attenuation process

and consequently to even further improvements in performance.
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3.1 Arbitrary inductor turns ratio

Consider a transformer with arbitrary turns ratio excited by a
voltage source. Figure 3.7 depicts a simple model of such a situation
where R] and R2 account for any resistance in the primary and secondary
circuits. The model is idealized in that all the magnetic flux ¢ 1%
assumed to link both primary and secondary windings. Application of

Ohm's and Faraday's laws to the circuit of Fig. 3.1 to solve for ip and

is yields
. . n 99
i, = R, (Vg " dt) and (3.1}
i d¢
Tg = R, "2 @t (3.2)

Extension of (2.12) to embrace unequal turns ratios produces

Ry

Fig. 3.1 Model of an Lidealized Lineanr trans formen with arbitrany winding
turns ratio.



41

i L i L
p "1 s "2 _
— == where {3.3)
1 2
LR B § (3.4)
L2 ny

Substituting from (3.4) into (3.3) and utilizing (3.1) and (3.2), one

may generate the equation of state for the primary flux linkage nyé-

v (3.5)

n
1 R
d¢ )] npe <”2) ’
:_R]//

n pp— —
1 dt n,

Equations (3.1) and (3.2) may be recast to show the dependence of the

current upon the state n]¢, instead of upon the state derivative terms

to obtain expressions similar to (2.15):

2
( i )
n 2 nqd v
-2 ] g
P ni 2 Ll ny 2 (3-6)
R, + —-) R R, + (———) R
1 (nz 2 1 Ny 2
n n
R](“;) nyo (n ) v
= 5 - 2/.°g 5 (3.7)

L
n 1
1 n
R, +{—] R !
1 (“2) 2 ot (nz) "2

If in (3.7) the secondary current is reflected to its egquivalent primary

current value and labeled with a prime to denote the transformation,
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(3.7) becomes

R n,d v
. 1 1 g
tg T ? - 2 ; (3.8)

. (n}) . L¥ n1)
+ [ Ry +|-—] R
1 nz Z 1 (n2 s

The parallel between equations (2.15) and the pair (3.6) and (3.8) is

evident. The latter shows the non-unity turns ratio by reflecting
secondary impedance by the usual turns ratio squared, but preserves the
same functional form. Let us apply these results to the coupled-inductor
converter as before to see what differences arise owing to the intro-

duction of arbitrary turns ratio.

3.2 Zero ripple and the negative inductance effect

Figure 3.2 shows the coupled-inductor converter with an arbitrary
turns ratio, source and load impedance. Taking Z.E and Z2 real and egual
to Ry and R2 allows one to use {3.6) and (3.8) to write equations for
the input and reflected output currents for the two switch states by

inspection of Fig. 3.2.

Tin 5 0 5

during DT, (3.9)

"
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Fig. 3.7 Cuk conventer with arbitrary impedances placed in input and
output current paths.

and
2
%

— R
- ny 2 n1¢+ Vg v
in 2 L 2

n a 1 Ny

el ) e we(g) R
during D'T,  (3.10)
i R1 n1¢ . Ve T Vg

Introduction of the turns ratio other than unity makes the current

equations (3.9) and (3.10) different for different switch positions,
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whereas previously the parallel equations (2.16) were found to be invari-
ant with switch position. Notice that the impedance division of the
n3¢/L] ripple is still evident in (3.9) and (3.10) so that a model very
similar to the previous impedance division model may be generated as
shown in Fig. 3.3. As usual the prime indicates that the output current
has been reflected to the input via the turns ratio. The essential
difference lies in the fact that in (3.9) and (3.10) V. can be seen to
enter into the input and output current equations either directly or
modified by the turns ratio (n}/nz). In effect, even if V. can be con-
sidered constant as before, an ac excitation to the input and output
currents at the switching freguency in the form of a square wave is
present. Thus with non-unity turns ratio the capacitor voltage contri-

bution to the current ripples cannot be ignored. A simple model, again

in out

no & 2
5 "2l (7e) 22

Fig. 3.3 Impedance division modeld with unequal Zurns on the priimary and
secondany windings of the coupled dnductor.
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with use of the extension to complex impedances is shown in Fig. 3.4.
It seems as though the disturbance of the unity turns ratio has added
to the input and output current ripples with no advantage gained. This
would indeed be the case if ZT and 22 were purely resistive, but if one
exercises some imagination with the possibility of complex impedances,
a potential advantage to the additional "disturbance" depicted in Fig.
3.4 may arise, For sake of simplicity, consider for the moment that

11 in Fig. 3.4 is zero. Then, the square wave generator is impressed
directly across (n]/nz)2 22. If 22 is primarily inductive, the current
flowing in it will have a similar triangular waveform shape to n}¢/L3,
with the same phase and duty ratio effects. Realizing this, one may

seek to define an appropriate 22 and turns ratio such that the Ve induced

(%)
- =11V
N, ¢
out

/AT Ul
-

Fig. 3.4 Capaciton-voltage-induced nipple model with unequal turns cn
coupfed inducton.
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iéut is precisely what is needed to sink the ﬂ§¢/L] current source of
Fig. 3.3. If this current sinking effect can be made independent of
duty ratio then the input ripple could be made to vanish irrespective of
operating condition. Examination of the ac excitation on the coupled-
inductor primary shows Ve entering there also as the square wave exci-
tation magnitude. Since the time relationships and polarities of exci-
tation of V. on the inductor primary and (n¥/n2 - 1)vC on the reflected
output impedance are such that n1¢/L} could be made to flow through 22,
the desired equality of current derivatives is

v (ny/n,)= 1

c_ V1R 3

T {n,/n,)L

124 0

where Ly is the required secondary inductance. From (3.11) we may solve

for LQ normalized to L] as
LO/L] = F{(1 - F}; F = nz/nT (3.12)

Equation (3.12} specifies the secondary inductance and appropriate turns
fraction necessary to generate an output current waveform virtually
identical to the waveform produced if all the n3¢/L} ripple were to flow
in the output winding. Perhaps an example circuit would serve to clarify
the present development.

Figure 3.5 is a sketch of a coupled-inductor Cuk converter with un-
equal turns on the inductor and an inductive impedance in the secondary.
The inductor LO in the secondary is chosen in conjunction with R2 and 62
such that at the switching frequency the secondary impedance is essentially
jmsLQ. Then the apparent square wave produced by C switching between the
primary and secondary circuits induces a triangular ripple in the output

winding. If F and L, are chosen in accordance with (3.12), then the
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Fig. 3.5 Zeno input ndpple conglguration with matching Anducten L, 4n
output curnnent path whose value 14 nelated to the ftuans fraction
F by the matehing condition LO/L1 = FF',
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magnitude of the ripple is such that
T, = Mo (3.13)

where ~ indicates ac terms. Since we have

1

1 ? L
in 1 out*?2 _
m + n, = ¢ (3.14)

L

from (3.3) it may be seen that (3.13) implies ?in = 0 or the input current
is dc only. Reduction of LU from its value prescribed in (3.12) will make
the output ripple greater than n2$/L2, and thus will result in a ripple on
5

in of inverted form to satisfy (3.14). Conversely, if L0 is too large

the ripple on iin will be of normal form to preserve the equality in (3.14).
Thus by varying LO for a given F the ripple at the input may be made to

pass from a normal positive polarity, ramping upward during DTS and downward
during D'Tg,to a negative polarity with opposite sense. The fact that the
ripple may be made continuously adjustable from positive to negative polar-
ities gives rise to the notion that, to the extent that the waveform is

purely triangular, it must pass through a zero condition in between. Hence,

when a negative inductance effect can be demonstrated, the configuration

may be termed a "zero ripple" configuration subject to qualifying assump-

tions noted in the development.

It is appropriate at this point to pause and compare the developments
of this chapter with those of the previous one. The impedance division
technigue sought to inhibit the ripple in a prescribed winding by placing

a large switching-frequency impedance in that winding. This chapter’'s
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impedance matching technique seeks to enhance the ripple in a prescribed
winding by placing a calculated high impedance there corresponding to a
chosen turns ratio. The impedance matching technique may generate posi-
tive or negative ripple characteristics as the matching inductor is varied
about the value prescribed in (3.12). The impedance division technique
will not exhibit negative ripple and may be demonstrated with arbitrary
impedances not necessarily inductive,

One may comment on the preceding development before proceeding to
exploit the matching technique. Even though Z! was assumed zero in the
generation of the matching conditions, this is not required in general.
With %in = 0 there will be no ac voltage impressed across 21 and hence
its value is of no concern. Actually a large Z} may be desirable in
desensitizing the matching condition by simultaneously using the imped-
ance division principle with the matching technique. There is no
apparent conflict between the two methods and in fact the matching
condition may be viewed as making the high impedance in the matched
winding a very low impedénce to inductive current rippie. The compat-
ibility of the two methods increases the value of each.

The circuit of Fig. 3.5 still has the disadvantage previously
noted for the impedance division technique. That is, the inductor L0
must be designed as a dc biased component with attendant additional size.
Since the matching technique can cause the ripple to flow in a desired
winding, one is immediately led to consider application of a third winding,
with the appropriate ripple freguency impedance and turns ratio, to act as

an ac ripple sink for the converter. Figure 3.6 depicts such a
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Fig. 3.7 ApplLication of the impedance matching technique using an
electrnical tap at turns fraction F to absorb the inductive
ripple curnent.
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configuration. As before LO is determined in conjunction with F = nz/n}
by (3.12). Also C and C3 are large enough so that their voltages are
essentially constant. In the circuit of Fig. 3.6 all of the in phase
ng/t1 ripple will flow in the third winding with the sum current into
the other two dots showing "zero" ac component of ripple.

Looking at Fig. 3.6 one realizes that the third winding here is
superfiucus and that an equivalent condition can be obtained by tapping
the secondary (or primary) of the coupled inductor. Figure 3.7 shows
such an improved topology.

When one builds circuits of the types shown in Figs. 3.6 and 3.7
it can be observed experimentally that (?in + ?out) shows zero n%/L h
ripple, that is the in-phase current ripple may be removed entirely by
application of the tap inductance., However, out-of-phase oscillations
of iin and iout are not prevented by any circuit impedance and in
practice do occur as a result of component nonidealities. Since the
impedance matching and division technigues are compatible, the out-of-
phase ripple can be reduced by impedance in the input and/or output
windings. One is again faced with the possibility of having to apply
inductors which must stand dc bias. If the converter is being used
as a voltage source operating from a nominal input voltage, then 1in
and iout have a fixed relationship. Consideration of 100% efficiency
implies Vg 1in =¥ éout and shows that the currents are related precisely
in this special case. Since actual converter configurations can have

nearly 100% efficiency, or an estimatable lower efficiency, then an

out-of-phase filter may be designed for the circuit in such a manner that
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it stands a minimal dc bias. Figure 3.8 shows such a configuration.

If one reexamines Fig. 3.6 a possible circuit topology manipulation
may come to mind. The blocking capacitor C3 may be used to share the
duties of the energy transfer capacitor. Figure 3.9 shows this split-
capacitor zero-ripple topology. This configuration has the third (pos-
sibly small) magnetic tap winding in a similar position to the isolation
transformer windings as shown in Fig. 1.6. Note however, that this
winding is not an isolation winding, and could not be with the unequal
turns ratio. Further the inductor LO would be subjected to attempted
square wave current excitation which would disrupt the converter operation
and destroy components. Of course a tap could be placed on the isolation
transformer, and a configuration equivalent to Fig. 3.9 realized with

only the addition of the ac choke LO'

3.3 Demonstration ¢ircuit

A demonstration circuit was constructed in the configuration of
Fig. 3.9 with the split capacitor. Figure 3.10 is a circuit diagram of
this demonstrator with actual component values indicated. The circuit
exhibits 0.2% rms output ripple when LO is adjusted to L/4 in accordance
with F = 1/2. When LO is maladjusted, the ripple visible on the input
or output may be made to appear with positive or negative siope. As
mentioned earlier, an out-of-phase choke is included in the circuit to

prevent (1in - 1out) rippie spurred by circuit nonidealities.



54

™ lin iou! 2.85mAp-p
—p- — ©-32V
La
) T AN Toen
L »
- 32V e %50.252
Lo

IOOuF 100pF
mpiy SV T600! iZlN388!
20kHz

Fig. 3.10 Zeao nipple demonstration circult

L = 2.24 mH on Magnetics Ine. squane pomalfoy 80 core with
170 turns #23 AWG and 0.13" ain gap.
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3.4 Review

In this chapter the basic models developed in Chapter 2 were
extended to include an arbitrary turns ratio on the coupled inductor.
It was found that an appropriate inductive impedance in a winding with
a turns ratio less than unity could serve as a sink for the n¢/L ripple
that exists in the coupled-inductor windings. Novel features of this

technique are that the ripple is made to flow into a high impedance by

means of a matching condition between turns ratio and the winding
inductance. If the matching condition is perturbed, positive or negative
polarity ripple currents are observed on the converter input and/or
output. A principal advantage sported by some of the topologies using
the impedance matching technigue is that the ripple may be diverted from
the input and output ports of the converter without using dc biased
inductors as was necessary when using the impedance division principle.
Equally as important for practical considerations, the developments of
this chapter were found to be compatible with the technigues of the
preceding chapter and wefe used in conjunction for practical demonstration
purposes.

Thus far all the work has been concerned with the coupled-inductor
6uk converter. The results have been so encouraging with this topology
that one may be stimulated to try to extend the principles perceived to

alternative configurations.
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CHAPTER 4
UNCOUPLED ZERO-RIPPLE CONFIGURATIONS

The preceding chapter developed techniques for demonstrating the
zero-ripple phenomenon in the coupled-inductor éuk converter. That is,
topologies were realized which exhibit ripple characteristics continu-
ously adjustable from positive to negative slope with essentially a
“zero-ripple" condition in between. Thus far the analysis has been
solely concerned with the coupled-inductor converter's ripple behavior,
which now may be explained and exploited in a number of ways. One is
naturally led to extend the results of the previous chapters to include
other converter topologies if possible. In this chapter it is found that

the negative inductance effect, and hence the zero ripple condition, may

be demonstrated with any of the basic converters that have a nonpulsating

current waveform at the port of interest. The basic Cuk converter without

coupled inductors has nonpulsating currents at both input and output, and
as such may be made to exhibit zero ripple at both ports. Of the several
new ways suggested for making such a veritable dc-to-dc converter, one is
selected and used for demonstration purposes.

The results of this chapter not only lead to several new and useful
zero-ripple configurations but also identify a particular arrangement of
elements that exhibits the negative inductance effect without the com-
plication of a switched topology. The new filter first seen in this
chapter will he the subject of more precise analysis in the next chapter,

which will add even further refinements to the subject of ripple atten-

uation.
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4.1 The uncoupled-inductor converter

The development of the coupled-inductor new converter was spawned
by the realization that the voltage excitation waveforms on both in-
ductors of the uncoupled version were identical [3]. Since the uncoupled
version has strong similarities to the coupled-inductor converter one may
naturally ingquire whether similar technigues of ripple suppression are
applicable to the basic new converter. In pursuit of the answer to this
question, one may examine the circuit of Fig. 4.1 to see what useful
parallels exist with the coupled-inductor version. A cursory examination
of Fig. 4.1 reveals that when the inductors are not coupled the ac prop-
erties of the input and output currents are independent. Thus it should
be manifest that the impedance division principle and the accompanying
models do not apply to the basic new converter. However, knowledge that
the voltage waveforms on the two inductors are identical to the waveform
present on the coupled inductor, and the fact that any inductor can be
viewed as an autotransformer leads one to consider the possibility of
applying the impedance hatching technique to the inductors of the basic
new converter.

Consider the new converter of Fig. 4.1 with the tap point on the
input inductor at tap fraction F as shown. The voltage Vi present at
the tap point is approximately a square wave fluctuating between FVg
and Fvg + (1 - F)vC as illustrated in Fig. 4.2. Again the assumption
of constant capacifor voitage is needed to justify the square wave
approximation to the tap voltage waveform, The constant value Ve will

assume is essentially Vg - ¥V so the tap waveform may be reformulated as
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in Fig. 4.3. The voltage viq exciting current in the inductor is also
well approximated by a square wave as shown in Fig. 4.4. Note that Y4
and Vi have 180° phase difference and that their ac magnitudes are Ve
and (1 - F) Ve respectively. If the ac component of the tap voltage in
Fig. 4.3 were impressed across an inductor L0 then the current flowing
out of that inductor (and into the tap point) would be in correct phase
to satisfy the current ripple input requirements of LI excited by URE
From Fig. 4.7 one may ascertain that the dc value present at the tap
must equal the source voltage since no dc blocking elements exist
between the tap and the source. Thus to obtain only ac excitation from
the tap point the dc source voltage must somehow be subtracted out. If
the dc shift is by any means accomplished, one may then proceed to cal-
culate the value of tap inductance that will effect a matching condition
in this case. In order to satisfy the ripple current reguirements of

L] at the tap point, a current "injected" there should be 1/F times the
current ripple normally flowing in iin' Equivalently from Figs. 4.3 and

4.4 we desire that the value of LO be such that

1 -
=P 1y @
0 1

so that the current flowing in L0 would be a source of ripple current
for LT of appropriate magnitude. The relation {4.1) is satisfied inde-
pendently of Vs OF equivalently of the operating condition, if

Lo

Ly

=F (1 - F) (4.2)
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Equation (4.2) is identical to the matching condition for the coupled
inductor given in (3.12}). This should not be surprising granted the
similarity between the convérters.

A1l that remains to be determined is how to locate LO such that it
may feed current into the tap point and experience a voltage of vy - Vg,
the tap voltage with dc bias removed. There are several ways of achieving
this end. One obvious way is shown in Fig. 4.5. The ripple normally
present on iin now will flow through LO magnified by 1/F. This config-
uration is useless since the ripple is still drawn from the source and
its magnitude is even increased, circumstances we hope to avoid. Instead
of returning LO to the source one may emplioy a blocking capacitor to
ground as shown in Fig. 4.6. The average voltage across CO is Vg 50 the
voltage across L0 is the desired Ve - Vg and the ripple current in L] will
flow into the tap point and not out of the source. Again the assumption
is that CD is large enough so that its voltage is essentially constant.
The derivation of the configuration that removes the output current ripple
is quite similar to that just preceding, and the result is the same. It
is then possible to envision a topology based on the uncoupled-inductor
new converter that will exhibit the zero ripple or negative inductance
properties on both the input and the output currents. Figure 4.7 illus-
trates one basic approach. The circuit of Fig. 4.7 has been constructed
and found to exhibit the zero ripple properties at input and output.
Maladjustment of L01 or L02 can cause positive or negative ripple to

appear at the corresponding port. Several extensions of this configura-

tion follow easily.
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T o

Fig. 4.7 Basic Cuk converter with zero input and output cunnent nipples.

It should be apparent that the boost-buck new converter in Fig. 4.7
can be "dissected” to yield a boost circuit and & buck circuit. Thus a
boost circuit with only dc input current or a buck circuit with only dc
output current can be envisioned. The problem remains with both of these
circuits that one of the‘currents is pulsating, a circumstance often
requiring external filtering.

The most fruitful extensions are those involyving the new converter.
The important step in conceiving some useful developments is to utilize
the split capacitor concept [2] in conjunction with the notion of a
“magnetic tap" on the input and output inductances. The basic idea is
shown applied in the circuit of Fig. 4.8. Here the energy transfer
capacitors C} and Cz serve to remove dc bias from LOT and LOZ' The

electric tap of Fig. 4.7 is replaced with an additional, possibly small
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Fig. 4.8 Split-capaciton zero-aipple fopology utilizes magnetic taps on
 the dnput and output inductons of the basic Cuk converten.

cross section, winding which may be viewed as a magnetic tap. Two
capacitors are eliminated at the expense of two small windings. The
¢ircuit of Fig. 4.8 has been constructed and found to perform well.
An alternative to the cifcuit of Fig. 4.8 involves coalescing L01 and
LGZ into a single LO at the split capacitor whose value is given by
LO = LO] f/ LOE‘ Experimentally this option is found to be less
effective since independent nulling of the input and output current is
sacrificed.

For the final example modification to the circuit of Fig. 4.7, a

demonstration circuit was constructed.
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4.2 Demonstration circuit

The demonstration circuit is a natural outgrowth of the split-
capacitor zero-ripple configuration. The transformer isolated versions
of the new converter all have a split capacitor to accommodate the jso-
lation transformer. With minimal penalty in terms of parts count and
compiexity the isolating uncoupled-inductor converter is rendered zero-
ripple through use of magnetic taps as shown in Fig. 4.9. The demon-
stration circuit was found to give excellent ripple performance having

less than 0.1% rms current ripple.

T

Fig. 4.9 Uncoupled-inducton zerc-aipple demonstraton circult.
Switching grequency = 20 KHz
L= 2,29 mH LO = 573 uH
F=0.% C =900 uF
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4.3 Review

The zero-ripple and negative-inductance phenomena are found to
exist in other topologies than the coupled-inductor éuk converter, The
basic Cuk converter, the boost, and the buck all can be made to show
negative inductance and hence zero ripple. Of these three only the
Cuk converter lends itself to the possibility of zero input and output
ripple. Three practical methods of arriving at this condition are pre-

sented concluding with a specific circuit example.
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CHAPTER 5
THE NEW FILTER

In the previous chapter several topologies with the zero-ripple
properties were introduced. A fundamental building block for these new
configurations is a tapped inductance with an LC network from the tap to
ground. Previous1y; for the sake of convenience and ease of understanding
the aperation of the zero-ripple topologies, constant capacitor voltage
assumptions have been made. In this chapter the analysis of the new filter
gains added accuracy by including the effect of fluctuating capacitor volt-
age. Since the tapped-inductor configuration has no switched elements it
is particularly amenable to linear analysis and may readily be described
in the frequency domain via its state-space model, including the capacitor
voltage as a state. The power of this precise description of the new
filter is conspicuous in its ability to explain the negative inductance
effect. Moreover, the designer's ability to synthesize in the Laplace
transform domain is supported by a great wealth of classical design
technique. Some of these methods are used to design a third-order

elliptic-function filter with its complex-Conjugate zero pair at the

switching frequency. Example circuits are built and tested in the

laboratory to show that the ripple attenuation can be extreme even for
relatively small filter elements. To illustrate the sharp cutoff of
the elliptic, a switching audio amplifier is constructed with the
switching frequency just two octaves above the audio band. The labora-

tory tests on this circuit clearly indicate the utmost selectivity of
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this electric power filter in rejecting switching noise while allowing
audio frequencies to pass.

The development of the elliptic filter in a form suitable for
power processing applications culminates the effort of Part 1 of this
work. The relative merits of the techniques developed for improving
converter noise characteristics will be discussed iﬁ the review section

for this chapter.

5.1 State-space analysis

The new filter is an outgrowth of the impedance matching technique
which has been discussed in various forms in Chapters 3 and 4. However in
Chapter 4 the zero ripple filtering effect was realized with constant
topology components. That s, the elements of the new filter were in a
fixed physical relationship to one another with none of the components
being switched in and out by the converter operation. Thus, rippie
analysis on such filters may be performed by classical techniques. The
output section of the circuit of Fig. 4.7 is a non-switched zero-ripple
filter that here will be subjected to analysis.

Consider the zero-ripple filter with an ac voltage generator on
its input as depicted in Fig. 5.1. In order to proceed with the analysis
of Fig. 5.1 it is convenient to choose a suitable equivalent circuit
model with state variables identified. The tapped inductor can be
modeled as an ideal transformer and parasitic resistances in the circuit
ignored without loss of accuracy to the extent that fundamental under-

standing of the circuit operation will be sacrificed. With these
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Fig. 5.1 The new powern processing 4ilien shown with ac voltage scurce
excitation.
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v

+
C

Fig. 5.2 A state-variable model {for the new {{ffen nepresents the power
inducton as an Anverting trhansformen.
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assumptions an appropriate state-variable model of the new filter is
shown in Fig. 5.2. Notice that the tapped inductor is replaced by an
inverting F:{1-F) transformer with magnetizing inductance F2L. The
choice of states is not unique but in this case a convenient selection
is the transformer magnetizing current 1}, the tap inductor current 12,
and the blocking capacitor voltage Ve With this choice the first order

vector differential equation describing the system dynamics may be written

by inspection of Fig. 5.2 as

.1 [ R R 7 1
1 T T 0 4 L
2 74
d . F4R FER 1 , 1-F
i i |- &R ER D i, + LBy (5.1)
dt 2 I_O 0 LO 2 LO g
v 0 1 0 v 0
. C. - C _ RS -

Equation (5.1) is of the standard form X = Ax + bvg and as such is readily
solved by Laplace transform. The general steady-state solution is given

in terms of the transform variable s as

x(s) = (sI - A} 'b vg(s) (5.2)

As it is sufficient to know the filter response for sinusoidal excitations
of all frequencies vg(s) may be taken to be unity, the transform of the
impulse function which has unity strength for all frequencies. Then x(s)
with s = ju will indicate the magnitude and phase of the state-vector
response to a sinusoidal input with radian frequency w. Knowledge of

the frequency response is tantamount to knowledge of the filter response

to any function that possesses an eigenfunction expansion in sines and
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cosines. Since we are ultimately interested in the response of the
system to square-wave switching excitation with its well-known Fourier
series expansion, a frequency response analysis is entirely adequate
for present purposes. However, in this case the transfer function of
interest is v/vg(s) and v is not a state variable but a linear combin-
ation of state variables chosen. Thus the answer sought is not given

directly by (5.1), but instead may be written as

Y (s) = h(sI-A)"Tb (5.3)
g
where hT = [FR, -FR, 0], and T indicates transpose. Equation (5.3) shows
that the steady-state solutions to system transfer functions are available
from the state equations {5.1) by straightforward matrix manipulations
provided h is known and [sI-A| # 0 (|A| indicates the determinant of A).
In accordance with standard technique, (5.3) may be expanded as

Tr e
_ h Cof (sI-A)b
v () = A (5:4)

where Cof(sI-A) is the matrix of cofactors of sI-A. The desired transfer
function is obtained from (5.4). The expansion and subsequent coalescing

of terms in (5.4) is a few pages of simple algebra resulting in

2
(L. - F[1-F]L)Cs? + 1
Y (s) = 0 - (5.5)
g LLyC 3 2.\ 2
TS “"(LO'*‘FL)CS ""'R“S"'T
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One may notice that the Teading coefficient in the numerator of (5.5}
may be positive, negative or zero depending on the values of LO’ F and
L. For sufficiently large s the transfer function approaches

(Lp-F(1-F)LR

v
Vg S + e LLOS

(5.6)

The high frequency response of the system may appear as an integrator
with or without an additional 180o phase shift depending upon the sign
of the numerator. This explains the observed negative inductance effect
in the new filter.

When the leading coefficient in the numerator of eguation (5.5) is
zero, the maximum high freguency attenuation is obtained. The criterion

is independent of R and C and is given by

L
0 (5.7)
1= F(1-F)

precisely the matching condition first expressed in (3.12). Figure 5.3
is a sketch of the norma}ized tap inductor versus the tap fraction.

Notice that for F = 0.5 the value of LO is maximized at 0.25 L. If one
rewrites equation (5.5) with Ly determined by (5.7) as sketched in Fig.

5.3, the result is

Y(s) = ! (5.8)

v - 2
g fii:glLMQ. s3 & FLCS? + %—s +1

Equation (5.8) shows that ideally, when the matching condition is in
effect, the high frequency ripple attenuation is third order and that the

term "zero vippie" is somewhat of a misnomer. The leading coefficient in
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Fig. 5.3 Sketeh of noamalized fap inductor versus fap graction showing
the matching condition and areas where mismatch produces pesditive

on negative ripple sense power inductorn curnent.
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the denominator is maximized when F{1-F) is, and thus the tap fraction
of 0.5 leads to the greatest high frequency attenuation corresponding to
the largest matching Ly for a given choice of L.

Any hardware realization of the new filter of Fig. 5.1 will be
affected by component non-idealities. One parasitic worthy of consider-
ation is the resistance in the tap impedance comprised of the capacitor's
esr and the inductor's series resistance. For convenience these two
resistances may be added and attributed in name to the capacitor esr by
labelling the resistance R.. With R_ placed in series with Ly and C in
the state-variable model of Fig. 5.2, the expression equivalent to (5.5)

obtained in a Tike manner is

[Lg-F(1-F)L]cs® + R Cs + 1

-gw(_s)=L - (5.9)
g Lot 3 [ c. 2\ 1 2 L
~x s+ L g+ FYLies® #{RC + g s+
which becomes
v RCCs + 1
V'(S) = > - - (5.10)
g F(1-F)L°C _3 c 2. .
w-~?F——w»s + {F + X LCs™ + RCC + R s + 1

when the matching condition is in effect. The presence of the zero in
(5.10) indicates degraded high-frequency attenuation owing to the para-
sitics as one would expect. Equation {5.10) may be factored approximately

35
Z ]

v
7 {s) = (5.11)
v 2
9 S\° +s
(tps + H[( mo) fag Y *}
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1
= il:§l£3 w, = /FLC, and Q = vFLC/(FL/R + RCC). The

where T, = RCC, T o

p

approximate factoring is quite accurate when RC << R and RC »> T or,

equivalently, when the pole and zero break well after W

5.2 Experimental verification

Two configurations were subjected to laboratory freguency analysis.
In the first circuit fthe pole and the zero nearly cancelled, while in the
second the pole’s time constant was approximately twice that of the zero.
Figures 5.4 and 5.5 show the laboratory data indicated by dots alongside
the predicted asymptotes. The asymptotes, and Q of the double break, are
calculated by means of the equation (5.71) using the circuit element
values indicated on the figures. For sake of completeness, the phase of
the transfer functions was measured and included on the plots. It may
be seen that there is a high degree of corellation between predicted and
measured values, supporting the analysis and substantiating the accuracy

and usefulness of the approximate factoring in {5.11) for these cases.

5.3 Enter the elliptic

Again with neglect of Rc’ the filter transfer function zeroes may
be obtained from equation {5.5) and are given by the values of s that

satisfy

L, - F(1~F)E_]Csz +1=0 (5.12)

The zeros may be either real or imaginary depending on whether

L. - F{1-F)L is less than or greater than zerc respectively. In either

0
case the transmission zeroes are symmetric about the origin of the s-plane.
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It can be seen that for the zeroes near the point at infinity the two
situations differ in that the imaginary pair has no phase contribution,
while the real pair produces 180c of phase., This provides an alternative
view of the cause of the observed negative inductance effect in the new
filter. By adjustment of LO about the matching value, two zeroes may be
made to pass through the point at infinity from the imaginary axis to the
real axis, changing the filter response from minimum phase to non-minimum
phase with one zero in the right~half plane.

When the new filter is used in a switching dc~to-dc converter such
as a buck converter, shown in Fig. 5.6, or in a switching dc-to-ac con-
verter such as the switching audio amplifier shown in Fig. 5.7, it is
often desired that the filter attenuate the fundamental component of the
switching waveform as fully as possible. The previous derivation of the
matching condition was postulated on the assumption that the capacitor
voltages were constant, or equivalently, that the switching frequency
was high compared to the system’s natural break frequencies. In fact
we know the form of the aisturbance provided to the filter, and have more
precise knowledge of the fundamental freauency than that it is high.
Indeed, in absence of knowledge of the switching frequency the matching
condition which provides the greatest attenuation at high freguencies
gives the natural choice for the filter components. Knowledge of the
switching freguency and the precise nature of the filter response, given
in equation (5.5), allows the designer to make a more judicious choice

of component values than might otherwise be selected.
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Fig. 5.6 New {§iftern buck-type conventen may be made to exhibit negative-
Lnductance and hence zeno-adpple behavion.

Fag. 5.7 A new {iltern buck-derived switching audio ampfigien with an
8 9 fLoad nrepresenting the speaken.
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When LD/L = F(1-F) we know that we obtain some sort of second or
third order attenuation on the switching freguency depending on the
circuit's parasitics. Equation (5.12) and the discussion call attention
to the fact that if LO - F{1-FJL is greater than zero the transfer function
of {5.5) has complex conjugate zeroes on the imaginary axis. If there is
a particular frequency we wish the filter to reject, the zero pair could
be made to lie at + jw where w is the undesired frequency. To accomplish

this one sets

ALy = FO-FILIC = + (5.13)

with L, » F(1-F)L. Then, at least to the extent that Rc = (0, the radian

0
frequency at » is entirely attenuated. Choice of o to correspond to the
switching frequency will provide nearly complete attenuation of the
fundamental component of a switching square wave.

1t is also desirable that higher harmonics from the switching are
not passed to the load. In equation (5.5) it is plain that the transfer
characteristic has 3 poles and 2 complex zeroes. This is simiiar to the
s-plane locus for a third-order elliptic~function filter. Recall from
filter theory that an elliptic filter has an eguiripple pass and stop
band transfer function which leads to the sharpest possible cutoff for
a filter with a given order denominator. If the elliptic filter pole and
zero locations are known then (5.5) gives rise to four egquations in five
unknowns, L, LO‘ F, C and R. If the Joad R is known, then the ambiguity

is resolved and the element values that make (5.5} the elliptic filter

transfer function are uniquely specified. The new filter when properly
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configured may approximate the sharp cutoff of the elliptic, and in

addition may have complex conjugate zeroces at the fundamental excitation

frequency. The sharp cutoff has the advantage of allowing the filter
natural freguencies to be high, and hence the component vaiues relatively
small, and still maintain an acceptable stop band attenuation. The
zeroes on the fundamental eXcitation frequency cause the filter to spe-
cifically discriminate against the switching waveform, further enhancing
its performance.

A computer program was written to solve for the circuit element
values for the new filter in its elliptic function form with specified
passhand ripple and transition bandwidth (see the Appendix). With 2 dB
of passband frequency response fluctuation allowed from dc to 20 kHz,
and the transition bandwidth such that the transmission zeroes are at
80 kHz, the circuit element values are those given in Fig. 5.8 accom-
panying the experimentally measured frequency response. Insight 1is
gained into the relationship between the equiripple passband property
and the sharpness of the cutoff by examination of the theoretical
asymptotes sketched adjacent to the data points. There is a pole at
7560 Hz that causes the passband to drop a 1ittle more than 2 dB at
10 kHz. The transfer characteristic does not drop more because a
resonant pole pair exists at 18,900 Hz which causes upward deviation
from the asymptote plot in such a manner as to hold up the transfer
function until the desired bandwidth of 20 kHz is reached. After 20 kHz
the resonance drops off sharply, and simultaneously the attenuation from

the low freauency pole is evidenced. In addition, the deviation from
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Fig. 5.8 Frequency response of the new §ilter in its elliptic gunction
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the asymptote becomes negative owing to the complex zero pair at 80 kHz.
In this manner the passband characteristic is acceptably flat, while a
sharp cutoff is provided. At 80 kHz the deviation from the asymptote is
~40 dB ensuring extreme attenuation of any signal at that frequency.
Even though the filter has a 20 kHz bandwidth the attenuation at 80 kHz
is 86 dB, transmission of about one part in 20,000. If the filter were
subjected to an 80 kHz pulse train, such as a switching waveform, the
dominant fundamental sinusoidal component in the pulse train Fourier
expansion will be removed almost entirely. The next harmonic present
1ies at 230 kHz, three times the fundamental freguency, and is present
in much reduced magnitude. By 240 kHz the asymptote is again a good
approximation indicating 56 dB of attenuation. Note that this final
asymptote would be lower if more passband deviation were allowed or if
the zeroes were placed at a higher frequency. Even though the zeroes
are only two octaves above the edge of the passband the attenuation for
an 80 kHz pulse train and its harmonics is very respectable. At 810 kHz
another complex zero paif is experimentally found. The previous analysis
with the simplifying assumptions made does not predict this behavior.
Note that in going to the elliptic filter configuration the imped-
ance matching condition was violated and as a result the final declining
asymptote predicted by (5.5) rolls off at 20 dB/decade and not 60. This
is not of any great consequence in a practical filter since second-order
effects always limit ultimate attenuation. In the balance one obtains
almost total attenuation at the fundamental frequency, rapid transition

between pass and stop band, and acceptable stop band attenuation.
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The load and passband specifications on the filter under discussion
were chosen so that it could serve as a switching audio amplifier filter
for the buck type configuration shown in Fig. 5.7. This particular
application emphasizes the merits of the elliptic filter because it
requires extreme attenuation of switching ripple without low-frequency
attenuation of audio signals. Figure 5.9 shows the hardware chosen to
implement the amplifier. The transistors Q1 and Q2 with the commutating
diodes D1 act in a push-pull arrangement to apply a square-wave excitation
to the filter. The IN914's and the associated R // 1/sC are present to
ensure that transient voltage overshoots on the square wave are suppressed.

Figure 5.10 is a photograph of the oscilloscope traces of the square-
wave input to the filter and the resulting output voltage. The square-wave
input is 80 V peak-to-peak. Since the transistors stand off the peak-to-
peak voltage they are being stressed at their full rated voltage and no
overshoot can be tolerated. Note that the switching action is fast but
virtually no transient overshoot is present.

The output Voltage'is about 300 mV p-p, but for a considerable
portion of the period the waveform has essentialiy no ac component.
Approximating the trace as being either zero or roughly triangular allows
one to estimate the rms output voltage to be about 40 mV. Attenuation of
the "heartbeat" of this switcher is therefore about 60 dB, rather remark-
able since the switching frequency is only 2 octaves above the filter
passband corner.

Modulation of the square-wave input about its nominal symmetric

operating condition applies excitation to the filter at the modulation
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frequency as well as at the switching frequency. If the modulation is
in the audio range the filter will pass the signal with nc more than
2.5 dB attenuation while still suppressing the switching action by 60 dB.

Figure 5.11 shows pictures of the output of the amplifier to 1, 10,
15, and 20 kHz modulation. For the 1, 10, and 15 kHz signals a clean
waveform is produced with the ocutput power limited by the current ratings
on the power supplies. The 12-18 watt outputs produced virtually no
thermal stress on any of the circuit elements save for the 8 o resistance.
At 20 kHz some difficulties interfered with the production of a clean
waveform of appreciable amplitude. It is believed that careful attention
to the modulation scheme and to the source impedance would allow the
amplifier to realize the full bandwidth potential for unadulterated open-
Toop waveform reproduction at substantial output power.

It may seem that the new filter in its elliptic function configura-
tion is very different from the configuration with the zeroes at infinity
in that the possibility of the negative inductance effect is lost. This
is not entirely true. The elliptic configuration shows a frequency

dependent negative-inductance effect. If the switching frequency is just

below the complex zero pair there is 180o less phase lead on the response

than if the switching frequency is just above the zero Tocation. The

elliptic configuration shows ripple inversion by perturbing either the

circuit eiement values (as before), or by varying the switching freguency,

an effect not previously present when the zeroes were placed at infinity.
It is felt that the elliptic configuration deserves to be called

truly a zero ripple configuration in that to an excellent approximation
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Fig. 5.11a 1 and 10 kHz sinusodds genenated by the eldiptic §ilter audio
amplifien.
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the fundamental component of the switching excitation is entirely rejected.
Equation 5.5 shows that the position of the zeroes is not dependent on the
load so that, even though the passhand properties of the filter will be
disturbed with changing load resistance, the location of the zerces is
unaffected and the filter remains zero ripple.

A zero output ripple buck type converter was used as an experimental
example herein. It should be obvious, however, that a zero input ripple
boost is also possible. Naturally this leads to the feasibility of zero
input, zero output current ripple in boost-buck configurations. Previously
discussed low-ripple modified Cuk configurations could acquire extendeﬁ
bandwidth without sacrifice of ripp1é performance, or improved ripple
attenuation for the same bandwidth, by adjustment of the components such
that transmission zeroes exist at the switching frequency rather than at
infinity.

The input filter section on the basic Euk converter, or that on a
zere input ripple boost configuration, are examples of situations where
the filter resistance R is comprised of parasitic resistances and as such
it is not possible to obtain the desired passband properties of the
elliptic filter. The model of Fig. 5.2 may be used to solve for the
input current response to a switching waveform by taking R = 0 and solving
for the current in the shorted path as a function of the source excitation.
The method of the state-space solution is similar to that previously

described and yields
. V4
lm (S} - [1-0 = z':(-I"'F)LJCS + 1] (5.';4)

Vg s L(Laﬂsz + 1)
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Equation (5.14) shows the typical sL impedance of the inductor as may be
expected. The zero pair is still determined by the same circuit parame-
ters as before and may be placed at the switching frequency. The glaring
drawback to this transfer function is that it possesses a complex pole
pair that is damped only by circuit parasitics and may have a very high
resonant peak. Such behavior will complicate tailoring loop gain mag-
nitude and phase for feedback regulation, as well as making the system
susceptible to resonant response at w = 1/Jfafﬂ These problems exist
irrespective of the location of the zeroes, and are possibly the most
severe shortcomings of the zero input ripple topologies. In practice
however the limitation may not be as inhibiting as indicated by the
idealized analysis. The sL impedance may be large enough at the filter
resonant frequency so that the resonance limited by parasitics does not
exceed 0 dB and the severity of the problem in somewhat lessened. The
point of this discussion is that care should be exercised when applying
high Q filters to switching converters, or else other performance aspects

may suffer for the sake of improved switching ripple performance.

5.4 Review

In this chapter a particular filter configuration exhibiting the
negative inductance effect was subjected to close scrutiny by means of
state-variable analysis. Solution of the state equations with the
Laplace transform produced a frequency domain explanation for the nega-
tive inductance effect which was shown to be related to the position of

a zero pair in the s-plane. The filter transition from a positive ripple
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current sense to a negative one was shown to correspond with the change
from a minimum phase to a nonminimum phase system. Filter transmission
zeroes move from the imaginary axis through the point at infinity to the
real axis as the filter values are varied about the impedance matching
condition of Chapter 3. With placement of the zeroes at infinity, the
matching condition produces a third-order attenuation characteristic
which rejects all high frequencies indiscriminately. Realization that
the switching disturbance has a known discrete frequency spectrum prompted
the idea of placement of the transmission zeroes in a manner that fully
rejects the fundamental frequency component of the switching action.
Application of some concepts of classical filter theory refined this idea,
and a third-order elliptic-function power-processing filter developed.

A prototype filter was built and found to perform very well in accordance
with the analysis.

This chapter's extensions to the zero-ripple configurations deserve
to be called zero ripple not only because positive or negative sense can
be ohserved on the ripple waveforms, but also because the ripple attenu-
ation is extreme. Excellent performance is obtained with minimal penalty
in terms of component size and weight.

Development of the new filter concludes Part 1 of this work. The
attained objective of this first part is the analysis of the ripple prop-
erties of the new converter and development of converter configurations
with improved external current characteristics. Three general techniques
for ripple attenuation were exposed, each gaining sophistication over the

previous one. However, the price of the improved performance demonstrated
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by the later developments is increased sensitivity to parameter

variations. The impedance division technique for the coupled-inductor
converter requires only that gross magnitude inegualities be satisfied

for effective functioning. If one wishes to gain the component size
advantages boasted by the impedance matching technique, the penalty is

that the matching condition equality must be satisfied, or at least

nearly so, which imposes tighter design tolerances on inductive components.
The most sophisticated development, the elliptic filter, is also the most
susceptible to variations in component values. For the classical filter
frequency response to be obtained, each circuit parameter is uniquely
determined. The technique chosen for a particular application will depend
on the performance requirements and the amount of control the designer can
exercise over the system component tolerances. In addition to the develiop-
ment of analysis technigue, the principles realized were appiied to generate
a number of new or revised topologies each with its own merits with respect
to ripple performance. Sufffcient laboratory verification is included to
illustrate the attributes of the new configurations and show the practical
applicability of the techniques. Thus the analysis produced and the exten-
sions envisioned fulfill the objectives of Part 1 with experimental sub-

stantiation.
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PART 11

MODERN CONTROL TECHNIQUES
for

SWITCHING REGULATORS
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CHAPTER 6
OPTIMAL REGULATION FOR SWITCHING CONVERTERS

There are two well-established schools of thought on the subject of
formulating feedback controllers. For want of more descriptive terms the
two may be referred to as classical, and modern or optimal. Choosing such
terminology does not imply any disdain for the classical control theory by
hinting that it is conventional, archaic, or apriori a suboptimal or infe-
rior approach. Indeed, the criteria of the classical techniques are used
to judge the effectiveness of the modern in generating acceptable con-
trollers, and hence there can be no legitimate condescension toward the
older more established approach. tach method has its own particular
strengths and weaknesses and so the designer who understands both is better
equipped than one restricted to either. There are several typifying traits
that serve to sharpen the distinction between classical and modern tech-
nique. Perhaps the most fundamental difference between the two is that
the classical technigue relies heavily on the steady-state system response
to sinusoidal excitation, while the modern approach is primarily concerned
with response to initial conditions.

Classical analysis and design generally begins by determining the
system open-loop differential equations which are cast as algebraic poly-
nomials in the frequency domain by means of the Laplace transform. The
system transfer functions are factored to obtain the pole and zero loca-
tions, and the Bode diagram, root locus plot, and/or Nyquist diagram are

used to interpret the system frequency response characteristics. Usuaily
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the response is shaped by addition of series compensating elements
obtaining an error signal proportional to the controiled variable with

desirable phase properties that allow this single return path to close

the feedback loop in a stable manner. C(lassical control formulation is
guided by abundant established techniques in the frequency domain that
use criteria such as gain and phase margin to generate a control scheme
that will provide acceptable performance. G&raphical techniques or
equivalent circuit models with important quantities identified and re-
lated to circuit parameters are often used, allowing the designer to
reformulate the open-loop plant, if necessary, to obtain more desirable
characteristics. The analyst may relate to the classical approach in
physically understandable terms such as loop gain, corner frequencies
and phase response. The facilities provided by the graphical methods
give the well-versed engineer a “feel" for the important properties of
the plant to be controlled, and an‘understanding of the obstacles to be
overcome in arriving at an effective control formula.

Modern analysis and design generally begins by determining the
system open-loop differential equations expressed in the time domain by
means of the matrix first-order differential equation provided by state-
variable expansion. The matrix expressions describing system dynamics
are used directly to constrain the minimization of a time domain penalty
function on output error and control effort. In the cases of interest
here, the minimization of the performance error penalty results in a

control law that returns a linear combination of all the states and

renders the closed loop response optimal by performance definition.
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The modern approach tacitly assumes that the feedback signal will be
derived from all of the system states, while the classical method
usually returns an error signal derived only from the controlled
variable. The ability to design multi-state feedback loops {and to

use multiple controllers) is not gained without an attendant penalty.
In all but the most simple cases the modern approach relies heavily on
numerical methods and as such fails to provide the insight of a closed-
form answer. An ill-conditioned plant may make the feedback gains very
critical and the optimal solution worthless for practical application.
In spite of its shortcomings the optimal control theory provides a
powerful and quite general approach to regulation loop design. Even
for complicated situations involving several states and controlled
quantities the engineer's design task is reduced to defining a per-
formance criterion and identifying the system's -state-variable descrip-
tion. The rest of the solution may be handled by digital computer.

In this chapter the methods of optimal control are established
for and applied to switéhing converters. The classical approach in
this vein is already in wide use and well documented [1]. The material
presented here is intended to provide an alternative point of view
that complements and may be used in conjunction with frequency domain
analysis. Only one of the many facets of modern control theory, the
Tinear regulator problem, is treated. Under certain circumstances the
solution for the modern controller becomes linear and time invariant,
and thus useful from a practical standpoint. The major contribution of

this chapter is the formulation of the regulator problem for switching
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converters. Solution techniques are extensively documented elsewhere and
references for these are provided. For illustrative purposes two solu-
tions are obtained by separate methods for simple converter topologies.
The examples not only show the utility of the method but also produce
interesting and useful closed-form results for optimally controliing the
widely-used buck converter.

The remaining two chapters of Part 2 deviate somewhat from the theme
of optimal control in that the penalty function approach is abandoned in
favor of directly prescribing the time response to initial conditions. In
order to make this task meaningful and manageable a discrete time-domain
system description of general applicability is developed. The accuracy
of this model is substantiated by laboratory demonstration of a predicted
time-domain sequence termed a finite settling time response. In keeping
with the intent of this control analysis, relationships between the dis-
crete and classical techniques are derived so that the designer may use

either or both as need dictates.

6.1 System linearization

In order to apply the results of the linear regulator problem of
optimal control theory, one must first arrive at a linear state-space
description for the inherently nonlinear switcher that exposes the effect
of duty-ratio modulation control. With this goal in mind, consider a
switching converter operating with two switched topologies in like manner
to the several converters mentioned in Chapter 1. The number of switched
topologies each cyclic period is not a limitation on the linearization

process, but since two switched intervals per period is very common it
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will be used for concreteness in the development. The state equations

during interval DTS may be written as

X = A]x + b?Vg (6.1)

where the dot indicates the derivative with respect to time. The output
of the converter, y, usually may be expressed as a linear combination of

the states, compactly written as
Yy = CTTx (6.2)

In general x, Vg and y are vectors and A, b, and C are matrices.
Typically, however, Vg is a scalar equal to the source voltage and y is

a scalar output voltage or current. When this is the case b and C degen-
erate to vectors. The scalar input, scalar output case will be assumed
in the following even though the derivations can be generalized to
multi-input, multi-output configurations. During the second switched
interval the equations of state and output can be expressed similarly
with a suitable change of subscript.

X = Ayx + byV (6.3)
Y, = Cy'x (6.4)

The state-space averaging method [1] met with considerable success
and acceptance in generation of cannonical Tinear circuit models for
switching converters. This same technique will be used here to coalesce
(6.1) through (6.4) into a set of average equations that describe the low-

frequency system dynamics. The result is
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X = Ax + bvg {6.5)
and
_ AT
y=10x (6.6)
- ‘ _ . T. H vo T
where A = DA} + D Az, b= Db1 + D b2 and C = B¢, + D C2 . The averaged

equations (6.5) and (6.6) can yield solutions for the steady-state con-
ditions and the source voltage to state or output transfer functions.
However, it is desired to obtain a set of equations that describe the
effects of duty ratio modulation since feedback control is exercised by
varying the duty ratio in response to some error on the controlled variable.

To determine the duty ratio modulation to state transfer functions,
assume in (6.5) that the state vector x has some perturbation X super-
imposed, and likewise the duty ratio D some perturbation 3, where the
modulation terms are small compared with the steady-state guantities.
Then (6.5) is expanded to

[x + %1 =[A+A][x+&] +[b+b] Vg (6.7)

where A = d [A}-Az] and b = d [b]-bz]. Expansion of (6.7) yields

[x + k] = Ax + A% + Ax + A% + bV + ng (6.8)
Subtraction of equation (6.5) from (6.8) reveals the relationship between
the duty ratio control induced A and B and state perturbation ; as

X = A% £ Ax + AX + 5Vg (6.9)

The term AX may be expanded to [Aq-Az]ai. The factor dx is the product of
two quantities assumed small, and is hence very small compared to first

order perturbation and control terms. Standard linearization practice
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dictates neglect of such second order terms. The motivation for doing
so is that the system small-signal model returns to the manageable Tinear
time invariant form. With neglect of Ax, (6.9) may be rewritten as

X = A% +gd (6.10)
where g is the vector formed by the sum [A}-Azjxo + [b]~b2]Vg. The factor
Xq used in the calculation of g is the steady state solution to (6.5)
obtained by setting x = 0. Equation (6.10) is the desired linearized
small-signal dynamic equation expressing the transient and duty ratio

control induced behavior of X.

6.2 Optimal feedback gains

If feedback control is utilized then d becomes a function of x.
The desire is to obtain an optimal functional relationship between d and
x. To any disturbance x there may be a corresponding undesired change
in the controlled quantity y. To first order we have

T2+ ¢y (6.11)

y=2¢C 0

where ET

= a[C}T-CzT]. Terms of order 6T§ are neglected with argument as
before. A criterion for control optimality would be one that minimizes

the magnitude of y stemming from X while still exercising acceptable levels
of control effort. The output disturbance should be kept as small as

possible for all time so a useful criterion is to minimize

1 ” .2 2
J=5 [ (roy : ) dt (6.12)
0
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where ro and ry are greater than zero to make the integrand positive
definite. Thus ¥ and d excursions of either sign will receive an appro-
priately weighted penalty. The values chosen for L and g determine
the relative penalties for cutput deviation and for exercise of control.
Substitution of (6.11} into (6.12) and expansion of the quadratic form

yields

-1 ~T T2 Ta, AT TA AT .

d = 2~/”<x CrOC x + 2xO CPOC X + Xq CrQC X + er )dt (6.13)
0

To simplify notation and reveal the presence of d in the terms of the

. . . T _ T
performance index J, define Ry = CryC’, R, = [61—C2]r0C and

_ T

Now rewrite (6.13) as

[e<)

] T, = T, 24 T ne
J = §-~/'[x Ryx + 2x0 Roxd + (XO R3x0 + r])d }dt (6.14)
0 ©
Equation (6.14) is of the form J = Jr Ldt.
0

In order to find a stationary point of J we may use results of the

calculus of variations. We define

[ATR X+ 2. TR.%d + (XOT

.
1 0 "2 (

A » -
Rsxo + r])d ]+ A {Ax + ad) (6.15)

4
f
—
+
et
—ty
B
P3|

where f is the right-hand side of (6.10), the linearized state perturbation
equation. The vector of undetermined coefficients, A, is the lagrange
multiplier vector and H is referred to as the Hamiltonian. For an extremum

on J the Euler-Lagrange equations (6.16) and {6.17) must be satisfied [12]:
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. (6.16)
8X

Moy (6.17)

2d

The symbol & indicates the partial derivative. EXpanding these equations

in terms of the particular problem at hand produces

B ~(§?R1 + XGTRZa + ATA) (6.18)
and
a _ T, 2 T ) T. _
;g-— Xq sz + (XO R3x0 +ry d+gaxr=0. {6.19)

From (6.19) the optimal control law may be written as

T T, =
- g A+ X, RoX
= - 0 2 (6.20)

%g Rg¥p * 1
Equation (6.20) would give the answer for 80 in the terms of x if » were
known. Since an optimal feedback law is sought we may suspect that A
depends on x. Assign A = SX assuming linear feedback and see if a matrix
S can be determined without contradiction of optimality conditions.

Transposing {6.18) and substituting Sx for A yields
Sk + Sx = - Rk - Rix.d - Alsx (6.21)
] 2%0 .
Substitution from (6.10) for x and (6.20) for d yields, after a little

manipulation,

T T 7T
SggTS +:ng0 R2 + R2 X59 S (6.22)

TT
, Rz %% R
]

- (sa + aTs) -R

T ‘ T
xg R3x0 + r} Xq R3x0 + r] XO R3x0 + rT
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Note that X, assumed nonzero, has been divided out of both sides of (6.22).
Equation (6.22) is a matrix differential equation in S referred to as the
matrix Riccati equation characterized by the SZ dependence of the deriva-
tive. Note that the terms of (6.22) are all symmetric. For steady-state
regulator gains, § is set equal to zero and a solution for S determined.
Equation {6.20) with » = Sx is then the optimal feedback law. Since S(=)
may be chosen to be symmetric, S also can be symmetric and (6.22) contains
n{n + 1)/2 nonlinear equations for as many unique elements of S. This
fact is exploited in the literature to obtain solutions for S and hence d°.

There are many numerical techniques in optimal contrel literature for
the solution of (6.22) varying in sophistication from direct numerical
integration until S =0 to gigenanalysis based solutions [12-15]. Suffice
it to point out that the solution for optimal regulator feedback gains can
be implemented numerically on a digital computer from the starting point
of the switched state descriptions, the penalty coefficients o and 1
and the nominal operating duty ratio, needed to determine the steady-state
state vector.

An important and common special case of (6.22) occurs when the

controlled variable y has a constant relationship to the state vector x

during both switched subintervals. Then R2=R3=O and (6.22) reduces to

. T
=203 . (sa+aTs) - R (6.23)
]

The optimal control law is given by
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. Ter
@ = - ﬂ;§£ = - KR (6.24)
1

where K is the feedback gain vector. Egquations (6.23) and (6.24) will be

used for illustration of the modern control approach to converter feedback

regulation in the following sections.

6.3 Riccati eguation approach example

At this point a simple illustrative example is in order. To avoid
involvement in numerical techniques, a first-order system will be examined.
Consider a buck converter with no output capacitance as shown in Fig. 6.1.

The state equations for the two switch positions may be written as

%:_%1+%%;Dg
(6.25)
g Fivov 5o
Equation (6.10) then takes the form of (6.26)
S ¥ (6.26)
P

If we choose as the regulated guantity the output voltage, then R1 = rGR2

and with the terms identified in (6.26) we may write the Riccati equation
(6.23) in the scalar form as

. sy 2
S = g + - r R (6.27)
r1L L

The solution to (6.27) with é set to zero may be evaluated by means
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of the quadratic formula giving

5
Rir vV or
s-—---u-%- 1+ 1+ 9.0 (6.28)
V ™
g

Note in (6.28) that there are two possible solutions for § since (6.27) is
quadratic. The positive root is the desired answer since that root will
result in negative feedback and a stable system. From (6.24) the optimal

control law for this simple buck converter is

2

0 R v o | -
=g |1- ““9?“— i (6.29)
g 1

Let's now write the equivalent of (6.26) with d prescribed by (6.29) to see
how the optimal control places the system closed-loop pole.

v 2r .

1 - ]+__.g.__..{_}.

™

>

S=-fi

t

ok
-ty

(6.30)

i

Note that the optimal control has exactly removed the system open-loop pole

at -R/L so (6.30) may be condensed as

2
2 V-or
di _ _ R g 0 =
Fr3 T 1+ = i (6.31)

exposing the closed-loop dynamic eqguation. The closed-loop pole is seen to
lie on the negative axis in the s-plane regardless of its original position
and irrespective of choice of o and ry as Tong as they are positive. The

time response of the system to a disturbance is exponentially decaying with

the decay time constant a function of the penalty parameters:



108

-RjL\/] + vgzre/r] t (6.32)
i(t) = 1(0) e

Equation (6.32) shows that the decay is increasingly more rapid as the
relative penalty on output deviation, ro/ri, is increased. This result
shows how any desired decay time constant may be generated by choice of
s and r and points out a practical difficulty in the modern approach.
How does one choose ™ and 8 in the performance criterion? Here this
choice amounts to choosing a feedback gain, or decay time constant for
the closed-Tloop system, and the latter two alternatives are much more
easily understood physically. It appears that a poor trade-off in point
of view has been made in order to support the claim that the control is
optimal with respect to a chosen criterion, One could as easily choose
a practically impiementable feedback gain from circuit design consider-
ations and then solve for the sense in which this control is optimal,
i.e. the values of o and *y in (6.12). These criticisms of the penalty
function approach are valid and especially caustic when a first-order
single-input sing]e-outpuf system is being examined. The method is
illustrated by this simple example but the utility of the approach is not
shown when a single gain constant needs to be determined. The next
section will develop a second-order example which shows how the modern
approach can be most useful when used in conjunction with practical design

considerations,

6.4 The Kalman eguation approach

Before considering an example of higher order it behooves us to
develop an alternative solution to the optimal gain vector that does not

involve solution for the Riccati matrix. The problem stated by the
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Riccati equation in n{n + 1)/2 unknown elements can be reduced to a
problem in n unknown feedback gains when a single control is used. The
reformulation of the steady-state Riccati matrix probiem in terms of the
feedhack gain vector K is attributed to R. E. Kalman [13, 16]. A similar
exposition with appropriate modifications for our purposes is used here,

The solution for the optimal linear regulator gains is obtained when
the coefficients of the S matrix are determined from

(6.33)

-l
- SA - ATS + §9§.§.z Ry
1

and the result used in (6.24) where the feedback gain vector K is defined

by
K =239 (6.34)
"

The immediate goal is to reformulate (6.33) using the information of (6.34)
resulting in a problem statement in terms of the feedback gain vector
directly. This may be accomplished in three steps although the motivation
for the manipulations at first may seem obscure. First, add and subtract
#S from the left-hand side of (6.33) resulting in (6.35) where p is an

arbitrary possibly complex variable.

.
S(pI-A) + (-pI-AT)S + 2995 = p
1

1 (6.35)

For convenience let E{p) = (pI«A)'Tg; then ET(-p) = gT(pr-AT)'E. Second,
multiply (6.35) from the Teft by ETivp) and from the right by E(p),

reducing it to a scalar eguation.

.
ET(-P)SQ + gTSE(p) + ET(-p)§§9~§E (p) = £/

: (-p)R,E(P)  (6.36)
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Third, use {6.34) to eliminate S in (6.36) producing {6.37) in terms of
the gain vector K.

Ry

ET(-pJK + K'E(p) + E' (-p)KK'E(p) = E'(-p) 7 E) (6.37)

Addition of 1 to each side of (6.37) and factorization of the left~hand
side simplifies the expression somewhat and yields the eguivalent statement

of {6.37) in (6.38)

[+ ET(-p)XI0Y + K'E(p)] = E'(-p) — E(p) (6.38)

E(p) = (pI-A)" g (6.39)

which is referred to as thé Kaiman equation [13] when E{(p) is given by
(6.39). The use of (6.38) in solution for the optimal regulator gains
relies on establishment of n equations in the unknown gains Ki by equating
coefficients in 1ike powers of p. Since p is arbitrary the coefficients
must be identical. Perhaps the method is best explained by another
example.

The circuit chosen.to iltustrate the Kalman egquation approach is the
common buck converter of Fig. 6.2. The buck converter with the output
capacitance included is a second-order system and will serve not only to
show the utility of (6.38) but also will be instrumental in pointing out
the advantages one may gain by viewing the control problem with modern
analysis as well as with the usual techniques.

The state egquations for the two switch positions are easily written
if one chooses the inductor current and the capacitor voltage as compo-

nents of the state vector.
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Fig. 6.2 The common buck converter shown with inductorn curnrent and

capaciten voltage Ldentifled as state vaniables.
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For the buck converter A] equals A2 since the switch does not rearrange
the relationship of any of the energy storage elements. This simplifies
calculation of the perturbation equation (6.10) since g will not depend
on the operating point as it does for the general case. With use of

(6.40) and (6.47), the equivalent of (6.10) is written for this problem as

r' v
% _]W : g
! ¢ T 1 Ll .
- N d (6.42)
~ 'i '[ ~
Ve ! T “RC Ve 0
A g

If this buck converter is to be used as a voltage source then it seems
reasonable that the deviations in the output voltage should be penalized

in the performance criterion. Since the output voltage equals the
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capacitor voltage state a suitahle criterion may be generated by choosing

R1 and ry as shown in {6.43) where i and ry are chosen to determine

@ 0 0
21 (“T : Az)
4] [T —
R

1
the relative penalties for voltage error and control exercise. To use

(6.38) one must first evaluate E(p) by (6.39).

v 1

g .
E(p) = (pI-A)71g = R 4
(6.44)

] e
o

2.,0Dp 1
P Y re t e

When (6.44) is used in (6.38) a fourth order expression in p results:

3 2
KV o+1 0 KY N 1 K KV + 1 KV
4 2°g 17y “(” ] g) } 2 2'g 1°g
prt {2 ( c— T LRC) et T/ 1P\ IRG
2

2 2
2 1 v v 1
N T 2,90 (g (__ )
P +L£ (RC) } Pt (LC) RN (6.45)

From (6.45) two equations for the components of the gain vector may be

obtained by equating the coefficients of like powers of p. From the

constant term

P
0. 2 o7 2
;;—Vg + 1 = (szg + K1V9/R + 1) (6.46)

and from the p2 coefficients



114
Ky = \/zKZL/'(;vgc) (6.47)

One may immediately see a difficulty in this approach since the
simultaneous equations (6.46) and (6.47) are nonlinear and do not possess
a unique solution. The appropriate solution is the positive definite one
resulting in negative feedback as in the previous example. Choosing
rO/r1, the relative weight on voltage error, determines a unique solution
for KI and KZ' Notice that again the engineering tradeoffs are involved
in choosing some abstract weighting coefficients rather than something
physically meaningful T1ike a feedback gain or the closed-loop system
bandwidth. However, one may see in {6.46) that since K] and K2 are
positive and have a relationship fixed by (6.47) both feedback gains

will monotonically increase with ro/r]. So, instead of choosing the
penalty parameters, either K1 or K2 may be selected with larger values
reflecting less constraint on control and more concern for voltage error.
A good selection might be to choose the voltage return gain K2 guided by
performance specificatiohs and practical design considerations just as
the feedback gain may have been chosen in the previous first-order
example. Then (6.47) prescribes the corresponding current feedback gain
that will result in the best transient response possible in the integral
square sense. If one were interested one could then calculate ry and ry
from {6.46) to see what specific performance index is minimized by one's
selection of K] and K,, but the exercise is purely academic. The
important result is that the relative amounts of voltage and current

feedback prescribed by (6.47) will give the best output voltage transient



115

response for a given level of control exercise determined by selection
of a physically meaningful feedback gain. The same situation will arise
with higher-order single-input single-output systems. If the designer
wishes to employ multiple-state feedback he may select a single gain
from practical design considerations, and the remainder of the gain
constants are uniquely determined from the Kalman equation (6.38) and
the requirement for negative feedback.

The ekamp?e of this section has produced an important result for
the common buck converter regulated by state-vector feedback that would
in itself justify the development in this chapter. If such a buck con-
verter is used as a voltage source and it is desired that the output
voltage recover from a disturbance with minimal squared error, then the
ratio of feedback gains is fixed by (6.47). One may observe that the
relationship between the gains given by (6.47) does not depend on the
load or operating condition making the result particularly useful.

It should be noted at this point that the Kalman equation approach
is useful for hand calculations and can yield closed form results for
simple situations. However, the analysis effort grows rapidly with
increasing system order and numerical solutions gain favor. This
method results in the nonlinear equations (6.38) which may have several
solutions, only one of which is correct. As a result the implementation
of the solution on digital computer is unduly complicated, as is the
direct solution to the algebraic Riccati eguation (6.33). For this

reason the numerical solutions typically rely on alternative methods
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that do not involye solving simultaneous nonlinear algebraic equations,

such as direct numerical integration of (6.23) until § = 0 to solve for K.

6.5 Optimal s-plane pole location

To aid in relating the method of this chapter to the classical
approach some results from [15) and [16] concerning the closed-Toop
pole locations will be stated here without proof. It is possible to
determine the asymptotic properties of the closed-loop pole locus as
rO!r1 becomes very large or very small. As ro/r1 approaches zero the
relative penalty on control exercise dominates the performance criterion
and the system closed-loop poles approach the open-loop locations, unless
open-1o0op poles are Tocated in the right-half plane. In that circumstance
the closed-loop poles tend toward the open-loop locations or their mirror-
image positions in the left-half plane. State vector feedback stabiliza-
tion of an unstable plant with minimal control effort is achieved by
effectively changing the sign of the real part of the unstable poles.
As rQ/\rzl becomes very large the emphasis is placed on system transient
behavior and the closed-loop time constants become ever smaller with
increased control exercise. The pole locus tends to form a semicircle
of increasing radius in the left-half plane assuming the Butterworth
filter pole Tocations. When zeroes are present in the transfer function
the appropriate number of poles move to cancel the zeroes or tend toward
the mirror-image Tocation if the zero is right-half plane. Thus the
optimal controller can in principle produce a response that is arbitrarily
fast approximating the Butterworth filter response with the filter band-

width determined by PO/rI’ The important exception to this behavior occurs
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when low-frequency right-half plane zeroes are present as is often the
case in switching converters (e.g. hoost and buck-boost converters have
right-half plane zeroges in their duty ratic to output voltage transfer
function). 1In this case the closed-loop response will be dominated by
the pole assuming the mirror image location of the zero, severely limiting

theoretical performance possibilities.

Figure 6.3 illustrates the optimal s-plane pole Joci for two
conditions, one where the poles and zeroes reside exclusively in the
left-half plane, and one where they are in the right-half plane. Since
the optimal control with minimal effort simply reverses the sign of the
real part of unstable poles and the roots tend toward the mirror image

of right-half plane zeroes, the two loci are identical.

6.6 Review

This chapter merely laid some groundwork for the application of
optimal control theory to the design of switching regulators. An entire
volume could easily be compiled on this and other related topics from the
theory such as existence and uniqueness of solutions, state reconstruction,
and optimal estimation. These subjects are left as possible areas for
further study based on the foundations provided herein.

Linearized small-signal dynamic equations for a general constant-
frequency duty-ratio-controlled switching converter with two switched
topologies per period were derived using the state-space-averaging
approach, The lipear model of the dynamics was then used in conjunction
with established methods of modern control to form procedures for gen-

erating linear optimal state-feedback control for switching converters.
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Two examples illustrated methods for obtaining the solution for the

feedback gains and gave specific closed form results for buck converters.
Even though the examples relied on hand calculations, the great
utility of this method lies in the fact that the approach is general
for switched state converters and may be automated on a digital computer.
The most difficult step in the process may be in arriving at a suitable
choice of penalty function. This approach admittedly lacks some of the
foresight provided by applying classical control techniques to obtain
the desired closed-loop regulation. However, a great deal of the burden
of analysis may be laid on the digital computer and the result can be
said to be the best with respect to a given criterion. The effectiveness
of the method can be evaluated with classical control technigues by
analysis of the optimal closed-loop system which results from a particular
choice of performance index. In cases where the system is of high order
(many independent states) and/or muiti-input, multi-output, optimal state
vector feedback may be distinctly the most desirable method of obtaining

stable regulation and good transient characteristics.
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CHAPTER 7
DISCRETE FORMULATION OF REGULATOR DYNAMICS
with
APPLICATIONS TO CURRENT PROGRAMMING

The previous chapter established modern control theory design
technigues for switching converters predicated on a system dynamic model

consisting of state variable differential equations generated with the

state-space-averaging method. The techniques developed in the present

chapter rely on identical linearizing assumptions to produce a model

expressed in terms of state variabie difference equations describing the

sampled-data system dynamic behavior. The difference equations comprising
the discrete formulation of the regulator dynamics predict the evolution
of the state vector by a time sequence of instantaneous values related to
initial conditions and control exercise.

Although cursory examination of the relative merits of the continuous
and discrete models suggests that the sampled-data approach contains less
information, the converse is actually true. Switching converters contain
an inherent sampling process that Timits the accuracy of linearized models
to predicting effects that have frequency components less than half the
switching frequency. This limitation is implicit in the discrete model
and is a well-known constraint on the application of continuous repre-
sentations. The difference equations, however, contain the switching
period Tos an additional item of information. Advantages obtained by

inclusion of the sampling rate in the model are increased capability in
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predicting effects present near half the switching frequency, such as
sampling induced instability, and more accurate representation of rapid
transient behavior, such as the finite-settling-time response discussed
in this and the following chapter. Even though the discrete model
possesses certain unique advantages, it has drawbacks that prevent it
from supplanting the continuous approach and is currently best employed
harmoniously with classical technique. The examples of this chapter and
the next are chosen to spotlight the strong points of the discrete method
which is shown capable of generating important results. Limitations of
the sampled-data description stem from its emphasis on time-domain tran-
sient behavior and resultant difficulty in relating the analysis to the
familiar frequency domain techniques of classical control design. The
reader is forewarned to remain cognizant of such limitations while the
exposition emphasizes the method's advantages.

After establishing a time-domain system description in terms of state
transition equations, the z-transform is introduced and applied to facili-
tate analysis of the model. Then, in keeping with the theme of using these
techniques in conjunction with classical design results, the interrelation
between the z and s domain descriptions is discussed and relationships are
introduced that allow the designer to move bidirectionally between the z-
domain model and the s-domain state-space-averaged model, such that either
analysis method may be conyeniently applied where it is most appropriate.
Thus, for instance, the z-domain may establish the presence or absence of
sampling induced oscillations when the s-domain analysis predicts system
bandwidths that are a substantial fraction of the switching frequency. In

this manner a design may be generated using classical frequency response



122

technique, or the optimal control method of Chapter 6, and then checked
for the destabilizing effects of sampling if the engineer deems it
necessary.

The general time-domain development of the model and the implications
interpreted in the z and s domain may seem too recondite for practical ap-
ptication in engineering design by all but the most industrious engineer,
To dispel this notion one example chosen to illustrate the methods of this
chapter is very simple, and is of considerable practical importance. The
control of a single inductive-current state variable is analyzed by several
technigues to give the reader a multifaceted understanding of current feed-
back control that will enable him to predict performance in a variety of
ways, some of which are so simple that they are useful for approximate
laboratory-bench design manipulation with a minimum of calculation.

A more ambitious application of this discrete approach is reserved
for the next chapter where the solution for finite-settling-time state-
feedback gains is developed for a switching regulator of arbitrary system

order and substantiated by a second-order circuit realization.

7.1 The linearized difference equation model

Since the development of the Tinearized discrete system representa-
tion closely parallels the system lipearization described in Chapter 6 for
the continuous model, it will not be necessary for clarity to limit to two
the number of switched topologies each cyclic period. The initiation into
the similar methods used in the previous chapter will serve to help the
reader negotiate a development generalized to multiple switched topologies.
Thus, the derivation here at first will be more general, to show how these

methods can easily be adapted to include many switched subintervals, but
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ultimately will focus on the common fixed-frequency two-topology duty-
ratio-modulated configurations.

Consider a switching converter that may be accurately described by
linear differential equations during each of its switched topologies. In
any of the periodically switched configurations the state equations may
be written as

X = A + BLu (7.1)

and the converter output usually may be expressed by
T
y; = Gy x (7.2)

where the subscript i indexes each subinterval. Generally x, u, and y

are vectors representing the system state, control, and output respectively.
Information about the system dynamics and output relationships during the

ith switched state topology is contained in the matrices Ai’ B, and CiT.
These state-space descriptions are generally applicable to Tinear systems

and are well established as a compact expression of an nth order differential
equations in terms of a firstuorder matrix differential equation, governing
the behavior of an n-element vector dependent variable. The exact behavior
of x and y may be obtained by solving each of the sequence of differential

equations with the initial condition on x determined by the final value of

the solution for the previous switched interval. If Ai’ Bi and u are in-

variant during an interval for which the solution to (7.1) is desired, then
the expression for x(t) assumes a simple exponential form analogous to the
solution of a scalar first-order differential eguation. If x{0)} denotes

the initial condition on %, the solution may be written as
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At At

x(t) = e | x(0) + A,._“*(,e - 1)BLu(0) (7.3)

At
In {7.3) I is the identity matrix and e Vs the exponential matrix,

which is the sojution to the matrix differential equation (7.4) [i7].

d

3 K= A5 X(0) = 1 (7.4)
Ait
An equivalent definition of e is given in the form of an infinite series;
At (1t) 2 (at) 3
e =T+ At + Sy ey +.. . {7.5)

The reader may verify that (7.3) is a solution to (7.1) under the given
assumptions by differentiating (7.3) and applying definition (7.5). The

result is equation (7.1). If the time interval t is sufficiently small

At
then e | is well approximated by the first two terms of its series repre-

sentation (7.5).

At
e 1 F 1+ Ait (7.6)

Under approximation (7.6) the solution {7.3) becomes (7.7)}.
x(t) = (I + Ait)x(O) + Biu(O)t (7.7)

It can be seen by differentiation and substitution that (7.7) is also a
solution to (7.1}, but it is not the complete solution. It is complete
only to the extent that the neglected higher order terms in {7.5) are
sufficientiy small. This is tantamount to describing the scalar expo-
nential by a straight line [18]. Such an approximation is generally

very good in switching converters [1] since by design |Ait! is made small
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to minimize switching ripple. In addition, Ai often contains eigenvalues
with negative real parts and so (7.5) may be viewed as an alternating
series which is very rapidly convergent. Hence the straight line approx-
imation (7.6) is usually guite accurate and (7.7) is a simplified but
sti11 useful solution to (7.1).

A common practice in switching converter design is to make the
switching sequence cyclic with period Ts and effect control over the
system by varying the fractions of TS each subinterval occupies. Since
we seek to reveal the influence of such control action on the state and
output vectors it is desirable to determine how the state vector changes
during a period TS as a function of the subinterval durations. This
desired solution may be obtained exactly by repeated application of (7.3)
with t = ti’ the length of the ith subinterval. Unfortunately the solu-
tion is unwieldy and nonlinear with respect to ti’ which greatly dimin-
ishes its usefulness. If one accepts the accuracy of (7.7), the solution

then assumes a much simpler form:

x(Tg) = [T (1 + Age) x(0) + 30 Byul0)ty ] (1 + Ayty) (7.8)

i=1,k i=1,k j=i+1,k

In {7.8) k is the number of subintervals, I indicates product and &
indicates summation. MNotice that (7.8) is still fairly complicated and
nonlinear since it contains products of the ti' The ti are not all

independent because they are related by

) t, =T (7.9)

i=1,k
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and so the products in (7.8) contain dependence on tiz. To be consistent

with previous assumptions and to reveal the linearized dependence of-x(TS)

on the tss the higher order terms in {7.8) may be neglected and only the

first order terms retained.
H

(1) =1+ T At + 3 Bu0), (7.70)
i=1.k i=1.k
Equation (7.10) is the linearized solution for x(?s) and reveals the
average linearized derivative of x with respect to time as

e -

d
dt

2= (A + Byu(0)) (7.11)
i=1,k

i}t

5

The statement of (7.11) is the pith of the state-space-averaged method
of S. Cuk [1], which may be obtained directly from (7.10) by averaging

the derivative over one period. Thus it is manifest that the assumptions

made in arriving at (7.10) are equivalent to the state-space-averaging

postulates.

With equation (7.9) in mind it is clear that modulation of one t.
must be at the expense of some or all of the other intervals. If the
case of two switched topologies in each period TS is examined, then the
control effect will be exposed in the simple circumstance where increasing
the first interval directly diminishes the second. This case is of
considerable practical significance since many converters operate with
two switched state topologies and are controlled by duty-ratio modulation.

Once the simple case is understood, more complicated schemes for choosing
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multiple ti can he evaluated by superposition, since the model is Tinear.
In pursuit of such an option, Jet ty, = BT, and and t, = D‘?S = (1—0)?5
then (7.10) becomes

x(TS) = (I + AEDTS + AZD'TS) x{(0) + (BIB + 828')Tsu(0) (7.12)

Now, to find the system small signal response, add modulation terms,
indicated by a caret, to the duty ratio and the state and control vectors
so that D is replaced with D + d, x with x + x and u with u + ¢ in (7.12)
which generates

(x + X)(T) = (1 + AT, + AD'T + [A=A,JA(0)T ) (x + x)(0)

(7.13)
+ (B,D + B0 + [31—82]&(0)T9(u + w){0)

Equation (7.13) contains terms including products of the perturbations,
which are assumed small. In keeping with the desire for a linear descrip-

tion, these perturbation products are neglected in expanding (7.13). Then

subtraction of {(7.12) from the expansion of {7.13) yields the ac small-

signal system characteristics stated in (7.14):

Q(TS) = (I +A0T + Azu‘?s)i(o) + (84D + BZD')TS&(O)

]
(7.14)
+ [(A) - A))x(0) + (By - B,)u(0)]Td(0)
For convenience in notation define
F= {1+ A}DTs + AZD‘TS)
B = (BED + BED’)TS (7.15)
h = (A, = Ax(0) + (By - B,)u(0)]T,
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where

x(0) == (AD + Aza')“f(a}n + B,0")u(0) (7.16)

from the steady state solution of (7.12), and u{0)} is taken as its nominal

value. Then (7.14) may be written concisely as

X(T) = Fx(0) + BG(0) + hd(0) (7.17)

which tells us how the ac state vector propagates in the linear sense
during any switching period Ts’ subject to initial conditions x(0) and
control influences d(0) and u{0). Equation (7.17) is a state-variable
difference equation describing the converter open-loop dynamics. If, as
developed in Chapter 6, the duty ratio modulation is determined via con-
stant gain state feedback, then the control law for the converter may be
written as

a(0) = -k'x(0) (7.18)

Substitution of {7.18) into (7.17) then produces the closed-Toop state-
variahle difference equation (7.19)
x(T ) = Mx(0) + Bu(0)

(7.19)
M= (F-hK')

Equations {7.17) and (7.19) are linear difference equation models for
converter and regulator ac dynamics, and as such embody the attainment

of this section’'s objectives.

7.2 Z-transform analysis

Just as the Laplace transform reduces time-domain differential

equations to algebraic equations in the complex transform variable s,
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the z-transform recasts difference equations in terms of z. Since the
first-order difference equations (7.17) and (7.19) are of particularly
simple form generation of their z-domain representations and their sub-
sequent analysis requires only rudimentary knowledge of the z-transform.
In the following discussion an elementary understanding of both transform
methods is assumed and only those points of particuiar significance to the
subject at hand are developed., There are many good texts available to
provide background material among which [19] and [207] are recommended.

The z-domain analysis of system transfer characteristics, impedances
and loop gain is quite similar to its s-domain counterpart. For illustra-
tive purposes the closed-loop dynamics will be analyzed. Application of
the techniques to the open-loop plant should be obvious, Since a mere
change of matrix nomenclature is all that is required. If (7.19} is
transformed to reveal the z-domain counterpart of the difference equation,
the result is

zx(z) - zx(0) = Mx(z) + Bu(z) (7.20)
In (7.20) x(z) indicates.that %x{t) has been appropriately transformed,
not a mere substitution of z for t in the expression for X{t). A Tittle

manipulation of {7.20) results in

%(z) = (21-M)" 1 (2%(0) + BA(2)) (7.21)

a familiar form for those acquainted with transform analysis. Response

to initial conditions or transfer functions from the control &(z) to any
state or linear combinations of states are readily available in terms of
the complex variable z from the expansion and manipulation of the vector

equation (7.21). Note that the inverse of zI-M plays a crucial role
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in determining the form of x{z), and that the eigenvalues of M are the
z-domain singularities of Q(z). Closed-loop system stability is con-
tingent on all characteristic values of M residing within the unit circle
in the complex z-plane.

As a first illustrative example of the usefulness of z-domain
analysis, let us revisit the buck converter of Chapter 6 whose regulation
is effected in an optimal fashion by total-state feedback. The buck
regulator under consideration is shown in Fig. 7.1. Both the inductor
current and the capacitor voltage are sensed and duty ratio control
results from a linear combination of detected errors. Current and voltage
error gains, K1 and Kz, determine the relative weight given to their
respective states. Recall that, in Section 6.4, use of the Kalman
equation approach, coupled with a continuous linearized model of the
converter, produced an expression for the relationship of K} and K2 that
yields the best voltage transient response. There it appeared that one
may choose K1 and K2 as large as one pleases, procuring an ever more
rapid transient, without fnvoking the penaity of instability, as long as

the gains are related by eqn, (6.47), repeated here for convenience:

Ky = V?KZL/ngCj (6.47)

Certainly we know that the system bandwidth cannot exceed one-haif the
switching frequency, but we are not intuitively aware of how close to this
Timit we may come, or what the implication is for K, or K2' For a defini-

tive answer we may resort to z-domain analysis.

The method is straightforward. The eigenvalues of the closed-loop



131

X
—
S
<

P e s e e e - e ——— —

— v, ref

Fig. 7.1 State-vecton-feedback buck negulaton neturns both curtent and
voltage ennon signals to determine duty-ratio modulation contrel.
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system are examined in root locus fashion with K2, the voltage gain, as
the parameter. In accordance with the modelling methods of this chapter
we seek to form the matrix M. Equation (7.11) demonstrated that there is
a close correspondence between this discrete formulation and the state-
space-averaged method [1] used in Chapter 6. Advantage may be taken of
this fact to facilitate development of M from the work of Chapter 6.
Alternative definitions to (7.15) for F and h are

F=1+ ATS

(7.22)
h = gTS
where A and g are the state-space-averaged response matrix and forcing
vector used in (6.10), shown here for clarification:

X = AX + gd (6.10)

Thus we may directly write

-5
L
F = (7.23)
Lok
T 'RC
and r a
Yq's
h = L (7.28)
Q
from the work of the previous chapter. Use of (7.19) gives
r T 4 r VT
3 95
1 L ool s |
M = - (7.25)
o 0
L C RC ] L J
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or more compactly,

- KVl AR
L L
M= (7.26)
s s
C C N
which is the desired result. Now, we need to form zI-M thus:
7+ K]V TS 4 KEV + 1 Ts
L L
z1-M = (7.27}
T T

To complete the example, specific converter values are needed. C(onsider
T, = 100(107%)sec, L = 1 mH, C = 1000 uF, R = 10 a, and Vg =10 V. Then

(7.27) reduces to

zI-M = (7.28)
-1 2-.99
and (6.47) assumes the form
K, = v.2K (7.29)

The only work that remains is to evaluate the determinant of zI-M in
(7.28) for its zeroes while varying K2, with K1 constrained by (7.29).
When this is done, the answers form the root locus plot of Fig. 7.2.
Sihce the roots occur in complex conjugate pairs, only half of the
entire locus need be shown, the other half being a mirror image. With
K, = 0, the Tocus lies near the +1 point in the plane, corresponding to

the natural open-loop LC resonant pair. As K2 in increased, and K}
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Fig. 7.7 I-domain noot Locus fon a state-vecton-feedback buck negulatox
using the optimal control gains denived Ain Chaptern 6 fon the
continuous time model.

accordingly, the locus moves across the unit circle until, at KZ about 20,
the roots occupy * j1.0. This is indicative of impending osciliation at
one-quarter the switching frequency and prescribes the confines on upper
choice of Kz, with K1 given by (6.47). This evinces the ability of the
discrete formulation to warn of possible instability when large system

bandwidths are predicted by the continuous model. With the gains related

optimally, the continuous representation shows no possibility of insta-

bility. However, the discrete model, based on the same approximations,

accounts for the effects of sampling and is able to determine the upper

1imit on bandwidth. Use of both methods in design allows an optimal s-

domain pole placement, approximating the Butterworth configuration, while
still ensuring that the gains are not chosen so large that the discrete

model predicts instability. It should be obvious that in this case the
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discrete modelling complements the continuous.

As a second example, it is instructive to entertain the concept of
loop gain, as applicable to the general case of state-vector feedback.
Since the duty-ratio modulation comprises a single contrel input port,
it is always possible in this circumstance to define a loop gain for the
regulator which is the quantity that could, in principle, be measured by
breaking the signal path at the modulator, injecting a test signal, and
measuring the resultant signal returned by the feedback system to the
signal injection point, as illustrated in Fig. 7.3 for a buck regulator.
In practice, difficulty is often encountered when the loop is broken for
measurement purposes, but the technique illustrated serves to identify

by example the existence of a single measurable quantity that is the loop
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Fig. 7.3 Lloop gain measurement fon a state-feedback buck negulaton.
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gain for a state-feedback contro) system. Measu%ements on the example
circuit of the next chapter are made by means of a more sophisticated
method which circumvents practical problems with opening the loop. The
z-transform prediction for the loop gain measurement may be obtained by
massaging an abbreviated (7.17) and the control law (7.18), whose z-trans-

forms are given in {7.30) and (7.31) respectively:

%(2) = (21-F)71(2%(0) + hd(z)) (7.30)

H

d(z) = -K'x(z) (7.31)

i

From the discussion above and the specific example of Fig. 7.3 one may
realize that the expression for the loop gain will appear in a recursive
equation for d(z) which may be generated by use of {7.30) in (7.31). The
result is

d(z) = -K'(21-F)71 (zx(0) + hd(z)) (7.32)

where the loop gain, T(z), is readily identified as

T(z) = K'(z1-F)"'h (7.33)
when the sign inversion for negative feedback is taken into account. Such
a loop gain has been derived and used in conjunction with z-plane root
locus methods for state-feedback design for systems of low order [18].

The equation is easily obtained, but as is the case for most z-domain
expressions, interpretation and laboratory verification by the usual
frequency response procedure proves difficult., The complication stems

from the fact that a frequency response on {7.33) involves allowing z

JuwT
t0 equal e S, and so the expression takes the form of a ratio of poly-

nomials of complex exponentials of w. The assistance in understanding
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provided for the s-domain counterpart by the Bode diagram is absent. As
such, there is much to be gained by developing the relationship directly
between the Tinearized z-domain and the state-space-averaged s-domain
converter descriptions, since one then accrues numerous alternate avenues
of attack on the control problem and finds adequate support from standard
laboratory measurements., In particular, one seeks to avail oneself of the
state-space-averaged describing function result without resorting to the
fundamental descriptions. Motivation for the endeavor of the next section

is thus provided.

7.3 Transformation to state-space averaging

Consider the state-space-averaged open-Toop dynamic equation (6.10)

as a representative specimen.
x = Ax + gd (6.10)
The Laplace transform solution to this time-domain equation, with initial

conditions disregarded, is used for purposes of predicting describing

function results measured in the laboratory. The solution is

%(s) = (s1-A)"'gd(s) (7.34)
This representation with s = jw is solidly established as a means for
predicting frequency characteristics of switching converters. The parallel
equation to {6.10) in the present descrete-time development is (7.17) which
when written in abbreviated form is

x(T,) = Fx(0) + hd(0) (7.35)

The z-transform solution to this equation, again with initial conditions

ignored, may be used for z-domain frequency response, with the complications
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cited in the previous section. The solution is

x(z) = (zI-F)" 'hd(z) (7.36)

STS

It is well known that the z-domain and s-domain are related by z = & °,
and in fact this statement is sometimes used to define the z-transform
[20]. The development of both (6.10) and (7.35) was predicated on the
accuracy of a two-term approximation to the exponential matrix. So,
instead of dealing with the definitive relationship between the two
transform domains, one may try an approximate substitution in (7.36) to
see what results. Let us try

2=1+sT, (7.37)

in keeping with the postulates supporting both models. Again we approx-
imated the exponential by its first two terms. Substitution of {7.37)
into (7.36) and the assumption that the transformation from the linearized

z-domain to the state-space-averaged s-domain is effected results in
x(s) = [(1 + sT)1-F] 'hd(s) (7.38)
If (7.38) is further expanded by use of relations (7.22) the outcome is
X(s) = [(1 + sTOI-1-AT,17'gT _d(s) (7.39)

which reduces to
%(s) = (sI-A)"'gd(s) (7.40)
and justifies the supposition that the transformation occurred. It may be

seen that (7.40) agrees exactly with (7.20), so the substitution (7.37)

transforms the z-domain straight~line model to the s-domain state-space-

averaged model, provided initial conditions may be ignored and a steady-




139

state solution exists. Thus, if a transfer function, impedance, admit-
tance, etc. is obtained with the z-domain model, the state-space-averaged
prediction may be recovered without resorting to fundamentals by use of
(7.37). It is worth stressing the fact that the transformation {7.37)

exactly relates the predictions of the two models, even though it is only

an approximation to the mathematical relationship between the transform
domains.

To illustrate the utility of the transformation, (7.37) may be
inverted and used to map the z-domain root locus and the unit circle of
Fig. 7.2 onto the s-plane, as shown in Fig. 7.4. One may then see that
the state-space-averaged locus, indicated by dots, moves toward the dashed
asymptote, drawn at a 45° angle, as the gain is increased. This behavior
is precisely what s anticipated for the optimal design. From the dis-
cussion of Section 6.5 on optimal pole location, we know that the poles
should approach. a Butterworth configuration as the gain becomes large.

For a second-order plant, the Tocus should thus eventually lie along 45°
asymptotes in the left héTf—p1ane. In light of this interpretation, it

is not at all surprising that the root Tocus crosses the unit circle at

quite precisely one-quarter of its circumference since that is where the
asymptote intersects.

Another interesting observation may be made from Fig. 7.4. The area
slashed out in the s-plane corresponds to pole locations which are said
to be stable by state-space-averaging, but are judged unstable by the
linearized-discrete z-domain criterion. OCne should note that the dis-

crepancy is not always found at high frequencies, as is the case with the
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locus plotted. It is easily possible to conjure up a situation where

the state-space-averaged poles 1ie near the imaginary axis but at a low
frequency. In such a circumstance there will still be a conflict between
the stability predictions, even though the effects of sampling should be
minimal. An example used in the next chapter has just such an occurrence
with open-loop poles. In that event, clearly the state-space-averaged
answer for stability is correct and the discrete model is wrong. Until
further analysis can clarify such discrepancies, the conclusion is that
one must always exercise engineering judgement when employing approximate
models. Once again we see that since each approach has its own strengths
and weaknesses the well-versed engineer will know both and remain cogni-

zant of the limitations of each.

7.4 Inductive current control

As a concluding topic for this chapter, an instance is chosen for
which there often is particularly vivid evidence of straight lines. 1In
switching converters, the currents flowing in inductors typically display
linear waveforms on a monitoring oscilloscope. Not only does this
behavior make the current state an ideal candidate for analysis by the
methods of the preceding sections, but alsc it provides a vehicle for
further discussion, which leads to important concepts and the subject
matter of the next chapter.

The topic of controlling inductive current states is, of course, not
new and in fact has received considerable attention. For constant fre-

quency converters, advantage has been taken of the cyclic ramping
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behavior to effect control over the current level by means of a comparator,
which regulates inductor current magnitude by turning the switch off when
the current meets a reference level [21]. Such a scheme can very rigidly
determine the current, so that in fact it may appear to have eliminated
this state, and reduced the system order. When this point of view is

taken the comparator control scheme is aptiy called "current programming".
Converters operating in the current-programmed mode have certain advantages
which have prompted development of modelling techniques for them [10]. The

intent of this section is not to examine current programming per se,

although the methods of this chapter are applicable. Instead, consider-

ation will be given to normal duty-ratio modulation feedback control of an

inductive current state. Small-signal differences are subtle, if any, but

that will not be a matter of concern here.

For sake of concreteness, one may consider the following discussion
to apply to the inductor current in the buck converter of Fig. 7.5,
although one will soon realize that the exposition is not Timited to a
specific topology. The salient feature of the converter depicted is that
the voltages which excite current in L are essentially constant, or at
Teast well approximated as such. This is not & necessary condition for
the straight line approximation to be valid, as will be shown in the next
chapter, but it simplifies the development by making the line slope
easy to see. In continuous conduction mode of operation the inductor
current i will appear as shown in Fig. 7.6. Each cycle the current in
the inductor ramps Tinearly upward during the switch on time, and back

down when the switch is off. Since the stated objective of this section
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Fig. 7.6 Typical inductive cunrent wavedonm,
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is to examine duty-ratio control, let us perturb the sequence of events
shown in Fig. 7.6 by addition of d to D in the first cycle. Then the
sketch of Fig. 7.7 results. The current level changes by some increment
&1, which remains essentially constant. The level shift does not decay
because in this example the output voltage s constant. In an actual
converter this situation will be well approximated for our purposes if
the natural LC resonance is well below the switching freguency, a common
occurrence. Since the relationship between the duty ratio modulation and
the resultant current modulation is sought, attention should be focused
on the action at the instant the change happens. If the circled area in
Fig. 7.8 is magnified for inspection, Fig. 7.9 emerges. The slopes
identified in Fig. 7.9 are functions of the inductance value, the voltages
involved and the converter operating condition. For steady-state operation
it is necessary that 351 #-D‘sz. The slopes are easily calculated. For
the buck converter of Fig. 7.5 s, = (Vg~V)/L and s, = -V/L, where V is
given by V = Dvg, illustrating dependence on operating condition. One
may obtain by inspection of Fig. 7.9 the desired relationship between ai
and d given in (7.41).

a1 = dT (s4-5,) (7.47)

Thus there exists an easily calculable gain constant relating the current
and duty ratio modulations.

It appears that by use of (7.41) the current in the buck converter,
for example, could be adjusted arbitrarily quickly to some desired refer-
ence level. Engineering experience makes one aware, however, that if
feedback control is used to adjust the current to a reference, then

caution need be exercised lest practical problems make the control
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Fig. 7.9 Magnified view of the change in cumtent ai <nduced by d.
Curnnent wavegorm sfopes, assumed consfant, are Adentigied as

s1 and 52.

ineffective. One needs to consider factors such as noise susceptibility
and neglected control Joop lags which may be destabilizing. A particu-
larly familiar way of evaluating regulation effort is by examining the
closed-loop bandwidth of the design. The engineer knows that designing

for excessive bandwidth invites trouble, even when the system is ostensibly
first order. It is therefore desirable to be able to predict what break
frequency would result from a given amount of current control effort in
response to a sensed error. This may be done, in this case, in a simple
and elegant manner with all the work performed in the time domain. There
is no need to resort to any transform method whatever in obtaining a basic

understanding of current feedback control. Let us then proceed with such

an analysis.
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Consider the situation where the current deviates by some perturba-

tion from a desired level, shown on an exaggerated scale in Fig. 7.10.
When the error 3(0) is sensed by a regulation Toop some duty-ratio control
will be exercised to reduce that error in the manner shown in Fig. 7.11,
The modutation of the duty ratio regquired to produce the desired ai is
given by (7.41). Since the current change is in response to the detected
error and feedback regulation is assumed here, Ai will be related to E(o)
by some chosen reduction gain constant r. In this circumstance %(O) will

be reduced to some lesser value at the end of the period, {(TS), given by
i(T,) = (1-r)i(0) (7.42)
as illustrated in Fig, 7.12. The picture given in Fig. 7.12 has all the

information needed to deduce the current break frequency. Notice that

every Ts seconds the error decays to 1-r times its initial value. For

. !
| '/:[\V desired current level!

1(0)

getuol current level

Y

o e s . — —

O
o
a3
w‘-'i

Fig. 7.10 Ulndesined perntunbation on current Level shown with actual
cwnent Less than desined value.
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Fig. 7.12 Negative feedback duty-ratic controf reduces the current erron
to a predictable fraction of its indtial value every switching
cycle., The Low frequency response may be medellfed as an
exponential decay and a closed-Loop Lime constant determined.
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a low freguency approximation to this behavior, the ripple at the switching
frequency may be ignored and the error reduction likened to an exponential
decay, with a decay time constant to be determined in accordance with the
behavior shown on the figure. With T denoting the current error decay

time constant, the approximation may be written as

-T. /1y
e > V= .p (7.43)

from which the current break frequency may be derived. Solution for T

from (7.43) and conversion of this time constént to a frequency fi yields,
in terms of the switching frequency f_, the prediction (7.44}.
_ _4&n (1-r)
fio= - Syt (7.44)
Thus we see that by the use of straight line approximations and the simple
artifice of the exponential decay model, an expression for the current-

state response bandwidth results. From {7.41) the control law producing

the frequency response of (7.44) is

d = Fﬁ%ﬁ (7.45)
It may seem that the derivation of (7.44) is too simple to give accurate
or useful answers. This is definitely not the case. One of the important
conjectures in the derivation of (7.44) was that the change A1 persisted
without natural decay. This is equivalent to ignoring the natural response
matrix F in (7.17). Often one is allowed to do this by the very nature of

the current behavior sought. If control is effected to push the response

speed well beyond the natural mode, then the supposition in the derivation
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is correct to the very extent that it need be. Control induced error
decay will dominate, and natural time constants are rightly neglected.
When such an estimate is not sufficient, then methods of the previous
sections still apply, otherwise, one will find (7.44) and (7.45) simple
and very useful relationships.

Rarely, however, in voltage conversion, will a current control loop
stand alone. It is often used as a "minor loop" in a voltage regulation
scheme involving multiple-state feedback [9]. In this circumstance the
current pole Tocation will be influenced by other feedback gains as well
as its own. Only if the current response corner frequency is well sepa-
rated from other system break frequencies can (7.44) be relied on for
accuracy. Nonetheless, (7.44) has been used with good results in designing
the control loop for the one-kilowatt reguiator in [9].

If again attention is turned to Fig. 7.12, one may ascertain from
the sketch what choices of r are permissible in terms of stability. If
r is less than zero, the error will monotonically increase. If r is
greater than 2, the error will increase in an alternating sign sequence,

so r is constrained hy

C<r <2 (.7-45)

An interesting possibility may occur to one looking at Fig. 7.12. If r
is set equal to unity the error will be eliminated entirely in a single
cycie. This is called a finite-settling~time decay. Notice that for r
egual to unity (7.43) makes no sense. The exponential no longer approxi-
mates the decay behavior. For r greater than one, %i becomes a complex

number. For illumination on these cases one may resort to the z-plane.



151

Equation (7.42), which represents the time-domain discretized
response of the current error, may be transformed into the z-domain in

the usual manner which yields

i(z) = ¥ (7.47)

It is manifest in (7.47) that the z-domain pole resides at l1-r. If a
plot of the z-plane root locus is made, Fig. 7.13 results. Notice that
as r varies from 0 to Z the pole traverses the unit circule along its
diameter of the real axis, When r = 0 there is no control exercised and
the +1 point in the z-plane corresponds to a persistent error. For

r = .5 the decay is one-half each cycle, displayed in the z-plane by a

pole at 0.5. When r = 1 the pole is at the origin which indicates the

g oy
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Fig. 7.13 A z-domain noot Locus shows how the controlled current pole
moz%é as a gunction of the fractional erron neduction pen
eyele n,
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finite-settling-time response. As r is increased beyond 1 the pole moves
along the negative real axis, meaning that the response will be oscillatory
at half the switching frequency. As r approaches 2, the pole nears the
unit circle at -1, and the oscillations become less damped, until, when
the pole emergeg from the circle, instability results. In this simple
example one is easily able to see how the z-plane prediction and the time
domain behavior correspond. This gives reinforcement to the previous
z-transform analysis and adds an alternative way of viewing the stability
bounds (7.46). Additionally, it is easily seen why T becomes a complex
number for r > 1. The response is sinusoidal in nature, requiring a
complex exponential representation.

Now that we have analyzed the current feedback control, postulating
&(O) a function of g(O), one may wonder how such a system could be built.
It seems that the large ripple on i would thwart any attempt at feeding
back this variable in the usual manner for comparison with a pulse-width-
modulation ramp waveform. This is true. The solution can be realized by
the use of a sample-and-hold circuit in conjunction with a normal pwm
scheme. More detail on this may be found in [9] and the practical
example of the next chapter where two high ripple waveforms are returned
to the modulator. In the following chapter the interesting case of the
finite-settling-time response will be taken up in general and a second-

order example constructed as a demonstrator.

7.5 Review
This chapter developed a discrete model for switching converters

and regulators of general applicability, from the basis of a concatenation
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of exponential solutions for each switched interval, which was rendered
manageable through use of a straight line approximation to the exponential
matrix. Subsequent perturbation and linearization produced a dynamic

model in the discrete domain that is the dual to the state-space-averaged

model in the continuous time domain. With the aid of the z-transform,

the discrete model was used to ascertain stability bounds on the gain
coefficients for a state-vector-feedback buck regulator whose error
return vector is determined optimaily in the continuous domain.

Kinship of the linearized-discrete and state-space-averaged models
was established on three levels. First, it was demonstrated that the
time-domain differential and difference equations are related by the
switching period. Second, correspondingly simple differences between
the matrices of the models were shown to exist. Third, a simple trans-
formation was given relating the two models' predictions in its respective
z or s frequency domain,

Finally, important observations were made on the subject of induc-
tive current feedback control, by very simple time-domain methods.
Results include: establishment of an expression for controlled inductive
current bandwidth of wide applicability in switched-mode converter
topologies, determination of stability bounds for current control gain,
and an introduction to the concept of finite-settling-time error response.
The utility of these findings is enhanced by their elementary form and
derivation.

Further growth and substantiation of these ideas are supplied in

the next chapter.
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CHAPTER 8
FINITE SETTLING TIME

The discussion on current feedback control in the preceding chapter
introduced the notion of an error decay which completely transpires in a
fixed number of switching intervails, independent of the initial error.

This finite-settling-time response was shown to exist in the simplest
circumstance where one state was considered and its natural dynamics were
ignored relative to the control induced changes. The single-cycle elimina-
tion of current error was envisioned using a straight-line geometric con-
struction of typical inductive current waveforms, which resulted in a
constant-gain feedback control law producing the fastest possible transient
response. Stimulated by the success obtained in the simple case, one is
naturally led to consider prospects for obtaining the time-optimal response
for more widely applicable switching system models, which include natural
dynamics and an arbitrary number of states. To obtain a less restricted
result, the straight-l1ine geometric interpretation is discarded and the
dynamic model of the preﬁious chapter is used in its place. Success may
well be anticipated in such an undertaking, particularly if one recalls
that the dynamic model is based on a more general straight line, that
approximates the exponential matrix solution to the system differential
equations.

To develop a full understanding of the finite-settling-time control
process, three different points of view will be used for exposition in
this chapter. First, the probiem will be inspected from a control-

coordinate frame of reference that is particularly useful in revealing
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the mechanics of the error reduction and establishing the existence of a
constant feedback gain vector which effects the desired response. Second,
the system's eigenvector coordinates will be used along with the specific
case of a second-order plant to show the solution in a lucid circumstance
where the mathematics are relatively simple. Third, the general answer

for the feedback gain vector is generated in an arbitrary coordinate system
for any specified Tength of the state vector. This problem attack may be
used in the coordinates of the designer's choice, typically the result of

a physically meaningful and measureable state definition, which ultimately
will be used for feedback implementation. The general approach not only
derives the feedback gains, but also considers optimal use of feedforward
to further increase immunity to sensed external disturbances. To emphasize
the utility of the universal solution, the regulator gains producing the
fastest possible transient decay for a buck converter are derived in closed
form.

To substantiate the derivations for the control gains, a specific
converter with second—order dynamics is analyzed in both eigenvector and
generalized coordinates, and the coincident result is realized in hardware
for laboratory verification. The regulator performance is subjected to
time and freguency domain measurements which support the analysis and lend

credence to the discrete dynamic model.

8.1 Control coordinate analysis

The existence of the finite-settling-time response for switching
converters, with appropriate constant state-vector feedback control, is

most easily established through use of the artifice of a control-coordinate
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reference frame. In such a reference one may view the error reduction as

a methodical elimination of independent dimensions of the perturbation,
mapping it into the origin with a sequence of control exercise whose length
equals the system order. The analysis of this section is an adaptation of
that presented in [22] to the particular instance of switching converters.
Although most of the development will concern itself with a second-order
example for clarity, the important results will be expanded to embrace
higher order systems.

In the previous chapter egn. (7.35) provided an abbreviated statement
of the linearized discrete ac dynamic model that will be used as the basis
for the endeavor of these first two sections, and so is duplicated here for
expediency:

x(T¢) = Fx(0) + hd(0) (7.35)

Recall that F is the linearized state transition matrix, and h is the
control influence vector, respectively relating the effects of initial
conditions and duty-ratio modulation on the characteristics of the state
disturbance at the end of one cycle. Specific definitions of F and h are
given by eqgns. {7.15) and (7.16) where they are shown to depend on the
matrices of the state-space subinterval descriptions, the steady-state
operating condition, and the switching period TS.

As a step toward understanding the general case, it behooves one to
solve for the states, if any, from which the origin may always be reached
with a single exercise of control. With i](G) indicating such a state
(7.35) is rewritten:

(1) =0 = F31(0) + hd(D) (8.1)
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whence the solution for i1{0) is

]

£'(0) = -F "hd(0) (8.2)

If an appropriate vector in the direction of i1(0) is defined as a basis
vector for a new choice of coordinates, to be called control coordinates

for reasons which will become evident, then {8.2) may be rewritten as

X (0) = dyVy {8.3)

where a is some real constant related to the magnitude of QT(O). The

basis vector vy is not necessarily a unit vector as it is defined by
v, = F'h (8.4)

As a Togical sequel to (8.3) let us now seek out a solution for all states
22(0) from which the origin may be reached with at most two sequential
alterations of duty ratio. It is plain that the states QZ(O) must be
those removed from §1(0) by a single period of duty-ratio control. Thus

use of (7.35) and (8.3) permits writing a relationship containing ﬁZ(O} as
R(T) = qqvq = FX4(0) + hd(0) (8.5)

Resolution of an expression for 22(0) from (8.5) yields

~2 e )y

x“(0) = F {q1v}*hd(0)} (8.6)
or equivalently by use of (8.4), which defines Vis

$2(0) = q]F’Zh—F“*hé(o) (8.7)

Parallel to the procedure for expressing QT(O), define a second basis

vector as
-2y (8.8)
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then (8.7) may take the form
X2(0) = q,v; + g,V (8.9)
. q? 1 GoVs .

where q, and q, are some newly defined real constants. In (B.9) it is
manifest that if vy and v, are Tinearly independent vectors and the state
vector x is of length two, then §2(0) may assume any value in the two-
dimensional space by proper assignment of 9 and ;- As such, it is
apparent from (8.9) that as long as v, and v, span the state space, the
state may occupy the origin in at most two cycles, irrespective of the
starting point. It remains to be demonstrated that this feat may be
accomplished by means of constant gain feedback.

Proceeding with examination of the second-order case, one may utilize

{8.9) and (7.35) to write

X(T.) = Flaq(0)vy + a,(0)v,] + hd(0) (8.10)

Use of (8.4) and (8.8), which define vy and vy, allows reformatting of

(8.10) as

X(T,) = F[q¥(O)F_¥h ¥ qZ(O)F‘ZhJ + hd(0) (8.11)
which in turn reduces to

X(T,) = ay(0)v; + [g(0) + d(0)In (8.12)

Since the time-optimal control is sought, it is desired that (8.12) be of
the form of (8.5), or equivalently that ;(TS) lies in the direction of v,.
which occurs if and only if

d(0) = - q,(0) (8.13)

in which case qi(Ts) is specified by
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a,(T,) = a,(0) (8.14)

and so,

x(Tg) = a(Tg)v, (8.15)
which is in the required form. In like fashion to the solution for (8.13}
it may be stipulated that

i(zTS) =0 = q1{TS)Fv] + hd(T (8.16)

S)
When {8.16) is reduced through use of (8.4), which defines Vi it becomes
0 = (ay(T) + d(T))h (8.17)

In {8.17) it is obvious that a(TS)_must be constrained by

d(T,) = - g,(T) (8.18)

Inspection of {8.13) and (8.18) reveals that the control for second-cycle
settling of the two-state system is always determined by the magnitude of
the first element of the error vector expressed in control coordinates.

It follows that the solution for 9y and hence the control a, is given by

an invariant linear combination of the vector-element scalar magnitudes

expressed in any specified spanning coordinate system, as may be realized

by the following argument. Since the control coordinates and the other
bases of choice both span the state space, any x may be equivalently de-
scribed in either reference. Thus we have

X = PyXy + PyXy = GV GpYp (8.19)
which, when cast as vector dot products, becomes

X = [p] 92] X1 = [CX} QZ} Y1 (8.20)

xp Vo
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The v, and the x.,

; have unchanging magnitude and direction in state space,

so they are related by an invariant transform matrix which may be

illustrated as

X i1 iy vy
= (8.21)
) try o Vo
Substitution of (8.21) in {8.20) generates
x = [py ppd [ty typ ] [ve] L9y ad vy (8.22)
Loy tor ] (V2 Vo
where it is easy to see that
Gy = t1yPy * typy (8.23)

and so, the solution for the control exercise is a uniform combination of
the error components measured in any chosen complete basis frame.

Now established, for a second-order system, are the important results
that, subject to certain constraints on the control coordinates, any state
may be mapped into the origin in at most two periods, and that the trans-
formation may be done with constant coefficient feedback from any suitable
state definition. Accompanying these significant findings is the descrip-
tive interpretation of the regular reduction of control coordinate dimen-
sions of error, until the error is confined to a space of zero dimension
at the origin.

The treatment of the second-order dynamics can be directly extrap-
olated to include more complicated converters with higher-order state

th

descriptions. It is then found that the n~ order system can settle in

at most n cycles when governed by the control law
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d(iT,) = - q;(iTy) (8.24)

and that q, may always be determined from a specific constant linear com-
bination of error components measured in spanning coordinates. As a matter
of additional interest, it is also true generally that

q;(iTg) = aq4,(0) (8.25)

and so the éntire control sequence is predetermined by the initial values

of the error, even though in practice it will be generated by linear feed-
back and the propagation of the dwindling perturbation.

The condition that the control coordinates span the state space is
a criterion for the controllability of the converter. In practice this
test is almost invariably satisfied, although it may prove difficult to
demonstrate. The solution in Section 8.3, developed in generalized
coordinates, gives an equivalent means of determining controllability
that is easily applied.

Even though the solution for the optimal feedback gains can be
developed along the lines of this section, a less complicated answer in
terms of the familiar concepts of eigenvectors and eigenvalues may be
obtained. The next section makes use of coordinates which decouple the

states of a second-order system for a simplified exposition.

8.2 Eigenvector coordinate analysis

The finite-settling-time control gains will be generated for the
second-order switching converter by use of the converter canonic coor-
dinates and adoption of a method recommended in [23]. Resort to eigen-

vector coordinates permits one to view the action of each state as
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independent of the others which results in considerable simplification
of the notation in the solution. The procedure established here, with
explicit expanded expressions for the second-order system, is similar to
and will lay the foundations for the more general treatment of the next
section where the notation of necessity is more complex.

If the matrix F in (7.35) has distinct eigenvalues, which will be
assumed for this development, then there exists a matrix L which satisfies

the generalized eigenproblem

FL = LA (8.26)

In (8.26), A is a diagonal matrix of the eigenvalues of F, and L i5 a
matrix whose columns are the eigenvectors of F. Since the eigenvalues
are distinct, the eigenvectors are linearly independent and L is non-
singular. Therefore (8.26) may be solved for A which yields

p= LR (8.27)

It is desired to make use of (8.27) to render dynamic eqn. (7.35) diagonal.

To this end, premultiply (7.35) by LV as in

L“]ﬁ(TS) = 1 Trz(0) + L hd(0) (8.28)

If %(0) is replaced by LL™1%(0) in (8.28), then (8.29) results, which has

the diagonal form:

1y = TRl ko) + L Thd(o) (8.29)

L s

To see this define w by

W o= L"‘E;( (8-30)

and f by
fF=1""h (8.31)
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then, with use of (8.27), (8.29) becomes

w(T) = m(0) + fd(0) (8.32)

If (8.32) is used twice, an expression for w(ETS) may be written in terms
of w(0):
w(2T) = A% (0) + Afd(0) + FA(T ) (8.33)

In the preceding section it was shown that we may expect to be able to
reduce w{0) to zero in two cycles and so, with this in mind,.we may set
w(ZTS) =0 in (8.33). Then it consists of two simultaneous equations, in
terms of the initial conditions on w, for the two unknowns 3(0) and é(?s).

Expanding the notation in (8.33) with w(ZTS) = ( yields

a )
A 0 w1(0) A 0 f ) fy A
0= + d(0)+ d(TS) (8.34)
2
0 hz wz(o) 4! kz f2 f2

which when written in scalar equation form becomes

(o)
¥

2, ; .
= Ay w1(0) + A1f}d(0) + de(TS)
(8.35)

Low)
¥

= 2,7Wy(0) + 2,F,A(0) + £,A(T)

Equations (8.35) make it very plain to see that the matrix-vector egn.
(8.33) was indeed simultaneous equations for the d in terms of w(0). Any
of the several techniques for solving simultaneous linear egquations may
produce answers for the &. However, from the results of the previous
section, we know that d will be an invariant linear combination of w, and

so we need only solve for 3(0) to find the feedback gain coefficients.
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As such, in this instance, Cramer's rule provides an attractive solution.

Stight manipulation of (8.35] reformats the equations as

~ 7 -
- w]({)} = f'{/}\} d(hO). * f}/l‘t d('TS)
(8.36)
- uy(0) = F,/n, 4(0) + 0,7 A(T,)
and so, the answer in determinant form for &(O) is
: 4
~wy(0)  f/n0
(8.37)

d(0) =

2
f/x i/

2
folha  Tald

Performing the operations indicated in (8.37) and simplifying the result
yields eqn. (8.38) which is the time-optimal control law for a second-

order plant expressed in canonical coordinates:

2 2
r\ - A

Note how the solution assumes a simple form in terms of the familiar eigen-
values, and also that similar eigenvalues will resylt in large feedback

gains. Thus, good design practice is to confiqure the open-loop plant

such that it has distinct eigenvalues, in accordance with the assumptions

of this development. Rarely, however, will (8.38) be of any use by itself.
The canonical state may be a complex number combination of the initial

choice of state x, and so to use the information in (8.38) we need to
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transform it back to a meaningful choice of state vector elements. Let

ki and k, be the canonical state feedback gains defined by

2 2
)\} - AZ ( )
Kl o= . K = 8.39)
L Ay=,) 2 fsz1-A2§
then (8.38) may be cast in vector notation as
. _ T
d(0} = - k' 'w(0) (8.40)

If definition (8.30), for w in terms of x, is used in (8.40), (8.41)

results:
d(0) = - k' 1L71%(0) (8.41)

In {8.41) it may be seen that the desired feedback gain vector K is given

by

KT = Tt (8.42)
which is a useful answer, once the mechanics of obtaining the eigenvalues
defining k' and the eigenvectors comprising L are sorted out.

The eigenvalues of any second order matrix are handily evaluated as

Ay o = Ir oy (ig) 2. Det (8.43)
’ 2 2

where Tr implies the trace, or sum of the matrix diagonals, and Det implies
the matrix determinant. Thus in our particular case, with regard to the
matrix F, we have

Tr (8.44)

H

f11 * a2

and
Det = f1]f22 - f}szE {8.45)

With suitable normalization, the eigenvector matrix L takes the form
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] 1
L= (8.46)

Ly A
where the elements 321 and £22 may be calculated from the eigenvalues and

the components of F by use of (8.47):

21 F
12 (8.47)
. - _(T?? - k%)
22 fis

Notice that F must be written such that f,, # 0 for egns. (8.47) to be
used. To write the expression for the feedback gains, L'1 is needed, and

so (8.48) provides the required information from inversion of (8.46):

'I £22 ""‘E
L = (8.48)

2 ~ 4o
Now a compiete algorithm for solution of the time-optimal feedback gain
vector is established. One need only write the dynamic egn. (7.35) by
any of the methods of Chapter 7, calculate the eigenvalues of F from
(8.43), find f from (8.31), obtain k' from (8.39), derive L-} using (8.47)
and (8.48), then write the answer from (8.42). This procedure would not
be too arduous an undertaking with a hand calculator if all of the
arithmetic were real. Unfortunately, by the very nature of the high

efficiency conversion sought, the eigenvalues of F will often be complex,
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and so will the arithmetic involved in this approach. Aside from this
complication, however, the method is straightforward and rather generally
applicable to second order systems. Since a modern digital computer manip-
ulates complex numbers with great facility, there is little difficuity in
automating the aforementioned algorithm to solve for the gains directly
from the statement of (7.35). This has been done and a copy ¢f the Fortran
coding is provided in the Appendix.

In Section 4 of this chapter results obtained for a particular second-
order system by means of this algorithm, and an algorithm to be developed
in the next section, are given. The gains obtained by the method of this
section are scaled by a loop-gain factor, and a root locus ptot is generated
which confirms the eigenvector coordinate analysis. When the loop-gain
scaie factor is unity the z-domain poles are shown to reside at the origin
as anticipated.

It may be seen that the solution for the return coefficients relies on
a time-domain analysis. The prediction of the diagonalized dynamic egn.
(8.32) was used twice in'successéon to obtain a relationship for w(ZTS} in
terms of initial conditions and two exercises of control. Two equations,
from the State vector of length two, and two unknowns 3, from considering
two transition periods, resulted in a unique determination for the control
gains, when w(ZYS) is set equal to zero. It will be shown in the next
section that this type of time-domain problem formulation and solution may
be used on higher-order systems, with correspondingly longer control se-

quences, and that it may be done in any spanning coordinate system.
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8.3 Generalized coordinate analysis

This final assault on the finite-settling-time control problem wil]l
be the most general, and at the same time in some ways the simplest. Since
a solution with as few restrictions on it as possible is desired, no Tonger
will the abbreviated form of the dynamic equation be used. The starting
point will be egn. (7.17) which includes modelling of control disturbances
other than the duty-ratio modulation. Since it is essential to the present

development, eqn. {7.17) is given again here:

X(T) = Fx(0) + Ba(0) + hd(0) (7.17)

The control vector disturbance G(0) may include such influences on the
switching system as input voltage and load variation. Under the present
modelling technique, these perturbations are assumed to be constant during
any given switching period, so G(0) describes U from the beginning of the
period until just prior to the next sampling instant.

In the eigenvector coordinate development, the solution was obtained
by writing an expression-for w(ﬁTS) and setting that quantity to zero. For
the present purpose a relation for i(?TS) will be required. Repeated appli-
cation of (7.17) generates the requisite equation:

-1 _
x(iT,) = Fi2(0) +y_ F1“1"3[BG(jTS) + hd(3T,)] (8.49)
j=0
Fquation (8.49) gives us foresight into the position of the ac state vector
as a function of its initial position in state space and the control se-

quences é{st) and G(j?s). The duty-ratio modulation a(jTS) is effected
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at the discretion of the design engineer, usually by linear feedback.
The other control perturbations ﬁ(st) typically are not known in advance,
and only u(0) can be measured. An unbiased assumption about u would be
that

wiT) =0 , J#£0 (8.50)

Application of (8.50) to {8.49) yields

i-1
X(T) = (o) + FITBo(0) + o B Ina(s) (8.51)
=0
The intent is to use eqn. (8.51) to solve for the d(jT ) that will reduce
x{0) to zero while negating the impact of the control disturbance u(0).
To do this we may set i(iTs) equal to zero; then, (8.51) will consist of
n {the system order) simultaneous linear algebraic equations in the i un-
knowns d(st). For these equations to possess a unigue solution for the
a(jTS), with Q(O) and G(O) arbitrarily determined, one must choose i = n.
This observation is in keeping with the results of Section 8.1 where it was
th

shown that the n™ order plant required n cycles to settle. With i = n

and %(nTS) = 0 (8.51) becomes (8.52):

o}
1
—t

0 = F'x(0) + F"1BO(0) + Fn'1"jh§(st) (8.52)
-0

[

The sequence d(st) may be viewed as a vector é‘of length n whose elements

are &j = a(jfs). Then, to simplify notation, some matrices may be defined

as
p=F" (8.53)

Q=r""'s
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and

n-1
¢ = col F"17Jh (8.54)
J=0
where in (8.54) Col denotes the left-to-right column expansion of the

arguments following it to generate a matrix. With these definitions and

the vector concept of é, (8.52) may be expressed compactly as
0 = Px(0) + Qu(0) + ¢d (8.55)

Since (8.55) is a set of simultaneous equations and only one of the unknowns

need be solved for, we may again write the solution for d(0), in determinant

form, through use of Cramer's rule as

n-1
d(0) =|[-PX(0) - QG(0)] + co1 FMT7dp (8.56)
j=1

icl

However, the arithmetic of the more general solution is often best handled
by a digital computer, and (8.56) proves to be a computationally expensive
way to solve (8.55). An alternative method is provided by inversion of C
and use of

d = -¢"px(0)-c o) (8.57)
In (8.57) it may be seen that the complete solution for the entire control
sequence is determined by the initial condition, again agreeing with the
analysis of Section 8.1. For solutions (8.56) and (8.57) to exist, it is
required that |C| # 0. This is an alternative statement of the need for

control coordinates to span the state space. The matrix C, often referred

to as the controllability matrix, must be nonsingular, or else there are
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one or more dimensions in state space that are not independently affected
by any control sequence. Such a circumstance is rare fér switching con-
verters, which by design are controllable systems.

The solutions (8.56) and (8.57) may in some situations be even
easier to evaluate than the eigenvector coordinate answer. If X is chosen
to be a real vector variable, then the tedium of complex arthmetic may be
avoided. Further, (8.57) need not be evaluated in its entirety, since the
feedback gain vector is prescribed by the first row of C*}P. In simple
cases closed form results are readily obtained, as will now be shown by
returning to the buck converter example.

To keep the example as simple as possible, u{0) will be taken to be
zero and so all the system description needed is provided by egns. (7.23)
for F and (7.24) for h. From those equations the controllability matrix may

be formed as shown in {(8.58):

VTo VT
C = [Fh, h] - L L (8.58)
vl
3 0

The inverse of C may be evaluated in the usual manner as

i 0 c |
VT2l
¢! - g's (8.59)
L L
Vo, vgrsz

If F, as given in (7.23), is squared then P results:
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(%) (e bsl)

P = (8.60)

G b-m) (i [ -%])

sl

The feedback gain vector KT is now obtained, as given in {8.61), by pre-

multiplying P in {8.60) with the first row of C'] in (8.59).

. L T, 1 L T, 2 )
PUR | SIS P - 7. -8 (8.6
,
VT RC Vg ngsz RC

The result may be directly verified by solving for the closed-Toop z-domain
poles, which may be obtained, as in the example of Section 7.2, by solving
for the singularities of zI-M appearing in eqn. (7.27). After appropriate
substitutions in (7.27) for the elements of K from (8.61), and a little

manipulation, we have zI-M given in (8.62):

- b))
(o) [z

To find the singularities, set the determinant of zI-M to zero, which

2-1-132+1-T52=o | (8.63)
z RC RC ' -0

22 =0 (8.64)

z1-M = (8.62)

resylts in
or

and so, both z-domain poles are assigned to the origin when K? is
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determined by (8.61). The z-domain pole placement is indicative of a
finite-settling-time response, which confirms the anticipations. Thus

we see, in this simple example, that it is possible to obtain a closed-
form result, which is always desirable from a design point of view. One
may observe from (8.61) that the gains are independent of operating point,
vary inversely with the source voltage, and have specific dependence on
the switching period and circuit elements. Therefore, for instance, if
inordinately large gains resulted from a particular proposed converter
configuration, the designer can see what must be done to correct the
situation. If he cannot change circuit parameters, he may opt for a
slower transient response by reducing each gain to a fraction of the
finite-settling-time value. Then the modified response could be predicted
from a z-domain root locus, obtained by use of (8.61), to determine the
ratio of the two gains, and (7.27), from which the poles may be repeatedly
obtained to form a locus.

Although closed-form results are nice from a design standpoint, they
are seldom procured this easily. With sacrifice of the insight of analytic
expressions, the Targe portion of the tedious arithmetic may be assigned to
a digital computer. Software for the solution outiined in this section is
included in the Appendix. The Fortran program presented there will solve
for the finite-settling-time feedback and feedforward gains, from the
starting point of the state matrices, for systems up to tenth order. In-
termediate results are printed out to give the designer as much insight
into the idiosyncrasies of each solution as possible. The design example
of the next section contains some output from this computer program

analysis.
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8.4 Second-order finite-settling-time control example

The applications of the discrete approach thus far have been rather
simple ones, so that the mathematics remained manageable and the method
was prominent. This section will substantiate earlier results by pre-
senting an actual design instance and hardware realization of finite-
settling-time control. The candidate chosen to illustrate the effective-
ness of discretized state vector feedback is a coupled-inductor Euk
converter. Owing to the converter's nonlinear gain characteristic, the
feedback and feedforward gains are operating condition dependent, and
so the closed-form solution is considerably more complicated than in the
buck converter example. To circumvent algebraic toil, the computer pro-
grams based on the methods of Sections 8.2 and 8.3 are utilized.

Consider the coupled-inductor éuk converter shown in Fig. 8.1. The
converter contains two energy storage elements, L and C, and thus is a
system governed by second-order dynamics, The switch shown alternately
~grounds one end or the ather of C with fixed period TS and duty ratio D.

A physically meaningful énd easily measurable state variable selection is
the inductor magnetizing current and the capacitor voltage. To distinctiy
identify this choice of states, Fig. 8.1 may be redrawn with the coupied
inductor replaced by the eguivalent circuit model of an ideal transformer.
Fig. 8.2 shows the converter mode] with the state variables identified and
their sense indicated. By inspection of Fig. 8.2, it is possible to write
the vector differential equation describing the system dynamics for each
position of the switch. Using the principle of linear superposition, one

may evaluate the effect of each state or control with all others assumed
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Fig. &.1 The coupfed-Ainducton Cuk converter without oufput capaciton
used to demonstrate a two-cycle total transient time necovery
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Fig. 8.2 State-vaniable model for the finite-settling-time demonstraton.
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zerg. When all states and controls have been independently considered,
and their contributions to the state derivative superimposed, the complete
description of the state dynamics is obtained. One need only write the
anticipated form of the vector differential eguation and then enter the
matrix elements one at a time by examination of the circuit model in
Fig. 8.2. Equations (8.65) and (8.66) give the outcome for the two

switched intervals DTS and D‘TS:

i o o T[] [¢]
g‘“t‘ = + Vg 3 DTy (8.65)
v 0 - 1 v !
C RC c RC
] " J L 4 L
M N -1 ] j h
1 0 “L— F"l E
d . R vg DT, (8.66)
a« LA R A R I B
c C RC EJ RC
— = L J e T

Note that in the present.formulation the control vector is the scalar
input voltage Vg. More generally, one could consider more influences on
the system as control. For example, load current and input voltage could
comprise a control vector, then B1 and 82 would become 2 x 2 matrices.
The solution procedure is not altered, however, and so for this illus-
trative example it is sufficient to consider scalar control. Load
disturbances will later serve to perturb the regulator operation for
examination of transient behavior.

Determination of the state equations (8.65) and (8.66) is in some
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sense the answer to this control problem. Once numerical values are
calculated for the matrix entries, the rest of the solution reduces to
arithmetic, handled with dispatch by a computer.

The circuit of Fig. 8.1 was constructed with L = 1 mH, C = 5.36 uF,
R =150 @, Vg =15V, D = .5 and ?S = 50 us. The converter output is
- 15 V¥ at 100 wA producing 1.5 watts of dissipation in R. With the
circuit element values inserted in (8.65) and (8.66), the state egquations
assume the numerical form required by the computer programs as given in

eqns. (8.67) and (8.68):

i 0 0 i 1000
d - . 15 ;5 DT, (8.67)
dt | v 0 1244 |y 1244
C c
i 0 -1000 i 1000
d ] N 15 5 D'T, (8.68)
dt B 5
v, 1.87(10°) 1244 | | v, 1244

If the information contained in (8.67) and (8.68) is appropriately for-
matted and input to the computer program employing the eigenvector coor-

dinate solution, the state transition matrix is automatically calculated
by means of (7.22) as 1.00 -0.0250

) _ (8.69)
F=1+AT, =466 0.938

Pursuing the solution outlined in Section 8.2, one may solve for the plant

eigenvalues from F as

Moo= 0.969 =+ 0.3401 (8.70)

which, if transformed to polar notation, become
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_ AS,Z = 1.03£f; 19.3? (8.71)

Conspicuous in (8.71) is the fact that discrete analysis is predicting
open-loop eigenvalues that lie outside the unit circle and corresponding
system instability. The circuit is known to be open-loop stable, and so
we have a circumstance where the discrete formulation gives qualitatively
the wrong result, even though quantitatively the error is on the order of
a few percent. The discussion in Section 7.3 alluded to the possibility
of such an erroneous result and sheds some light on the circumstances
under which it is 1ikely to occur. In any event, the accuracy and useful-
ness of the discrete model will be borne out in this example, and so one
should not be too upset that neglect of small effects in obtaining linear
approximations destabilized the model.

The eigenvector coordinate solution proceeds as outlined to obtain

the feedback gain vector KT given in {8.72):

kKT = [1.41  0.0980] (8.72)

Since it is useful to have some idea of how critical the feedback gains
are, the gain vector is multiplied by a Toop gain factor k, such that

KT is replaced by kKT, and k is varied from zero upward. The eigenvalues
of the closed-loop state transition matrix M are repeatedly evaluated
during this process to form a z-domain root locus as shown in Fig. 8.3.
The poles follow a trajectory that takes them both to the origin when

k = 1.0 as expected, and then, as k is further increased, one pole moves
toward the loop-gain zero at z = 0.733 and the other proceeds to minus
infinity. When k is between 1.2 and 1.4 a pole exits the unit circle
along the negative real axis indicating that the c¢ircuit will go unstable

with oscillations at half the switching frequency.
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Fig. 8.3 I-domain neot Locus for the ginite-settling-time configuration
as a function of Loop-gain newmaldization parameten b, Stabitity
gacn margin is befween 20% and 40% detenmined by gains indicated
on the Locus exiting the unit clrcle at -1.
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The position of the loop gain zero was not determined by the computer
program since no use is made of the loop-gain concept in the algorithm.
However, the Toop gain is defined in (7.33)}, and the location of the Toop
gain zero is easily calculated by hand from this definition. Once the ratio
of the feedback gains is determined, so is the position of the zero. Then
one may generate Fig. 8.3 by use of graphical root-locus technique Jjust as
is done in the s-plane. This is promoted as a design technique in [18]
and so the zero is included in the locus to facilitate comparing solution
methods. The time-domain solution solves directly for the correct ratio
of the feedback gains, and in fact the precise gains, that assign the z-
plane poles to the origin. In contrast, with root-locus technigue, one
must determine where to place the loop gain zero so that the locus passes
through the origin, and then determine the required loop gain. For second-
order plants this approach is workable, but clearly for higher order
systems, where multiple zeroes need to be placed prior to generating a
complicated locus, the method becomes cumbersome if not useless. It is
still to one's advantage to be able to interpret the pole placement in
terms of loop-gain and root-Tocus concepts. Each additional vantage point
gained on the control problem increases the probability that the designer
has a meaningful interpretation.

To capitalize on the attributes of the time-domain solution, another
computer program was written to solve, in generalized coordinates, for
feedback and feedforward finite-settling-time control gains, and to do so

for systems whose state and control vectors may contain up to ten elements.
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This program accepts the information of (8.67) and (8.68) directly, and
automates the solution by the method of Section 8.3 thereafter. The
program sets up the complete dynamic equation (7.17) through use of the
defining equations (7.15) and {(7.16). The process involves solving for
the steady-state operating point and so this information is also printed
out. The nominal state values agree precisely with the prediction of
state-space averaging and are
i(0) 0.20 (8.73)

x(0) = =
v (0) 30

indicating 200 mA magnetizing current and 30 V capacitor voltage. Use of
the result (8.73) in egns. (7.15) permits calculation of the complete ac

dynamic representation as
%(T.) = Fx(0) + BG(0) + hd(0)

1.00 - 0.025 | 0.050] 1.50] .
x{0) + u(oy + d(0) (8.74)
4.66 0.938 0.062 -1.87

Notice that there is a négative entry in h. Upon first increasing the duty
ratio the capacitor voltage will diminish, but will eventually increase due
to the interaction of the states determined by F. This "wrong way" high
frequency behavior manifests itself in a 1-ts term in the numerator of the
Laplace transform transfer function, where it is interpreted as a right
half-plane zero. The presence of this phenomenon often complicates the
control loop problem by contributing to phase lag while increasing the

loop gain at high frequency. The interpretation in the time domain is not

nearly so elegant but one should be aware that such a minus sign in the
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duty-ratio control influence vector can indicate an ill-conditioned plant
and make the feedback gains unreasonably large or critical.

The solution proceeds with the calculation of P, Q, and C from
(8.53) and (8.54). Then the controllability matrix is inverted and the
desired gains are obtained from the first row of (8.57). The resultant
control law including feedforward may be written

i(0)

d(0) = —[1.41 0.0980] | _ - 0.0491 GQ(G) (8.75)

v.(0)

The control law {8.75) will, to the extent of the accuracy of the linear-
izing approximations, remove any effect of an initial state or input voltage
perturbation in two switching periods.

In order to impiement the control law, one must somehow obtain the
values of ?(O), GC(O) and QQ(O) without heeding normal state-variable
ripple or any intracycle vaviation in vg. One expedient way of making the
control loop conform to the postulates of the analysis is to use a sample-
and-hold circuit to keep‘the values of the initial errors, appropriately
modified by the control gains. Figure 8.4 is an equivalent circuit repre-
sentation of the control Toop and power stage developed for this example.
The differential amplifiers and buffer amplifier are constructed from
LM318 operational ampTlifiers. The sampling switch is a MC14066B bidirec-
tional mosfet switch. The ramp generation and comparator functions are
provided by a S$G3524 switching regulator control chip. The power switch
is realized by a n-channel FET and a diode. Timing signals to the sample

and hold are processed with a MCT4584B hex Schmitt trigger to provide
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sampling just after the switch grounds the positive end of the transfer
capacitor.

The signal injection and Toop-gain measurement points are chosen
such that the injected signal is sensed by the high impedance input of
the comparator, while the amplified return is measured at the Tow imped-
ance output of the buffer amplifier. This technique of loop gain
measurement is described in detail in [24] and [25].

We may make use of the transformation s = (z»?)/TS developed in
Section 7.3 and the knowledge of the z-plane Toop-gain poles and zeroes
from egn. (8.70) and Fig. 8.3 to determine the state-space-averaged
frequency response prediction, The low frequency magnitude of the loop
gain may be obtained from T(z) with z approaching 1, or from T(s) with s
approaching zero, whichever is more convenient. The results are that
the Tow frequency loop gain is 13 dB, the Toop gain zero is at 850 Hz, and
the complex pole pair is at 1080 Hz. With this information the Bode
asymptotes are easily sketched. Figure 8.5 shows these asymptotes along
with measurement data on‘}oop gain and phase. One can see that the state-
space-averaging prediction agrees well with the experimental data, espe-
cially considering the complexity of the Toop gain path. There is a
notable discrepancy in phase as 10 kHz is approached. The phase lag is
heading toward 180° instead of the 90° expected from the magnitude
asymptote sketch., Such deviations are commonly found as half the
switching fregquency is approached, and thus its occurrence here is not
surprising.

The converter has no open-loop line rejection and passes any
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voltage disturbance at the input directly to the output, possibly even
magnified by plant resonance. Closing the Toop and connecting the feed~-
forward gain both produced improvements in the line rejection character-
istic over the open-loop case, with virtually no degradation at any
frequency. Figure 8.6 plots the open and ciosed loop data obtained
experimentally. The open-loop characteristic is essentially 0 dB except
in the vicinity of the system's natural resonance at 1080 Hz. Once the
control is implemented, one notices appreciable line rejection below the
state~-space-averaged system bandwidth of fS/ZW, which may be ascertained
from the transformation s = (2~?)/7S and the z-domain closed-Joop pole
placement. Thereafter the Tine rejection returns essentially to its
open-loop value. Nowhere does the line rejection characteristic degrade
when the feedforward is connected, and there is considerable benefit ob-
tained at the lower frequencies. Since the line rejection feedforward
gain is chosen in this case with no assumption about the frequency
spectrum of the line distrubance, one may anticipate a reduction in Tine
pass for all frequenciesbwithin the converter closed-loop bandwidth, as
is experimentally obseryed.

The Toop control was estiablished in order to effect an elimination
of any state vector errar in n cycles. Since this system is of order 2
and TS = 50 us, state errors should be eliminated in 100 us, at least in
the small signal sense. This is of course subject to the accuracy of the
approximations made when linearizing the analysis. To test the regulator's
transient response, a large signal disturbance of a 100% overload condition

js used. The load is switched to 75 o which disturbs both the capacitor
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voltage state and the inductor current state. When the load is returned
to the nominal 150 @, the system recovers to its normal operating point.
Figure 8.7 is a picture of the oscilloscope trace of the recovery trans-
ient. The upper trace is the converter's output voltage. Since the
converter is operating without an output capacitor the peak-to-peak
voltage ripple is seen to be about 1.5 V or 10% of the dc output Tevyel.
The lower trace indicates the removal of the overload condition when the
signal goes low. While in the overload condition the output voltage drops
about 0.5 V from - 15 V to - 14.5 V. When the overload is released, the
system is seen to recover without any overshoot in 2 cycles to a very

close approximation. This performance is obtained in the face of a

rather Targe disturbance, while the analysis was predicated on small
signal approximations. It is clear that in the small signal sense the
regulator does indeed exhibit a finite-settling-time response.

For sake of comparison the open-loop response is shown in Fig. 8.8.
The transient there is determined by the open-loop poles. The trace
shows that 800 us after the disturbance the output voltage is still
oscillating, markedly different behavior than the 100 ps total transient
time of the closed-loop regulator. The frequency of oscislation without
regulation is approximately 1 kHz as anticipated.

Formulation of this switching regulator relied on time-domain
transient analysis. Therefore, the most stringent criterion for the
precision of this synthesis technique is comparison of the experimentally
obtained transient with the predictions of the modelling. Figure 8.7

provides most convincing testimony, asserting that the linearized
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Fig. &.8 Open-Loop necoverny grom overfoad condition shows an osciliatony
nesponse at the econventen's natural plant nescnance of abeut 1 RHz.



189

discrete model is a potent implement for analysis and design of high-
frequency transient behavior. Although the material presented in this
chapter is predominantly concerned with obtaining the finite-settling-
time response, it should be evident that the discrete approach is not
Timited to this application. Since such a response is not predicted by
continuous models, realization of such performance serves as a persuasive
demonstration that there are unique merits associated with the discrete
method, and that, even though it certainly is not always the technigue

of choice, it is a useful approach and adds another dimension to the

switching-regulator design engineer's capability.

8.5 Review

Three different viewpoints were adopted in this chapter's analysis
of the finite-settling-time state-vector feedback controller. EFach frame
of reference used had its own particular attributes which allow one to
understand certain aspects of the time-optimal control problem.

First, a coordinaté frame was defined whose axes lie antiparallel
to directions that duty-ratio control sequentially moves the state vector
while eliminating the error in a countable number of cycles. The primary
utility of this control coordinate reference results from exposure of the
error reduction process so that several important fundamental facts may
be established. Of essential significance is the result that, subject to
the condition that control coordinates span the state space, any small-
signal error may be eliminated with a number of discrete control exercises

equal to the element count in the state vector. Further, the entire
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duty-ratio modulation sequence was shown to be predetermined by the
vector coefficients of the initial error expressed in control coordinates.
These results would remain academic curiosities were it not for the
indispensable conclusion, from a practical standpoint, that the entire
control sequence may be implemented with any suitable choice of states
by constant-gain vector feedback, thus utilizing the system dynamic
response to perform an analog computation for the duty-ratio modulations.
Tersely stated, the desired result may be achieved by constant gain
Tinear feedback.

Second, a technique for obtaining the return gains was developed
in eigenvector coordinates which decouple the states and thereby minimize
mathematical complexity so that emphasis may be placed on the algorithm
for solution. Consideration of second-order systems not only resulted
in explicit expressions for the gains in terms of eigenvalues and eigen-
vectors, but also introduced a time-domain method of solution in an un-
clouded circumstance. Clear indication was obtained from the closed-form
results that, for ease of controllability, the open-loop plant should be
designed to have well-separated eigenvalues. The simplified notation
encountered in this choice of coordinates made the solution easy to imple-
ment on a digital computer. Predictions of this automated solution were
correlated with experimental findings.

Third, the so?ufion was viewed from an arbitrary spanning coordinate
frame in state space, where an alternative controllability criterion was
developed, and the existence of an n-cycle sequence of control, predeter-

mined by initial conditions, was re-established. Not only was the choice
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of states left arbitrary, but also the system order, and additionally,
the use of feedforward to reject external disturbances was included.
Despite the formidable appearance of the expanded problem, its time-
domain solution, once understood, was shown to be in fact simple, as
exemplified by generation of closed-form answers for a buck converter in
terms of circuit parameters. The wide applicability of the approach and
the possibility of using this method on high-order plants provided
sufficient motivation for computer automation. Feedback and feedforward
regulation for the second-order example of this chapter was designed
digitally by means of a Fortran program written in very general terms
for systems up to tenth order.

Experimental verification for the analysis of this chapter was
derived from a second-order Cuk converter regulated to obtain the fastest
possible recovery from error. The computer programs aided the circuit
design by providing a z-domain root locus for loop-gain stability analysis,
as well as by calculation of the optimal regulation gain vector. Describ-
ing function results for the loop gain, forecast from the discrete model
through use of the transformation to state-space averaging, were obtained
by laboratory measurement, which confirmed the theoretical frequency re-
sponse prediction. The regulator was shown to have good line rejection
characteristics within the closed-loop bandwidth, entirely attributable,
in this case, to the control which incorporated feedforward from the input
voltage as well as state feedback. Direct evaluation of the time-domain
analysis was obtained from scrutiny of photographed oscilloscope traces

of the system recovery transient. The settling response obtained agrees
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extremely well with anticipations, giving solid support to the techniques
employed and developed in this chapter.

A seemingly minor contribution to the fabrication of control
circuitry for switching regulators is the inclusion of a sample and
hold in the feedback loop to prevent switching ripple from interfering
with the normal pulse-width-modulation process. Use of the sample and
hold rendered the loop control in a form that corresponds well with the
piecewise constant assumptions of the derivation, and so, the motivation
for inclusion of the sampling circuit was to make the regulator conform
to the analysis. However, the sample and hold provides a useful alterna-
tive to comparator-based ripple regulation of state variables, such as
the current programming discussed in [10]. With a sample and hold pre-
ceding the pulse-width-modulation ramp and comparator, it is possible to
set a constant feedback gain that will not be affected by the different
ripple slopes that occur with changing operating point. Gain compensation
then may be done in the_usua¥ manner by adjusting error amplification,
thus avoiding the complexity and cperating condition sensitivity of cyclic
ramp compensation as used in [10].

Part 2 of this work is primarily concerned with the regulation of
switching converters. The development uses two different modelling
techniques, one continuous and one discrete, both relying on identical
linearizing assumptions. With either model the controller design has
followed the modern control approach, with state vector feedback tacitly
assumed and response to initial conditions related to the performance

criterion. Whenever possible the results of the modern theory ave related
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to the concepts of the classical single~return-path formulation, in
keeping with the belief that the fullest understanding of the control
problem is only obtained by viewing it from as many aspects as available.

In Chapter 6 methods of optimal control theory were applied to the
continuous model, establishing a general procedure for regulator design
that may be automated from the starting point of the switched state
matrices and the selection of a penalty function. Closed-form results
were obtained for a buck converter by the Kaiman equation method, which
was shown to be workable by hand for low-order systems. The buck regu-
tator envisioned promised to have an optimal pole placement and a
corresponding minimal transient excursion on output voltage for a given
Tevel of control exercise. Such configurations, which can be said to be
the best or optimal with respect to a chosen criterion, may in principle
be designed for systems of arbitrary order., Once the converter dynamics
are cast in a suitahle form as developed, methods for solving the optimal
Tinear requlator problem for switching converters with computer automa-
tion are suggested and referenced.

In Chapter 7 a linearized discrete model of general applicability
for switching regulators was developed and used to determine the stability
boundaries for the previously mentioned buck regulator. The results of
the analysis were shown to be exactly what one would anticipate when one
is aware of the optimal pole positions from Chapter 6 and the transforma-
tion developed in Chapter 7 between state-space-averaged results and the

linearized-discrete predictions. Commonality was established on several
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tevels between the continuous and discrete converter representations.

A simple but important illustrative example of the discrete analysis
revolved around the control of a single inductive current state where
useful results of an uncomplicated nature were obtained. Among the out-
comes of examining current feedback control was an introduction to the
concept of a finite-settling-time response which served as a prelude to

Chapter 8 concluding this documentation.
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CONCLUSION

Two important problems inherent to switching regulation, both of
which stem from the switching process itself, have been addressed.
Offsetting the advantages of switching conversion as compared to linear
regulation are the drawbacks of switching noise generation and nonlinear
response to control. Unfortunately for the uninitiated, these difficulties
in switcher design are often not perceived and fully assessed until after
the functional form of the converter is established. Then, to the dismay
of the designer, corrections for the inadequacies of the fundamental
approach usually add to the circuit complexity and leave the engineer
dwelling on problems that may have been avoided from the outset. The
material contained in this dissertation can provide guidance in avoiding
such a quandary or in resolving one that exists.

Part 1 of this work is concerned with the problem of switching noise.
The switching process produces high rates of current change within the con-
verter structure that are sometimes transmitted unattenuated to the source
or load, which generates external noise and often conflicts with user
requirements or government regulations. The engineer who, by his own lack
of foresight, is saddled with resolving such a conflict often must resort
to adding filtering elements external to the basic converter., The penalties
are that size, weight, and compiexity are increased, efficiency is degraded,
and in some circumstances converter dynamics are adversely affected, greatly

complicating the regulation problem.



196

The approach taken to circumvent these difficulties begins by
examining the intrinsic current waveforms of the various fundamental
converter types with particular attention to large discontinuities, if
any, that are seen by the source or load. The Cuk converter stands out
in this examination as the only configuration with nonpulsating input
and output currents. Hence selection of an appropriate Cuk topology is
a step toward alleviating noise difficulties before they arise. Since
the coupled-inductor converter produced unusual and potentially advanta-
geous waveforms, it was chosen as the prime candidate for further inves-
tigation and possible improvement.

The coupled-inductor converter was modelled in terﬁs of its capacitor
voltage and core flux. The necessary magnetic field relationships were
derived from a simple geometric model of the coupled inductor and Maxwell's
equations. Application of standard state-space analysis technique resulted
in the impedance division model explaining in simple conceptual form some
of the previously puzzling current behavior observed. The impedance divi-
sion model not only serves as an analysis tool but, owing to its simplicity,
it may be intuitively understood and manipulated to realize refined or new
converter topologies with even more desirable noise attenuation properties.
Several such extensions to the basic coupled-inductor Cuk converter are
discussed and shown to have external currents that are nearly the ideal
dc quantities. The converters based on impedance division techniques
boast the advantages that they are simple to understand and construct,
and give good performance with Tittle sensitivity to component tolerances,

making them ideal candidates for practical applications.
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Since the observed negative-inductance effect is not explained by
the impedance division model, a second look was taken at the converter's
ripple properties with the additional free parameter of the turns ratio
on the coupled inductor. Again idealized component assumptions were
employed to facilitate assessment of the new variable's impact. The
result obtained which explains the negative inductance effect is easily
understandable and unobscured by difficult mathematics in accordance with
the analysis. The impedance matching technique that came forth again is
a8 simple enough concept that it could be used as a design tool. Several
more new topologies for switching converters based on the Cuk designs
were envisioned and constructed for laboratory verification. Superlative
ripple suppression performance was demonstrated for these configurations
providing alternatives to the impedance division topologies. The important
obseryation was made that the two ripple attenuation techniques were com-
patible giving rise to a myriad of possible combinations. One configuration
using both methods and exhibiting good component utilization was selected
and used for demonstration.

A serendipitous result of the analysis of the coupled-inductor con-
verter is that the impedance matching technique can be applied to othe?
converter types. Boost-type converters can possess zero input ripple and
buck types zero output ripple. Further, the basic Cuk converter without
coupled inductors can be rendered zero ripple on input and output since
it is boost-buck. These findings stimulated yet a third round of analysis.

A particular arrangement of circuit elements was identified in the

converters with the iero~r1pp1e properties and dubbed the new filter.



198

Rigorous mathematical analysis of the new filter gave a precise frequency-
domain understanding of its functioning and the presence of the negative-
inductance effect. Application of classical filter theory refined the
performance of the new filter by configuring it as an elliptic function
filter with transmission zerces at the switching frequency. Not only was
the new filter's performance verified by smali-signal laboratory measure~-
ments but also its unique merits as a power processing filter were exempli-
fied by its use in a switching audio amplifier.

Thus three new methods of ripple suppression were developed. The
impedance division technique, the impedance matching technigue, and the
new filter all represent refinements to switching conversion that help to
alleviate noise problems through judicious topclogy se1e§tion or generation.

Another problem that often plagues switching converter engineers who
attempt to design empirically is that of obtaining stable regulation. The
engineer who surmounts hardware problems in cookbook fashion is often left
with an ill-conditioned plant or is otherwise unable to design appropriate
feedback compensation. Often he resorts out of desperation or ignorance
to placing a low-frequency dominant pole in the loop that makes the system
stable, only at the expense of other performance aspects such as transient
response and line rejection.

Part Il addresses the control problem for switching converters with
emphasis on the application of modern control theory to obtain new alterna-
tives to the classical approaches already in use. The development of
control loops that feed back several states is typically foreign to the

engineer versed in c¢lassical control. For ease of understanding and
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comparison with established methods, the presentation relates results
whenever possible to the familiar classical concepts. The modern
techniques are not promoted as competing with the classical, but are
recormended according to their merits to provide additional guidance
and capabilities for the design engineer.

A general method is developed for switching converter regulation
Toop design relying on the use of state-vector feedback and the applica-
tion of the optimal linear regulator problem to a continuous-time small-
signal converter dynamic model. The method is developed from the basic
state-space descriptions of the converter dynamics during each of its
switched topolegies in such a manner that it is evident that any converter
may be analyzed in this fashion. Therefore, with the use of optimal
control theory a regulation scheme relying on all-state feedback may be
formulated for any switching converter and the regulator performance will
be the best with respect to a chosen performance criterion. The algo-
rithms for solution of the control problem are laid out so that they may
be implemented on a computer, or in simple cases effected by hand. Two
forms of buck converter are examined and significant closed-form results
are given and related to classical control concepts, showing how one may
use the results of classical and modern control theory in harmony.

Another approach to modelling converter dynamics is also developed
from fundamental state-space descriptions and as such is also generally
applicable to switching converters. This second model relies on a dis-
cretized representation of converter dynamics rather than a continuous
one and is shown to have certain specific merits in predicting high-

frequency transient behavior. A simple yet important example concerning
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the discrete control of inductive current provides new insight into the
regulation mechanics and their interpretation in the z-domain. The dis-
cretized model is useful in both analysis and design of regulators. This
is evidenced by an analysis example of a state-vector feedback buck regu-
lator with appropriate comparison to resuylts from established methods, and
a design example wherein the fastest possible transient response for a
switching regulator is predicted and experimentally obtained. The gener-
ality of the discrete analysis is evident in the development, and the
accuracy of the predictions is established in the laboratory and by com-
parison with existing models.

Substantial contributions toward the solution of two of the major
problem areas associated with switching conversion are provided. Many
new or refined topologies for efficient low-noise power conversion are
presented along with explanation of the principles responsible for the
improved performance and methodical approaches for generation of such new
configurations. General techniques for switching regulator dynamic design
and analysis are developed from fundamentals and related to existing methods

to provide the‘engineer with expanded capability to obtain desirable

regulator properties.
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APPENDIX
COMPUTER PROGRAMS

In the course of developing the material for this dissertation it
was found expedient at times to resort to computer-aided design, when
the result sought had sufficient importance and the reguired method
involved tedious or repetitious calculations. To aid the reader in
duplicating, or building on, the design examples presented in the text,
the Fortran coding for three of the programs is included here.

The first program calculates the circuit element values for the
new filter of Chapter 5. The input variables are; AR, the passhand
ripple amplitude in dB, EM, the lowest stop-band frequency (trial and
error is needed here to place the zeroes at a selected switching
frequency), FB, the passband ripple bandwidth, and R, the nominal load
resistance. The program 6utput includes the normalized Tow-pass poles
and zeroes for the third-order elliptic function filter and the circuit
parameters for the new filter configuration that generates the elliptic
response. The output format identifies the dc biased inductor as L, the
tap fraction as A, the tap inductor as L1, and the blocking capacitor as
C. The inputs are read by namelist, so the data card generating the
design of Chapter 5 begins in column 2 and reads:

$INPUT AR=2., EM=3.5., FB=20000., R=8. §
For this input the program output should include:
L= 1.9392E-04 A= 5.6948E-01 L1= 5.0772E-05 C= 1.2136E-06
These values are provided so that the program may be tested when adapted

to another computer. A complete program listing follows:
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PROGRAM ELLIP (INPUT OUTPUT«TAPES=INPUT«TAPEG=QUTPUT)
COMPLEX POLEC(Z20)+IERDI20)2T1aT24TI4TISeNUNLDEN
BATA MaTUPL /3+46.28314853087
REAL Lsl1
PRIX}=SORT {Ll.-X#%X)
NAMELIST JINPUT/AREMsFBaR
5 READ {5+ INPUT)
IF (EQF(5}).NE.Q.) STOP
HRITE (64+INPUT)
AP=10,2%(—-.05%AR)
AKZ=1./EH
CR2=COMKT{AKZ)
AX1I=QINVIAKZoN])
GA=CKZ*¥FINCIASINCAP ) »PKLAK L)) /N/COMK(AKL)
CALL JACOBL (GASPKIAKZ)2SN2CHZDNZJPHNZ]
————— N MUSY BE 0ODD NO PROVISIONS FOR EVEN ORDERS.
00 10 I=2sNs2
BETA =CK2%{l.~{I~1L.0}/N)
CALL JACOBI (BETAJAKZ2+SNL+CNLsDNL,PHNL]
ZEROULII=UMPLX{0sy~1./AK2/5N1]
ZERQUI-1)=CONJGLZIERD(])}
EPS=1.~{DN1®*INZ}*%2
POLECLIY=CHPLXY {~CUNL®DNL¥SNZRCNZ+~SN1SDNZI/EPS
10 POLELI-L1}=CONJG {(POLELID}
POLE(N)}=~3N2/CN2
H=N-1
HRITE (6450) (ZERG(I),I=l, %}
40 WRITE (64601 (POLELIYsIl=nl,yN}
50 FORMAT (/LX25HNORMALIZED LOW PASS IEROS //{2F20.8))

60 FORMAY €/1X25HNORMALIZED LOW PASS POLES //12F20.8))
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T FORM TIME CONSTANTS FROM NORMALIZED POLES AND INPUT BREAK FREQUENCY.
Ti==1./POLE{L)/FB/TUPI
T2=~1./POLECZ}/FB/TUP]
T3=-1,./POLE(I)FFB/TUPL
TIS= Lo/CIERQULICZERG(ZII/FB/FBITUPI/TUPI
Cmmm=—COMPUTE OPTIMAL FILTER ELEMENT VALUES
L=REREAL(TL+T2¢T3)
NUM=TZS—T1ST28T3/LTL+T2+T3)
DEN={TL*T2+¢T1¥T3+T2%73-175)
A=REALINUM/DEN®L.}
CoLlo/L*REALITLIOTZeT14T3eT2¢T3=-TZ5) /4
LE=REALITL®T24T3/(TLeT2¢133)/¢C
o QUTPUT RESULTS.
HRITE (6+470) LsAslisC
70 FORMAT(//L1Xe22HCIRCUIT ELEMENT VALUES /44H L= 1PELG.445X
13HA= E10.495Xs4HL A" ELO.435Xy3HC= E10.4 }
GO YO 5

END

FUNCTION COMKIX)
(==m—— COMPLETE ELLIPTEC INTEGRAL
YelawX¥X
COMK=1.386294361¢ 09666344259%Y +.035900923830Y8Y «
L 203742563713 Y8YSY ¢ 0145119621 2%Y6YeY2Y
COMK=CONK+{.5¢ ,1249859357¢Y & .06880248576%Y¢Y «
I «03328355340%Y3YEY + ,0044L7BTOL2%Y*Y*YSY)SALOG(L./Y])
RETURN

END

SUBROUTINE JACOBI(ULAKsSNCHyDNoPHN)
Corwmm—JACOBL ELLIPTIC FUNCTIONS

DIMERNSTIGN A(LIO}S»BUL0CCLO)
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ASNUX)=ATANIX/SORT{L.~X%X))
ACCel,.E~12

40 nN=l
A{l)=1l.
BLL)*SORT{].«AK¥AK)

30 M=N
N=N+1
IF{IN=-10} 60460470

70 ACC=aCC*10.
ARITE 6,90} ALC

90 FORMAT (SA+3HACCE20.4)
GO T0O 80

60 A(N)=.5%{AlM)I+B(H)])
B{NI=SORTLAIM}*BIN))

CANI= 5¢{A{MI-B(M})
IF €ABSICIN)I~ACC) 20420430
20 PHN=Z2  ¥2{N-1)oalN}*U
DO 100 1=24H
L=N~I+2
100 PHN= S®{PHN+ASNICI(L)/ALLI®SINIPHN])))
SN=SINI(PHN] -
CH=COS(PHN)
ON=SORTIl.~{AK*SN) %2}
RE TURN

END

FUNCTION FINC(PHsAL]}

----- INCOMPLETE ELLIPTIC INTEGRAL
ASNIX) =ATARIX/SOURT(1.~X%X))
PRIX)=SORT(1l.~X%X)

PHI=PH
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IF{AL=1.E~6) LGs10+30
30 AK=Al

ACC=1l.E-12

FA=l,

100 PHI=, 5% {PHI+ASNEAK®SINIPHI}})
AK=2 ¢SORTIAK}I /(L. +4AK)
FA=FA*{1l.+PK{AK]))

IF (1la—ACC~AKE} 2042045100

20 PHI=.25%{PHI+ASNLAKESINI(PHI)))
FINC=FAXALOGIE(COS(PHIDI+SINLPHIII/ICOS{PHE)=SINIPHE}I)
ZETURN

L0 FINC=PH
“k TURN

END

FUNCTION QINVY (AKsM}
[wwwwe GFeN AND INYERSE @

IF (AK=.7) 104+10+20

10 AP=SORT{l.-AK%AK)
GO TO 21

20 APwAK

21 AP=SQRT{AP)
Ex.5%(1le~aP)/il1lavAP}
QnE+2 4E2¥S5+15. 2% 9+ 150, 002213
IF(AK~.T)304+30+40

40 Q=EXP{(9.6696044010894 /ALOG{O))

30 CONTINUE
Q=QeN
IF(0=.043)50+50460

60 Q=EXP(9,8636044010894 FALUGIG))
QINV=Cl,+QFQ+Q¥ 00/ {La+2.9Q42,%0%%4)

CINVASORT{L.~-1lb.%0%QINVEES)
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Go TO 100

50 GINYm (1 tQeOs0%en) /{1, v2.9042.00004)
GINY=4,#SORTIGI€QINVYSGINY
100 RETURN

END

The second computer program solves for the finite-settling-time
feedback gains for a second-order switching converter. The inputs to
the program are: A, the state-space-averaged natural response matrix,

T, the switching period, and B, the averaged duty-ratio control influ-
ence vector (termed g in the text). The program proceeds to output the
state transition matrix F, its eigenvalues and eigenvector elements, and
the feedback gains with a minus sign included identified as C1 and C2.
Subsequently the program generates loop gain root locus information
inciuding the z-domain poles and the element values of the closed-loop
matrix M. The input for the design example of Chapter 8 is:

$INPUT A=0.0, 9.33E+04, -500., -1244., T=50.E-06,

B=3.0E+04, -3.73E+04 ¢
The output should agree with the example in the text. A complete program

listing follows:
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PHIGRAM FINTIYE (INPUT,OUTPYT, TAPESRINPUT,,TAPEGaNUITPUT)

CUMPLEX L AMDAY,LAMDAR, TRF,BETF, L21,L22,51,62,K1,X2,0€2),8,P1,P2
1, TR™,DETM

REAL M{2,2),X

DIMENSIUN 4(2,2),F(2,2),B(2)

NAMEL TST 2INPIT/ &,T,B

10 READ (8, IMPUTY

wRITE (6, INPUT)

IF (EDF{S) NE,0,) 3TOF

CowawsESTABLISH l4ATEF

Fltetymaly,tIwtet,
E{1,2Y04(1,2)7
F{2,1028(2,1)27
FU2,2)34(2,2)0T41,
Wi [TE (6,30 FOL,13,FU1,2),F(2,8),F(2,2)
30 FURMAT (/24H STATE TRANSITION “ATRIN,/201PE10,%3)/,2(1PF10,3)/)

CownweDETERMINE THE EIGENVALUES NF F,

THFRFr{,1)+F(2,2)
DETFEF{1,1)aF(2,2)e¥F11,2)0P(2,1])
LAMDAIRTRF /2 «CSGRTI(TRF/2,)%x2anETF)
LAMOARRTRF /2, aC8QRTC(TAF/2 Jun2eDETE)
wRITE (6,60} LAMDAT,LAMDAQ

40 FURMAY ( 8W LAMDASE,4(tPELD,3)/)

CommuaNURMAL TZED EIGENVECTOR ELEMENTS,
LEtsstF (1,1 e AMDALY/F(L, )
Ld2ue(F (Y, 1) AMDAR)I/F (1, 2)

WRITE (&,5%0) L21,L22

S0 FURMAT ( SH [21w,2¢1PE10,Y),2X,4HL22s,2(1PE1073),/)
Cim{L22wB(1)mBlR) )T/ (L 2221)
GRe{=  219R(1)+8(2))nT/{ L 22w, 21)
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wRITE te,60) G1,G2
a0 FORMAT { 4W G18,201PE10,3Y,2X, 3IHGZ®, 2(1PE(0,1),/)
Kigml AMDASewd /{L A%0A 1oL AMDR2)Y /G
¥2s LaMDAewd/ (L amDAta{ aMDADY /52
WHITE (8,70) Ki.%2
TO FORMAY (4w Kim,2(1PE10,3Y,2%, 3IHM23,2(1PF10,13),/)
Cltla(Kio 22eK24L21)/(L22aL21)
Cra)s(xeni}s{La2~L 2t}
WALTE (6,80) C{1),0(2)
B0 FURMAY ( am Cte,201PE10,%),2%, 3IHC2,2(1PE1D,3Y,//7)
Commun [TERATE X AND 30LVE FOR CLNBED LOOP ZwPLANE POLE LOCATIONS,
WRITE (6,85}
BS FORMAT(//641x CLOSED LUDP ZePLANE POLE POSITIONS VS Ki, /)
K8e,2
DU f20 JZeigid
CoosmmeFURM M MATRIX MuBCKT,x g 1o 2,
KWKs, 2
D 9% Jmy, 2
B 90 1=y,
90 MLI,JISBELI#CLJIeKaTeF{],])
85 CUNTINUE
WRITE (6, 1003C0{M(1,JdY,Im1,2),J81,2)
tO0 FURMAT {/ 20H M MATRIX ELEENTS L4lIPEL0,3),
ConwaeDETERMINE EIGENVALUES OF M,
TRARH] 1 eM4(2,2)
DETMEM{1, 1) wM (2,2 oM (1,220 (2,1)
SHCBQRT((TRM/2,IweuDETHM)
PLaTRM/2 ¢}
P2m TRY/2 «§

WHITE (0,110 P1,P3,K
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£10 FURMAY [ ak Pi® ,201PE10,3),4%, 3IHP2e, 2(1PEL1D,)2%,Ixke ,0PFe,2)

120 CUNTINUE
so YO 160

END

The third and final program also solves for the finite-settling-
time control gains, but does so in much greater generality and accepts
the most fundamental inputs. The input information is taken in the form
of the two switched subintervals' state-space matrices Al, A2, BT, and
B2 named in accordance with their identification in Chapters 7 and 8.
Additional inputs are the duty ratio D, the switching period T, the
nominal control vector U, the system order NA, the number of control
influences NU, and a logical variable LX to use input values of the
steady-state operating point in the solution. The program calculates
the matrices of the complete discrete dynamic model including the duty-
ratio modulation influence vector {and hence the operating conditions),
and prints out the results along with the input information, all identi-
fied in accordance with the nomenclature in the text. It then utilizes
the generalized coordinate solution to obtain the feedforward and feed-
back gains, and while so doing it prints out the controllability matrix
and its inverse. The input for the design example is:

$INPUT a1(1,1)=0.,A1(2,1)=0.,A1(1,2)=0.,A1(2,2)=-1244.,
A2(1,1)=0.,A2{2.1)=186567. ,A2(1,2)=-1000. ,A2(2,2)=-1244.,
B1(1,1)=1000.,81(2,1)=1244.,82(1,1)=1000. ,B2(2,1)=1244.,
D=0.5,T=50.E-6,U(1,1)=15. ,NA=2 ,NU=1,LX=.F. $

The output should agree with the numbers given in Chapter 8. A complete

program 1isting follows:
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PROGRAM FINITE (INPUT,QUTRUT, TAPRSRINPUT, TARESGaDIUTRYT)
LUGICAtL Lx
DIMENSTION At(1G,10),A2040,10),81010,10),B2€10,10%,F(10,10},
1 BU10,103,6010,803,U010,10Y,%0080,40),FIC10,10%,FIBC10,10},
2 AN(10,10),XPLLO,10),UPC10,10),C0(10,10),C01(a,10),FNAL10,10),
3 FNABCIO,10),FPGC10,10),0FGC10,10),4M010,10)
NAMELTST /InPUT/ZA1,82,81,82,0,7,U,NA,NU,LX
NAMELTST /OUTPUT/D, T, NA,NY
L0 READIS, INPUT)
P (EOF(%),%E,0,) STOP
WRTTE (6,0UTPYUT)
CoewmaPRINT THE STATE MATRICIEY,
wHITE (8,15)
1S FUR#AY (//3H Ats4)
Call PMX (A1, NARAY
wiITE (8,20}
20 FURMAT (//3H AL//)
CALL PMXLBE,NA,NL)
ARTTE (6,25%)
2% FGR™AY (/73K AZ2/4)
CALL BMX fh2,NA,NA)
“HITE (6,30)
30 FORMAY (/73K R2//7)
CALL PMX {B2,NA,NU)
WRITE (4,37}
37 FURMAY (//2% 1177}
CaLi PMXLuU,NU, 1)

CoemmeDP 13 {ab,
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DPay,wd
CwamenFURM £ THE STATEZ TRANSITION MATRIX,
CoenswDONT 40D THE TDENTITY MATRIX UNTIL AFTER X0 18 CALCULATED,
DO %0 Jm1 N4
DO 40 Imi,NA
40 FLY, JYmat{l, JinDnTea2(1,0 eDParT
50 CunNTINUE
LmseaeFURM A THE CONYREL INFLUENCE MATRIX,
CowaseB 18 nik By NU
B Y0 Jei,NU
DU 40 Tam1,NA
b0 BU1,JdYsBY(1,J)#0aT4B2(1,})eDReT
70 CUNTINUE
CavenallyTPUYT B,
WRITE (6,7%)
75 FURMAT {24 B//)
Call PMX (B,NA,NY)
CosnwnelALLULATE THE STEADY STATE BOUNDARY CONDITION voO,
ComeanFURM INVERSE IF Faul,
CALL ELIM (F,NA,FL)
ComeweFURM PRODUCY OF FI AND B,
CaLL MXMLPY(FL, NA NA, B, NA,NU, FIB)Y
CosnmaePTIONAL USE OF INPUT X0 WITH LX TRUE,
IF L) 6o vo 77
CALL MXMLPY(FTB, N&,NU,U,NU, 8, X8)
DU Y6 Isi,NA
T6 X0t1,1)8ex0(],1)
7T CONTINUE
DU 80 Iwi,NA
F I, 23001, 1008,
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An CUNTINUE
CuswasPRINT F
WRITE (6,95)
95 FORMAY (/7 2W F110)
CALL PMX (F,NA,NA)
CwewwaPRINT X0,
woITE [6,97)
Y FUAMAT { M X0//)
CALL PMYX (X8,NAe1)
CawewsFyRM G, THE DUTY RATIO WODULATION INFLUENCE VECTOR,
DY 110 Jmy, N
DU 190 TImi,NaA
100 AMET,J)ela1(,J)=A02(1,4))
116 CUNTINUE
80 130 Jmi,Ny
DU 120 181.NA
120 BMEI,J)miBi{],Jd)eB2(1,Jd))
130 CONTINUE
LusoesFORM INTERMEDTATE VARIABLES XePRIMNE AND UsPRIMg,
CALL uanav(Aﬂ.ut,NA,xh,uﬁ,;,xa)
CALL MXMLEY(BY,NA,NU U, NU, t,UP)
DO §do ImiNA
140 GLI, Y {XPIT, ) +UP{T, 1))
CoewwePRINT OUTY G,
WRITE (6,1%0)
150 FORMAY L//2H G//)
CALL PHX (G,NA, 1)
CovnruF{IRM THE OMAT COEFFICIENT MATRIX COMPRISED OF fOLUMNS OF DESCENBING
CosmuePOWERS OF F TIMES G,
CalL COEF (?,8,54,C0)
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WHITE {&,181)
160 FURMAT (/73K CO//)
Carl pMx (LN NA,NA)
CewmweFOAM THE INVERSE OF CO,
CALL ELIM {CO,NA,COIY
wHITE (6,170)
170 FURMAT (/s4n COIZA
CaLL PMXICOINALNA)
CmwenaFURM oFaeN AND wFwednheieB,
CaLL PWR (F, NA,B,NU,ENA,FNAB)
DU 174 Jegank
D §172 Jwg Nk
FruaB(T,JYaefFNAB(],J)
172 Faa(l,JJymaFNALl, d)
174 CUNTINUE
ARTITE [b,180)
1RO FUSMAT (//7H =FraNA//)
CALL PMX (FNA NA,N&)
WRITE (6,190}
190 FURMAY (/7134 eFas(KAwi)}nB//)
Call PMX [FNARNA,NU)
CovwaeFUAM THE FINITE BSETTLING TIME GAIN VECYOR FROM THE FIRST ROw OF
Comunul{l] AnD Frenik
CALL MXMLPY (COL, 1 NAFNA,NAZNA,FG)
WRITE (&,209)
200 FORMAY (//34KW FINITE BETTLING TIME GAIN VECTOR //)
CALL PMX (FG,1,NA)
CowsesFORM THE CONTRCL FEEDFORRARD GAIN VECTYOR,
CALL MXMLPY {COI,14NALFNAB NASNU,CFG)
WRITE (6,2108)



217

210 FURMAT (//33% CONTRCL FEEDFORWARD GAIN VECTOR »/)
CalL eMX {(CFG,1,NU)
CuemnwREYURN TO D ANOTHER CASE,
G0 YD 19
END

SUBROUTINE BMY (X,1,J)
CawwenTH]S SUBROUTINE PRINTS TWME x MATRIX DIMENSIONEN I By J LESS THAN toxtn,
DIMENSION XL10,10)
DU 100 L¥1,1
100 WRITE (6,200 (X{L,M),K8t,0)
200 FURMAY (/7,10(2x,1PE1L,4))
RETURN

END

SURRGUYINE MYMLBRYIX,I,J,¥,K,L,2)
CreeneTHIY SUBROUTINE FORMB MATRIX PRODUCTS XuY,X ! BY J,Y K BY L
CawwewdnD RETURNS THE RESULT IN ¥, J MUST Egual x,
DIMENSION X{10,10),Y010,10Y,2(10,10)
NUUBLE PRELISTON O(ic.&o)
ComsusTEST FOR INVALID CALL,
IF (J NE,X)} G671 1O u¢
DU 30 Lisi,|
DU 2¢ IIm1,?
D{IT,LL)®O,
CovuasaFURM & ROwWeCCLUMN BRODUCT,
RO 10 Jxmy,d
16 DOTIL Lo {TE, ey ldn,LLYeD (I, LL)
TOTL LLImDLLY,LL)
20 CUNTINUE
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30 CUNTINUE
RETURN

40 WRITE {8,50)

S50 FORMAT (///724H INVALID CALL TO MxMLPY /1X,2201me))
sToP

EnD

SURROUTINE CCEF (F,G,na,C0)
CoseasTHI8 SUBROUTINE FORMS THE DMAT COEFFICIENT MAYRIX FROM F AND G,
DIMENSION F(10,101,6¢10,10), CO(10,10),TEMP(10,10)
Comwae7ERD PART OF CO CPERATED ON,
DU too Jmp,NA
D) 80 Txi,NA
50 COtl,J)I=0,
100 CUNTINUE
Cawmmel DAD G VECTOR INTO SUCESSIVE COLUMNS NF CO,
GO 200 Jmi, Nk
DG 180 ImgeNA
150 COL1,J)85(1,1)
IF (J_EQ nAY RETURN
CowmweREPEATEDLY MULTIRLY BY F,
CALL MXMLPY (P, Nh NACO,NA,NA,TEMP)
CoswacREPLACE CO WITH IT8 UPDATED VALUE,
DU 170 Le1,NA
B 160 Keg Nk
160 COCN,LIBTEMRLXK,L)
170 CUNTINUE
200 CONTINUE
Enp
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SUBROUTINE AWR (F NA,B,NU,INAFNAR)
Cawanntrll SUB CALCILATES THE NTH POWER OF F AND THE Nei POWER TIMES R
DIMENSTION FLi0,10),8010,10),FNAC10,10),FNABCIO, 10}, TEMPLY10,10)
CosmasffT TEMP TO INENTITY,
DU 100 Jai, N4
D 80 Imi,Ma
TEMP({1,Jd)m0,
50 IFLI,EQ,J) TEMP(I,J)wt,
100 CUNTINUE
DG 300 Jay,NA
Cal i MYMLPY [F NA NA,TEMP, NA,NA,FNA)
1F (J,EG,NAY GO TO 400
CowmesOTHERWISE 8T TEMP TO FNA AND REPEAT MULTIPLICATION BY F|
Drl 200 Ley,NA
DU 150 Kmy,NA
150 TENP(x,L)YaFNA(K,L)
200 CUNTINUE
300 CONTINUE
[eeseatENP 18§ FanNAal AND FPNA 1S Fauna
CoweaanFURM FeaNAn{ TIMES B,
400 CALL MEMLEY (YEMP NA KA, B,NAyNU,FNLB)
RETURAN

EnD

SUBROUTINE ELIM (4,NA,X)
CawuasTHIA ROUTINE UBES GAUBSwJORDAN ELIMINATION wITW WMaAXIMUM PIVOY
CowoneBTRATEGY 1O STILVE FOR THE INVERSE OF & REAL MATRIX,

LOGICAL ROw{i0),COL(10}

OIMENBION AC10,10),wi20,10%,80(10,10),%(10,10)

DOUSBLE PRECTISION W, P, ABRFR, WEIGHY
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CoweweELIM CAN NANDLE UP TO A 10XY10 SYSTEM,
DIMENSTIUN JTROWC10),IC0LC10Y
Coswmuni 8 THE COEFFICIENT MATAlx, B I8 THE AUGMENTING MATRIX,
Cowmnnit wIlLL REYUAN THE SOLUTICN MATRIX, Na I8 SyATegM ORDER,
NAMELYST /EL/4,RCw,COL,IRCW, ICOL
CovowsESTaB 18K THE AUGMENTING IDENTITY MATRIX,
DATA R/YOON), #
0 50 Imi, Ni
S0 BlY,fymt,
Comwee 04D FLEMENTS INTOD AUGMENTED wORKING ARRAYsmash AND B REMAIN UNTOUCHED
NAZRNASNL
I 110 Img, N
DO 106 Jey, N4
Cesswad TRANSPOBE PASITION I8 USED TO IMPROVE EFFICIENCY,
WlJ¢NA, I)uBLI, )
100 wiJ,T)®AC],0)
Comman3ET PIVOT SEARCH LOGICALS FALSE,
ROw(lym,F
EaL(Iym P,
116 CONTINUE
CownmeBEGINING OF THE ELIMINATION LOOF,
Dl 200  Xmi,NA
AisPmyg,
PEO,
ConveelHOOSE THE LARGEST PIVOT ELEMENT NOT IN A PREVIOUSLY UBED ROW OR
ConwwnlOLUMN,
SO 140 Mmy,HA
IF (Cnk (™)) G0 T0 40
DU 130 LWi,NA
IF (ROW(LY) 60 TD 130
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1F (ABSP,GT DABBINIL,M))IGH TU 130
PRWLL M)
AUSHRDABY(P)
Cwenrne8TORE THE PIVAT LOCATION FOR EVENTUAL UNSCRAMBL ING TME ANSWER,
Iasi
4 1
130 CONTINUE
fa0 CUNTINUE
ConsaaCHECK TO SEE IF PROBLEM IS INDETERMINATE,
1#F (48P ,GT, 18es) GO TC Lo
WHITE (6,150) ABSP
150 FURMAYT (/357 MAXIMAL PIVOT ELEMENT MAGNITUDE 18,i1PE12,5,1X
1 3gn THE EQUATIONS MAY BE INDETERMINATE,,/)
WHITE {6,EL)
$TOP
CaveseSET SOATING LOGICALS AND PIVOT ARRAYS,
160 IROWIK}INIR
RDuitlalm,7T,
ICoLindmIg
COLtIc)s, T,
ComuaeDIVIDE THE COLUMN BY ITS PIVOT,
DU 170 NEpaNA2
170 wiN, IC)Yma(N, IC) /P
ConmmuF IMINATE THE PIVOT ROW,
CosvenJ) I8 THE COL'IMN WHERE THE ELIMINATION I8 DONE]
DU 190 JJimi,NA
CowomswiV01D OPERATING ON TWE PIvaT COLUMN,
IF (JJLEG,ICY GO YO 19¢
wEIGHTEWLIR,J)
D0 180 IImi,NAR
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ComnsaSUBTRACT THE SEIGHTED PIVOTY COLUMN FROM EVERY ATHER LOLUMN,
TR0 wilT, JJYew{ll, Jd)anw{Il,ICanElGNT
190 CONTINUE
Coswawhl L WeIR,JJIm0 EXCEPY FOR JJulf,
CovnaaEND OF THE ELIMINATION LOOP, K 1§ INCREMENTED AND THE PROCESS
CowwneREPEATED UNTIL THE WORKING ARRAY I8 AN JOENTITY MATRIX AUGMENTEDR
CeawesnBy THE INVERSE “ATRINeewPDRSIBLY SCRAMBLED,
200 CUNTINUE
CownwedTORE THE SOLUTICN IN ¥ IN UNSCRAMBLED CURDER,
DO 220 Limi NA
LNalLeNa
BU 210 KXKmi,NA
210 X(TROw (KXY, LLIRW(LN, ICOL(KK)Y)
220 CUNTINUE
REYURN

END



