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ABSTRACT

This thesis deals with the yroblem of obtaining & quantitative
understanding of high energy cross sections and angular distributions
and their connection with low energy resonances exchanged in crossed
channels. The work presented here takes as its starting point the
conjecture that scattering amplitudes may be expressed as a sum of
Regge poles.

In a general introduction we summarize the basic ldeas and current
status of the Regge conjecture. Here we also review briefly the main
results of this work snd try to cast them into perspective before
plunging into detalls.

In Part II of the thesis & detailed anslysis of NK and NN scattering
on the basis of the Regpe hypothesis is cerried out. The Regge expansions
of a set of ten invariant amplitudes describing NN-scabtering are
presented, with residues expressed in factorized form. Expressions
involving both the full Legendre functions and their asymptotie forms
are given. Spin sums are carried cut to obtain simple and convenient
expressions for the contributions of the P, p, m, and P' trajectories
to the differential crose sections. The optical theorem has been
applied to find the contribution of the P, P', p, and o trajectories
to the spin-averaged total cross sectiona. Finslly, the available data
on the total and differential cross sections for KN-scattering has been
analysed to extrsct information about the Regge pole parameters. The
possible effect of the spin structure of the amplitudes and the variation

with energy of the Legendre funections has been taken into account.
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In Part III, we show that the analytic properties of the Regge
parameters plus the uniterity condition satisfied by the rpartial wave
amplitude lead to & set of coupled non-linear integral equations for
the Regge pole parameters,

We then show that these equations can be written in a very simple
form which makes many of their wathematical properties transparent and
pernits their numerical sclution by iteration.

These equations have been sclved mmeriecally in several interesting
cases. In the potentisdl theory case, where our results could be compared
with those obtained from the Schrddinger equation., the agreement wae
good in most cases.

In the relstivistic case, we calculated the positlon of the
Poreranchuk trajectory, the p-weson irajectory and the second vacuum
trajectory P'. Inelastic contributions were neglected. One notable
result of this set of calculations is that the function Re o(t) for
the Pomeranchuk trajectory a&s determined by our equations agrees well
with the results obtained by Foley et al. from an analysis of the x p
angular distributions in the range -0.8 (BeV/c)2 <t < -0.2 {BeV/c).
No spin 2 resonance is found to lie on this trajectory. As for the
p-trajectory, we find that « p(t) , =0.8 (BeV/c)2 <t <0, 18 larger than
0.9 for a wide range of input parameters. The width of the o resomance,
a8 determined by our equations, is seweral times larger than the
experimental width. This probably means that inelastic contributions

nust he ineluded to obtain a correct value for the width.
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Part I

General. Introduction

This thesis has two parts. In the first part we express the cross
sections for high energy nucleon-nucleon scatterdng in terms of Regge pole
paremeters (1), This is carrled out using the prescription of Frautschi,
Gell-Mann and Zachariasen (2, 3). In the second part a derlvation and
numerical solution of a set of equations which provide an approximate
dynamical determination of the Regge pole parameters is given. Taken
together, the techniques arployed in the two parts of this thesis provide
& means for the dynemical determination of elementary particle cross
sections at high energles.

In order to cast the results to be presented here into perspective,
we shall summarize the basic ldeas and current status of the Regge
conjecture in this Introduction.

In the past two years experiments have been made which establish
the exlstence of a number of new states, which are unsteble and in most
cases have sple > 1. These are frequently interpreted as resonant
configurations of other particles. At such a time, it is especially
important to have a method with which to discuss the properties of
thege compogite states.

The basis for such a method was laid by Regge (1), who studieq
the asymptotic behavior of the scattering amplitude,as determined by
the Schroedinger equation, vhen dynamical rescnances and bound states
were present. He was able to find the asymptotic form of these

amplitudes for large momentum transfer, and to relate this behavior
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to the properties of camposite states. This basic ldea wes sopn applied
to give a prescription (2, 3) for the large energy (s - «), low momentum
transfer (13 < 0) Ybehavior of two-body scattering amplitudes in field
theory. | | |

We sha.ll formulate this prescription for the LHwo~body process of
figure 1.

One starts from the partisl wave expansion in the twchannel of the
seattering amplitude- A(coset, t)s

(=]
A(coset, t) = -f- | (22 + 1) A(%, %) Pﬁ(coset), (1)
B=0

vhere t = (133 + Py )2 = c.m. energy squared, 8, = c.m. scattering
28

h-me -t

the asymptotic form of A(cos® 9 t) for t fixed, !eosﬁtl large.

angle in the t-channel and cos8, = =1 +

£ +« We wish t0 study

For this purpose we transform equation (1), which fails to converge for
large coset, into the contour integral

A(cosﬁt, t) = é‘l‘i‘ § az(2e + 1) A4, %) Pg(;cose,c) Ei';tl‘:?ﬁ' . (2)
£ 4is now complex, and A(%, t) is the analytic continuation to complex
2 of the usual partial wave amplitude. The contour Surround.s the positive
roal axis.

Extrapolating to the relativistlc case resul{:s proven by Regge in
potential theory (for potentials expressible as a superposition of
Yukawa potentials), we assume a) that we may distort the contour in
equation (2) to the line from «1/2 = 109 to ~1/2 + 1 « and b) that

in so doirig we encounter, for +t > threshold = to, only simple poles
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Figure 1. The seabtering process Pyt PP Pyt Ry (s=~reaction)
related to exchange of Regge particles in the process

P‘l + 53 “» 52 + P, (t=reaction).
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of A(#, ) wvhich correspond to dynamical resonances having the
quantum mmbers (other then J) of the t-channel. (This assumption
will be discussed shortly.) We then obtain

A(cost, t) = z‘. B, (t) B (1-.)(" cos6,) (sinw an(t))'1

=1/2+ie
as(22 + 1) A(s, +) Pg(... coset) s:(simrz)"1 (3)
w1/2-400

I+

(= cosd, - coset).

t

For t < threshcld, the poles of A(4, t) are on the real Jf-axis
and correspond to 'bound. states.

The Regge poles move in the Z-plane, their posifion is given by
a(t) and their residue is related to PB(t). The additional temms in
P (+ cos® 1_‘) arise because in the felativistic case forces in the t-channel
are generated by exchanges in both 'bh; 8 and u=channels. Each of these
contributions can be treated separately and identically (2, 3).

We now consider t fixed and >t_, and let [coso,| »w. In this
asymptotic 1imit, only the pole terms in equation (3) remain because the

line integral vanishes as |cose 1_‘|"‘1/ 2, Thus we have, asymptotically,

-1
A(cosat, %) l;—;—;g Al—m ok (t) (sinn @ ) [Pan(- coaet) + Pan(§oset):]
i o (¢) (1)
o zp) |Lie " _oe (B
n 2 sinw @ (t) (lﬂna -t )
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The reglion & =~ -bo, cose,b large is an unphysical one in the t-~channel.
However, we may analytically continue this representation without change
() to the region t < 0, s large, which region corresponds to physical
seattering in the s-chanmnel.

The sbove prescription thus relates the high energy, low momentum
transfer scattering in the s=-channel to the exchange of composite objects
(dynsmical resonences and bound states) in the t~channel.

The Regge conjecture as just outlined was originally belleved to
have the following interesting consequences.

1) One cen construct the contribution of an elementary particle

of spin & to & scattering amplitude A(s, t). One finds near the pole
A(sy t) = [c Pylcost,) Jt = tpl 4 e (5)

In the unphysical reglon this glves an asymptotic behavior s‘e, £ a
fixed integer. One can show in certain cascs (2, 5) that this large

s behavior results for all t, so that we can suppose that an elementary
particle of spin £ exchanged in the t~channel willi contribute a tem

~ S,E to the high energy, low momentum trensfer scattering in the
s=channel.

We have seen that a Regge pole contributes a term ~ sa(t) to the
asymptotic fom of the amplitude. If this behavior is assoclated with
the exchange of & camposite object, as is usually supposed, and if the
behavior s'e is characteristic of the exchange of an elementary
particle, then we may decide whether a state with given mass and quantum
mmbers 1s camposite or elementary by comparing the fom of the cross

sectlons predicted in the two cases with experiment.
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2) Tn the 1025 Gev energy range, the =N and NN +total cross
sections appear to approach (different) constant values as the energy s
increases. In addition, the =¥ and NN angular distributions show
diffraction peeks in this enérgy range.

From the optical theorem, we know

Cambined with the Regge asymptotic form of the amplitude, this means

{6) that ai(o) < 1, for each Regge trajectory 1. This suggests (2, T)
the existence of a Regge trajectory with the quantum numbers of the
vacuun end o) = 1, the Pameranchuk trajectory, which would result

in & constant tobal cross seetion in the high energy limit. Moreover,
e:;change of any Regge particle leads, in the simplest cases, to angular

distributions with the characteristic diffraction form
2u(t)=-2
do / dt = F(t) s . (7

The amount of diffraction shrinking depends critically on the sglope
of the trajectory for =smell, negative +t.

3) It is a consequence of the Regge foxrmalism that a set of
resonances or bound states, all having the same quantum numbers
including J-parity, but baving different values of J and occuring
at different energles, will all lie along the same Regge trajectory
a(t). This leads to an interesting new principle for élassifying the
meny newly observed resonances, and for correlating some of their

properties (8, %a).
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In a more speculative vein, we might alse add the following
points.

4) The supposition that all the strongly interacting particles
appear in the dispersion relatilons with the Regge asymptotic hehavior
seems to supply & criterion for the composite nature of these particles
in tems of the canputability of their masses and effective coupling
strengths by means of the "bootstrap" principle (8, 9). Such
calculations have always faced the difflculty that unitarity plus
enalyticity in thomselves offered no clenr prescripbtion for the high
energy behavlior of the amplitudes. If one looked to perturbation
theory for giidance, one almost slways found a high energy behavior
g0 divergent that subtractions had to be made in the dispersion
relations, and consequently new undetermined persmeters had to be
introduced. If, however, the amplitudes have the Regge asymptotic
behavior and if, for same t, Re ¢ (t) <0 (¢ (t) being the position
of the Regge pole which lles furthest to the right in the angular momentum
plene), then the amplitude will converge as s — = at a rate which,
according to Froissant (6), precludes any arbitrary subtractions in
S« By anslytic continuation in +t, one finds that all subtraction
tems are detemined. In this sense, the assumed Regge asymptotic
behavior for the amplitudes provides a set of boundary conditions which
completes the OSematrix description of a two-~body scattering process.

5) The usual perturbation theory applied to the exchange of
particles of spin > 1 (or = 1 in the case of charged particles) is
divergent in each order in such a way that it cannct dbe renommalized.
This behavior results from a8 singular high energy behavior of the
amplitudes in which the high spin particle is exchanged. If the
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particle exchanged does not have the high energy behavior dndicated by
lowest order perturbation theory, but rather the Regge behavior, this
divergence might be avoided, and the renommalizatlon effeets become
finite corrections .tq be made in each order. Tt would then seem
possible to apply perturbation theory to discuss the properties of
vector mesons and particles of higher spin. Whether this tec}m:_ique
~would prave femsible for practical calculations depends on the gize
of the coupling constants involved and the accuracy with which one can
use 8 knowledge of the Regge parameters to compute the renormalization
effects. In any case, it should impmve scmewhat the logic behind
the present perturbation theory, and possibly also be useful for
discussing symmetries shared by the new resonancesg. HFurthermore, one
could apply these methods to particlesﬁth spin 0 or 1/2. Here one
can renomelize by subtraction, but it would still be interesting to
see, for example, if the electron seli-mass becomes Ffinite if the
vhoton is a Regge particle.
When an interesting new ides like the Regge hypothesis appears

on the scene, one lmportant task is Lo work out 1lts experimental
congsequences and test them as thoroughly as possible. Until very
:ecently, available experimental data could be suitably compared to
the predictions of the Regge theory only in the case of high energy
nucleoﬁ-nucleon scattering. It seems, moreover, that more precise
and weried experiments than are presently available can most feasibly
be carried out on the nucleon<nicleon system. For these reasons a
detailed Regge pole analysis of nucleon-nucleon scattering, including

the full spin structure of the amplitudes, has been carried out in
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the flrst part of this thésis%. We have trled to explain the coserved
total cross sections and angular dlstributions by ineluding the
contributions of the Pameranchuk trajectory and a few of the prominant
resonances (w, P, N, 7).

Now I would like to coment on the current status of varlous
aspects of the Regge theory.

Analygis of the data on total cross sections in  pp, p and np
scattering at energies in the range 10«30 Gev ylelds the following
main concluslons.

1) The existence of a Regge trajectory op(t) resulting in
constent total cross sections is consistent with the data only if other
trajectories make large contributions (w-trajectory) to 1p scatbering
g_;n_g_ if there exists a singularity P' in the J-plane introduced
explicitly to cancel the contribution of the w~trajectory to the
Ltotal pp cross sectloms. This means that in the energy range explored
50 Tar the Pomeranchuk trajectory dominates the croses sectlons only
when the other contributions cancel out (pp cross section) and not
vecauce all the other contrlbutions are small.

2) The date indicates that am(o) = 0,3 and «_(0) = Q.b.

f2)
This shows that the p and v resonances do not contribute to
the eross sections with the fixed spin hehavior 51 expected from
lowest order perturbation theory, but in fact contribute like Regge

particles.

*ere only the general conclusions and results will be summsrized.
‘More detailed summaries, as well as comparisons with other treat-
ments of the problem, will be found in the introductions to each
separate part of the thesis.
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3) An esnalysis of the data on the pp elastic angular dictributions
in the energy range 10«25 Gev shows that the observed diffraction
peaking can be understood as a consequence éf the existence of a dominant
P-ﬁmj ectory. It appears véry diffieult to get unambiguous information
sbout the ﬁ.-dependence of the parameters assoc;i.ated with the lower
lying Regge trajectories on the basis of such analyses, because too
many 'independeﬁt parameters are involved.

Were we to take such an analysis at face value, we might say that
the main features of high energy nucleon-nucleon scattering can be
consistently and usefully accounted for by the Regge theory, and that
we have obtained an experimental verification of the "composite” nature
of the p and w resonances.

) However, serious doubt hé.s been cast on such conclusions by several
recent results.

First, there is some reason to believe (10) that when multiparticle
states are included in the analysis of relativistic scatbering Processes,
the analytlclty propertles of the S-matrix in the Jw~plane willl be
complicated by the presence of cuts in addition to simple péles. TF
these cuts exist, and are importent at low t, it is hard to see how
any useful analysis of the data for the purpose of detemmining the
Regge parameters could be carrded out. It would thus be nearly impossible
to get any reasonably clear cut experimental tests of the Regge
predictions about total cross sections and diffmction peaks, or to
ascertain from e:@eﬁmen‘b whether the function «(t) associated with
a glven pole has the Regge behavior. Needless to say, the datas analysis
carried oﬁ-b in Part T of thls thesls and in similar worké would be

almost totally invalidated, should such cuts be present.
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Secandly, Gell-Msnn and co-workers (11, 12a), investigating the
high energy behavior of various renomalizable field theories, have
found a most interesting result.

They conzider elastic scattering of a neutral vector meson 1)
by & spin 1/2 nucleon and i1) by & spin O nucleon. The scattering
problem is formulsted using ordinary renormalized perturbation theory;
both the vector meson and the nucleons are "elementary” and are represented
in the lagranglan by thelr owm elementary fields. In lowest order, the
nucleons (spin 1/2 or spin O) appear as fixed singmlarities in the camplex
angular momentum plane. However, one finds when one computes to all orders
the radlative corrections to this process due to the exchange of the vector
meson that in case i) the nucleon pole acquires the Regge behavior in that

the amplitude has the form:

(v u sa(d_u—) : Ot(mN) = 0 (8)

while no such result obtains in case ii).

This result shows that the Regge asymptotic form 1s not necessarily
indicative of the exchange of a particle of composite structure. In
this case, the experimental test for the composite nature of an exchanged
partlcle mentioned above loses its rationale, and we are again back to
distingnishing & composite from an elementary object on the basis of
same computability criterion, or perheps on the basis of scattering
phasge shifts (Levinson's theorem).

In addition, this result seems to demolieh what little understanding
we had of the "physicel" meaning of the Regge asymptotic behavior, i.e.

the less singular behavior of the amplitudes is due to a natural cut-off
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'béing introduced 'bgca,.use the w_ﬁclmged partlcle, belng composite, 1s
extended in space. |

Thirdly, recent data on =N angular distribu‘oions show little or no
dif:f‘ra.ction shrinkage. Smﬂe people have argued that an anslysis of
the pp a.ngcﬁ.ar distributions, properly restiicted to the asymptotic
regime, also indicates no diffraction shrinking, The situation appears
too fluld to permit any clear ewluation at present. However, it

should be noted that neither of the above results is inconsistent

with the idea of a Pomeranchuk trajectory. Strictly spesking, the:
mere fact that an amplitude has an asymptotic form dominated by & sum
of Regge poles makes no prediction whatever regarding the angular
distributions, without some dynamical determinstion of the paremecters
énd a knowledge of the properties of cuts in the J=plane,

These results, if true, do further support our previous
conclusion that the analysis of the crcss.sections mist be camplicated
by the presence of several trajectories contributing in an important
way. Moreover, they strip every bit of positive experimental confirmation
fram the notion of a dominating Pameranchuk trajectory, with the
exception that the observed cross sections do appear to approach
constonts as predicted. DBven this evidence is marred by lhe c;t.rcu_m-;
stance that the pp cross sections do not satisfy the Pomeranchuk
theorems, at least at presently attaineble energies.

Accepting the existence of the Pomeranchuk trajectory, it is

possible that a spin 2 resopance, €, having the quantum mmbe
vacuun and mass mﬁ ~ 1 (Gev)a may lie on this trajectory. Such a

resonance should show up as a peak in I = 0 =ux scattering. Preliminary
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evidence for such & spin 2 resonance has been found. If it can be
established that this resonance really lies on the Pameranchuk
trajectory, this would be a very important confirmation of the Regge
theory for two reasons; i) the existence of this resonance would be
.8 really é_ualitatively nevw effect following from the existence of
the Pameranchuk trajectory, ii) the prediction is a rather clean
one in that the possible existence of Regge cubs should nol lead Lo
any ambiguities in experimentally establishing the existence of this
spin 2 rescnance. )

For this reason the possibility of grouping the new resonances
in Regge families, and of using this infommation to correlate the
resonance parapeters with observed total cross sections and angular
dlstributions remains as an interesting application of the Reage
theory. To make good use of this possibility, however, it seems
essential to have & method to determine the Regge pole parameters
dynemically. This circumstance, plus the reallzation that experimental
cross sections probably cannot be usefully analysed to get information
about the Regge parameters, provides the priwary motivation for the
work in th.e second part of thls thesiz. Here we use the principles
of enalyticity and unitarity to derive a set of singular, non-linear
integml equations satisfied by the Regge parameters. These equations

%
have been solved numericelly and applied to detemine the Regge

%In' solving these equations numerically, we have used an “on-
‘line" computing center as developed by Drse. G. J. Culler and
B. D. Fried of the Thompson Ramo Wooldridge Corporation. This
system has proved to be of particular value in our problem
in instances where it was extremely difficult to devise s
convergent iteration scheme. For a detailed description of
their computing facility, see reference (13).
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parameiers In some poteniial theory and relbdtivistic problems.

In the case of scatiering in a simple Yukawa poteniial, where It
was possible 4o compare our resulis for the Regge parameters with those
previously obteined by solving the Schr8edinger equation, reasomably
good agreement was found for a wide range of potential sirengths.

In the relativistic case, solutions have been obtained for the
positions at) of the Pomeranchuk and p-meson trajeciories. Our
result a'l;‘(t) for the Pomeranchuk trajectory agrees quite well with
that recenily obtained by Foley et al. {35) from an analysis of =« p
angular distributions, but no spin 2 resonance is found to lie on this
trajectory. We find a value of u.p(t) , =0.8 (BBV/G)E <1 <0 which
seens to be consistent with experiment (52). How these resulis should
be interpreted i1s somewhat unclear, and will no doubt remain so until
we see if an understanding of high emergy NNe-scattering can also be
obtained on the basis of thege equetions.

The potential applications of Regge ldeas to bootsirap calculations
and 1o ordinary fileld iheory have not so far been exploiied to any
significant extent, with the exception of the work cited in reference
(9b), (11) and (12). Therefore, no further comments on these ideas
will be made here.
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Part II
REGGE POLE ANALYSIS OF NUCLEON-NUCLEON SCATTERING

Te INTRODUCTION

In part IT of this thesis we shall discuss nucleon-nucleon shd
nucleon-anti-mucleon scattering at high energies (s + =) and low
momentum transfer -s << 1t < 0. Ib is in this regime of momentum and
energy that the Regge pole hypothesis, in terms of which we shall treat
N¥ and Nﬁ'scattering, Tinds its most immediate application.

The general features of the nucleon-nucleon problem have already
been discussed in terms of Regge poles (2). Simple expressions have
been obteined for various differentiel cross sections on the basis of
an snalysis which ignored the spin structure of the amplitudes., Perhaps
the most characteristic result of such a simple Regge pole analysis,
which should also come out of any more detailed Regge analysis, is the
prediction of a diffraction cross section which, as energies become
arbitrarily large, and momentum transfers remain small, has the

functiocnal form
GVGD_ = 7] (/s (1.1)

Recent data (14) on pp-scattering in the range 15 < S/EEINQ < 25,
0 < ~t/em” < 3 vave been analyzed (15) in tems of Equation (1.1), with
the important result that at least the most general femtures of the
Regge hypothesis (as applied to nucleon scattering) seem to be

*
consistent with experiment.

*For qualifications of this statement, see the General Introduction.
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The mucleon~nucleon syshtem is of intrinsic importance in
elementary particle and nuclear physics. The camplicated spin structure
of the amplitudes means that there will be many independent physical
quantities in the NN and NN system which can be expressed in terms of
Regge poles. With these, more detailed and precise experimental
consequences of the Regge hypothesis can be deduced, and their investi-
gation will lead to correspondingly more stringent tests of the Regge
hypothesis. In terms of experimental femsibility, the nucleon-nucleon
system appears to be the most suit&ble for further detailed experimental
verification of the Regge pole conjecture. For all these reamsons, we
feel that the nucleone-nucleon system merits a thorough treatment based
on the Regge pole hypothesis, which is given in the following.

Consequently, we present in Section 2 the leading temms in the
Regge expensions of a set of ten invariant amplitudes, which are free
of kinematic singuwlaritles, describing NW end NN scattering. We ddscuss
the possible transitions in NN and NI scattering between states of given
parity, spin and isospine These are conveniently summarized in terms
of TPl = (signature)(parity)] and (-)MGP. The selection rules which
result refuce the number of independent amplltudes describing the
scattering which arises from a given Regge pole. Regge expansions for
the helieity amplitudes are also obtained in this section.

The expansions we derive in thils section are o £ interest regardless
of whether the set of important singularities in the sngular momentum
plane consists of poles only or contains also cuts. However, the
usefulness of the Regge asymptotic expansion for data analysis will

te seriously impeired if cubs play a very significant role.
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The iunctions bi(u) occurring in the Regge expansions are related
to certain coupling strengths. In Section 3 we establish the precise
relationships in a number of particular cages by comparing the Regge
smplitude to the corresponding Feymman amplitude st the pole.

We should like to mention at this point that other discussions of
the Regge expansions of the NN and NN amplitudes have also been carried
out (3, 16~18), and some of the results of Secktlon 2 of this thesils
are contained in these papers. In particular, Gell-Mann (3) has presented
his expressions for the smplitude in "factorized" fom, as shall also
be done in this paper. In addition, he has analyzed in a most interesting
way the question of the presence of "ghosts" in these amplitudes.

Muzinich (18), in his discussion of the Regge expansions of NN and NN
aﬁplitudes, considers & problem not discussed here; namely, he shows
(on the basis of the Mandelstam representation) that the Frolssart (6)
analytic continuation of the partial-wmve helicity amplitudes can be
carried out for the NN problem, where the particles are spinors.

In Section 4 we discuss in detall the cross sections for NN and
NN scattering. The contributions of the P, p, w, and P' +trajectories
are all discussed. All gpin sums are carried out explicitly.

In Sectlon 5 we turn to an analysis of exlsting dats on NN and NN
scattering in temms of the Regge pole hypothesis. Our analysis is based
on the data of Diddens et al (14, 15) end of Iindenbaum et al (19). We
find that an analysis which inecludes the full variation of the lLegendre
Tunctions with energy, as well as the spin structure of the smplitudes,
does not change the basic conclusions (20, 21) of the Regge snalysis of
total cross sections. A second vacuum trajectory, introduced by K. Igl (22)

1s consistent with the data. However, because the o data (19) are so



far from satisfying the Pomeranchuk theorem, and because the <, D

containing the Glauber correction, are so unreliable, the conclusions of

data,

su_ch an analysis must be regarded as highly ﬁentative.

The angular distri‘bu‘bims have Peen expressed in hLerms of the
Regge pole parameters. If only the Pameranchuk trajectory is included,
the differential cross sections can be expressed in terms of essentially
one function, a result which becomes clear when the differential cross
sections are expressed in temms of helieity amplitudes (23, 24). The
aveilable data have been used to determine this function; we find it has
& linear behavior for 0 < =t < 0.40 (GeV)®, and is a constant in this
region if s =1 (GeV)E.

Throughout this section of the thesis, our emphasis has been on
ei:;ploring_ the deftailed experimental consequences of the Regge hypothesis
as applied t0 the nucleon-nucleon system. It is hoped that this effort
will ingtigate more elsborste experimentsl inveptigations, designed
to test eritically the predlebions made here. We wish to check asg
thoroughly as possible by experiment whether this approach to elementary

particle physles has & fimm basis in the facts of nature.

2, REGGE EXPANSIONS FOR NUCLEON-NUCIEON SCATTERING AMPLITUDES

The Regge pole contribullons to the amplitude may be deduced from
the partial-wave expansion of the amplitude in the cross channel according
to the prescription of Frautschi, Gell-Mann, and Zachariasen (2, 3). To
abtain fhem, we may employ Ithe matrices of Goldberger, Grisaru, MocDowell,
and Wong (25) who have discussed the application of the Mandelstam

representation to the NN problem. GGMW, and Amati, Leader, and Vitale (26)
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have showm that only 1f the NN scattering amplitude is expressed in
tems of Fermi invariants are the associated invariant functions free
of kinematic singularities.

In order to facilitate comparison with previous work, we shall
adopt the notation introduced by GGMW. The nucleon-nucleon scattering

amplitude is written as

T = 251 EFSI(S, u, t) S + FTI(S, u, t) T+ FAI(s, u, t} A
I

+ Pyl (s, u, 8) V o+ F(s, u, b) ﬂ ,
where

8 = EIp{) 1 u(py) E(Pé) 1 u(p,)

T = zue}) o, ulp) lep) o ulzy)

A =2p) 1 % 7, ulpy) wley) 1 x5 v, ulmy)
V=Hﬁ)mﬂm)ﬂ%)mﬂ%)

P = u(p;) % u(p,) ulp)) v u(p,)

51 = ]1:[(;1, -‘; S.I)'(Ea, —1" 52) + 3(E1| 31)(-9—21 52)] b

o]

=3 |- 5" % 5, T ap) + (5, 8)(E 2 52|

(2.0a)

(2.0b)

(2.0¢)



w2

and

s : "'(P1 + P2)2
u = -(pé ~ P s
t = =(p] ~ B 2 . (2.04)

In the above, the s, represent isopinors.
The inclusion of the isotopic spin factors, which we usually drop
for the sake of simplicity, is accomplished quite readily by making use

of the mabtrix
Aoy) = % (2.0e)
irt’ "2 2 *

which relates the invariant functions FI, considered as a two~component
vector in the lscotopic spln index, to the relevant functlons in the
t=channel with isospin I’'. The first row and colum refer to I = 0,
and the second to I = 1,

Throughout this part of the thesis, we chall suppose that the Rogge
pole _:'Lé in the t-chennel. However, we may briefly indicate here how to
pass from the t~chammel to the u~-channel, or vice versa (t=u). This
corresponds to interchanging p; and p;_. The following changes are
thereby produced: (i) the full amplitude changes sign; (ii) the spinors
of the final particles are interchanged, u(p; )= u(pé) 3 (3i1) in the
C.M. system, the scattering angle changes from 8 +to = = 8; (iv)
Tinally, the isospin projection operator BO changes sign while |31

does not. The matrix (2.0e) then becomes



Tt should be noticed that Bquation (2.0e') already includes the sign

change mentioned in (i) above.

the five invarisnt functions, Fg, Fp, ),
Regge pole characterized by definite values of G, I, P and signature
(t), This may be expedited by employing scme of the formulas of GGMV.
(In the following kinematic considerations, we shall amit the ilsospin

factor.) With the aid of Equation (2.6) of GGMW, we see that

and,

(2.0e)

The first part of the problem is to ascertain the contributions to

§-s -3
T4+ 6
K—A :—‘7}_ L
Vv L
PP A\ 1
consequently,

Fg -3
FT 1
F, =
Fv 1
FP 1

1

AN o BN o

.

I'O(.J\O

1

0
2
2

-1

-l

1

6
-l
o

]

-1

-1

F

v

s and  Fp, resulting from a

a

2

(2.1)

(2.2)



where
T = F1(§ - s). + Fé(; + T) + F3(K - A.) + Fh(v + V) + F5(§ -P) .

The set of invariant functions {F1’ FE’ F3, Fl[_, F5} have nice symmetries
under the interchange u <—> { due to the generalized Pauli principle,
but in the Regge pole considerations, it is much more convenient to work

with our unsymmetrized functions. Inverting Equation (%.24) of GGMW,

we have
F, 1 0 4 o 3 N
F, o 4 o 0o o Gy
Fy - % -1 0 0 o 1 Gy s (2.3)
F), © 0 0 & o &
Fy 3 0 -+ 0 1 G

and using Equatioms (4.27) and (4.28) of GGMN to relate G, and 'é'i,

we obrbalin:

Fq 0o 0o o o 1 61
Frp o 1 0 0 © '62
F, =5 o 0 1 0 © g . (2.4)
Fy o 0 0 1 © G,
Fp 1 0 0 0 O | 65

~ Thus the Ei of GOMW are exactly the same as the choice of

invariant functions convenient for our analysis.

The partiasl-wave decomposition of the G's may be obtained by using

Equation (%.33) of GGMW, which in our notation reads



-2 Jm

1 /E2 0 .1112/}7‘.‘2;92 -z/.EE -z/m2

0 0 0 -1/p2 -Ea/m.ap2
aE) = 0 0 -1/¢° 0 0

0 0 0 1/5° 1/5°

0 --1/;p2 0 -z/p2 qz(Eafmg)/m?pa

vhere hpe =1t - hm?, MBS = t, snd z = =(1+ 2s =), together with
tmlim

equations which relate the fi ta thelr partial-wyave foms.

The angular functions amployed for this purpose were evaluated

from the reduction formlas of Jacob and Wick (27) with the following

results:
F =E(ar+1)p(z) FY
1 P J 0
-~ _E = J
£ =5 (27 + 1) PJ(Z) Ty,
E:J
- i ¥ 12
f. = == (27 + 1) PX(=z)
7 F T GEET
' - -
= _E (2141 { P+z(2PJ_1 J(J 1)PJ} =3
3 p J(T+1 i J - 1
-[2P5__1-J(J—1)PJ] - J}
z 22
1 » 2z
- = =J - J
fh_f3 (£1 <> f22) .

(2.5)

(2.6a)

(2.61)

(2.6¢)

(2.68)

(2.6e)
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We can now easily obtain the Régge amplitudes correspénﬂing to a
given trajectory. Use of Zquations (2.4) and (2.5) can be made to obtain
the partial-wave expansions of the amplitudes FS’ ran , FP' These are
summarized in Takle [ for sfa.tes of the NN system classified by the
quantun nunbers TP,.J, and (d)IGP. A more detailed classification of
the states of the NN system is presented in Table II.

Mandcleotam (28) has shown thot it is likely that the truc asymptotic
expansion of the amplitudes in the sense of Regge involves Legendre
functions of the second kind rather than those of the first kind. The
transition from the Regge expansion to the modified expansion amounts
to. the replacement (3) of P (x) by (Pa(x), where
@a(x) = = [tan my Qg (x)]/zt.. In this paper we shall write the expan-
s‘ion formally in terms .of the P, for typographical reasons only; in
practice, it makes no difference in the data analysis whether one uses
P, or the more correct @a' |

The next step is to factor out the threshold behavior in the
functions f. We may do so by introducing the funciions bi according

to the definitions:

| - 3 28 2
T ey o . ay 7 D 0y ¢t = Mm" @
i ) [ 2 o v 1/2)1 e (2 O )J
;irca(t) :
x | itos b, (t) (2.7a)

Z sin R G)
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P -

eErT) - 0!+1(a+1/2), 2::}3 2 7

14 o o~imi{(t) N
* [ e | P1alt) (2.7v)

fop (t) - il [ ol
ala + 1) ma o:+1 (@ + 1/2)'

3
() (—3 m?) (tES )

e---:i.:rc:(t) |
% [1- 5 (T ) ] _bgg(") (2.7e)

E taa
2w - 5 [ - & & = |

1T+ a e-inoc(t)

5 sin 7@ (5] | Yol (2.74)
'251&(13) = ( lq.ma ) t _ al Ix ) ( ) ( -li-m ) ‘}
Q@+ 1) p i h® [ 2o+ 1/2)1 2"E |

~ita{t).
i
% [ e | M) : (2.7e)

The new expressions for the emplitudes in Table I may be written

conveniently in terms of the b, and (3)

i

Za"(s, t) = [Z,(s, £) + 7 z.,(u, £)1/(1 + 7 e—i:ra(t))

2

where
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wiA al tedim” & 25
T () r,[ -0+ —E)] . (2.8)

ZC«:(S’ t) = e

The asymptotlic behavior of these functions is independent of the

signature:

2+t 1I-m2 @ ofa- 1){'&-—J|m2)2 26 3__. b 2,

<25;‘;’"‘*‘2a [“-?—l)x +~-] ’ &9

vwhere x = ('t-.-hme)/(2s + %t - 1!-1112), and

Za(ss t) = (

2 (= -
2:(s, ©) = 2 fa(s/s ) = oBEpt=tm 1 -] (2.10)

Upon subgtituting the ch into the amplitudes of Table I, we
obtain formulas for the Regge pole terms in the NNwscattering amplitude.
Thus far in our analysis, we have not incorparated the hypothesis
that the Regge pole terms are factorizeble (29). The effect of this
property is to reduce the mumber of independent invariant functicns,
bi(t), fram three to two in the case where the Regge trajectory hag the
quantum mumber TP = +. It results in no change for those contributions
to the invariant functlons erising from trajectories with TP = -, since
there is only one invariant function, b O('t:) or bl(t) , associated with

such poles.

The relations
EF + WP F, + (284t -bn2)F_ =0
P A 7 )

and
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' 2g
(6 Py + lm™ Fp) (281 (-1 - t“l‘ma)..- @ - 1) By
+ FA(h-mz - t)[{l - za) B+ 2(2}?0"_1 - aa - 1) Pa)] =0,

are valid for the contributions fram Regge poles with TP = +,

irrespective of whether the coupling to the pole may be factorized. The
additional relation imposed by the factorizability of the pole contribution,
however, may not be expressed in the simple form of a linear relation
between invariant functions. Rather, it leads to expressions for

all the inveriant functions as & bllinear fom in two functions instead

of as a linear form in three.

The functions ff:{(t) N ?1';(1;), and 'fag(t) of GGMW, which appear
first in our Equation (2.6),are the elements of & 2 x 2 symmetric
reaction matrix. The assumption that it may be factorized iz equivalent
to choosing the representation:

J

Tee) T,0(6), Bl(ed= (006017 . 1t 1e

=3 =T2 = -
f11(t) = [f-'_'_(t)] ) f}g(t) = f1
natural, therefore, to introduce the functions bH_(t) and 'b2+(t) 50

that

byy(t) = b, (8)1°

byo(t) = Loy (£}) [b, (5)]

L]

baa(t) [b2+(t)]2 s

which when inserted into Equstion (2.7) yields the [inal form of the
Regge amplitudes for NN scattering. These are given in Tables III, IV,

V in thelr exact form. The leading terms in the series, wvalid for
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6 > m® - t, are to be found in Tsbles VI, VII and VIII.

It has recently been shown (23) that the Regge analysis of
scattering problems involving spin may be decislvely simplified if
helicity amplitudes are introduced. Although we shall not use this
method in our thesis, we shall for the sake of completeness express

the helicity amplitudes in terms of our factored residues b and

1+

b This 1s most easily accamplished by using first Equations (Lk.17a-e)

ot
of GGMW to relate the helicity amplitudes {f,, f,, bas bys B)  to te
{F1, cee Fé}, end then the 1nverse of our BEquation (2.2) to relate
them to FS’ FT’ FA’ FV’ FP‘ Use of Table III then ylelds the desired
results, which are the following: (see page 36)

(T = Bx 51/2 $, and we uge m. @ the energy unit)
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TAEIE III. Regge amplitudes for & pole in the te-channel wlth quantum

nubers TP =+, (=)%GP = +. In the tables, ¢ = (1 +T e""%/2 sin m.
2
25 (s + o )
Fg=¢§ EhaT"())m {hm‘? Za(s,t) [‘bH(t)] 2.4 [_-_.gf_.. z)
2 -~
a(tnmE . 5)2 (2(52'%%.)2 | ,
s(s+teim™) -1 a1~ (1) 2y f [ 2"'(t)]

+1;-1+m

..(t+l4m2)(i_____

) 7t [‘b.l+(t) 'b2+('b)]}

2
. ‘ 2s, . (t_,_ma) [?é afs + t";m ) (2o (E ) 21 <(a-1) 2 )]
T (1m2)2 2 5o s{attlm) 21 28y e’

y [aaz+(t)j2-t(*s ) 2y oy, () By (6))

22
o, ozl
AT GRR s(ored) -l ) = (@) 2y [[op, (01 )"

2g Tz Cx(s+t"2,m)‘2 t_hma
et A Ty @ ) e

o) [opcel] 20 2 cigied ) 28y, () 'b2+(t)}

- 22~
N [ ST
F-3 e . — Y '- — X
P ) % a s(s+t-ln2)

Exi (t'f;m ) 78 - (1) zaﬂ (bt |2

- -(Z—;:’:i-l (2s +t - 1+m2) 24, by, (t) b2+(t)}
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TADIE IV. Regge amplitudes for a pole in the t—-channel with quantum

numbers TP = -, (-)IGP = -,

FS = ET = EA = Fv = 0

290 t)
Fg:-;—-—zbt
P e &0

TABLE V. Regge amplitudes for a pole in the t~chammel with quantum
numbers TP = =, (-)IGP = +.

1:--lt-m2
£+ 5p a(s +
ot SR o (B O - e ]
- (b=l )
F = ¥
T Ps + L = hm? 3

Tp=-% n—:jézé‘ﬁ(’“) - Fg
Fy =¥y

FP = § Z& b'l(t) + FS




T

TARLE VI. Leading terma in the expansion of the Regge amplitude for a

pole in the t-channel with quantum numbers TP = +, (-)IGP = 4,

Py~ & (1:;(;2 <25‘£§‘1‘“‘ ) {hma E’1+(t)]2 I: '%{%%1%) Xa] ()

x [ By, (8) ba(t)j[ - %%%l xe:i + o [:b2+(t)]2

2 2
« [ - gy _|

0 4
) tax [ by (8) - a by (t) [ by ()

2s 2 —_
Fp == ¢ E:n?% (g-%%-h‘%) t a(a-1) 2 Lb2+(t)__] 2

L

23

Fv-I-E (hmgc))e (25'21'24451) o x Lat-b2+(t) e 1+(t)‘[b (6)
28
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TABLE VII. Leading terms in the expansion of the Regge amplitudes for

a pole in the t-channel with quantum mubers TP = =, (-)IG = -y

TABLE VIII. Leading terms in the expansion of the Regge amplitudes for

- & pole in the t-channel with quantum numbers TP = -, (-)IGP = +.

P - g (25"“"“) Do) 2 by (t)

hme
. (25*““) afom1) ¥ L5 b (t)
. b _
2 Out
-t ERty F L nw
b
Fy = = Fy
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2

~2ta(s+telt) za;% {s(st+2t-8)+2(t-l+)2} - Eﬁ— T,
'-2Jss(s+t-1+)‘ é‘a }_,l (25+t;1+)(s+t~1r)~t Ya(s+t-lr)
w2ts(stt=4) ﬁa ltf (st=2t+8)(s+t~k) =~ 5-;:’_— ¥y

2te(srtl) Dy B (2stbeh)(srbab)rt(artal) T,

- ,1;- [strlis+hi-16] ?'Za (2s+t=lt) E" - th Ty

, T
L2, e 1
i+ T2
by, P, & 250 £
X T+ Ter o (=Y R T3 (2.11)
o L
bay Ty
%5
, 2¥=st (stt=h)

We have introduced the following sbbreviations:
7 = azfds = 2'fs,
t=(1+7T e'i“a)/a sin @
2 pab?
Y, = ['é'i':i' (-é-é:) Zhq - @)z, | -

In the asymptotic limit s~ o, t £ 0 the relation between the helicity

amplitudes and b,,, b gimplifies bo

2+
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In the asymptotic limit s - «, t < 0 the relation between the helicity

amplitudes and b, , by, simplifies to

T, ok wt
2
T2 - | t =% 'b1 +
: sQ S 8. a |
T3 =2 &) b -t 2 Dy Py
o % 2
Ty = ¢ B Poy
‘ _ 4
T 2/t Y (1)
(2.12)
and a simple relation between the helicity amplitudes is revealed:
T, - TB
Ta = - Tl.]. . : (2-13)

3. ASYMPTOTIC AMPLITUDES DUE TO THE EXCHANCE OF P, o, p, and P* MESONS

In this section we construct the contributions to the inveriant
amplitudes describing NN scattering arising fram the exchange of the
F, ®y. p, &and # mesons. We can then compare the asymptotic forms of
these expressions to those given hy the Regge theory applied to the

corresponding trajectories, and identify the residues b, with appropriate

i
coupling constents by compering the amplitudes (2) at t = mbe’ By e

We shall first coneider the Pomeranchuk trajectory, having the
quentum nunbers of the vacumm and aP(O) = 1. It is possible that there
1s & spin 2+ resonance occurring on this trajectory (30) at

t o~ (Gev)a. We may identify the Pomeranchuk pole residues with the

coupling constants of this spin 2 resonance to the nucleon. To do this,
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we must first construct the contribution of a spin 2 meson, C, to the
inveriant amplitudes describing NN-scattering.
The propagator for a spin 2 meson must be a tensor of rank four.

Itz most generanl form is therseiore
D (q_a) =a (.85, _+8 &.+B& &
HYAD HA vg Ba VA uY Ag

2
+ C(q?\ 458, +9, 9, Bka)/m

2
+ D(q'v 9y ﬁp')\ * qp q'?\ Bva taq, % 6140 + qp Ly ﬁv?\)/m

L 2 2.~
+ E(g, g, @) a )/m’} (a° + o) s (3.1)
where we have taken into accou:t theesynnnetries D;W?\u = DVH?\G and
Dt.W')\c = D?\cpv' At the pole q = -m , the propagator is divergenceless,

qp, Du'v}\a = 0, and tracelessf Duu?xu = 0. Fron these two conditions we
find B=C=-2/3, D=1, and E = 4/3. The factor & 1is determined
to have the value 1/2 so that if a polarization tensor ey ©f the

mescn is normalized to 1, then ¢ D 1.

BY Tu¥Ag € ©
In the Borm approximation, the coupling of the C meson to two

nucleons takes the form

1 1
Q(xcm'gcm)zpzv"'ﬁﬂ' oy 13, % 5 )

I“h = -+ ' -
ere Zu (p P )“

Fraom these results we readily see thet the C-meson pole term in
the amplitude has the form

*
The author wishes to thank Tr. W. G. Wagner for clarlirfying the
meaning of this condition tc him.
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x u! "(XC“H " o) L % 4+ L Somy (= + 5 )—’
e ,ml?' T ’EII y Ty T T e

1 1 ot
"3 5 Wh Uy Ul Yy [Xcmi('::?‘”"gcm"z"

£t - ' -
wheve Z1 = (py + 8), B = (g + P{),-

Using Equation (2.21) of ALV, which states that
EimN[u'Z"r u1u2u2+u u11.12 u2]
2 2
=(144,.H -t =2)}S+P) ~lm  V++tT

and E'T u1u22‘.v
a-(23+t-hmH2)V+tA-th2P ’

we find that the C pole terme in the invarlant amplitudes are:

Oy ®)® (bomg®) Fg = sy ke = o)y = & - 2s)’

-3 E‘cer - <ty |

(2P (bms?) By = Oty = bomy) Bomy Py = & - 28)

s
o

V2

(3.3a)

(3.3p)

(3.4a)

(3.40)
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(2P (v ?) T, = -2 8o Pt (3.4¢)

(bmg?)? (bm®) By = = bty gy By (g = % - 28) (3.42)

L]

Oy ?)? (bmg®) Py = 8 iy By + Oy = Scaay)

x by (o = & - 28)° . (3.14e)

These expressions may be compared to those in Table VII. In
perticulsr, we can, &t  t =m,, identify the Pameranchuk Regge
pole parameters o, ‘b1 4 and 'b2+ with various properties of the C meson.
At the position of the resonance, t = mcz, we must have Re OLP(mCQ) = 2,

2
Also Im Q,(m;") = I, is related to the width (2)

m fomTfs G:5)

where €, = Re [daP(t)/d.t l’r;-hicE] , and we find

2

_ o = ey) + =5 :
P, 2 o <S¢ —2 7 %o
b1+(mc) _ w h‘-mN"mC
g, | y

Q

(3.6)

P _
) - 2y Somm
T 7 = 2,

In & similer way, we may compare the Feynman amplitude
corresponding to p exchange with the associated Regge pole contribution,
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to ldentify the residues bg(t) at t = mpe. For the p=-pole term in

the amplitude, we have

(s, t) = - 7'mvp ui rT 'ﬁ' o,,(p] - 2 ]v:l Ta Y

v
us L 2 Guv(P‘c!.‘ =Py, Tu'o
x = (3.7)

t-n
]

which can be reduced to the form

2
-2
™o, ©) =3 D ) filiay” - 22 - o i?
: P

- K (T+p. }
+ P [1-;;;% upm(h“upm)*r—ﬂhm—;rﬂ t T

t(rug) V (3.8)

uslng the relations

=ty aw(“p' - P)v U, = W [2’1111,I L i(p' + P) ] w, s

(py + 29), (pg+pé)u=u-s=‘mu2-t-23 s (3.9)

and Equation (3.3b). TIn the column vector, the first row referc to
I =0 in the s~channel, and the second to I = 1. Near the p-meson pole,
therefore, we have (dropping isospin factors):
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NN
Fg = (t - mpg_-) . ’*mNa T , {3.10a)
T‘*“—*‘%} (14 (3.100)
t - m upm ppm ’ )
F, 1s not singular , (3.10¢)
Fy = 1+ (3.104)
(t—'::%) ( upm) ’
-2 Tﬁy (hamN -t - 28)
£) 5 bl * o) - (3.10e)

t-m th

We conpare these results to those arising from the p trejectory.

At t = mpe, Re ap(mpa) = 1, and as before, we have

o=m L

2 [ .
o4 d R £}/dt 1+ We then
vhere p(mp )=1+1 Ip and ¢ = Re &xp( Y It:m 2]

find that the bi(t) are related, at t = mf, to the coupling constants

and as follows:



43

P

L

2
n 2 h 2, 2
(1 - L) 'blf (m )/J:E'?p'?‘"z 2 Yol * By /"1 (3-11a)

j+
A
—

it

2 Tpm(l + “prm) . (3.111)

2
(1- gg) b? (m 2T e T2

. A

The correspénd.:lng formuias for the o Regge pole are exactly
enalogous to those of the p, since the only difference 1s that of
isospin, which we teke care of with the matrix A, (see Equation 2.0e).

Of those Regge poles associated with meson systems having zero
spin, the most prominent contributor to the NN-scetiering amplitude is
likely to be that corresponding to the plon, since Re & 1t(-l;) is zero
for the lowest t, @ (m %) = 0, This trejectory has I =1, C =+,

2

T =<4, TP = w. Near t--:mﬁ,

(s, t) = = 8§Nx ﬁ (-?)
t

and therefore

n, 2 2
bo(mst ) - 2 SNNn
n e:t ¥2e o

In considering variocus trajectories which may contribute to NN
scattering, we should like to mentlon briefly soume recent speculatlons
on the existence of another trajectory with € = +, for which a(0)

1lies in the region 0 to 1. Igl (22) has shown that the data on
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#p and np scabbering require scme singularity in the J=plane which
lles in the region 0 to 1 for forward scattering. Let this singularity,
which has C = 4+, and T =+ since it is coupled to the two=-plon
system, be labelled P'. As we shell see in Section 5, and as suggested
on the basls of a spilnless treatment of NN scattering by Hadjloannou
et al. {21), such a singularity is also needed to cancel the contribution
of the o Regge pole In NN scattering. It must therefore have I = 0,
end is a campanion to the Pameranchuk trajectory in that they both have
the quantum numbers of the vacuum. Igl has suggested (22) that the P!
be associated with the ABC anamaly (31 - 33), but this seems inappropriste
because the trajectory associated with the ABC anamaly must have
= 0 near + = 0. If the P' singularity is a pole, rather than a
bﬁn& cut, there exists the possibility of associating P' with a
resonance with J =2 in the region t > lm f. We would look for such
a resonsnce in the 1 tao 1.5 GeV reglon, which sti1l remains virtually
unexplored. However, the P' trajectory may not reach the line
Re @ = 2, or even if it does, Im Q@ may be large, so that a resonance
would not occur.

3. Mandlestam (10) bas recently investigated the contributim of
8 class of multiparticle intemmediate states to the partial-wave
ampiitude. He concludes that they give rise to cuts in the angulare
romentum plane which are In general present up to t = 0. If this
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conclusion is correct, it appears to us much more plausible to regard
the P' singularity as the cut associated with the P pole, rather
than as a second vacuum trajectory. For further comments, see Section

5.

4. CROSS SECTIONS FOR NUCLEON-NUCLEON SCATTERING

A. FElastic Differential Cross Sections

The nucleon-mucleon elastic differential cross section may be

written as a bilinear form in the amplitudes F(I=5,7,84,7, P):

dofdt =

1 *
_ L Co s, t) F 2 F. . (4.1)
16 T« 'S(S - 1.!51‘3,) I,I' II' 3 I' I

The coefflclents CII' were obtelned by carrying out the spin sums:

Kopp, = Tri(m = 144) Gpy(m = 19;,) 0] X

Tr{(n = 18,) 0p,(m - 19,,) 04], (%.2)
1
where Oy =1, 0'1':757 Gv 2 TIWHY, G =7, and
Op = Tg» The results are summarized in Table IX.
With these coefficients we may construct the contribution to the
differential cross sections for NN and NN scattering from the P, P',p

and « trajectories.
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TABLE IX. Splo sums for NN scatbering.

Coefficlent Form in terms of & and .
g9 “‘“’1% - +)?

Cap = Cog t(2s + t = lunﬁ)

CSA = CAS 0

Coy = Cyg bat(2s + t - buo)

CSP = CPS 0

Coep 2[es + t = k512 + Buf(t ~ bud) + Mouy
Cry = Cpm 12;::12f {2s+t-l+m§]

cw = Cyp 1ent &

Cpp = Cpp t[28 + t = bnl]

Cop [26 + t = 2l® + (6 - C)? + 16m}
Cav = Cua 2t(2s + & = umlf]‘]

Cap = Cpa ’““g %

Coy [2s+t-hm§]2+t(t+&n§)
Cop=Cpy | ©

Cop t°
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For pp scattering we find

2 thE )
da 8+t - .
2
161 s(s—llmm)-mdt = Dy, |: 5 J
280
—op(t) & (t)
2ettaln [2s+t~1m.N2 o
12 |—— S
P ()
| 28 o J 2s N |
- —~op(t) e (£) 2 (t)
25%-%2 28+t-1|-mN2 ki Es-t-ft-ll-mue ®
+2 DPP' P P +Dum o
. 28 i 2s 2s
o] 0 -
- (%) p1 (%) (t)
2evt-la] T 2s+tlu’ 2sttadl | T
*R N | | oo Topp | TF °
s 28 28
o o o
(4.3)
The result for pp scattering is the same except for & minus
sign on the temms Dl’u) and DP’u;' Since no I =1 pole in included,

d dt = .
%p / " Yo
Making use of the expressions in Tables VI and IX, we find for the

éoefficients in Equation (L4.3) the remarkebly simple expressions,

P22

t)
e ~5— Dgp(t) = [oa o) :[ (5,02 (1 = 2%, (1)
n?

and
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[T+ 75 cos #, + 7 cos @+ 7, 7 cos a(Q - am)]

P. o t P_m 2 P m t 2

= I:b1+ b1y~ %E % % Pos P2t ] 8y B (V- ;;2?) > (45)
where 'rP, 'rm indicate the signature of the P, o trajectory. All the
other D functions can be obtained simply by changing the indices.

The circumstence that the coefficients D:!. 3 are perfect squares
is a result of the facts that the amplitudes can he factored and that
&1l particles are nucleons.

These same results can he obtained in a very simple way by
expressing the cross section in terms of hellcity amplitudes, and using
the results of Section 2 to relate the helicity amplitudes to the factored
residues by, and b, (23, 24)., 'This same method alsc allows & simple
derivation of fhe expressions for the polarized cross sections (23, 24).

B. Total Cross Sectlions

By the optical theorem, the total cross sectlon is related to the

Imaginary part of the forwerd scattering amplitude,

ol
-/s(s-th )

"tot(s) = Im P(s, t =0) . {4.6)

To epply this formula, we need to evaluate the spin average of each of
the Fermi Invwarisnts in the forward direction. We shall do this by

computing the two helicity amplitudes 'I(++, ++) and T(+~-, =+) for
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% = 0, where the + signs denote the helicities of perticles

(11, 2%, 2,1). We £ind

(++, ++) (+-;, -+)
> by by
7 —h-mN2 h-mua
A ~(25km, ) (28-my”) (8.7)
v (23-th2) (ES-IImﬂa)
P Q 0 .

Since a trajectory with quantum mmbers TP = -, (-)IG ® -
glvea a cantribution only to ZE‘P, it makes no contribution to the
total cross section. In particular, there will be no terms in formulas
for the total cross sections arising from the n-meson and n-meson
trajectories. The contributions to the spin-averaged, total cross

sections from the P, P', ®» and p trajectories are

ap = B - R () + ¥ By, (v) - 2 R ()} (1 - 1/8)y-1/2 (4.88)
O = B = BB (V) + B B, (v) + B R (V) (1 - 1/P)7/2 (1.80)
ag = B + PR () + T Ry, (v) + PR (V) (1 - 1/42)1/2 (4.8c)
vhere B = (%2/80)(6(0)-1)[13”(0)]2

v = s/aiu2 -1

R(v) = V% [ee(0)]3

*Ohia(0) - 1/211 v ORI
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5, AN ANALYSIS OF RECENT DATA ON NN AND NN SCATTERING

We have analyzed the data reported by Diddens et al. (14) on the
total cross sections for pp and np scattering and that of Lindenbaum
et al. (19) on the pﬁ' cross sections. We find that the presently

available data indicate:
. )
B w38 , B ~53m ,F~Bm ,BP~-0m ,
Oy = 0.3 s @ = 0.3 ,apwo.h . (5.1)

We should like to make several comments on our analysis and its
results:

i} The inclusion of the nucleon!s spin does not glve any
Qppreciable modification of the structure of the Regge analysls of the
total cross sections.

ii) A study of the legendre functions Pa( O)(v) indicates that
for a<2, ch 15 represented by its leading term to bhetter than 10°7°
for v>2. 8ince v = (E] a’b)/m’ it is certainly sufficient, for
incident energies above & GeV, to keep only the leading term In any
practical anelysls of data. Moreover, the replacement of the Legendre
functions of the first kind, F,(v), by Legendre functions of the second
kind, Q_,_;(v), does not alter the fact that only the first tem, v,
in the expansion of these functions need be kept in the analysis, even
though the Q_, , (v) are singular at v = +1, This simplifies the
analysis, but eliminates the hope that perhaps the introduction of a
second vacuum trajectory with & iIn the range 0 to 1 could be
avolded provided that one included the full comtrivution from the
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Regge poles on the Pomeranchuk, omega, rho and "ABC" trajectories.
i13) Our spalysis requires that the location of & possible second

vacuum pole, Q@,(O), be significantly larger than zero, so that it

is unlikely that the trajectory could be sssociated with the ABC

anomaly.

iv) Our results are gmhewnat different from those of
Hadjioannocu et al. (21), who arbitrarily assumed @ (0) = a;,(0) = 0.5
and neglected the p trajectory.

v) The sign of the p +tem is opposite to that of the o term.
If a pole analysis 13 to he taken at all seriously, this is puzzling
since it should be positive. This discrepancy may well arise from
rresent dnaccuracles in the np data. Altematlvely, this may mean
that the cut asscciated with the p +trajectory is not small near
t = 0, and indeed overrides the pole part of the contribution.

vi) We can interpret ocur results for the P and P! trajectories
as follows. The analysis of the data indicates the presence of an
additional singularity besides the P, w and p poles. This we
attribute to a cut sasaoeciated with the P trajectory. I the cut is
approximated, near t = 0, by & pole, then this pole 1s described by
the parameters we have assoclated with the P', and whose numerical
values are as given above. In so doing, we have ignored possible
cuts assoclated with the p and w.

vii) This analysis suggests a possible explanation for the apparent
lack of shrinkage (34, 35) in the =p diffrection peaks. Note that
the pp cross sections receive contributions from the P, P', and

® trejectories. (We suppose the p contribution to be small.)



BEach of these contributions is individually large, but the contribution
of the P! is cancelled out by that of the o, leaving just the P as
the dominant contributor. In #up scattering, on the other hand, the
can not contribute at 8ll, which leaves the P' as a competitor of the
P. ‘These two contributions could well cambine to give & resultant
ghrinkege which is much less rapid, over a given range of s, than that
observed in pp scattering. Note that this explanation does not depend
in any essentisl way on the supposition that the P* is a pole, rather
than a cut associsted with the P trajectory.
Finally, we have analyzed the data of Diddens et al. (15) on the

pp elastic differential cross sections. These data lie in thr range

12< S -1 =Efm <28 and 0 < -t < 0.60 Gev-.

2y

Only the Pomeranchuk cantribution was included. The cross section

is then glven by Equations (1.3) snd (L.k),

2
2 > 2 1
[§§/ g’g e ’“ [ (by;(8) = (%) by, (%) , tE) - ] ta) blz((}) ]

. (5.2)

— (%)
y "25-{-2:0-11-111“2 :Iaxpt"a

We note that in this one-pole approximation, the dlfferential cross

section involves only one unknown function, namely,

F(6) = by2(6) - AB(t) bya(t) =25 . (5.3)



We assume for «(t) the linear behavior

in accord with existing data.,

According to Gell-Mann's ghost suppression mechanism (3) tke residue
F(t) must contain a factor (%) in order to eliminate the possibility
of a ghost at O = O(t ~ 1 (GeV)a). The resulting quantity, F(t)/a(t),
we expect to be nearly constant for amall negative +t.

The arbitrary parameter s is to be chosen so that F(t)/a(t)
varies as slowly as possible with t. We try the values 5, = 1s2,3 (Gev)a.
Results are summarized in Figure 2. We see from the FPigure that the
function F(t)/a(t) has & linear behavior for % < «0.40 (Gev)z. Beyond
this point, F(t)/c(t) shows a marked increase reflecting a corresponding
increase in the experimental value of do/dt. The graphs show quite
clearly that the function ¥(t)/o(t) is most nearly constant for

_ 2
s, = 1 (Gev)“~.
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Fart I1I1
ON THE DYNAMICAL DETERMINATION COF THE REGGE POLE FARAMETERS

1. INTRODUCTION

If Regge poles are to play an important role in understanding the
properties of high energy scattering cross sections and of the many
newly observed resonances, it appears essential to have a method for the
dynemical determination of the Regge pole parameters. This belief is
based on the following considerations.

{1) Recent measurements of the angular distributions in np and
©p scattering (15, 3k, 35) at high energles (15 < s/2n® < 25) nave
been analyzed on the basis of a Regge pole model. The constancy of the
total cross sections in the two systems at these energles at first
suggested that one can assume that the dominant contribution to the
cross sectlons comes from the Pameranchuk trajectory. That this
assumplion cannot be correct in 'both cases, at least as far as the
dlfferential cross sectlons are concerned, is shown by the facts that
almost no ddifraction shrinking is cobserved in the =np system vhile
congiderable shrinking is observed in the pp system. If the hypothesis
that Regge poles dominate the high energy scattering is still velid, it
must mean that in the present energy range the analysis of the cross
sections is complicated by the presence of several trajectories
contributing in an important way. If thisz is the case it would seem
that reasonebly clear cut experimental tests of the Regge predictions
about total cross sections and diffraction peaks would be possible only

if the Regge pole parameters involved were known functions.
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(2) There is some reason to believe (10) that when multiparticle
gtates mre included in the analysis of relativistic scattering processes,
the analyticity properties of the S~matrix in the J-plane will be
complicated by the presence of cuts in addition to simple poles. This
clrcumstance would result in further ambigulties in the interpretation of
experimental data, which would be somewhat alleviated 1f the pole
yeraneters were known.

(3) It is a consequence of the Regge formalism that & set of
rescnances or bound states, all having the same quantum mmbers including
J=parity, but having dlfferent values of J and occurting at different
energles, will all lie along the same Regge trajectory (8, 9a) o(t).

The exlstence of Begge cuts should not lead to any smblguities in
éxper:fmentally establishing the existence and properties of sny such
resonances. For this reason the possibility of grouping the new resonances
in Regge famllies, and of correlating a set of resonance parameters with
each other and with the cobserved total cross sections and angular
distributions remsins as an interesting application of the Regge theory.

To make zood use of this possibility, however, it again scems essential

t0 have a method with vhich to determine the Regge pole parameters.

It is our purpose in this part of the thesis to make use of the
analytic properties of the Regge pole parameters o(t) and x(t)
plus the unitarity condition satisfied by the partial wave amplitude
to derive a coupled set of integral equations ;zhich determine the
Lloestion <(t) and the residue w»(t) of a Regge pole as functions
of t. We shall dlscuss a few of the formal properties of these
equations and obtain numerical solutions of them in several interesting

cases.,
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In Section 2 we dlscuss the analytically contlnued partial wave
amplitude and the unitarity condition relating the Regge parameters.
Among the more important assumptions that we shall make here are:

i) Validity of the Mandelstam representation with real gingularities
only.

i1) That the partial wave amplitudes may be analytically contimued
to complex £ without encountering natural boundaries. The possibility
of essential singularities, in particular (36) those at £ = =1, =2, ...,
is not excluded here or in the discussion of the amalyticity of «(t)
and =(t).

ii1) Applicability of a "chopped off" unitarity condition in which
only two-perticle intermedlate states are kept. We do not thereby limit
6urselves to elastic scattering.

iv) Finally, the unitarity condition is employed in a fom wvhich
is valld only when Im(t) is small. This latter condition implies
that the Influence of the coupling of one Regge pole to another 1s
neglected. We feel that this approximation can be improved upon once
a wvay is found to exprese the partial wave anmpliitude entirely In temms
of Regge parameters without a background temm.

In Section 3 we investigate the analyticity of «(t) =and
zf{t)/ (c,],ju'q‘_j )a(t) and show thet these functions are real snalytic with
only right hand cuts in + providing the trajectories do not cross.

The case in which the trajectories cross«: has been discussed by

H. Cheng (37). We also discuss in this section a& possihle essential
singalarity in the partial wave amplitude at negative, integral values
of £ and show that it is consistent with unitarity and that Iits

presence does not alter the fact that at) and r(t) have only right
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hand cuts in +. Finally we note in thils section how these results

are modified if the Regge pole being considered is a Fermion, in which

case it is more convenient to discuss the Regge parameters as functions
of the % , rather than + (38, 39).

In the fourth section we express the real analyticity of a(t)
via & dispersion relation. In meny cases one can write a convenient
dispereion relation for the residue r(t) as well. However, we shall
need for our applications only the fact that v(t}/ (qi a )a(t’) is
real snalytic. In this section we also consider possible subtractions
in the dispersion relations and the ‘threshold behavior of «(t) and
r{t).

Taken together, the dlspersion relation for «(t), the real
énalyticity of =(t)/ (qi q, )a(t) and the approximete unitarity condition
derived in Section 2 formmu a coupled set of Integral equations which
determine the Regge parameters o(t) and =(%).

In Section 5 we show how to transform this set of eguations so as
to obtain an integral equation involving the single uninown function
Tm &(t). Once Im ¢(t) 4s obtained by solving this equation, we obtain
Re @(t) and the residue r(t) Dy performing simple integral transforms.

Because the equations we use are approximate, it is very desirable
to compare our results for the Regge parameters with thase obtained in
scme rigorous way. This is possible only in potential theory. Consequently,
in Section 6 we specialize the equations derived in Section 5 to thelr
non-relativistic form. We also make in Section 6 a muber of comments on
the more formal mathemmtical properties of these equations, especlally

those related to the uniqueness question.
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In Section T we present cur calculatlions of the Regge parameters
in the case of scattering in a single Yukawan potential of unit range.
A wide varlety of potential strengths are considered. These results
are crltlically compared to those obtained by Ahmadzadeh, Durke and
Tate (40) and by Lovelace and Masson (U41).

In Section 8 we solve the eguations for the case of relativistic
nt seattering. Tn the case of 1t seattering, we have obtained the
positions and reslidues of the poles describing the Pomeranchuk
trajectory, the pemeson trajectory and the second wvacuum trajectory
introduced by K. Igi (22). The properties of the P-trajectory as
computed from our equations agree well with those ascertalned by Foley
et al. (39) trom the apalysis of the xp angular distributions. We
use our results on the p-meson trajectory to obtain ab(t)’ t < 0, vhich
governs the enefgy dependence of c“+P - o&ﬁp and of the corresponding
angular distributions.

Finally, in Sectlon 9, we summarize the conclusions reached in this
Yaper and outline a number of interesting problems which remain fto be

investigated.

2. THE ANALYTICALLY CONTINUED FPARTIAL WAVE AMPLITUDE AND THE UNITARITY

CONDITION

It is well known that the conventlonsl partisl wave amplitude
(# 8 non-negative integer) for the scattering process a+ b= c+4d

in which the particles have masses Moy My, W, By, CEI be expressed as



2 2 2 2y, 2 2
A (2,t) = 1 fm .é._.@.S_ Q, c o a e +22 /(m'a - qj)(mc - q:I.))D:s; (t,8)
d x a q iJ
5, H% 9394 )
2 2 2 2yvs 2 2
+ s-1 !£ J‘Oﬂ du Q I -ma -md+ Ej(ma+ q’a)(md+qi) Du (u t)
it a 2-.;1__1q_'j £ E’c‘q_j-q'j 13

[»]

{(2.1)

if 4 is large encugh so that the integrals in (2.1) converge.

In the equation, qa. and q are the C.M. moments of the incoming
ad outgoing particles in the t-channel, respectively, J 1s the state
2 +b and i is the state c + d, and Dij('t,s), n‘;j(t,u) are the
absorptive parts of the scattering amplitude A, j(s,t,u) in the s
and u channels. Since Qz(z) is a meromorphilc function of £ with
poles at the negative integers £ = =1, =2, ... , Equation (2.1) provides
an analytic continuation of A(£,t) if the integrals on the right hand
side of Tguation (21.) converge {6). TFor large z, Qz(z)cc 1/3‘”1, hence
the integrals in Equation (2.1) converge uniformly in the region
Re £ > Re G 1f ng(t,s) and D?_j(t,u) diverge no faster than o
and ua, respectively, for large s and u. The factor (=1 )£ for
£ complex can be defined in various ways. For example, we can define

ing iyl
e

it to be either e or ; however, we observe that (=1 }z for

£ an integer takes the value + 1 according as £ 1s even or odd. We

can therefore choose the two independent amplitudes
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2 2 T BB . P
+ 1 is S em -m o +2 ma+qj)(mc+qi)
AT (85%) = £ ] a K 3, D, (ts8)

/2 2 ) |
"]"f au_ o u-ma-md_+2‘/(m§+q§)(md+q§) % (%,u)
- u, Eqiqj £ aqiqj 13 FL VI

(2.2)
vwhich correspond to amplitudes with plus or minus signature, (2).
Making use of the formuls

P81, 8415 28425 =)

2
j“‘" -

N
(2) = 5rtzms
we obtain

* L )
Bij<£’t) = Aijiﬂ’t)/(qiqj)

2 2 2 2 2 2 - f]
wr‘ag.m; l[fm i el ma+qd)(mc+q1]'2qiq1 D% (%, 5)
2842 k14 o 1{_ i,j 38
o

ll-qiqj
x F |4+, 13 2442, = ds

s -m§ -m2 + 2 ,/(m2 + q‘?)(md + q?) - 29,9,

o u - m- +2/(-2+q)(m +qi)-2q1q ”Mu
( ) Di;j(t’u)

L

x F (m, L1 2442; - gy ) ](2 3)

- e - z 2\ {me
u - me m§+2[ma+qé)(md+ 2qiq
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valid in the reglon Re £ > Re (!, We can observe at this point that the

+ |
funetion B;j(g,t) defined in (2.3) is a real analytic function satisfying

N . _
T : L, % ® ¥
Bi‘j(‘z’t) = (Bi'j(‘g_, t_‘))- L (2011")
ks
We shall now show that each of the amplitudes Aij(.ﬂ,t) satisfy the

+
unitarity condition. We first define (A;j(.ﬂ,t))+

s.-mi-m“fajm +qj)(m +q1)

+
1 ds 8 -
(A' (E t)) ;E g 2‘11‘1 Q' Eqiq Dij(t ,S)
' 2 2 2 2\ 2 [ 2
1 fon ' . uem -+ 2 Ama + qj)(md + q-_t) R
- u eqiqj £ Eqiq j ijt’?

In the above, t~ = t = ie. For Re £ > Re O, we have

+ +
[A;ju,t) - (A;j(.e,t))‘j/ai =

2
IR el o AR o ql)p(ts)
X o, g 2 S
o
2 2
1 ® W-m -m +2_/m -l—q)(md _q_l)

o)

Now, the unitarity condition for the scattering amplitued A(s,t,u)

reads (4#3)



w5

o(t-t, ) (0f, (%,5%))" o, (t,8") as' as”
) =2 o [V R e
8

Dki{t,u )) ij(t,u") dut du"

e
'fx +yk+yk Exykyk 1

t>t . (2.6)

In Equation (2.6) x = E - mi - m‘z + 2 _/(mg + q?){mi + q?)]/?qiq_j s

2

- mi - “k;a + 2 ﬁmﬁ + q_i)(mlj + qﬁ)]/’éq_lqk ’

o
0
!
@,

o [ o2 -2 e s Dl e D] gy

- - v 2 fo + w4 | /o

b
It

—
7

i 2 2 2 2 2
¥ = E;l, ~mg -y 2 jma + qj)(m.kg + qk)] /Equk » vhere g is the C.M.

momentum in the intemediate state k vwhich contains two partilcles whose
magses are m 4 and Mens and o 1is the C.M. energy of the system.

The integration above is over the region where

x + -f‘l - 2}(1 - xﬂa for the first term in (2.6), and a

similar region for the second term. Aleo, 6(x) m{_? ;L g 8 » b, is the

threshold for the intemmediate state k, and 'bo the mass squared of the

milti-particle state with the lowest energy asnd the same quantum numbers



ag state 1. Likewise,

5 ' * o "y dat n
Dij(t,‘a) = I (Dki(t’s ) ijj(t:u ) ds' du |

1
s !
e 0 Gyt T £2+:&'{2+y{;2+2xxlj:f];-1

1 1 ¥ .5 n ' "
TR B TR )
;

+ ]

}tz-l-yl'f-{-xﬁz-l-?_’xx.;yl'{-

with & similar range of integration. From the formula (hh)

Q (x) o(x = x; -~ x, = 1-}:?)(1:};2))

ax = Qgx,) Qyx;)
£ 4 2
ﬁg—_'_ x|2+x312 -'EXX' xll _1 1 <

O 8

we obtain by substituting (2.6) and (2.7) into (2.4) and some algebraic

manipulation

+ + '
[(A;j(.e,t) - (A;J(z,t))j /21 = & 2-3-‘- {Aki(.ﬂ,t))+ A 3(ht) 0(t=t,), t > t,

w

(2.8)

valid in the reglon Re £ > Re . IHow both sides of Equation (2.8)
are analytic functions of £, and by analytic continuation (2.8) holds
in the whole region of 4 vhere A(4,t) is analytic.

For the case of equal mass, elastic scattering, the argument of
Q, in Ai(.e,t) of (2.8) is always grester than 1. As Q.‘,(Z) is
continuous on the real exis of =z if =z > 1, we have in the elastic

scattering case

ey = AU, )
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and (2.8) takes the familiar form

+ + .
[27ta0) = 0G0 /o = G5, 0 aae) . (2.9)
+ i TR
Writing A (4,t) = %.3- E-Lafil—:—l , Wwe also have from (2.9)
+ +
S-(J,t)(sﬂ(ﬁ*,t))% = 1. {2.10)

We assume that A(4,t) has a pole at £ =~ at). Then if we
compare the residue of both sides of (2.8) at £ =@, we cbtain

(omitting signature)

F)

q.
ry = 'a"'f" (Aki(a’t)).!- rkj(t) B(t'tk) * (2'11)

2
k
Equeting the real part and the imaginary part of (2.11) would give
us two elgebraic equations relating @ and =, 3 along the positive
real axis {for t > to).

Several interesting consequences follow fram (2.11), First, as
was pointed out by Gribov and Pomeranchuk (29b), Equation (2.11) requires

that rij(t) 1s factorized and we have relations like (29a)
x,, (t) = 7, 5(6)/z. . (t) (2.12)
i1 ij J3 : *

Secondly, from (2.12) we see that if any two of rij(t), rﬂ(t),
and .rj j(t) are non-zero, then the third would be non-zero. Hence,
if a Regge pole occurs in any two of the amplitudes
Aii(.ﬂ,t), Aij(.e,t), Ajj(z,t), it automatically occurs in the third.

The unitarity conditlion thus implies that the same Regge poles occur in



o

all channels (2, 8). Also, since in the unitarity condition (2.9)
we include only those intermediate states k which have the same
conserved quantum numbers as states i and J, a Regge pole trajectory
1s characterized by & set of conserved quanbum numbers. Slnce the
Ai(ﬂ,t) satisfy (2.11) separately, & Regge pole trajectory has a
definite signature (2).

Equation (2.11) also leads directly to the form of the unjtarity
condition &s it will be used in this work. We suppose that A(Z,t)
hes a pole st 4~ a(t) and that Re (t;) > - 1/2 st the threshold

energy t;. Then we may write,

AN
FTEPGTE) . (2.13)

i. * A
A 5(85%) = Ay (£ ,8) =

Substitution of equation (2.13) into equation (2.11) then gives the
result we seek

33 = :mT:x(?}' E q'a)li Ty Ty 06 = %) . (2.14)

We wish to emphasize at this point that the unitarity condition as
expressed in {2.14) is approximate in two important respects.

First, intemmediate states of more than two particles have not
been included. The extent to which & scattering process can de
described by two-body lntemrmediate states 1s not clear, here or 1n
any such application of the unitarity condition. We note, however,
that this short-coming can probebly be removed, at least in principle,
when techniques for handling multi-poarticle intermediate chtateo are

developed.
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Seco.nd, we have apprqxima‘tgd Aij(ﬁ,-b) by rij/,(z = a(t)), vnich
is velid only for 4~ a(t) and hence only for Im O(t) small.
Attempts to improve this are being made. At any rate we know that
Hr some yange of t e::cten_d:l.ng upwards from the eiastic threshold
Tm () is indeed small. By putting enough subtractions in the
dispersion relations we can hope to meke the contribution from

| large t unimportant in the low energy region. We might therefore
expect the functions «(t) and »(t) which we obtain with these

equations to be accumteljr given for t in the low energy range.

3. THE ANATLYTICITY OF oft) AND x(t)

In this section we shall present arguments to meke plausible the

hypothesls that the function <«(t) and r(t), for a boson trelectory,

are analytic functions of .

We shall stert from the assumption that A(Z4,t) can be analytically
continued to the whole £ plane. In the proof, the poosibility of
essential singularities, in particular (36) those at £ = =1, =2, ... ,
is indicated as well as the possibility of the crossing of two Regge
trajectories.

We first ewaluate explicitly the discontinuity across the left=hand
cut of A(4,t). We shall, for simplicity, take m,o=m =m, =mn; =1

and s, =u = 4, We then obtain



+ +
+ -— . -
(s, - s priE) = K0, beie)

2a. 28
== 7 [ EF %0 g eeulss hetee)

-1 ol 2du 2u 1 ~(t-h) 2ds ~iiw
1l 8 W0t palbe W v [ R c
=(t-t)
X By(=1 = ) D°(t+ie, s) + %1{ et B p (a1 - B p(tete, w)
(3.1)
for t<0.

Since the renge of integration in Fquaticn (3.1) is finite, this
equation gives ni(.e,t) for all £. We thus see from Bguation {3.1)
that hi(.e,t) is a meromorphlc function of £, with simple poles at
the negative integers £ = =1, =2, «3, ... » It has been shown by
Gribov and Paperanchuk (36) that an essential singularity ls required
to exist in A(%,t) at these points.

If we write

+

+ n o - +

- t h {(£,t! -
A (2,'[:) B= j dt o + AT(ﬂ,t) 2 (302)

Tk (sret)t
x
where n is large enocugh for the integral to converge, then A.l(.e,t)
i sn analytic function of +t with & right~hand cut only. Since no

Regge pole can come from the temm
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+

n [+] -
o0 a B (2,80)
- (tr=t )™

all Regge trajectories are detemined by the equation

F (o,t) = T = Q 3
A, (0,%)
or ale) L D)/ FOE) . (3.3)

Here the signature has been omitted.
We shall first investigate the right-hand side of (3.3) at the

points QO = =1, =2, =3, +ss « ILet us assume that the most(s.’;ngular
a (b

term of F(4,t) at £ = -n, is of the form (45) exp I L T
)

£
viiere 1 is a nmumber (not necessarily an integer). Then we have

& a, (t) ia, (t)
N - T e = ) o 4
as (o)t / (oebn )+ (3.4)

Thus the right-hand side of (3.3) is regular at Q = -n, for this type

of essentlal singularity. We have no proof that the essential singularity
in the pertial wave amplitude actually has the (rather general) form

we have chosen.

The right-hand side of (3.3) is thus seen to be an anslytic function
of + with only & right-hand cut, and entire in @, provided that
3F(0,t}/ox # 0 for all (®,t). Solving (3.3) thus gives @ as an
analytic function of + with a right-hand cut only. Then (%), which
is egual to Res (A](z,t))m(t), is also an analytic function of t
with only a right-hand cut.
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If at & given point .(O!O, tb) we have BF_(a,t)/BOt = 0 as well
as F.(a,t) = 0, which. is the condition that two or more Regge poles
cross at the point, then «@(t) is not analytic at t, since do(t)/at
equals irifinity there. AsSumé a(tb) is not infinite, then t isa
branch point for «(t) and a branch cut will arise.

Since. Aij(ﬂ,’a)/(q:ls;j)B is & real anslytic function of + and £,
F(.S,'_l:)/(qiqj )£ is a real analytic function of t and £. Thus for ¢
negative and real, F(O,t) = 0 implies F(aef,t) = 0. Therefore, either
{there are two Regge pole trajectories Ot_i {t) eand aa('b) vhich axe

complex conjuggste to each other for negative <, and hence satisfy
*, *
ay(t) = oi(t) (3.52)

forall t (as Oé.l(t) and 'ae(t) are analytic funetions of 1),

or
a(t) = o (t) (3.5b)

for + negative and «(t) ié a real analytic function of +t. In the
latter case, rij(t)/(q_iqj Y* is also & real analytic function of +t. In
the discussion that follows, we shall assume that this in fact is the

. CASCe

The location of the right-hand cut of (t) and r(t) 1is seen to
" coincide with that of the right-hand out ifi t of the scattering
amplitude A(s,t), hence it starts fram the mass squared of the lowest
energy nmlti-pa.ﬁide state which has the same conserved quantwn numbers

(except for the angular momentum) as o(t). For example, if we consider
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the Regge trajectory aw(t) which gives the 3n resonance I =0, J = 1
8t 787 MeV, the branch cut starts at Ou °.

The analytic properties of the functions G(t) and =(t) / (9, ye(e)
are unchanged if scattering by partlicles of unequal mess is considered.

However in this case the function r(t), without the kinemstic factor

(ayay)%)

0 to (ma - mb)a.

s Will acqulire an additlonal right bhand cut extending from

For a fermion Regge trajectory, it has been found (38, 39) that the
Regge parameters are best dlscussed as functions of VT > in order to
avoid kinematic singularities. Consider the scattering of a fermion by
a spinless boson. There are two partial-wave amplitudes, A(j*, %)
and A(3", V% ), corresponding to the two states with the total angwlar
momentum j and parity (-1)3 x 1/2. Both of these are analytic
functions of % with branch cuts: (i) fram £~ to » , vhere 5,
is the energy sguared of the lowest mass state having the appropriate
quantum numbers; (ii) fram = /T; to =~ ; (1i1) from -ie to iw .
The third kind of branch cut corresponds to a lefi=hand cut in + 1n the
boson case. A generalization of the arguments presented in thils section
then shows thet o(% ) ana rij(»h? ) are analytic functions of %
with a right<hand cut fram [% to = and a left-hand cut from
- ﬁ.o- to ==, in addition to those arising from the crossing of two

Regge trajectories.



L. DISFERSION RETATIONS FOR THE REGGE POLE PARAMETERS

In the preceding section we have showm, assuming that A(4,%t)
is an analytic function of £ (possibly with essential singularities)
and the walidity of the Mandelstam representation, that «(t) and

r(t) are mnalytic functions of t with branch cuts only along the

positive real axis.
The Tunction «(t) dis assumed to have a behavior at infinity

which permits us to express its real analyticity by means of a dispersion
relation of the simple form

t - t oo
o Im c(t?) dt*
a(t) = aﬂ + T I tTat ) [LT=E ) 2 (ll"‘l)
To (o]

vhere '.I'o - (ma + mb)a. For the case of equal mass scattering, we can

also write & simple dispersion relation for the real analytic function

o(t) = r(t) o™ 1™HE),

‘t - ‘t o
0 Im c(t') at’
o(6) = eltg) + === [ AT (k.2)
o]

o]

If the masses of the scattering particles are not all equal it is
not so easy to write a convenlent dispersion relation involving the
residue function r(t). The difficulty is that because C(t)} presumably
approaches & negative gquantity as 4 < + =, 1t is not clear that we

can write a dispersion relstion for r(t)/qu(t)

in the once=subiracted
form of Equation (4.1). We can avoid this dlfficulty in the case of
equal mass scattering by dealing with the function =(t) e F™{t), pyt

if we coneglder the scattering of particles of unequal mass, a dispersion
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relation for r(t) would be complicated by the presence of kinematic
cuts coming from the factor qax(t).

We will see In the following section that for the purpose of
obtalning eguations for the Regge pole paremeters from the principles
of analytiecity and unitarity it is vholly adequate simply to know
that r(t)/qm(t) is real analytic, and no occasion will arise where
it is necessary to have a dispersion relation for r(t)/qaz(t).
Therefore, we can avoid the complications mentioned above.

For a femmion Regge trajectory, the dispersion relation for

alw), w = ¥t , becames (46)

o, (w) = o ( )+T;.‘.’. Iw o (r) o
A\ AL P w (w'-w)(w'-wo

T

wew o Im o:_'.(w’) aw?
e f (wh + wilw! +w ) ’
Vi o

(k.3)

vhere wy = (m, + mb) 15 the total C.M. threshold energy of the system
and v, 1s the energy at the point of subtraction. oc+(w) and &_(w)
are Regge poles in the emplitudes A(j+, w) and A(3", w), ,ji = Si 1/2,
respectively. These two amplitudes satisfy the unitarity conditlons
separately and, as before, it relates @ (w) to r (w) on the right
hand cut. - B
In writing the dispersion relation (4.3), end throughout this work,

we shall dlsregaxd the possibility that two Regge trajectories may cross.

This problem is treated in a paper by Cheng (37).
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The Lwo Integral transforms (k1) and (k.2}, plus the twp algebraic
equations (2.14) which, expressing the unitarity condition, relate
a{t) and =r(t) along the cut on the positive real axis, fomm a set of
coupled, singular, non-linear integral equatlons whlch must be satisfied
by the four unknown functions Re &(t), Im @(t), Re ¢(t) and Im o(t)
describing a glven Regge trajectory. In the following sections we shall
ghow that these equations can be transformed into 2 considerably simpler
form which makes many of their methematical properties transparent and
permits thelr solution by iteration. In the remainder of this section
we shall discuss varlous questions that bear either on the questlon of
subtractions, or on the threshold behavior of the Regge parameters.

The singularity of «(t) and r(t) at infinity is not known in

the relativistic case. In the case of potentisl scatterdng in the

potential
o0 -y
v(x) = [, o)~ af ,
m

it has been found that (8, 37, h1)
f2 o(u?) au?

2 m
Oin(c_ ) —~e——3 wn =1 2l (k)

lQQI - oo

~(2n-1) f: a2 o)

Bn(qe) —— -

2
fa| = «

Em s n=1,2,3,.--, (11'15)
eq
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where Q’n(qa) is the nﬂ? Regge trajectory and qa is the energys We
see from this thet no subtractions are necessary, although it may e
convenient for practical purposes to mske some. In the relativistic
case, therefore, i1t may be readonable to conjecture that ft) and
r(t) have no singularity at infinity. This is the most appealing
conjecture from the theoretical point of view. However, to be on the
safe slde, we shall usually prefer to make satbtractions. How many
subtractions are to be made really depends on the specific problem and
on what one is willing to supply from the outside as subtraction
constants as compared'to what one wishes to predict.
We next wish to investigate the behavior of «(t) and r(t) near
a threshold. This is of interest for two reasons: (i) The behavior
“of a(t) and r(t) near a threshold can be rigorously esteblished. It
is very important %o make use of this Information on the functional form
of aft) and w»(:t) 3in obtaining approximate solutions to our integral
equations. (ii) If subtractions in r(t.) are made for those values
of t corresponding to thresholds, the subtractlion constants can be
shovn to vanish, hence no sadditional parameters are introduced. .
The behavior of «(t) near threshold in the relativistic many-

- channel problem has been shown by Barut (47) to be the same as in the
elastic scattering case, if only two-particle intermediate states are
considered. We shell apply his arguments to obtain the threshold
behavior for f(t) = -x[2o(t) + 1] »(%).

 The unitarity condition for B(Z,t) takes the matrix form

*, %
B(2,tHie) é-iBﬂ(ﬁ_s trie) _ B (4 t4ie) p(t) B(4,t+ic) (4.6)
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where p(t) is the matrix wilth elements

L+

pyy(t) = By 0(tmty) (aga,) o . (k.7)
X, ¥ *
Making use of the fact that B(f,t) =3B (L, t ), we have

-1 -1
3 (4, tﬂegi- B {8, teie) _ _ o(t) (%.8)

which gives the discontinulty of B(£,t) across the right-hand
cut. Write

3"1(£,t) = (¥(£,%) + R)/cos n8 (4.9)

vhere

1
-in(4 + =)
By5(45t) = g e e 8y 8=ty oo

Then Y(£,t) is analytic in t with only a left~hand cut, since R
has the same discontinuilty across the rightehand cut es B"(z,t).

The matrix Y(#,t) is the analogue of the Y function previously
introduced by Barut and Zwangiger (42) and by Cheng and Gell-Menn (48).
From (k.9) we have

R
B(2,t) = Tot %: = cos nd (4.10)

and the Regge poles are given by the zerces of det(Y + R). Now
suppose t 4is near the threshold t:l. of state 1 so0 that q, 1s
smell, then we have det(Y(c,t) + R(0,t))

= det(Y(x,t) + RY(C,t)) + Ry (@yt) [Y{o,t) + R(@,%)],, =0 , (ke11)
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where R'(¢,t) is the matrix obtalned from R by deleting the element
Rii(a,t), and [Y(a,t) + R(Ct,t)]ii is the cofactor of the element ii
of (¥ + R)s If we write F(x,t) = det(¥(a,t) + R'{0,t))/[¥(x,t) + Ro,t)]

i1’
Equetion (4.11) becomes
g A+ %

F(otyt) = = 9 e Joo (ka12)
where F(0,t) 1s an amalybic function of t in the neighborhood of the
threshold 't‘.io

If Bea(ty;) > =1, then F(3(ty), t;) = 0. Expanding F(a,t) in

e Taylor series and writing @, = a(ti), we find
SFlont : Sr(a.t axi+1 -isr(ai + %—)
) (amty) + gt (b=ty) = =y © e fo s

=t =

1 i

‘t=’ti 'b='bi

or
at, +1 -in(ai + -;—}

a(t) = oy +a(b=t,) +1b 4y e . (4e13)

Also

By5(6) = = (230" %) x(@(t) + 1) Res (804,)), )

o
~ Claya,) *

If Req, < %- ; then (k.13) shows F(Cti, ty) ==, Writdng (4.13)

in the fomm



1
-al(t)-‘! eiﬂ(a + ‘é"’)

L
Foey ~ "% %

and expanding 1/F(0,t) in a Taylor series now gives us

1
Xk, -l iﬂ(OJi + §)
’

a(t) = Qo+ e('b-.-'ti) + £ oa, 1 e (4.1%)
and
L+ -] (o}
pt)~8q ~  at , (4015

vhexre 8, b, ¢, d, e, £, g are constants. At the elastic threshold
these cuonstants are all real and arve related (42, 48). We see that for
inelastic two-body scattering B, (t) will vanish &t two points, l.e.,
will vanish if q; = O or if 45 - 0, provided that either Re a(ti) >0
or Re a(ti) < - % « The function Bﬁ(t), however, venishes only at

one point. We also see that subtractions made at any threshold of B(t)
do not introduce new paremeters because B; j(t) -0 a8 bt~y

5, FORMJIATION OF A SET OF INTEGRAL HQUATIONS FOR THE REGGE POIE
PARAMETERS: RELATIVISTIC CASE

In the preceding three sections we have developed the ldea that
the dispersion relation for «(t)

T -t f“’ T (4') at*

a('t) = Cto + (t"‘t)(t"‘to) > (5'1)

n
0
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the real amalyticity of r(t)/ (q,iq_'j )Ct(t) , and the unitarity condiltion in

the approximate form

r(t) = W ot} {w/a) , t>1T, (5.2)

mey provide an approprlate set of equations for the dynamical detemination
of the Regge pole parameters.
It will be recalled that the kinematic varisbles introduced in the

sbove equations are the following:

t = lsma = total C.M. energy squared in the t-channel

=l +u + 2 [1/(15+q9)(m§+ o) + 2 | (5.3a)
t = {m + )2 t = (m - )2
and o> = : 2 mb%] : % )] ; (5.30)

where g = C.M. momentum of an incoming or outgoing particle.

F. Zachariasen (49) has pointed out that we can use equations
(5.1), (5.2) and the real analyticity of r(t)/(qi‘*.j )a(t) to derive a
very simple integral equation for Im ®(t). We shall show in this section

how this can be done,
2u(t)

Since we know that the function ={t)/q is real mnalytic,

we have

rf(t) = r(t*) e"aim(t*) s 8> T . (5.4%)

According to Equation (5.2), r(t+) is real. Therefore,

~21m0(4")

r(t?) = 2(t7) e > (5.4)
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+
vhere t =t + ies Let us write

t t
;:21 Ly = P(t) e‘lf( )

(5.5)

where F(t) 1is a rational function of t, and ¥(t) is an analytic function
of t cut from T, to «. The discontinuity of v(t) across the

branch cut can be obtained fram (5.%) snd (5.5);

¥(67) = ¥(t7) = - 21 Im a(t) £n ¢° . (5.6)

Consequently we con apply Ceughy's theorem to the analytic function

¥{t) to find
{t=t )} o 2 ;
¥(t) = - —=2 J *’gé%t,%ﬁ“:'tjﬁu at! (5-7)
Q

vhere we have normalized #(t) so that \J!(to) = 0. Equations (5.1),
(5.5) and (5.8) give

2
fn (%) I oft!)

fq_ [
(BTt ) (67t )

at' iy,

1

. (b=t} e
r(t) « F(t) @ = exp {- !
o
(5.8)

vhere the dispersion relation for «(t), Equation (5.1), has been

used to replace «(t) in (5.5) by the right side of (5.1). TIquations
(5.2) and (5.8) then glve

t

x -
I alt) = 2 F(t) g © exp {- :° J i By j
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One point may be worth no'biﬁg. We know that Tm ot )' is alweys
real, but @  may be complex and et first 'sn'.ght the right side of (5.9)
may appea:f to be c_omplex. However, we can easily see that we can replace
O_!Q. by Re 0:0 and the in_tégra.l by its Cauchy principal value, and then
the right side of ( 5.9) is actually real.

Now let us determine the function F(t). We shall assume that r(t)
has no poles, in vwhich case F(t) is entire in +. We obtain from

Equation (5.9) that

t - >

204 8 2 o0
In ot)—> W(t) g © exp {- 2 %—‘_"‘L:'l dt‘}

= () =) (5.10)

vhere A is a constant. If we now reguire that Im @(t) vanishes as
t -+ =, then F(t) being entire is a polynomial of order n satisfying

the inequality
n<-ale) . | (5.11)

Moreover, from {5.8) we find

a, ° Flt,) = z(5;) . (5.12)
Thus we cen infer that the general form of F(t) is

Tt

SO YA 1
2@0 ;F:] -to,__ti L (5- 3)
6 °

where the ¢, specify the location of the zerces of r(t). We shall
go into the question of zeroes, and the connection between the number

of zeros and the asymptotic behaviér of Im @(t) more fully in Section 6
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whiéh treats the potential theory case. If we suppose that the
trajectory of interest has O or 1 zero, for example, then the

resultant equations. fake the form: o
' 2w in
g

‘ ‘o tuts oo
Ino(s) = w6 ) 1 (R e (o> [ gt Zol) 4l o
, 5 ) 1 (G [ g -
Q
or
. 12
28/ fn 3

tet 0 bt d 2
-4 —1) (& - el O Imo(kl) g
=5 () (g=8) () =P {- = ét';ttfa%'di}’t>Td
o

(5.15)

Equations (5.1%4) and (5.15) are the desired results. What we
have achieved is a decoupling of Fquations (5.1) and (5.2) so as to
Jobta.in an integi‘al equation involving the single unkmown function Im Q(t).
Once we have solved for Im ¢(t), we can obtain Re a(t) by performing
8 simple Hilbert tranefomm. For + > T, r(t) 4o obtained slgcbraically
Trom the unitarity condition (5.2) and for other values of t it can be
obtained from the dispersion relation for r(t) e'iﬂa(t) if m =m,
and from Equation (5.8) in the general case.

.Equation (5.1%) has many attractive features. It incorporates the
- known threshold behavior of Im G(t), it exhibits the possible zeros of
r{t) explicitly, it has a reasonable asymptotic behavior and it is in a
fomm which suggests the possibility of & solution by some iteration procedure.
IT this 1s the case 1t 1s plausible that the solution is unique if
Re O, r(to) and the location of any possible zeros in »(t) | is given.
These and other properties of the integral equation (5.14) for Im G(t)

are discussed in Section &,
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A similar set of equations can 8lso be derived in case a fermion

Regge pole is exchanged in the t-channel (46).

6. TFORMULATION AND DISCUSSION OF A SET OF INTREGRAL BUATIONS

FOR THE REGGE PARAMETERS: POTENTIAL THEORY CASE

In this sectlon we shall turn to the formulation of a set of
integral equations for the Regge parameters in the case when the
acattering may be described by a superposition of Yukaws potentiails.
This tople is of interest because the most clear cut check on the
validity of ocur appm:ciins.‘ce form of the uniterity condltion canes
fran a comparison of our results for the Regge parameters, computed
for a single Yukawa potential, with the existing results found by
numerically solving the Schridinger equation (40). Secondly, we can
establish in this case several rather precisge theorems regarding the
properties of the integral equation vhich we shall derive for
Im a(v). Here v = k2 is the energy.

We recall that a(v) and r(v)/va(v) are both resl analytic
functions of v cut fram 0 to », when crossing of trajectories is

neglected. The approximate form for the uniterity condition reads

r{v) = _I_m%_(l)_ .

Writing

20) gy V)

4

(6.1)
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and applying the same procedure sas in the relativistic case, we obtain

, % on vey, (vv)) @ ot
Im afv) = r(vo) ﬁ (;:) IL (7:;1‘,:) exXp [" po g fv’-V)(V'-vo) Im Cr.’('.-'l)d.w‘:_5

v>0 , (6.2)
and
¥
BT W B () o 25 (v)
r(v) = »{v_)} (5 p expl:- Ty ) e alv?) dv? ::|
CMATN 121 YooYy (vT=v)(v vo)
(6.3)
where v, denotes the point of subtraction and Vip do= 1, «co , n
gives the location of the zeros of r(v).
We would now like to show the relationship between the number of
zeroes of r(v) and the asymptotic behavior of the Regge parsmeters.
From Fquation (6.2) we have
cf{w) + n + %
Im a(v) = v y Vo (6.4)
a(0) + -12-
and Im c(v) = v s, V0 . (6.5)

Equation (6.4) shows that the number of zerces is bounded by

n<-af) -4, (6.6)
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and Equation (6.5) zives the femiliar threshold bebavior of the Regge

poles in the right-hand plane

Re a(0) > - & . | (6.7)

Equation (6.6} 1s actually independent of our approximation. To
prove this statement we recall that r(v)/vo"(v) is a real analytic
. function of v with a cut from 0 to «w, neglecting those coming fram

the crossing of trajectories. We can therefore write
r{v) = va(v) F{v) eU(v) , (6.8)

where U(v) is apalytic in v cut from O to «., The function U(v)
can be wrditten in the form

U) = [° oy A)
0

v ¥} =) av! (6.9)

where A U(v) 1s the discontinuity of U(v) across the cut.

Now (8, 37, 41)
m av) » - 32/2 v s

r(v) - - g2/2v , a8 Voo (6.10)

and r(v) is real for ¥ veal. Thus

r(v+)v+'a(v+)

Yv ~alv )

» exp { -2 Ima(v)én v} |,
(v '



and therefore

AUW)» =21 ma(v)in v, as v o, (6.11)

-+ 0,
Thus we have,

o]
o --3 0 AR L., (6.12)
o

vhich is a finite number. Equations (6.8) and (6.12) together give

r(v) » 2= (6.13)

vhere n is the number of zerces of »(v). Camparing (6.10) and (6.13),

we conclude +that
L = = Ia(m) - 1 . (6.11']‘)

The first Regge trajectory, having «(w) = =1, therefore has no zero,
while the second, the third, ... trajectories have one, two, ... zerces
respectively. It is easily shown (46) that all of the above statements
remain true when the cuts arising fram the crossing of trajectories are
included.

Now let us discuss Equation (6.2) for the leading trajectory, which

has no zZero. Then we may write

v
U(v) . I‘(Vo) (V—Vo) ] ,-311 "";" v1a° + 1/2 eU(V') o
vao n o (VI-v){¥Tv )
o
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r(v.) o -1-.'.1/2 :
T (v) = Cd'o' v © eU(v) , V>0 . {6.15)
: v ©
i *

If we take the subtraction point at v = 0, then we obtain

o g XL a(0) , 1/2 '
. v S By u(v)
‘U(V) = - A T £ O] v! ‘e dv! (6.16a)
and
Im a(v) = 7\?05(0) +1/2 eU(v) s V>0,
vhere
A= 1im  EAY )
o

And, if we take the subtraction point at v = «, then we have

v'
A v o(w) + 1/2 U(v?!)
Uv) === [ T v? e dav? (6.16b)
T o Plﬂv .
and Imo(v) = A va(é) +1/2 Sy
r{v
where A= lim o0y .
V - e v

We should like to point out several interesting consequences of
Iquations {(6.16a) and (6.16b). We require Im &(0) = 0 and Im a(») = 0.

Thus the following inegualities have to be satisfied
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a(o) > - £ (6.17a)

a(e) <= x . (6.170)

If we take Of=) = =1, vhich is correct for the leading trajectory, then
(6.16b) shows that Im ¢(v) has the correct asymptotic form as v = «,
providing A = g2/2. The solution of (6.16b), which is the equation
having the subtraction point at v = o, should thus be expected to zive

a good approximation to «(v) and r(v) at large v. Tor the same
reason, the solution of (6.16a), which glves the correct threshold
behavior, should approximate a(v) and r(v) accurately at small v,

It has been pointed out to the authors (50) that (6.16b) is dependent on
the coupling constant g;2 only and is Independent of the range K of the
potential. But (6.16b) is good only for v large, and when the energy
is large the mass can usually be neglected. In fact, the asymptotic forms
for «(v) and B(v) have been chown to be independont of p. It is
therefore natural that the range of the potential does not enter in {5.16b),
On the other hand, if we make a subtraction at v = 0, or at some point

V, Re&r Zero, then the solution will be accurate at low energy if the
subtraction constants (v ) and »(v)) are both supplied. It should be
noticed that if we make s subtraction at same finite point v, then the
solution of {6.16) would not autamatically give Qw) = -1, in disagreement
with the known behavior of the trajectory. However, in this case, we
expect the solution to be accurate only at low energy, and its behavior

at v =« camot In general be expected to be given 1n a precisely

correct way using our approximate equaticns.
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Suppose we have two functions U“)(v) and U(a)(v) satisfying (6.16a)
with different subtracticn constantis }\1 and }\2 but the same subtraction
constant «(0). Then e change of variable shows that

{1 y _ (2) y
v o = (oreraz ) (6.18)

and as a result

@ ( ]u(0)+1/2 = q,(a) ([?\2](,,((1),)”/5 ) (6.19)

In particular, we have
f () < ooy (6.20)

Thus we see that a(w) 1s determined by the subtraction constant o{0) and
is independemt of A. Simdlarly the sclutions of (6.16b) give the same
a(0), 1f a{w=) is fixed and N isg veried, and equalities similar o (6.18)
and (6.19) hold.

Now 12t us twrn to the questlon of the existence of a solution of
Fquation (6.16a) or (6.16h). First, it ils clear that because of Equation
(6.18) and (6.19), if there 18 a solution of Zguation (6.16a) for a certain
N and «f0), then there is always a solution of Eguation (6.16a) far an
arbltrary A and the same o(0). The pame is true for (6.16b). The
question of existence and uniqueness of & solution depends on the subtraction
constant of0) (or a(=)) only. Secondly, (6.16a) does not have a solution
for an arbitrary «(0). A necessary conditicn for the exigtence of a
solution of Equation (6.16a) is Equation (6.17a). Ror, if there is a
solution of Equation (6.162), then U(0) = O, and the integral on the
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side of (6.168) does not converge at the end point v' = 0O unless
(6.17a) is satisfied. Similarly, a necessary condition for the existence
of & solution of Eguation (6.16b) is (6.17b).

| Some precise theorems on tﬁe existence and unigueness of the colutions
of Equations (16a,b) can be proved (51) if certain conditions on the

subtraction constants are satisfied.

7. REGGE POLE PABAMETERS FOR A SINGLE YUKAWA POTENTIAL. PRESENTATTION

AND DISCUSSION OF RESULTS

The Regge pole parameters associated with a single Yukawa potential
of unit range have been obtained by Ahmadzadeh, Burke, and Tate (40) and
by’Lovelace and Masson (41) for several potential strengths. Ahmadzadeh
et 3&. (40) ohtainéd their results by solving the Schrddinger equation
numerically, while Lovelace and Masson (U41) used a continued fraction
technique applied to the known (8, 37, 41) form (in potential theory) of
the asymptotic (l{:.'g')---> =) expansions of the Regge parameters.

A comparison of the Regge parameters as calculated using Equation
(6.2) of the preceding section with the results of Ahmadzadeh et al. (40)
and Tovelsce and Magson {41) provides an important test of the aceuracy
of our approximation. This section contains such a comparison.

Our procedure was to use the results of references {40) and (41}
to supply the value of a(v) end B(v) at a subtraction point v,
(We actualiy obtain B(v ) from Im o{v,) and the unitarity condition

(6.1).) Then we solve Equations (6.2) and (5.1) numerically for the

¥ : )
In this regard, see the footnote on page 13 and also réference (13).
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functions Im a{v) and Re alv) as functions of v for v in the range
-ao<y<s, A solution could always be obtained after a fsw iterations
if we used the average value of the input and output functions as the next
input.

The results for several values of the potential strength A are
presented and compared with the results of references {40) and (41) in
Figures (3) - {10). Results for Im o(v) are presented for the range
v=0=c and for Re a(v) for the range v = ~ 2 = 4w,

Let us eonsider some Individual curves. In the case of strong
coupling, A = 5 and 15, we see from Figures (3) - (6) that we obtain
quite good qualitative and guantitative agreement between our results
and those of references (40} and (41) over the entire range of energy.
Note that in the cease A = 5, results are presented for two different
subtraction points. The solutions are essentlially the same. We would
liXe to mention also that 1f we have obtained Im af{v) correctly,

Re ax(v) must also be given correctly, subject to the assumptions:

(a) that o{v) is a real analytic function; (b) that the trajectory
considered does not cross with other trajectories; and (¢) that the
Hilbert transforn has been performed without significant numerical error.

Next we consider curves in the regime of intermediate coupling,
A=1, 1.8, and 3. For the case A = 3, Figures (7) and (8), the
solution cbtained has am accuracy comparable to that found in the strong
coupling cases., For the case A = 1,8, Figures (9) and {(10), we find
& case in which we obtain our poorest agreement, but the solution atill
possesses the correct qualitative shape, and is guantitativaly accurate
in a region around the subtraction point. The case A = 1 shows the

same general Features (Figures (7) and (8).



FIGURE 3: Imoa{v) vs. vf1+v, 0 S v <=, The results of this work
are compared with those of Anmadzadeh et al. (4O) for single attractive
Yukawe potentials of unit range and strengths A = 0.05, 0.30, and 5.
In our equstions, subtractlions have been made at v, = 1.0 and G.1 for

the case A = 5, and at v, = O.1 for the case A = Q.05 and O.3. Here
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FIGURE 4: Re ov) vs. v/i+v, -2 <v < =, Results for potential
_strength A = 5 compared with those of Almadzadeh et al. (40). See

caption of Figure (3).
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FIGURE 5: Ima{v) wvs. v/1+v, 0 € v <=, Comparison of the results
of this work with those of Lovelace and Masson (41) for a single Yukawa
potential of unit range and strength A = 15. The point of subiraction

Has v, = 1.0. Here -v-n-ka.
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FIGURE &: Re a{v} vs. v/l+v, <2 <v <, Results for potential
streagth A= 15 compared with those of Lovelace and Masson (k1).
See capilon of Figure (5).
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FIGWE T: Ima(v) vs. v/i+v, 0 v <= BResults of this work
compered with those of Lovelace and Masson (b1) for single Yukswa
potentinle of unit range and strengiths A =1 and A = 3., The

roint of subtractlon was Vo = 1« Here v = ka.



007}

o2t

Ot

"“101-

081

00’




FIGURE 8: BRe o(v) vs. v/1+v, -2 v <=, Results for potential
strengthse A = 1 and 3 compared with those of Lovelace and Masson {41).

See caption of Figure (7).
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FIGURE 9: Imalv) wvs. w/14+v, 0 € v <=, Results of this work
compared with those of Ahmadzadeh et al. (40) for a single Yukawa
potential of unit range and strength A = 1,8. Subtractions were

made at the energies v, = 0.1 amd v, = O.h, Here v= .
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FIGURE 10: Re a(v) vs. v/14v, -2 Sv < «. Our results for a
potential strength A = 1.8 campared with those of Ahmadzadeh
et ai. (40). See captlon of Figure (9).
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Turning now to the wesk coupling cases, A = 0.05 and 0.30, we find
the agreement much improved. In the case A = 0.05, Figure (3), tke
agreement for the Im o curve is fully comparable to that obtained
in the strong coupling cases, with the exception of the region
0< '1"}; < 0.05. We understand the departure of the curves in this
reglon from the correct ones o be due to limitations on the numeriecsal
accuracy with which we carried owt the integral trensforms involved.
This problem ls extreme in these cases, because we f£ind from Reference
(40) that in the case A = (.05, Ima(v) goes fram ¢ to ~ 0.10 while
v (= ;—I—; for v << 1) goes from O to 10°3, The value 0.10 represents
~ 6077, of its peak value. Owr program could not handle such rapid
changes accuretely, although this situation could no doubt be improved.
Similar rewarks apply to the case A = 0,3 (Figure (3)).

We do not understand why our approxiwetion should be so much better
in the strong and weak coupling cases than in the intermediate coupling
case, One possibility is that the intermediate coupling region 1s one
in vbich the first and second Regge trajectories for a given coupling
gtrength cross. If this is the case, then the dynamical equations for
the Regge paraweters in the form we have used them here are not correct
{37). However, we have no evidence that such crossings are in fact
responsible for the disagreement.

An interesting fact is that the curves Re a(v), for v~ =, all
approach negative values fairly close 1o =1 in good agreement with the
asymptotic behavior of Re a{v) which has been proven rigorously
(8, 37, ¥1)s (A =35, Rea(w) s «1.39; A =3, Real(«)=1.29;

A = 1.8, Re a(«) = «0.75, -1.05; A = 1.0, Re afw) =~ -1,19; exception
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A = 15, Re a() ~ 2.66) This result was obtained without making
any explicit assumption aboul the asymptotlic behavior of Re Q.

The function r(v) obtained from our equation, in the case
A = 5, was compared with that obtained by Abmadzadeh, Burke, and
Tate (40). The curves have a reasonably correct shape, and there is
quantitative agreewent in the low energy region.

To sumearize, we feel that the results presented here support the
Ffollowing general concluslions in the cese of potentilal theory:
1) Our eguations provide a dynsmical determination of the Regge parameters
which always glves the correct shape of the cwrves, and gives quantitatively
correct results in the nelghborhood of the subtraction point.
2) 1In case the coupling of the Regge poles is strong or weak, we get
good quantitative agreement along the entire length of the curve.

Finally, we emphasize that our eguation has been tested for the
leading trajectories only, which have no zeross. It will be interesting
to see if our equation yields accurate solutions for other trajectories

which bave zeroes and for whiech a(0) > « % .

8. THE REGOE POLE PARAMETERS IN RELATIVISTIC xx~-SCATTERING

In this section we shall spply the equations derived in SBection 5
to discuss elastic s=-scatiering at high energies. We will comslder the
contributions to this seattering of the Pomersnchuk trajectory, whieh
has the guantum numbers of the vacuum and ap(o) = 1, and the p-trajectory
which gives & 2x(J = 1, I = 1} resonance at 750 MeV. We shall alsoc
briefly discuss the second vacuum trajectory P' introduced by Igi (22).

Since direct measurements of the nx-scattering eross sections sre not
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yet available, we have congentrated here on obtaining the positions
a(t) of these trajectories, which functions will then occur in sll
reactions having the proper quentum nmmbers.

We sball first discuss the FPomeranchuk trajectory. Its Regge
pole parameters will be determined by Bquations (5.1) end (5.15) which,
8g we have mentioned, couple the Pomeranchuk trajectory only to itself.

Our procedure was to supply as input parameters the gquentities

0,(0) = 1 and (46) o (=) = - (b"/3) [20(0) + 1] £,(0), and solve
the equstion for Im ap by an iteration jrocedure which takes the
average value of the input and output functions as the next input. Then
Re ap(t) was obtained from the dispersion relation (5.1).

We have obtained solutions for o x(w) in ‘the range 3mb - 30mb.
The results for Re ap(t) and Im ap('b) for am(w) = 10 mb, 15 mb,
and 20 mb are shown in Figures (11) and (12). In Figure (13), our
results for Re ap(t) ; for - O.B(Bev/c)2 <t < 0, are compered with
those obtained by Foley et al. (35) from am amalysis of the = p angular
distributions measured at incident momenta in the range T %o 17 BeV/e,
and for the sbove-mentioned range of .

It will be nobed that our Re ap curves Pfall within the ervor |
flags around the experimental points messured by Foley et al. (35).
We feel that this agreement is reasonably significant because the region
where the comperison 1s made is very close o the subtrasition point

(¢ = 0), vhich is of course the region in which our results are most

rellable, Secondly, the results are not exiremsly sensitive to the

value of the input paraweter am‘(w).
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FIGURE 11: Pomevenchuk trajectory. Re a (%) vo. %, -0.80 (BeV/a)? <t < =,
The three curves shown are calculated using the input parameters:

(a) afo) =1, g (=} =10mp; (D) @ (0) = 1, ¢, (%) = 15 ub; and

(e) a?((}) = 1, aﬁ(m) = 20 mb.
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FISWE 12: Pomeranchuk trajectory. Ima (8) ve. %, 0.0 (BeV/c)® < t < =,
The three curves shown were calculated using the input parsmeters listed

in the caption of Figure {(11).
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FIGURE 13: Comparison of Re c{t) for the Pomeranchuk trajectory as
computed in this thesis(input parameters; ap(o) = 1, °:m(°°) = 1Q, 15, 2G mb)
with Re a(t) as determined by Foley et al. (35) from an anmalysis of

7 p angular distributions for incident momenta in the range 7 BeV/e +to

17 BeV/c and -0.80 (BeV/c)® < & < -0.20 (BeV/c)2.
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The fact that our result for Re ap ~sgrees with that of Foley et al..
(35) naturally implies that it disagrees with BRe a, es it bas so far
been determined from an analysis of NN scattering data (15, 35).

We do not have a resolution of this puzzle. However, we do feel that
it is more likely that the «N rather than the BN angular distributions
ere dominated by the Pomeranchuk trajectory. The reason for this is that
the statemwent that the Pomeranchuk trajectory dominates NN scattering,
which depends on the asswmption of a cancellation of large contributions

from the P* and o (or perhaps @) trajectories (21, 24) is mweh more
model dependent than the conjecture that it dominates =N scattering.

We note from Figure (11) that Re ap(t) does not pass through 2
for any value of ¢, This implies that there is no spin 2 resonance on
the Pomeranchuk trajectory. However, it may well be ithat the inclusion of
inelastic states could change this conelusion. Morecver, the reglon where
the curves peak (t~ 2 or 3 (Be?/e)a) is rather far away from the
subtrasction point, vwhich may result in further inaccuracies,

We have also obtained solutions for the P! trajectory (22) assuming
ap.,(o) = 1/2 and, quite arbitrerily, that at t =0 and s ~ 20 (Bev)a'
it contributed 5 mb to the total nx cross section. Resulte are showm
in Figures (1h) and (15}, It is of interest to note that Re o, falls
off considerably faster for negative + +than does the Pomeranchuk
trajectory, and that it reaches its peak wvelue at a much lower energy
(t = 0.15 (Bev/c)?).
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FIGURE 1k: P! trajectory and pemeson trajectory. Re ap,(t) vs. b3
Re a.'d(t) ve. b; =0.8 '(BBV/c)a <4 <, The input perameters were:
(a) for the Py o ,(0) = 0.50, 0, (s) (s =~ 20 (3V)°) = 5 ub;

(v) ftor the p, Re ap(mpg) = 1,. Imdp(mpg) = 0,10,
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FIGRE 15: ©P* 4trajectory amd p-meson trajectory. Imap,(t) vBe b;
Imccp(t) vs, %, 0.08 (.'BeV/c)a <t < w, These curves were calculated

with the input perameters listed in the caption of Figure (14).
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Lastly, wa have obtained solutions for the p-trajectory.

In thie case, we solved for the trajectories in the following way.
We used the fact that Re q p(mpa) = 1 and then we chose a reasonable
corresponding value of Im ap(mpz) . We then obtained a set of solutions

corresponding to these parameters, computed ep(mpa) and checked to see
if the width as glven by

m, §,=1n ap(mf)/e p(mpﬁ) (8.1)

2

| 2y .
where sp(mp ) = d Re ap/dt * {8.2)
t = mp

came out correctly. Using this trial and error procedure, we were not
eble to find a set of parameters whieh gave s precisely correct value
for the g-width,

Iz Pigures (1) - (17), we display our results for BRe ap(t) and
Imag{t) for several velues of the input parameter Im ap(mpe). The
corresponding values of the widtk and o p(c) are suamarized in Table X.

It is to be noted that we obtain a very large value of ap(o}, and
that e £ind o (t)} > 0.90 for -0.80 (BeV/e)? <t < 0 (Figure 16).

This faect 1s quite insensitive to the magnitude of the input parameter
Ima.p(mf). Thus we feel that the numbers we obtain for @ (t), t =0 or t350,
may not be modifled greatly by the incliusion of inelsstic states, The

value of (), -0.80 (BeV/c)® < ¢ < 0, that ve find seems to be

consistent with the recent observations of 8. J, Lindenbaum et sl. (52),

who find little or no energy dependence of the ﬂ:tp angular distributions.
This suggests that 0.80 <ap(o) < 1, while we find typleally
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TABIE X. A list of wvalues of I“p’ and ap(o) for input parameters

PP p P

m o ( 2) 2 (ny ) o)
aim P o= o~ a {0

[w P e (m 2) P
P PP

0.005 379 In“ 0.990
0.010 445 m 0.983
0.005 6.35 m 0.966

0,100 1809 n 0c913
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FIGURE 16: pe-meson trajectory. BRe ap(t) v8. b, ~0.8 (J;:suw;'c:)2 <4 < oo,
The three curves shown were calculated from the input parameters:
2 2 2
R = L . R =
(a) Re ap(mp } =1, Im ap(mp } = 0.005; (b) Re t:.rp(mFJ Y =1,

' 2y _ o o 2y 2y _
Imap(mp) 0.010; {(c) Re ap(mp) 1, Imap(mp) 0.025.
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FIGURE 17:  p-meson wajectory. Im @ (t) vs. t, 0.08 (BeV/c)? < t < o,
The three curves shown were caleulated unaing the inpubt parameters lilsted

in the caption of Figure (16).
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o+
czp(o) ~ 0.98. An analysis of earlier date (53) on the ¥ p total cross

sections, restricted to incident momenta greater than 10 BeV/c may also

support the conclusion that ap(o) is larger than -~ 0.86 (52). Moreover,
one should.'bear in mind that the anp
of cxp(o) ~ 0.4 from that data is without much statistical significance (5k).

data is so poor that a determination

The wldth of the p-meson comes out too large by a factor of ~ 5,
assuing I‘p ~ 100 MeV. This, no doubt, indicates that Inelastic states
must be included in order to obtaln the p-width correctly. This is
probably not surprising in view of the results of other attempts to
determine the p-width dynamically (55).

There is an additional complication that enters the detemmination of
the widths from our Begge parsmeters. This is the fact that ep(mpg) is
a’' small difference of large quantitles, and & very small percentage .error
in Re Ctp('v 1/2 0/0) ey result in very large errors in ep( ~ 100 9/5).
This mway account for same of the error in our wvalue of the p-width.

Finaelly, we sould like to record that we found Re ap(w) ~ =0.66
(0 = 15 3b); Re 0Ly (w) ~ ~0.63 and Re & (=) ~ =0.56 (In ap{mpz) = 0.10).
We have wmade no expllelt assumption about the asymptotic behavior except

that Ima{t) - 0 as - o,

9. CONCLUSION
We have presented in this thesis an approximste method for the
dynamically determinetion of the Regge pole parameters. The equations we

have derived for this purpose are simple in structure and rather easy

{0 solve numerically.
in the potentilal theory case, where a comparlson with an exact sulution

is possible, the agreement is gratifylng in most instances.
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We do not understand why In the nonerelativistic case the accuracy
of the solution obtained appears to be poorest when the potential strength
is in the range 1 $A 5 3. It may mean that for A in this range the
one pole approximation is not adeguate, Altermatively, this trajectory
may cross another, in which case the equations mmst be formulated
differently (37).

In the relativistic ocase, the solntions obtained for the Pomeranchuk
trajectory agree quite well with the experimental results of Foley et al.
(35). Our sclutions for the p~trajectory give a value of ap(o) which
seems t0 be consistent with recent measurements of Lindenbaum et al. (52).
However, we find that the width of the p-resonance comes out too large.
The inclusion of inelastic channels should immrove the results. But
vhether we can achieve quantitatively accurate solutioms by ineluding
Jjust the two-body inelastic chammels remains to be seen.

The work carried out in this thesis suggests a number of interesting
prohiliems, both analytical and numerical, for further investigation.

We have mentioned the problem of inciuding the inelastic chammels in
the equations, and finding their effect on, for example, the p-width.

A critical test of our equations can come from a determination of
the Fermion trajectories. For example, if we supply the mass of the
nucleon and the xlN coupling strength, can we predict the position and
width of the fE /2 resonance that is believed to lie on the nucleon
trajectory? If so, the same method can be used to discuss 21l the

MBEON~DETYON resonances.,

We bave noted (Bection 8) that the Poweranchuk trajectory Re ap(t)
that we obtaln is in agreement with that obtained from rH-scattering,
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but not with the resulis from NN-scattering. This probably means that
several Regge poles comtribute In an important way to NNe-scattering at
presently explored emergies. To achleve a correct understanding of high
energy NN and NN scattering, which becauze of the spin structure of the
amplitudes will involve the application of our equations in the meny
chemnel case, forms another interesting and important problem.

Turning now to analyiieal problems, it is elesr that an improvement
of the one pole approximation r the partial wave amplitude 1is very
desirable. By including the correct contribution of a few nearby poles
in the partlal wave amplitude, one could probably obtain satlsfactory
solutions in all instances for the potential case. A representation of
the partial wave amplitudes solely in terms of Regge pole parameters should
help such & formulation.

It would be interesiting to learn if the zeroeg of the residue
functions, which appesr as Input parameters in ocur equatioms in thelr
present formulation, can be determined if several poles are coupled
together, If this is not the case, how can one determine the number
and location of the zeroes of a given trajectory? The residue rfunctions
of the Pomeranchuk trajectory have a zero when up passes through zero.
Since we have not taken account of this faet in the numerical work
carried out here, it will be Interesting to see how the soluiions are
modified if & zero is supplied.

Finally, we wigh to repeat thal one feature of dispersion theory,
the crossing symmetry, has so far been totally neglected in our method.
An spplication of the crossing theorem mey enable one to determine meny
of the subtraction constants in a self-consistent menner. Work in this

@irection is still laeking.
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