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Chapter 2: Modeling Enzyme Kinetics

From a mathematical point of view, the art of good modeling relies on: (i) a sound

understanding and appreciation of the biological problem; (ii) a realistic

mathematical representation of the important biological phenomena; (iii) finding

useful solutions, preferably quantitative; and most crucially important, (iv) a

biological interpretation of the mathematical results in terms of insights and

predictions.  The mathematics is dictated by the biology and not vice versa.

Sometimes the mathematics can be very simple.  Useful mathematical biology

research is not judged by mathematical standards but by different and no less

demanding ones.

- Jim Murray, 1993

Introduction

When investigating a novel method, it is often very useful to use a small example,

or “toy problem,” to examine its workings before jumping into a larger problem.  As

mentioned previously, these simplified problems are hard to come by in biology but there

is a toy problem at the heart of the simulation, namely, enzymatic reactions.  This chapter

contains a description of the basic enzyme reaction first described by Michaelis and

Menten in 1913, as well as a comparison between the results of the deterministic solution

and the stochastic solution.  This problem was chosen for a variety of reasons.  Firstly,

this problem contains much of the basics of enzymatic biology in its midst.  Secondly,
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this is one of the few problems for which a detailed solution can be constructed.  Finally,

it affords a readily understandable introduction to the stochastic simulation.

In the case of the deterministic solution, perturbation theory will be used to

provide an approximate solution, but because any modern computer algebra system will

be able to easily provide a numerical solution to the resulting differential equations, that

will be included as well.  To solve this problem using a stochastic solution, a short

program using the Mathematica programming language has been developed.  This will

allow a detailed example of the stochastic simulation algorithm.  By comparing the

solutions from the deterministic methods to the stochastic simulation solutions, it will be

shown that they are good agreement with each other in a global sense.  However, it will

also be shown that there are situations in which the deterministic solution may not

capture the true state of the system.

Deterministic Solution

The theory for chemical kinetics in a large volume is well grounded in

experiments.  Early forms of the Law of Mass Action, which states that the rate of the

reaction is proportional to the concentration of the reactants, appeared at least as early as

1802 with Berthollet’s nearly correct formulations.  The final correct formulation came

from extensive experiments that Waage and Gulberg published in 1864 (Waage, 1986).

But an important piece of the puzzle was still missing, and it was another 25 years before

the discovery of the process that allowed some molecules to react while others remained

inactive.
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In1889, while investigating an offshoot of his work on ionic solutions (work that

would eventually win him a Nobel Prize), Svante Arrhenius studied the effects

temperature has on the rate of a reaction.  His data led him to conclude that in a reaction

system only a certain number of molecules are able to react at any given time.  He

proposed that some sort of chemical catalyst must have activated the molecules that are

able to react.  His theory said that the catalyst (C) would first form an intermediate

compound (CS) with the substrate (S), and the resulting compounds are then able to enter

a transition state that lowers the amount of energy that is needed to perform a chemical

reaction.  The compound then decomposes into a product (P) and the catalyst (C), and the

catalyst is then free to participate in another reaction:

C + S ⇒ CS,CS ⇒ P + C (2.1)

Thus, the notion of activation energy for a chemical reaction was born (Teich, 1992).

Two decades later, Michaelis and Menten published a seminal piece of work on

how this type of system behaves.  In their paper, they focused on a biological system that

has come to be known as the basic enzyme reaction (Michaelis and Menten, 1913).  It

was very similar to Arrhenius system but with the addition of a backwards reaction

(disassociation) of the complex (ES).  There was also a terminology change from catalyst

(C) to enzyme (E).  This was just a minor change as an enzyme is defined to be an

organic catalyst.  Schematically, this can be represented by

E + S⇔
k−1

k1 ES, ES⇒
k 2 P + E . (2.2)

In words, one molecule of the enzyme combines with one molecule of the substrate to

form one molecule of the complex.  The complex can disassociate into one molecule of
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each of the enzyme and substrate, or it can produce a product and a recycled enzyme.  In

this formulation k1 is the rate parameter for the forward substrate/enzyme (catalyst), k−1

is the rate parameter for the backwards reactions, and k2  is the rate parameter for the

creation of the product.  There is no backwards reaction forming the complex from the

product and the enzyme, as it is assumed that this reaction is energetically unfavorable

and the enzyme is much more likely to participate with the substrate in the formation of

the complex.  Given an initial amount (or concentrations) of the reactants and the rate

parameters, the question is to determine the amount of product at some later time.

Using the Law of Mass Action, it is possible to write down the change in the

amount of each of the reactants, leading to one differential equation for each of the

reactants.  The fact that it may not adequately capture the true state of small systems is a

problem that will be addressed shortly.  The presentation of the basic enzyme reaction

that follows draws from the conventional approaches (Edelstein-Keshet, 1998; Murray,

1993).

Denoting the concentrations in (2.2) by

e = E[ ], s = S[ ], c = ES[ ], p = P[ ] (2.3)

the Law of Mass Action applied to this system leads to the following four differential

equations that describe the kinetics of the basic enzyme reaction:

ds
dt

= −k1es + k−1c,
de
dt

= −k1es + (k−1 + k2)c

dc
dt

= k1es − (k−1 + k2)c,
dp
dt

= k2c
. (2.4)

As the system starts with only the substrate and enzymes, the initial conditions are then
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e 0( ) = e0, s 0( ) = s0, c 0( ) = 0, p 0( ) = 0 . (2.5)

Before solving this system, it is important to note that the equations are not all

independent.  First of all, given a fixed amount of enzyme, it is possible to write down a

conservation law by noting that the amount of free enzyme and bound enzyme must be

constant:

e(t)+ c( t) = e0  . (2.6)

Combining this back into the first three differential equations, it is possible to eliminate

one to end up with

ds
dt

= −k1e0s + (k1s + k−1c),
dc
dt

= k1e0s− (k1s + k−1 + k2 )c (2.7)

with the initial conditions

s(0) = s0, c(0) = 0 . (2.8)

Finally, the equation for the product can be uncoupled from the others, and integration

leads to

p( t) = k2 c(u)du
0

t
∫ , (2.9)

which provides the solution for the product once the solution for the complex is known.

The end result is a reduction of the set of four differential equations into two coupled

ones.

As the situation under consideration is one where there are a small number of

enzymes compared to the number of substrate molecules available, let

ε =
e0
s0

, (2.10)
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which leads to using the following variables to nondimensionalize the equations

τ = k1e0t, u(τ ) =
s( t)
s0

, v(τ) =
c(t)
e0

, λ =
k2

k1s0
, K =

k−1 + k2

k1s0
. (2.11)

Then the system in (2.7) becomes

du
dτ

= −u + (u + K − λ)v, ε
dv
dτ

= u − (u + K)v , (2.12)

with the initial conditions

u(0) =1, v(0) = 0 . (2.13)

In looking for a solution for this problem, the appearance of the small parameter ε

in front of a derivative in (2.12) suggests that this is a singular perturbation problem, and

looking for a single regular Taylor series expansion solution in terms of the variables u,v

and ε will not be fruitful.  Because of this, it is necessary to create a multiscale solution

from matching inner and outer solutions.  This can be accomplished by first looking for

the regular Taylor expansion solution in the form

u τ;ε( ) = εnun
n= 0
∑ τ( ), v τ;ε( ) = εnvn

n= 0
∑ τ( ) . (2.14)

Substituting this into (2.12) and equating like powers of ε yields for the O 1( )  system

du0
dτ

= −u0 + (u0 + K − λ)v0, 0 = u0 − (u0 + K)v0 (2.15)

with the initial conditions

u0 (0) =1, v0(0) = 0 . (2.16)

At this point the problem with this type of solution is clear; the second equation does not

satisfy the initial condition.  This will be taken care of later when the outer and inner

solutions to the system are matched.  Plunging ahead and solving this system leads to
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v =
u0

u0 + K
, du0

dτ
= −λ

u0

u0 + K
, (2.17)

and therefore

u0 τ( ) + K ln u0 τ( )( ) = A − λτ, v0 τ( ) =
u0 τ( )

u0 τ( ) + K
. (2.18)

In searching for an inner solution, define

σ =
τ
ε
,U σ;ε( ) = u τ;ε( ),V σ;ε( ) = v τ;ε( ) (2.19)

then with these transformations the system in (2.12) becomes

dU
dσ

= −εU + ε(U + K − λ)V, dV
dσ

=U − (U + K)V (2.20)

with the initial conditions

U(0) =1, V (0) = 0 . (2.21)

The system no longer has the small parameter ε multiplying a derivative term, and

therefore it is possible to look for a solution in terms of a regular perturbation expansion

U σ;ε( ) = εnUn
n= 0
∑ σ( ),V σ;ε( ) = εnVn

n= 0
∑ σ( ) . (2.22)

Substituting this expansion into (2.20) and setting ε = 0  yields the O 1( )  system

dU0

dσ
= 0, dV

dσ
=U0 − (U0 + K)V0 , (2.23)

with the initial conditions

U0(0) =1, V0 (0) = 0 . (2.24)

The solutions of this inner system are then found to be
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U0 σ( ) = B, V0 τ( ) =
B

B + K
+ C exp −τ K + B( )[ ] (2.25)

At this point, all that is left is to match the solutions. Using the initial conditions and

requiring that

lim
σ →∞

U 0 σ( ) = lim
τ →0

u0 τ( )  and lim
σ →∞

V0 σ( ) = lim
τ →0

v0 τ( ) (2.26)

results in A =1, B =1,C =
−1
1+ K

. The resulting multiscale solution then correctly matches

as the respective limits are

lim
σ →∞

U 0 σ( ) = lim
τ →0

u0 τ( ) =1 and lim
σ →∞

V0 σ( ) = lim
τ →0

v0 τ( ) =
1

1+ K
. (2.27)

The O 1( )  solution to the inner system is

U0 σ( ) =1,V0 τ( ) =
1− exp − 1+ K( )σ[ ]

1+ K
, (2.28)

while the O 1( )  solution to the outer system is

u0 τ( ) + K ln u0 τ( )( ) =1− λτ , v0 τ( ) =
u0 τ( )

u0 τ( ) + K
. (2.29)

In practice it is extremely difficult, if not impossible, to construct even

approximate solutions to a system that contains any more reactions than the Michaelis-

Menten problem and numerical methods must be used (McQuarrie, 1967).

As shown above, the Law of Mass Action applied to the basic enzyme reaction

leads to a set of coupled differential equations that can be approximated using

perturbation theory, and the differential equations are easily solved numerically as well.

Because the Law of Mass Action is not only well grounded in experiments but also leads

to equations that can be readily solved.  But while differential equations are a natural way
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to model chemical reactions in a vat, they might not adequately represent the true state of

the system in a cell.

Implicit in using the Law of Mass Action are two key assumptions that should be

mentioned: continuity and determinism.  With regards to the continuity assumption, it is

important to note that the individual genes are often only present in one or two copies per

cell.  Therefore, there are only one or two regulatory regions to which the regulatory

molecules can bind.  In addition, the regulatory molecules that bind to these regions are

typically produced in low quantities: there may be only a few tens of molecules of a

transcription factor in the cell nucleus.  This has been shown explicitly in bacterial cells,

but there is ample evidence supporting this fact in eukaryotic cells as well (Davidson,

1986; Guptasarma, 1995).   The low number of molecules may compromise the notion of

continuity.

As for determinism, the rates of some of these reactions are so slow that many

minutes may pass before, for instance, the start of mRNA transcription after the

necessary molecules are present, or between the start and finish of mRNA creation

(Davidson, 1986).  This may call into question the notion of the deterministic change

presupposed by the use of the differential operator due to the fluctuations in the timing of

cellular events.  As a consequence, two regulatory systems having the same initial

conditions might ultimately settle into different states, a phenomenon strengthened by the

small numbers of molecules involved.

There have been some recent experimental results that strongly suggest that cells

do in fact behave stochastically.  A review can be found in a recent article by the pioneers
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of modeling stochastic processes in biology, and they drive home the point that

regulatory molecules are present in very low concentrations in cells, with a few hundred

being an upper limit, and dozens being a normal phenomenon (McAdams and Arkin,

1999).  A study of these systems has shown that the stochastic fluctuations in such a

system can produce erratic distributions in protein levels between the same type of cell in

a population (McAdams and Arkin, 1997).  This is especially true when the molecule

under investigation is part of the regulatory mechanism of the cell (Arkin et al., 1998).

Most recently, a study in yeast has produced intriguing data concerning the noise in a

biological system due to the intrinsic fluctuations (Elowitz et al., 2002).

When the fluctuations in the system are small, it is possible to use a reaction rate

equation approach.  But when fluctuations are not negligibly small, the reaction rate

equations will give results that are at best misleading (showing only the mean behavior),

and possibly very wrong if the fluctuations can give rise to important effects.  The real

problem arises in that it is not always known beforehand whether fluctuations are

important.  The only way to find out is to use a stochastic simulation:  If several

stochastic trajectories give results that appear to be identical, then reaction rate equations

could indeed have been used.  But if the differences in the trajectories were noticeable,

then reaction rate equations probably would not have been appropriate.  It is possible to

forge ahead, and the result is usually a mathematical model that describes the

phenomena, but fails to capture the fluctuations present in the system.

Some of the concerns about fluctuations in a system have been around for a long

time, if only in theory.  With regards to the number of molecules in a cell, this was first

mentioned in the English literature by the biochemist J. B. S. Haldane when he
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mentioned that critical processes might be carried out by one of a few enzymes per cell

(Haldane, 1930).  Fifteen years later, this was repeated as a known fact in Nature

(McIlwain, 1946).  More recently there appeared a paper on the question of whether the

laws of chemistry apply to living cells (Halling, 1989).  It isn’t quite as elegant as

Purcell’s paper on life at low Reynolds numbers (Purcell, 1977), but like this famous talk,

the paper points out that it is a very different world inside a cell.

Consequently, the fluctuations in the system may actually be an important part of

the system. With these concerns in mind, it seems only natural to investigate an approach

that incorporates the small volumes and small number of molecular species (and the

inherent fluctuations that are present in a system) and may actually play an important

part.  These investigations are still relatively new, but in recent years the stochastic

simulation algorithm has been used to model phage λ infected E. coli cells (Arkin et al.,

1998), and calcium wave propagation in rat hepatocytes (Gracheva et al., 2001).

Stochastic Solution 

The first mention of using stochastic methods to model chemical reactions

appeared in 1940 (Delbrück, 1940; Kramers, 1940).  But it wasn’t until the early 1950s

that it became clear that in small systems the Law of Mass Action breaks down (Rényi,

1954) and even small fluctuations in the number of molecules may be a significant factor

in the behavior of the system (Singer, 1953).  Soon after, it became evident that some

processes in biological cells fell into this category and that a proper mathematical

formulation of the chemical reactions in the cells will most likely be based on stochastics

(Bartholomay, 1958).
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The stochastic approach considers the sets of possible reactions and examines the

possible transitions of the system.  As an example, consider the following irreversible

unimolecular reaction

A →
k B , (2.30)

which is common in radioactive decay processes.  In words, the molecule A is converted

to B with rate parameter k.  The stochastic description of the system is characterized in

the following manner.  Let X t( )  be a random variable that denotes the number of A

molecules at time t.  Then

1) The probability of a transition from x +1( ) molecules to x( ) molecules in the

interval t,t + ∆t( )  is k x +1( )∆t + o ∆t( ).  k is the rate constant and o ∆t( )  takes the

usual meaning that o ∆t( ) ∆t→ 0 as ∆t→ 0 .

2) The probability of a transition from x( )  to x − j( ), j >1 in the interval t,t + ∆t( )  is

o ∆t( ) .

3) The probability of a transition from x( )  to x + j( ), j ≥1  in the interval t,t + ∆t( )  is

zero.

Denoting the probability of X t( ) = x  by Px t( ) , a balance of the terms yields

Px t + ∆t( ) = k x +1( )∆tPx+1 t( ) + 1− kx∆t( )Px t( ) + o ∆t( ) . (2.31)

Simplifying and taking the limit ∆t→ 0  yields the differential-difference equation

dPx t( ) dt = k x +1( )Px+1 t( ) − kPx t( ) , (2.32)

which is also called the chemical master equation for the system.

The solution of the chemical master equation can be thought of as a Markovian

random walk in the space of the reacting variables.  It measures the probability of finding
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the system in a particular state at any given time, and it can be rigorously derived from a

microphysical standpoint (Gillespie, 1992).  Analytic solutions of master equations are

difficult to come by, but in this example it is possible to transform the differential-

difference equation into a partial differential equation through the use of the probability

generating function

F(s,t) = Px
x= 0

∞

∑ t( )sx . (2.33)

Substituting (2.33) into (2.32) and simplifying leads to

∂F
∂t

= k 1− s( )
∂F
∂s

. (2.34)

Given the initial condition F(s,0) = sx0  the solution is then

F s,t( ) = 1+ s−1( )e−kt[ ]
x 0 . (2.35)

Recall that if X t( )  is a random variable, then E X t( )[ ] , the expected value, is defined as

xPt x( )∑  which is, conveniently enough, 
∂F
ds s=1

.  Computing this value leads to

E X t( ){ } = x0e
−kt , (2.36)

which is the solution of the Mass Action formulation for the system:

dA
dt

= −kA . (2.37)

Thus, the two representations are consistent.  However, this is only true in general for

unimolecular reactions (McQuarrie, 1967).

Historically, numerical methods were used to construct solutions to the master

equations, but the solutions constructed in this manner have some pitfalls.  These include
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the need to approximate higher-order moments as a product of lower moments, and

convergence issues (McQuarrie, 1967).  What was needed was a general method that

would solve these sorts of problems and this came with the stochastic simulation

algorithm.

Stochastic Simulation Algorithm

Given a set of molecular species Sµ{ }
µ =1

N
 and a set of reactions in which they can

participate Rµ{ }
µ =1

N
, the Gillespie algorithm, as it has come to be known, is an exact

method for numerically computing the time evolution of a chemical system.  By exact it

is meant that the results are provably equivalent to the chemical master equation, but at

no time is it necessary for the master equation to be written down, much less solved.

The fundamental hypothesis of the method is that the reaction parameter cµ

associated with the reaction Rµ  can be defined in the following manner:

cµδt ≡ the average probability, to the first order in δt , that a particular
combination Rµ  of reactant molecules will react in the next time
interval δt .

In his original work, Gillespie shows that this definition does in fact have a valid physical

basis and in fact the reaction parameter cµ  can be easily connected to the traditional

reaction rate constant kµ (Gillespie, 1976).

The method is based on the joint probability density function P(τ,µ) , defined by

P τ,µ( )dτ ≡  the probability at time t that the next reaction will occur in the
differential time interval t + τ,t+ τ + dτ( )  and will be of type Rµ .
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This is a departure from the usual stochastic approach that starts from the

probability function  P(X1,X2,K,XN ;t) , defined as the probability that at time t there will

be X1 molecules of S1, X2  molecules of S2, …, and XN  molecules of SN .  By using

P(τ,µ)  as the basis of the approach, it is possible to create a tractable method to compute

the time evolution of the system.  To construct a formula for this quantity, Gillespie starts

by defining the quantity hµ  as the number of distinct molecular reactant combinations for

the reaction Rµ .  This is nothing more than a combinatorial factor and Table 2.1 lists

some example values.

Reaction hµ Reaction order
*→ S j 1 Zeroth
S j → Sk X j First

S j + Sk → Sl X j ⋅ Xk Second
S j + S j → Sk X j X j −1( ) 2 Second

Si + S j + S j → Sk XiX j X j −1( ) 2 Third

Table 2.1 Appropriate combinatorial factors for various reactions.  In

actuality, everything can be thought of as a zeroth-, first-, or second-order

reaction, or a sequential combination of these, and there is no need for the higher-

order reactions.

Combining this definition of hµwith the previous definition for the reaction

parameter cµ , leads to the conclusion that the probability, to the first order in δt , that aRµ

reaction will occur in the next time interval time δt  is therefore
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hµcµδt . (2.38)

Now P τ,µ( )dτ can be computed as the product of P0 τ( ) , the probability that no

reaction occurs in the time interval t,t + τ( ) , and hµcµδt , the probability that the specific

reaction Rµ  occurs in the next time interval t + τ,t+ τ + dτ( ) :

P τ,µ( )dτ = P0 τ( )hµcµdτ . (2.39)

All that is now required is to calculate the term P0 τ( ) .  To construct an expression for this

term, divide the interval t,t + τ( )  into K subintervals, each of length ε = τ K . The

probability that none of the reactions Rµ{ }
µ =1

N
 occurs in the time interval t + jε,t + jε +1( )

(for any arbitrary j) is

1− hiciε + o ε( )[ ]
i=1

M

∏ =1− hiciε
i=1

M

∑ + o ε( ) . (2.40)

Since there are K subintervals and the probabilities are mutually exclusive,

P0 τ( ) = 1− hici
τ
K

+ o τ
K
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M

∑
 

 
 

 

 
 

K

. (2.41)

But as this expression is valid for any K, even infinitely large ones, the expression can

also be written as

P0 τ( ) = lim
K→∞

1− hiciτ + o K−1( ) K−1

i=1

M

∑
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K

. (2.42)

However, this is nothing more than one of the limit formulas for the exponential function,

and thus

P0 τ( ) = exp − hici
i=1

M

∑ τ
 

 
 

 

 
 . (2.43)
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Therefore, after defining

aµ ≡ hµ ⋅ cµ , ao ≡ hi ⋅ ci
i=1

M

∑ , (2.44)

the result is an expression for P(τ,µ) :

P τ,µ( ) = aµ exp −a0τ[ ] . (2.45)

Implementation

This algorithm can easily be implemented in an efficient modularized form to

accommodate quite large reaction sets of considerable complexity.

For an easy implementation, the joint distribution can be broken into two disjoint

probabilities using Bayes’ rule:

P(τ,µ) = P(τ) ⋅P(µ τ) . (2.46)

But note that the addition property for probabilities can be used to calculate an alternate

form for P(τ) :

P(τ ) = P(τ,µ)
µ =1

M

∑ , (2.47)

and substituting this into (2.45) leads to values for its component parts:

P(τ ) = a0 exp −a0τ( ) , (2.48)

P(µ τ) =
aµ

a0
. (2.49)

Given these fundamental probability density functions, the following algorithm can

be used to carry out the reaction set simulation:

1) Initialization
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a. Set values for the cµ

b. Set the initial number of the Sµ  reactants

c. Set t = 0 , and select a value for tmax , the maximum simulation time

2) Loop

a. Compute aµ ≡ hµ ⋅ cµ , ao ≡ hi ⋅ ci
i=1

M

∑

b. Generate two random numbers r1 and r2  from a uniform distribution on

0,1[ ]

c. Compute the next time interval τ =
1
a0
ln 1

r1

 

 
 

 

 
  (Draw from the probability

density function of (2.48))

d. Select the reaction to be run by computing µ  such that aν
ν =1

µ −1

∑ < r2a0 ≤ aν
ν =1

µ

∑

(Draw from the probability density function of (2.49))

e. Adjust  t = t + τ  and update the Sµ  values according to the Rµ  reaction that

just occurred.

f. If t > tmax , then terminate. Otherwise, goto a.

Because the speed of the SSA is linear with respect to the number of reactions,

adding new reaction channels will not greatly increase the runtime of the simulation i.e.,

doubling either the number of reactions or the number of reactant species doubles

(approximately) the total runtime of the algorithm.  The speed of the SSA depends more

on the number of molecules.  This is seen by noting that the computation of the next time
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interval in (2c) above depends on the reciprocal of a0, a term comprised of, among other

things, the number of molecules in the simulation.  If the reaction set contains at least one

second-order reaction, then a0 will contain at least one product of species population.  In

this case the speed of the simulation will fall off like the reciprocal of the square of the

population.  However, the runtime can be reduced by noting that not all of the aµ  values

will need to be recalculated after each pass, but only the ones for which Sµ  appears as a

reactant in the Rµ  reaction.  An efficient implementation will take advantage of this fact.

Recent improvements to the algorithm, including a method that does not require

the probabilities to be updated after every reaction, are helping to keep the runtime in

check (Gibson and Bruck, 2000; Gillespie, 2001).  As currently implemented, a typical

run of the Hox simulation presented in Chapter 3 (without the aforementioned speedups)

consists of over 23 million events, and takes less than 6 minutes on a computer with a

2GHz Pentium 4 processor.

Two important points should be noted about the SSA: the solution of a system of

coupled chemical reactions by this method is entirely equivalent to the solution of the

corresponding stochastic master equations (Gillespie, 1976; Gillespie, 1977c; McQuarrie,

1967),  and in the limit of large numbers of reactant molecules, the results of this method

are entirely equivalent to the solution of the traditional kinetic differential equations

derived from the Law of Mass Action (Gillespie, 1977a).

One added benefit of the SSA is the formalism that is forces on the user.  Each

reaction in the set must be dealt with explicitly, and the connection between the reacting

species (and the roles that they play in other reactions) must be clearly specified.  The
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fact that this algorithm generates its own (nonuniform) time sample should also be noted.

Thus, as the simulation proceeds it generates time samples based on the probability

density function of (2.43), i.e., simulation time steps are based on draws from an

exponential distribution.  This of course is one of the reasons why this algorithm is so

robust.

Extensions

In order to apply the concepts involved in Gillespie's algorithm to a collection of

cells, the original algorithm must be extended to accommodate the introduction of spatial

dependencies of the concentration variables.  Work has been done which extends the

stochastic simulation algorithm to reaction-diffusion processes, and the modification to

the method is straightforward.  Diffusion is considered to be just another possible

chemical event with an associated probability (Stundzia and Lumsden, 1996).  As with all

the other chemical events, the diffusion is assumed to be intracellular and the basic idea

behind this approach is incorporated into the simulation.  But one of the important

molecules in the simulation is retinoic acid, an intercellular molecule that acts through

cell surface receptors, and so the diffusion must be treated in a larger context.

Introducing a spatial context into the SSA is done by creating an interacting cell

population represented as a rectangular array of square cells with nearest neighbor only

cell-cell interactions.  In this model of interacting cells, it is assumed that each cell is

running its own internal program of biochemical reactions.

The fact that simulation of any given reaction generates its own “local” simulation

time steps poses something of a problem for a model consisting of more than one cell,
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each of which is running a reaction simulation independent of all the other cells.  This

problem arises when an intercellular event must be accounted for, since the internal

simulation times of the two partner cells involved will not in general be the same.  When

implementing such simulations in serial code on a single-processor machine, converting

the algorithm from what is essentially a spatial-scanning method to a temporal-scanning

method can solve this problem.  This is accomplished by first making an initial spatial

scan through all of the cells in the array, and inserting the cells into a priority queue that

is ordered from shortest to longest local cell time.  All succeeding iterations are then

based on the temporal order of the cells in the priority queue.  In other words, a cell is

drawn from the queue, calculations are performed on the reaction set for that cell, and

then the cell is placed back on the queue in its new temporal-ordered position.  By doing

this there is no need to worry about synchronizing reaction simulations between any pair

of neighboring cells.

Each reaction that occurs changes the quantity of at least one reactant. When this

happens, the combinatorial factors hµ  change and it is necessary to recalculate the aµ

values.  This is one of the drawbacks of the approach: if it weren’t for having to

recalculate the probabilities at every time step, the system is a Markov process with a

fixed transition matrix and all standard analysis tools can be brought to bear.  In general,

only a small number of the aµ  will actually have to be updated and an efficient

implementation needs to take advantage of this fact.  After the aµ  values are updated, all

cells that changed are reordered into their appropriate new position in the priority queue.
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Because cells are stored as C-language structures, all of the information required

to define the state of any given cell is readily available.  The use of a priority queue to

order the cells was a unique innovation, and solves the synchronizing problem inherent in

a multicellular situation.  Not only does this allow an easy mechanism for intercellular

signaling, but this methodology can also readily accommodate local inhomogeneities in

the molecular populations.

Comparison of the Approaches

The programming language Mathematica was used to construct a numerical

solution to the original set of differential equations in (2.4) and (2.5).  Mathematica uses

an Adams Predictor-Corrector method for non-stiff differential equations and backward

difference formulas (Gear method) for stiff differential equations.  It switches between

the two methods using heuristics based on the adaptively selected step size.  It starts with

the non-stiff method, and checks for the advisability of switching methods every 10 or 20

steps. The result is an interpolating function that can be used to construct graphs of the

solution for any time interval of interest.

Mathematica was also used to implement the stochastic simulation algorithm for

the Michaelis-Menten basic enzyme reaction. This boiled down to a very short piece (less

than 25 lines) of code and is included in Appendix D.

Plots of the trajectories of these two methods can be seen in Figure 2.1 below and

the reader can easily see the differences between the stochastic and differential equation

solutions to the basic enzyme reaction.
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Figure 2.1 Typical solutions of the Michaelis-Menten basic enzyme reaction,

low numbers. Both stochastic solution and differential equation solutions to the

basic enzyme reaction are shown.  The vertical axis is number of molecules and

the horizontal axis is time in seconds.  Notice that the fluctuations around the

differential equations can range up to 50% of the solution when there are low

quantities of molecules.  The parameters used were s0=100, e0=50, c0=p0=0,

k1 = .005, k-1 = 5.0, k2 = 1.0.

“On average,” the solutions are the same, but the stochastic approach captures the

fluctuations in the system.  Notice that there are some marked differences in these

solutions.  For instance, in the differential equation solution there are always fewer

molecules of the complex than there are of the enzyme, but this is not true for the

stochastic solution: at about .6 seconds the lines numbers coalesce.  Another difference
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can be seen in a comparison of the numbers of the substrate and the enzyme.  Both the

stochastic solution and the differential equation solution meet at about 3.2 seconds, but in

the stochastic solution these quantities are very closely matched for the next .5 seconds

while the differential equations solution quickly diverge.

But compare Figure 2.1 with Figure 2.2.  The rate parameters have not been

changed for this figure, only the starting numbers of substrate and enzyme.  In this

instance the reaction rate method and the stochastic method are in close agreement, both

qualitatively and quantitatively.

Figure 2.2 Typical solutions of the Michaelis-Menten basic enzyme reaction,

high numbers. When there are a large number of molecules, the fluctuations are

much less noticeable.  The parameters used were s0=1000, e0=500, c0=p0=0, k1 =

.005, k-1 = 5.0, k2 = 1.0.
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In comparing Figures 2.1 and 2.2, it is clear that when the number of molecules is

large, the fluctuations might take the appearance of noise.  But when there are small

numbers of molecules, the fluctuations are may in fact no longer be just noise and may in

fact be a significant part of the signal.  Whether these fluctuations make a difference in

the basic behavior of the system depends on the characteristics of that particular system.

In the basic enzyme reaction the fluctuations do not matter, while in the Notch-Delta

system described below they do.  It may also be the case that the system moves between

situations in which the fluctuations do and do not matter.  Automatically detecting the

need for a transition between these situations is part of an ongoing investigation (D.

Gillespie, personal communication).  However, when it is known that the system contains

small numbers of molecules and the network is nonlinear—both of which are true for the

Hox network—the stochastic approach appears to be a more appropriate method, because

both of these situations will magnify any fluctuations that already exist in the system.

Notch-Delta Lateral Inhibition

As previously mentioned, the SSA is an exact method (i.e., the results are

provably equivalent to the chemical master equation) for numerically computing the time

evolution of a chemical system.  It was also proved that in the limit of large numbers of

reactant molecules, the results of the SSA method are consistent with the solution of the

traditional kinetic differential equations derived from the Law of Mass Action (Gillespie,

1976; Gillespie, 1977c; McQuarrie, 1967).  This is not surprising, because the first

moment solution to the master equation describes the mean behavior of the system, just

as the ODE solution does.  But an interesting question concerns the practical connection
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of these two methods: in practice, do the two different approaches yield similar results in

a system that is sensitive to fluctuations?  A related question is what exactly constitutes a

large number of molecules.

These questions were explored by modeling lateral inhibition, the process by

which a cell adopting a particular fate is able to prevent its neighbors from adopting the

same fate.  The Notch-Delta receptor-ligand pair is found to be involved in lateral

inhibition in the cell fate specification in the developing nervous systems (Artavanis-

Tsakonas et al., 1995; Chitnis, 1995).  A simplified view of this process is shown in

Figure 2.3 below.

Figure 2.3 Notch-Delta lateral inhibition. When a Delta ligand in cell A binds

(denoted by the plus inside the oval) to a Notch receptor in cell B, the Notch
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undergoes a modification into an activated form.  The activated Notch up-

regulates Notch and down-regulates Delta in that cell.  On the other hand, the

down-regulation of Delta in cell B results in fewer Notch bindings in cell A.

Because of this, activated Notch is not formed, and so Notch is not up-regulated

and Delta is not down-regulated in cell A.  The collection of events results in cell

A becoming Notch dominant, and cell B becoming Delta dominant.

A study of the Notch-Delta lateral inhibition network using ODEs to model the

network was undertaken a few years (Collier et al., 1996).  The authors of the work

examined three situations: a two-cell system, an infinite line, and a two-dimensional grid

of cells.  The former case was examined using phase plane analysis, while the latter cases

were examined numerically using a Runge-Kutta-Merson method.  In the two-cell

system, they authors proved that if the feedback is sufficiently strong, one cell becomes

Notch dominant and the other Delta dominant.  The infinite line case was modeled using

periodic boundary conditions, and the results were as expected; alternating Notch and

Delta dominant cells

The two dimensional set of cells was much more interesting.  Again there was a

regular spatial periodicity to the cells, but they found that the results were very dependant

on the boundary conditions.  In particular, the default “checkerboard” solutions appeared

only when the boundary conditions were compatible with the pattern, but not if the

boundary conditions were not compatible with the pattern.  This is one of the concerns

with the ODE approach: The boundary conditions exert a very strong effect on the
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system.  Another concern is that the results are not nearly so regular in biological systems

and it is known any cell can adopt the default fate (Greenwald, 1998).  Finally, the model

was heavily non-dimensionalized and caricatured, and the outputs of the model cannot be

readily connected to number of molecules or concentrations (N. Monk, personal

communication).  Therefore, it seemed that a stochastic simulation of the system

evolution might be enlightening.

A SSA model was built using the C programming language, and the complete

source code can be found in Appendix D and the accompanying CD-ROM.  The

simulation consisted of 5 types of reactions (creation of Notch and Delta, decay of Notch

and Delta and binding) and 5 species of molecules (Notch and Delta Protein, Notch and

Delta mRNA and Activated Notch).  The investigation was carried out in a 16-by-16

collection of rectangular cells with nearest neighbor communication.  The binding

between Notch and Delta required the use of a priority queue to efficiently synchronize

the intercellular events.  An example of a typical result is seen in Figure 2.4.

Figure 2.4 Notch-Delta lateral inhibition typical results.  The white cells are

Notch dominant, the black cells are Delta dominant.  Each cell started with 500
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molecules each of Notch and Delta protein, and the simulation was run until

equilibrium was reached.  Notice that while the cells show general pattern of

alternating dominance, there is not strict compliance.  This is reflective of the

actual pattern of cells as seen in the Drosophila (Greenwald, 1998) and so the

SSA seems to more accurately predict the observed behavior of cell fate

determination then the deterministic approach.

While the stochastic model of Notch-Delta lateral inhibition seemed to show

results that were consistent with the real cell fate, it was unclear if in the limit of large

molecules the stochastic simulation would produce a more regular checkerboard, similar

to the deterministic approach.  It was also not clear what constitutes a large number of

molecules in this case.  Therefore, the number of proteins in each cell was increased from

the default values of 500 molecules per cell, and results of these simulations are shown in

the figures below.  Figure 2.5 shows the results when binding does not go beyond the

edge of the grid, while Figure 2.6 allows binding to wrap around the edge or the array.
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                   A                                         B

  

  
                   C                                        D

Figure 2.5 Notch-Delta larger number results, hard boundary. The white cells

are Notch dominant, the black cells are Delta dominant, and gray cells are ones in

which neither is dominant.  All input parameters except the starting number of

molecules were as in (A) the default case of 500 molecules of Notch and Delta

per cell  (B) 1000 molecules per cell (C) 2500 molecules per cell (D) 5000

molecules per cell.
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               A                                         B

  

  
               C                                        D

Figure 2.6 Notch-Delta larger number results, wrap around binding.  Because

the cells only communicate using nearest neighbor connections, the wrap around

binding results in a torus of cells. (A) 500 molecules of Notch and Delta per cell

(B) 1000 molecules per cell (C) 2500 molecules per cell (D) 5000 molecules per

cell.

Just like in Figure 2.4, all of these results in Figures 2.5 and 2.6 show a general

pattern of alternating cell dominance.  In Figure 2.5, the number of molecules does not

appear to play a role in the regularity of the pattern, but this may be related to the strong

role the boundary plays: most of the cells on the edge are Delta dominant.  Figure 2.6 is
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much more interesting.  In the larger number cases, the figures appear more regular.  To

quantify this, the following metric was calculated

m =
#  of adjacent Delta cells

4Notch cells
∑ ,

and the results are listed in Table 2.2.

Figure 2.5 Figure 2.6

A 79 91

B 75.25 106.25

C 73 107

D 76 99.5

Table 2.2 Regularity metric values. The regularity metric quantifies the

similarity to a perfect checkerboard.  The maximum value possible is 128.

The larger numbers do not lead to a more regular pattern for the hard boundary

case, while the metric for the torus (Figure 2.6) suggests that the larger numbers of

molecules leads to a more regular pattern.  For both of these cases however, it should be

noted that 5000 molecules per cell is only 1250 of each type per face, and it is not clear

that this is yet a “large” number of molecules.   Unfortunately, with regards to the Notch-

Delta simulation 5000 molecules per cell is approaching the practical upper limit of the

capabilities of the stochastic simulation.  Because one of the reactions is a binding

between two different species of molecules, the a0 value for this reaction contains a
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product of terms, and so the speed of the SSA scales quadratically.  In addition, the larger

number of molecules means that the simulation takes longer to reach equilibrium.  So

while the results of Figure 2.5A took a little over an hour to generate, Figure 2.5D and

Figure 2.6D each took over two days to generate.  The deterministic approach is not

subject to these sorts of runtime issues, and though the stochastic implementation is exact

– even for large number of molecules – this example shows that it is not practical to use

in all situations, and deterministic methods will often be a better choice.  The stochastic

framework appears to be much more at home with small numbers of molecules.  Not only

does it appear to be on a firmer physical basis than the deterministic approach in this

realm (Gillespie, 1976; Gillespie, 1977b; Gillespie, 1992), but the runtime is more likely

to be reasonable.
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