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ABSTRACT

This dissertation concerns itself with the following question:
Suppose T is a bounded linear operator from an infinite dimensional
Hilbert Space into itself, What are sufficient conditions to imply the
existence of a nonzero, proper subspace M of H such that T(M) S M?
The methodology used to approach the question is in line with the
methods developed by Aronzajn and Smith [1] and Bernstein and
Robinson [3]. The entire thesis is exposited within the framework of
nonstandard analysis as developed by Robinson [ol.

Chapter 1 of the dissertation develops the necessary theory
involved, and presents a necessary and sufficient condition for T to
have a proper invariant subspace, The conditions involve assumptions
on certain finite dimensional approximations of T.

Chapter 2 demonstrates two situations under which the con-
ditions presented in Chapter 1 come about, The first of these,which
was announced by Feldman [5] and has been published in preprint form
by Gillespie [6], was proved independently by the author under more
relaxed conditions, For simplicity, we state here the Feldman result,

Theorem: If T is quasi-nilpotent and if the algebra generated by T

has a nonzero compact operator in its uniform closure,

then T has an invariant subspace.

It is still an open question whether or not the condition "T
commutes with a compact operator' implies the desired result. By

insisting that C be "very compact" (to be defined) the following result



is demonstrated.

Theorem: If C is a nonzero ''very compact'' operator, and if

TC = CT, then T has an invariant subspace.
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INTRODUCTION

Lct H denote an infinite dimcnsional scparable Hilbert
Space, and let T be an operator from H into itself, The following

question remains unsolved: Does there exist a nontrivial closed sub-

an

A Af I vl 1 (.WL'

= N - £mt ovratr w o M MY A A9
space i O 11 suda that Vi (i, €, , 10T €Very X € .ivl, 1\ € Ivij ¢

——

n

The trivial subspaces M = {0} and M =H always possess this invar-
iance property., Hence, for the sake of convenience, when we say that
M is an lnvariant subspace of T it will be understood that M is non=-
trivial, and T(M) S M, If we say that M is a subspace left invariant
by T, then the cases M = {0} and M = H are allowed.

The question whether or not T has an invariant subspace
appears to be a reasonable one, for in the case when H is finite di-

mensional, the answer is affirmative.

0.1. Theorem: If T is a linear operator from a finite dimensional

complex vector space V into itself, then there is a

chainO:VOE'V'lCVZC...EV CV =V of sub-
r— — n-1 n Pntuiidhodaiiy

spaces of V such that Vi is of co~-dimension 1 in

V i=0, 1,2,...,1’1—‘1, and tha.t T(Vi)gvi’

i+1’

i=0,1,2,,..,n or, equivalently, in matrix language:

T may be represented by a subdiagonal matrix with

respect to a suitable basis,

On the other hand, this theorem is essentially algebraic in

nature (if one considers the fundamental theorem of algebra an



algebraic theorem). It follows from the fact that every such (finite
dimensional) operator possecsses at least one eigenvalue A in C

(= the complex numbers) and a corresponding eigenvector x ¢ V, x # 0,
with T(x) = Ax. But the geometry of an infinite dimensional space, the
non-compactness of bounded sets, alters the situation considerably,
An operator T on an infinite dimensional Hilbert Space H need not
have an eigenvector, This fact is most readily seen by considering

the orthonormal shift operator, which is defined on an orthonormal

basis {enl n=0,1,2,...} of H as follows:

S(en)=e n=20,1,2,... .

nt+l ’

However, S is quite rich in invariant subspaces; in fact, theorem 0.1
holds true for S, with the finite sequence {Vi} replaced by an infinite
decreasing sequence H =V 2V, 2V, =2... EVnQ ..

The first difficult theorem concerning invariant subspaces
was provided by von Neuman, He proved that every compact operator
on a Hilbert Space H possesses an invariant subspace, but he never
published the result, and his proof appears to be lost. Aronzajn and
Smith [1] published this result in 1954 for a compact operator on a
Banach space. In response to a question raised by K, T, Smith and
P. R. Halmos, Bernstein and Robinson [3] published the following

theorem,

0.2, Theorem: (Bernstein and Robinson [3]) I T is a bounded

linear operator which is polynomially compact (i.e.,

p({T) is compact for some nonzero polynomial p),

then T has an invariant subspace,




The proof of this theorem makes use of the techniques of
ﬁonstandard analysis as developed by Robinson [(9]. Bernstein proved
that 0 2 holds for a Banach space [2], and Bonsall [4] demonstrated
the theorem for normed spaces. In his proof, Bonsall used standard,
as opposed to nonstandard, methods.

Note, incidentally, that theorem 0.2 implies the existence
of more than one invariant subspace. This follows because ''polynomial
compactness' is a global property in the following sense: if M is a
proper invariant subspace of T, then T[M (the restriction of T to
M) is polynomially compact, and the induced operator T on the factor
space H/M is also polynomially compact.

In the current investigation, we have attempted to generalize
the techniques of Bernstein and Robinson to obtain still further theorems.
In the first chapter is developed the necessary machinery with which we
prove a sufficient condition for an operator to possess an invariant sub-
space, a condition which is also necessary. In Chapter 2, this theorem
is applied to the situation in which the uniform closure of the algebra
generated by T possesses a nonzero compact operator. The latter
section of chapter 2 proved the following statement: if TC = CT, and
C is a '"very' compact operator (to be specified) then T has an invar-

iant subspace.



CHAPTER 1

INVARIANT SUBSPACE THEORY FOR ARBITRARY

BOUNDED LINEAR OPERATORS

This dissertation shall make use of the methods of non-
"standard analysis as developed by Robinson [9] and augmented and
advanced by Luxemburg [7,8]. As a starting point, we shall assume
knowledge of the basic concepts of nonstandard analysis. Although all
proofs shall be carried out with nonstandard methods, the more im-
portant theorems will have statements in standard language, At the
end of this chapter, we shall present the necessary material for gen~
eralization to normed spaces,

H will 'dénote an infinite dimensional separable Hilbert Space
over the complex numbers €, We denote by *H an enlargement of H .
in the sense of Robinson [9] (cf. Lufcemburg [8]). Where no con-
fusion shall arise, we shall consider H to be imbedded in *H, and
standard elements x ¢ H, considered as elements of *H, will be denoted
by the same symbol, %, Similarly, standard sets E, standard func-
tions T, and standard relations ¢ will be denoted in *H by E, T, ¢,
ér by *E, *T, or *¢ if necessary. (The reader will note that, in this
presentation, the enlargement *H refers not just to the model of the
Hilbert Space structure H, but to all entities related éo H. If neces-
sary, one could simply speak of a model of set theory, and an enlarge=-

ment thereof, and carry out all arguments in this great big model).
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If a number A ¢ ¥C is infinitesimal (i.e., if |A] < ¢ for
évery e>0, € € R) then we write A =1 0.

The symbol st shall denote the standard part operation,
which is defined as follbws. For any £ in *H which is near standard
(or, in other words, for a § ¢ *H for which there exists a standard
element x ¢ H such that H§ - xl[ =] 0) st(€) is defined, and st(§) = x.
x is called the standard part of & st( ) has the following properties,
st is, first of all, not an internal function. st is linear in the following
sense: if £, ne *H are both near standard, and if A, u ¢ *C are both

near standard, then

st(AE + un) = st() st(E) + st(u) st(n) .

Note that st{\) is a different function from st(g), for the domains are
different, But thé concept is analogous, and no confusion should result,

The weak topology on *H provides another standard part
operation, namely the weak standard part, denoted by stw( ) and de~
fined as follows: if £e¢ *H and if there is a standard element x of H
such that (x-E,v) = 0 ((a,b) denotes the inner product) for all y ¢ H,
then stw(g) = x, Since the unitball of H is weakly compact it follows
that every finite element § ¢ *H is weakly near standard [9, p.93], so
stw is defined for those elements £ of *11 which have finite norm. Its
full domain is even larger,

Given a set E C *H, we denote by st(E) the set {st(g)lg c E,

st(€) is defined} and by stw(E) the set {stw(g)lg ¢ E, stw(g) is defined},

1.1 Definition: Suppose E is an internal subspace of *H, and T is




a standard bounded linear operator on H. Denote by
I'IE the orthogonal projection onto E. An intermnal sub-
space M of E is called invariantunder T in E if

- .
HE T HE(M) & M, or equivalently, if H HE T HE HM
- Oy, O T Op IIM[I = 0. M is called almost invar-

iant under T in E, or almost invariant under TE, if
||m, T o, - M, O T, 0[] =, 0. Equiva-
lently, M is almost invariant under TE if, for any
x ¢ M of norm 1, there is an element y e M such

that TE(X) =17

It is immediate that invariance implies almost invariance,

1.2 Lemma: Suppose T is a standard bounded linear operator from

H into itself. Suppose E is an internal subspace of

*H such that st(E) = H and that A is an internal sub-

space of E which is almost invariant under ’I‘E. Then

st(A) is a possibly trivial subspace of H left invariant

by T.

Proof: The proof is quite simple and follows from the fact
that, since st{(E) = H, then for every x ¢ H, HE(X) =, ¥. Define

v = I'IE(x). Then y ¢ E is that element such that

x-yll = |lx-z 1.3
for each z ¢ E. Since there is an element § ¢ H such that H g -x“ =1 0,

then ||x-y]| =, 0, or x =, Ia(x).



Now, suppose x ¢ st(A), Then x = € ¢ A, T(x) is standard,
so T(x) = HE T(x) =1 HE(T HE(X),)z1 HE T HE(V) because UE T HE is
S-continuous (cf, 9, Ch, 4.4). Finally, because A is almost invariant

under I'IE T HE’ there is an element { ¢ A such that

TIE THE(y) =, & .
Hence T(x) = st({) e st(A). Hence st(A) is left invariant by T.
That st(A) is a linear space follows from the lincarity of st,
and that st(A) is closed is not difficult and can be found in Robinson's

book [9] or Luxemburg's paper [8].

1.4 Lemma: Suppose E is an internal subspace of *H and that A and

B are two subspaces of E with A S B, and such that A

is of co-dimension 1 in B; then st{A) is of co-dimension

1 in st(B).

Proof: (Robinson [3,9]) Suppose oy and 0, ¢ st{B), so

there exist Ty T, € B such that Gl =1 Ty g, =y To Then, for some
A e T, TeA, T, = X\ T,+ T, since A is of co-dimension 1 in B. We
wish to show that oy and o, are linearly dependent over st(A), We
argue by contradiction, and assume independence of 0, and g, over
st(A).

If X =1 0, then T{=1TE€ A, so that, in this case, oy ¢€ st(A),
éontrary to assumption,

If A isinfinite, then To =%Tl —-)1:1' = —% T, since T1 has
finite norm. In this case, g, = st - % T ¢ st(A), contrary to assump-

tion.



We now may assume A to be finite, so st(\) exists,

T=T, - )"Tl =, 0, - st(}) o,. 80 T is near gtandard, and o

5 - st{}) o,

st{(T) ¢ st(A), contrary to assumption, This completes the proof of

1.4. Note that the theorem and the proof are both valid for normed

space structures,

1.5 Definition:

If E is an internal subspace of *H such that st(E) = H,
we shall call E an H-approximating subspace of *H,
and we shall say that E approximates H, If

st(E) = K, a subspace of H, then we call E a K-
approximating subspace of *H,

A complete decomposition of E is an ascending
sequence [0} = AgS A S... S A =E of internal
subspaces of E such that Ai is of co-dimension 1 in
Ai+1 for each i =0,1,...,n-1, Thatis to say,

dim(AiH/Ai) =1,

The following lemma demonstrates the role which compact

operators play in investigations of this type.

1.6 Lemma: Suppose E is a *-finite dimensional subspace of *H

which approximates H, and that C is a nonzero com-

pact operator on H. I E

[t (o [ - i
O—El—"' _Eud E is a

complete decomposition of E such that each Ei is al-

most invariant under HE ClI

B’ then for some integer

)‘0’ 1-31:(E)L ) is a nonzero proper subspace of H,
™0



Proof: Note that St(EXO) in the theorem will also be an
in;\rariant subspace of C,

It was remarked in the proof of 1, 2 that st(E)L) is a closed
subspace for each E)\' .Without loss of generality, suppose HCH = 1,

Define the sequence B)\ of non-negative real numbers via

B, = ||ng cn (1.7

=
It is clear that BO = 0, and because E is H-approximating,

BM = HHECHEH =1 HC” =1

B)\ is an internal, increasing, *-finite sequence of real numbers, 0 £ A € y,
so there is some integer A' such that B)\, s5< BX'+1'
First, we claim that st(Ek:) # H, For if it were, then E)\'

would be H-approximating, and then
HHE C HE}\'“ =1 HCH =1

Since B, < %, this cannot be,
Next, we claim that St(E}\'-i-l) # {0}, Since BK'-{-l 2z 5, then

there is an element § ¢ E, llg[l = 1, such that

1
llnEank,H(g)ll 25 .

Since E}\ is almost invariant under C in E, thenthereis a { ¢ E

such that

Al

(=, CH, (&) ,
Lo B



10

and because C is compact, { is near standard [9, pp. 66ff. ]. But
. 1
el = llmg ¢l = HnEank, 1(5)“ =z
+

so st({) exists and is nonzero, so St(Exl“'l) 40,
Lemma 1, 4 states that st(EX;) is of co-dimension 1 in

st(E Since st(E)t|) 4 H and st{F ) # 0, we have that either

A4l

or both, are proper subspaces of H, This com-

A1)
st(EXv), or st(E)\x_*.l),
pletes the proof of 1, 6,
We shall now digress momentarily and introduce some stan-

dard (as opposed to non-standard) concepts which will be analogous to

the definitions already presented.

1, 8 Definitilon: Suppose T is a bounded linear operator on H, and
M and N are subspaces of H with NEM., If y e H,
Hy-NH = inf Hy-x“. Define the function

% e N
pT(N’ M) via

Pp(N, M) = sup {HHMT HN(X) - N|| lx e H, ||x|| = l}

pT(N,M) yields a number which states how close the sub-

space N of M is to being an invariant subspace of the operator

Oy T e

1.9 Definition: A sequence Mn of finite dimensional subspaces of H
is called an H-approximating sequence if, for every
x ¢ H, there is a sequence {xn}, x € Mn’ such that

lim Hxn-x“ = 0, In other notation, lim M_ = H.

n—+n n— o
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If K is a subspace of H and lim M_ = K, then
T~ n
Mn is called a K-approximating sequence,

1, 10 Definition: If Mn is an H-approximating sequence and Nn is

a sequence of subspaces of Mn’ then the sequence

Nn is called almost invariant under T in Mn

provided lim pT(Nn, Mn) =0,

n—ow
We now continue as we were before by formulating a some-

what gcometric condition for an operator T to have an invariant sub-
space. The condition, though somewhat unnatural, is necessary as
well as sufficient. In section 2, we shall show how this condition

arises under more natural circumstances,

1.11 Theorem: Suppose that T is a bounded linear operator and C

is a compact operator, and that En is an H-

approximating sequence of finite dimensional sub-

spaces of H, If there is a complete decomposition

D ADc c AR =
CSATS...SAy =E_

such that every sequence A?(n) o En is almost invar~-

of En into subspaces 0 = A

iant under C and under T in F)n, then T has an

invariant subspace,

Proof: Most of the work has already been done, and we
need only to transfer the above concepts to their nonstandard counter-
part, and apply the previous lemmas. Let p be an infinitely large

integer. Since En is an H~approximating sequence, then st(Ep) = H,
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To see this, pick x ¢ H, There is a sequence x € En such that

lim x = x. Hence st(xv) = x for each infinite v, in particular for
n—®
Vv=qu, Butx eH so x est{E ).
M w ¢y (=)
For every integer v, l1=vys k“‘ = dim(Ep‘), the subspace

u (] L3 "
AV of EU- is almost invariant under nEu T HEp. and HE;J, C nEu. In

other words,
b - b -
polAl B = on(al, E) =) 0

We shall argue on T, the same proof applying to C as well,
Suppose B is a standard positive real number, and
pT(A‘\‘;, Ep‘) 2 B, Then for every standard integer M, the following
sentence is true in >kH. (Recall that km =z dim (Em) Y.
"There exists an integer m, there exists an integer n,
m=zM, 1Snsk_, such that pT(A;n,Em) =z g, M
Then this sentence also holds true in H, for every integer
M. Hence, we may construct.a sequence A?(n) §En such that
pT(A;‘(n), En) does not converge to 0, contrary to the hypotheses of
the theorem.,
Lemma 1, 2 states that st(A%) is a possibly trivial subspace
of H left invariantby T, for all v, 1 sv<= ku' Since {AS} is a
complete decomposition of E and cach A‘\’t is almost invariant under C
in .E, we may apply lemma 1. 6 to assert that for some integer Vor

1< Vo < kp‘, st(Af’) ) is a nonzero proper subspace of H, Hence,
0

st(Ato) is an invariant subspace for T.
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1, 12 Note: It happens that the conditions in theorem 1.1l are neces-

sary as well as sufficient, That is, the following statement holds true,

1,13 Theorem: Suppose T is a bounded linear operator on H which

has an invariant subspace, Then there is an H-

approximating sequence En of finite dimensional sub~-

spaces of H, and a compact operator C with the

following properties: there is a complete decomposi-

tion 0= A . CSAC...CA =E of E_ such that
0 1 Kk, n n Such that

every sequence A(.n) is almost invariant under T
: i(n)

and under C E En

The proof of 1, 13 is actually trivial and sheds no insight into
the problem. For if M is an invariant subspace, let {ei}?—-l be an
orthonormal basis of M, and {di}?-n be an orthonormal basis of M'L.

Let En':{ei""’en’ di,...,dnj, the linear span of € r1€05eee s s

dysdyyeeesd; En is H-approximating and Ai = {el,. .. ,en} is invar-
iant under TEn, and A?l is M-~approximating. A compact operator
satisfying the conditions need be no more complicated than the following:
C(dl) =€, C(x) = 0 for all x & dl' Indeed, C cannot be too much
more complicated, or it would imply the existence of more invariant
subspaces, The construction of the complete decomposition AE,

1< k= 2n such that each Ai is invariant under T and under C in En
is quite easy. Merely apply theorem 0.1 to T restricted to Aﬁ, and

to the induced operator T: En/}‘xi—i»En/A:'1 .

Actually, we have shown that the sequence En need not be

so dependent upon the knowledge of M. In fact, given an arbitrary
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H-approximating sequence E;l, there is a subsequence En of co~
’ !
dimension 1l in En which satisfies the hypotheses of 1, 13, The proof,

however, is tedious, and conceptually quite analogous to the above.

1. 14 Note: The hypotheses of 1. 13 assumes the existence of only one
invariant subspace, and the conclusion of 1. 11 ylelds only one invariant
subspace, Actually, we are interested more in operators T with a
dense invariant subspace property, defined as follows: for any two
distinct subspaces M S N C H which are left invariant by T, there is
a subspace P of H, MSPEN, M # P; P # N, such that P is left in-
variant by T. For if T does not have this property, say, for two
distinct subspaces M and N as above, there is no such P, then the
induced operator T: N/M-=N/M has no invariant subspaces.

Hence, the truly valuable theorem would be one which places
necessary and sufficient conditions for T to have the dense invariant
subspace property. In fact, if the compact operator in theorem 1. 11
has its null space equal to {0}, then T has this density property.
Proving the necessity of this condition would be quite involved, even if
possible., Such a theorem will probably have conditions more compli-
cated than simple algebraic relationships between T and a compact
operator C, such as p(T) = C for some polynomial p, or TC = CT,
The orthonormal shift operator (Introd.) f{or example, has the dense
invariant subspace property, but S commutes with no compact oper-
ator C, except C =0, This implies, in particular, that no sequence
pn(S) can converge to a nonzero compact operator in any topology. To

see this, suppose C is compact, and SC = CS, Then S"C = CS™,  Let
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[en} be the orthonormal basis along which S shifts.
[les™enll = licte, M = lIs"cenll = Il ctepll;

but lim “C(en-i-j)H = 0, S0 ”C(ej)“ =0, j=1,2,....

n-—o

Hence C = 0,

1. 15 Note: We wish to indicate how the foregoing sequence of theo-
rems can be stated and proved in the case that the structure at hand is
a normed space, The method we present here will make use of the
techniques of F. Bonsall [4] who first generalized the Bernstein-
Robinson theorem to normed spaces, Conceptually the statements and
proofs are the same, We only need to circumvent the use of ortho-
gonality properties, and in particular, the use of projections,

We shall, as before, restrict ourselves to the case in which

the normed space N is separable,

Instead of discussing arbitrary N-approximating sequences,
we shall construct a specific N~approximating sequence En using
Bonsall's technique,

Pick ej ¢ N of norm 1. Let Ej = {eo}. Let E; = {eo, T(eo)}.

0
n
Similarly, let E_ = {eo, T(eg)s..., T (eo)}. Note that T(E ) S E_ i
E =E for all n greatcr than some m, then E is an invariant
n m m
subspace of T. We are aiming in the direction of theorem 1,11, in

which we conclude that T has an invariant subspace, Hence, we shall

assume that En is strictly lncreasing, and that

lim E_ = {y ¢ N| there exists x ¢E_.. Hxn-yH—p 0}

T~
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‘is equal to N.

The essential feature of Hilbert Spaces, which, in general,
is absent in a normed space, is the concept of orthogonality. We cir-
cumvent this difficulty by constructing a basis €preser€ rene for N
which has the desired properties of an orthonormal basis. This is done

| via the following lemma.

1.16 Lemma: If A and B are two finite dimensional subspaces of

N, ASB and A is of co-dimension 1 in B, then

there is an element b e B of norm 1 such that the

distance from b to any element of A is greater than

or equal to 1; thatis, inf Hb-all = L.
agh

Proof: The finite dimensionality of A implies that bounded

sets in A are compact. Pick b' ¢ B, b' § A such that ||b']| = 1. It

follows that inf Hb'-—a“ is attained at some a; ¢ A. Hbl-aoll £ 0
ach ,

since b' ¢ A. The element b = b'-ao/l[b'-aoll satisfies the require-

ments of the theorem.

Now define the sequence {en} n=0,1,... asfollows, egis

already defined. Let e, ¢ E. be an element of norm 1 such that

1
“el'EoH = 1, Similarly, let e € En such that HenH =1,
Hen-En_lH = 1, This defines a sequence e - Note that {eo,. ‘e ,en}

=E forn=20,1,2,... .
n

For each n, T{e ) ¢ E so there is a number q g €
n ntl

ntl?

and an element Vg € En such that
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Tle) =Gy 1€ 1+ Y, - (1. 17)

Define the linear transformation Tn on En as follows, If

— c .3 - _
m < n, Tn(em) = T(em) e E En, if m = n, Tn(en) =y, ¢k

mt+l — !

n
where Yo, is defined by 1. 17.

The concepts of invariance and almost invariance are quite
the same as before; the linear transformation 'I‘:n takes the place of

IT T HE in thé earlier definition. Also lemma 1.2 holds as stated,

E
Th:t is, ifnp, is an infinitely large integer and A is an internal sub~
space of E}.L (the pth entry in the sequence E defined above) and A
is almost invariant under Tu' then st(A) is a possibly trivial sub-
space of N which is left invariant by T. The proof of this statement
is the same as the proof of 1. 2, once we have verified the following:
if vy is a standard element of N, then T(y) = TM(Y)' But since
st(E“_l) =N

then there is an element § ¢ E such that § =Y.

1 w=-1
T (€)= T(8) ¢ E. T(E) = T(y), and T (E) = T(y), so T(y) =) T,y

As noted earlier, lemma 1,4 holds as stated and as proved
for normed spaces. Definitions 1,5 a) and b) also hold for normed
spaces,

The sequence En of subépaces of N was defined with re~
spect to T, Hence, for a different operator C, it is slightly more
difficult to define the analog for HEn C IIEn. We take an easier route,
Since C will always be a compact operator, it is possible to define a
concept of almost invariance with respect to C, rather than with re~-

spect to some Cn‘related to C, For, if Ep, is H-approximating, then

EM is almost invariant under C in H; thatis, if x ¢ Ep, HXH = 1,
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then, since C(x) is near standard, and E“, is H-approximating, then
there is a z ¢ EIJ» such that C(x) =1 % Because of this, we may define,
for any subspace A of Ep.' the following concept of almost invariance:
A is almost invariant under C in Ep‘ if, for any X ¢ A of norm 1, there
is a y ¢ A such that C(x) =1 Y. With this definition, lemma L 6 holds
true in N as stated. The proof is essentially the same, except for the
definition of the sequence B)\ . In this case, we define B)\ as follows:

5, = max |[c@]l . (1.7")

X e &

A
1E3ES!

With B)t so defined, the proof of 1, 6 is essentially as stated
earlier,

We shall omit the reduction to nonstandard terminology, such
reduction being quite the same as before., Theorem 1.11 holds as
stated and essentially as proved, given the above modifications of the
necessary lemmas. The introduction of the ersatz orthonormal
sequence {en} is not really of primary importance here, but is con-
siderably more necessary in Chapter 2, Where appropriate, we shall
insert a sentence or two in Chapter 2 which indicates how a particular

proof would be carried out in normed spaces.
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CHAPTER 2

INVARIANT SUBSPACES FOR OPERATORS SATISFYING

CERTAIN ALGEBRAIC CONDITIONS

We now proceed to demonstrate how the hypotheses of
Theorem 1. 11 come about under more natural situations, Of course,
if the operator T in question is itself compact, the hypotheses are
immediately satisfied, since the matrix nEn T nEn always has a
complete decomposition of invariant subspaces (theorem 0.1), If T is
polynomially compact, then the hypotheses of theorem 1,11 are satis-
fied; this is the Bernstein-Robinson theorem., We shall prove the most
general result in this direction. The statement of the theorem was
communicated by Feldman in the notices of the American Mathematical
Society [5]. The proof of his theorem was proved independently by
the author in a more general setting, and was subsequently proved by
Gillespie [6] for normed spaces, using the methods developed by
Feldman and Bonsall,

Thus far, there have been no requirements on the way in
which the sequence of operators HEn T HEn approximate T. The

following definition proposes a stronger type of approximation,

2.1 Definition: The bounded linear operator T is called quasi-
compact if there is a sequence En of finite dimen-

sional subspaces of H such that lim E_ # {0} and

- e
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such that lim HHE T HE - Ty I[ =o.
n-® n n n

For normed spaces, we require

lim [ ";iuﬁxn 4 (”Tn(x) - T(x)“)} = 0

n-e |[xek
n

We digress momentarily to justify the intrusion of this de~
finition., Suppose, for the sake of convenience, that we call a back-
ward opcrator onc which has a complete invariant subspace decompo-

sition of the form 0CE,SE, C... SE_C<..,. with dim(E_/E =1
1 2 n n' n

-1

for n=z 1, and with lim E_=H. A forward operator will be one whose
n—w

adjoint is backward; equivalently, a forward operator may be defined
as above, replacing the increasing chain by a decreasing chain. The
easiest example of a backward operator is the adjoint §* of the ortho-
normal shift operator, The orthonormal shift operator, S, is a for-
ward operator.

Stampfli [10] has shown that perturbations of S (or of S),
that is, operators of the form s* + C, with C compact, possess invar-
iant subspaces. In fact, such operators s* + C even possess eigen-
valueé. It would be interesting to inquire whether or not perturbations
of a backward operator B (i.e., operators of the form B + C with C
compact) always possess invariant subspaces,

Note that such operators B + C are quasi-compact. The
following theory does not answer the above question, but does yield an
answer in the event that the uniformly closed algebra of B 4+ C contains

a nonzero compact operator,
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2,2 Lemma; If T is compact, T is quasi-compact,

Proof; For any H-approximating sequence En of finite

dimensional subspaces of H, lim HHE THg - 7|l = o.
n—e n n

2,3 Lemma: If T is quasi-nilpotent, then T is quasi-compact,

Proof: Let ey e H, Helll = 1.

~1
Let El={el}s E?.:{el’ T(el)},..,,h,nz{el,...,']?n (el)}
all ne N, If Em = EnO for all m = ny, some ng, then T is quasi-

compact, since
IH T II - T I
l Eno Eno ng

Hence, assume E_ is strictly increasing, and define e € En to be an
n

element of norm 1 such that e L E .
n n-1

E_,

Since T(en) ¢ £ then T(en) =0t 1%nt1 + Y Yn ® ®n

n+ 1’

and this relation defines a sequence o of complex numbers,

Tn-l- 1

(e)) =ajyaz...a e mod E_ . (2. 4)

ndl ntl

Hence
HTn-I-l(el)H 2 la'zl ICC3l Ia‘n_l_]_i . (2. 5)

0 = llTw+?‘ll/w+l Sl PR LAY

1/w41
= [:I:minai :lw+ 1} ¥ = min [G.i] (2. 6)

2sis g+l 2<i<sw

for infinitely large w,., Hence, cx.u =1 0, some W & *N, 2=y s W,
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For this u,

or T is quasi-compact, Note that this theorem is true for normed

spaces, with the definitions as stated in note 1, 15,

2,7 Lemma: (Berstein-Robinson) If T is polynomially compact,

then T is quasi-compact.

Proof: Generate a sequence {en} of H and a sequence o

of complex numbers as in the proof of 2, 3. Let
p(x) = 2 B, x"

be a polynomial such that p(T) is compact, and such that Bn # 0,

For each j,

- k
2 B T (ej)

p{T) (ej)
=0

EBCI,

n%51 0 aj+n+1 ej+n+1 mod Ej+ .

n

Take j to be infinite, so stw(ej) = 0. p(T) compact implies

ety (el =, 0.7

£ I

If € ¢ *H is of finite norm and stw(E) = 0, and C is a stan-
dard compact operator, then C(§) is near standard., But since C is a
bounded linear operator, C is weakly continuous, so stw(C(E)) = 0.

C(E) being near standard, stw({C(E)) = st{C(€)) = 0.
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0 =; p(T) (ej) z 1Bn‘ [“j+1 G‘j—l-n—&-ll

2 Bn min Iakl . {2. 8)
H1=k<j4ntl

This implies that o 0 some k, and for this k,

k-1

as in the proof of 2, 3,
Note that 2, 7 also holds for normed spaces, with appropriate
modifications of the proof.

We now state the theorem alluded to in the beginning of this

section,
2.9 Theorem: If T is quasi-compact and if the algebra generated by

T contains a nonzero compact operator in its norm

closure, then T has an invariant subspace,

Note: Feldman's statement was for quasi-nilpotent operators.

Proof: Let En be a sequence of finite dimensional subspaces

of H such that

lim ||0, THp -TH || =0 . (2. 10)
n—e n n n
If st(Ep‘) # H (st(Ep‘) # 0 by definition) for an infinitely large p ¢ *N,
then st(Ep‘) is an invariant subspace, by Lemma 1, 2, Hence we

assume that EU- is H-approximating.
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Let x ¢ Ep, Hxll = 1, 2,10 assures us that

M, THg (0 = T (x = T(x)

m H "

E

We wish to show that
n ’ n
[I‘IEM T HEJ (%) = T (x) (2. 11)

for all standard n ¢ N. We proceed by induction on n, and assume that

2,11 holds for a given n, Then

n
_T[nE TI, J (0 =, T (M%)

"

. n
since T is continuous, But [HE T HEJ (%) e EM , so 2,10 implies
0

that

n n
HE T[‘HE T I ] (=) = T [HE T HE :\ (x) ,
n n W " b

and consequently

+1
[nE T I ]n () =, T }(x)
m i

Since the uniform closure of A(T), the algebra generated by
T, contains a nonzero compact operator C, then there is a sequence

of polynomials P, such that

lim {[p(T) -C|| =0 . (2. 12)

n— «

By 2.11, we have

d, = llpn(nE T I )- p DI || = 0 (2. 13)
W v v
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for all standard integers n.
But dn is an internal sequence, and dn =1 0 for alln e N,
For such sequences, Robinson first observed that there is an integer

Vg € *N-N such that d_=; 0 for all n=v,. This follows by consider-

0
ing the sequence nd_, which also has the property that ndn = 0 all
n ¢ N, Hence the set {n ¢ *N|0 < lnd‘n‘ < 1} is internal and contains

N, so it must contain an interval L1, \)0], some V, e *N-N [9]. Hence,

2.13 holds for all n=< v

0"
Since Hp (T) = CH =, 0 , then
. Vo 1
Hp\) (Mo, -¢C 1 ] =, 0 , and so
0 b B
“P\) {HE THE - C nE “ =1 o, by (2. 13).
0 W ‘w
The rest ls easy. Let EO SEI Z ... EE]J, be a complete de-
composition of Ep‘ into invariant subspaces of [l T IIg . Then each
[ M

of these subspéces is invariant under pVO HEP- T HEp , and hence,
(2. 13) states that they are almost invariant under G HEp‘ , and hence
under HEP» C IIE“. This is precisely the necessary requirement to
apply theorem 1, 11, and so the proof of theorem 2,9 is complete.

The orthonormal shift operator S on {enl n=1,2,...}, an
orthonormal basis for H, is not quasi~compact, but the adjoint of S
is quasi-compact. Thus, in a sense which we shall leave imprecise,
an operator which is very "forward" may have an adjoint which is
quasi-compact, Such a condition will be sufficient to yield a conclusion

as in theorem 2.9,
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2,14 Theorem: If the uniformly closed algebra generated by T con-

e
tains 2 nanzero compact operator, and if T, the

adjoint of T, is quasi-compact, then T has an in-

variant subspace,

Proof: We shall use theorem 2,9 to show that T" has an in-
variant subspace, which in turn implies that T has an invariant sub-
space,

If p,, is a sequence of polynomials such that || pn(T) - CH—> 0,
where C is a nonzero compact operator, then H [pn(T) - C:]*H =

bS % sk ¥
Hpn(T) - CH converges to zero, But [pn(T) -Ccl' = P (T%) - C° ,
where p;:: is the polynomial optained from P, by taking the complex

conjugate of its coefficients, Since C is compact, C™ is also compact

(and nonzero) so 2,9 implies that T" has an invariant subspace,

2,15 Note: Itis an open question whether or not one may weaken the
condition of quasi-compactness, or to consider a convergence of pn(T)

in a weaker topology.

In a slightly different direction one may ask this question:
if T commutes with a nonzero compact operator C, then does T
possess an lnvariant subspace, The quésti.on seems justified in view
of the fact that two commuting n X n matrices over € possess a com-
mon complete decomposition M0 < Ml S... & Mn =V of invariant sub-
spaces. As in the case of the existence of a complete decomposition of
invariant subspaces for a single matrix, the theorem is an algebraic

one, followirg from the fact that commutivity implies the existence of
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a common eigenvector for the two finite dimensional operators.
The following lemma generalizes the above theorem for use

in the present investigation,

2.16 Lemma: Let ¢> 0 be a real number, and n be an integer. Then

there is a real number & = §(¢, n) > 0 with the following

property: for any two complex n X n matrices defining

linear transformations of operator norm = 1 on a com-

plex n-dimensional vector space E, then the relation

H AB - BAH < & implies the existence of a complete

decomposition
0=M,EMES...EM_=E
0 1 n

such that ¢, (M., E)<e¢, and p(M,, E) < e for
———— T AT —_— TR .

i=0,1,2,,..,n.

[Recall (Def, 1. 8) that

pp(N, M) = sup {||T, TT(x) = N||,x e N, |[x]] = 11.]

Proof: Suppose the statement is not true, Then there is an
eo, no' for which it fails: that is, for every 8 > 0, there exist two
n X n matrices A, B of norm 1, such that “AB - BA“ < &, and such
that for every complete decomposition 0 & Ml c... & Mn =E of E,

either

Ty =
pA(Mi’F) e o‘r pB(Mi'E) 2z e

0 (2. 17)

0
for some i=1,2,...,n
Then this statement remains valid in the enlargement for

some § =] 0: thatis, there are two matrices A, B of operator norm 1,
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| with
||aB - BA|l = 0 (2. 18)
which satisfy (2. 17).
Since || Al] = |IB|] = 1, then the coefficients (aij) of A and
(Bij) of B must be finite, so (st(or.ij)) and (St(Bij)) exist, and since a

matrix depends continuously on its coefficients, we have

14 - (stla DIl =y 0 = 1B - (stie; 0]l (2. 19)

[stlag)) (s2(B;)) - (s8(B;)) (st ) ]
< [l(stla;)) (st(B;)) - (st(a;)) Bl + [[(st(a;9) B) - aB]]
+ |l aB-Ball + [[BA-Blstla, )] + [IBlsta;)) - (st ) (st )]l
= [Hstla, ) [Hsete;0) - Bl + [ltsti@;)) - all 18]l
+llaB-Ball + lIBll {2 -(stla; )]l
+ B =tsee I [Hst@, )l =, 0 (2. 20)
by (2. 18) and (2. 19).

But (st(aij)) and (St(Bij)) being standard matrices, the norm
of their commutator is standard, and hence 0, Hence there is a com-
plete decomposition 0 & Ml c... & Mn = E of subspaces of E which
are invariant under (St(aij)) and (St(Bij))' By (2. 19), it must follow
that pA(Mi’ E) =1. 0 and pB(Mi’ E) = 0, i=l,...,n which contradicts
(2. 17). This completes the proof of 2, 16,

We shall make use of this function 8(e,n) in a later proof.

It's dependence on n is its crucial feature. Calculations to determine
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(e ,n) arc very difficult, and involve very rough estimates; such re-

sults seem to indicate §~ ¢ /n .

2,20 Lemma: If T and C are commuting bounded linear operators on

foe e - el

H, and if E is a subspace of H, then

[lng T, O cig -0, C Oy O Tl

< ||ng ca-ng)l] Jl1-ug)itll + [[ng ma-ngll Ha-npcll 2. 21

Proof: For simplicity of notation, we denote I

gonal projection onto E, by II, and I-II by t,

lmrncno-ncnrnll s|/luTocmn-aTc njl
+ llmcTtun-ncur il

IlnrTncn-nrconl = |lat@mc-cl|
= [lmr ot ot cl| = [jonT o] [[otcl

Similarly

|ncrtn-ncecntnl s |jucnt] |jo* 7|

Combining (2. 22, 23, and 24), we obtain (2. 21).

We require two more inequalities,
2,25 Lemma: ||[IIC - cll s llmcm-cl|

2,26 Lemma: ||TIC H"'H < “HCH-CH

E the ortho-~

(2. 22)

(2, 23)

(2. 24)

Proof of 2.25: Let € ¢ H, [|E]| =1, € =T(E)+TI*(E) = x+v .
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2 2
Imcnm- cx+yll = [ITC T+ IC Ay - Clx - Sy
: pA 2
= ||-ntcx) - o] = [Tt cx + It Cly) + TCy]
2 2
=||ntc + It el + |[mewml]|

> HII'LC(x-i-y)HZ = ||t c]| 2 .

Therefore,

Ilmcn-cll = sup [[(TCI-C) (8)]]
lell=1

=z |[(mcm-c) @] = ||ntc®)]

for each E ¢ H, ll €H = 1, Taking the sup on the right, we obtain (2. 25).

Proof of 2.26: ||IIC II*|| = |[1ic -ncC 11|

< |[n]l llc-nmcnl| = {{ncn-c||

Let C be a compact operator on H. Then for any H-
approximating sequence En of finite dimensional subspaces of H,

“HE Clg - C|| » 0 as n»®. This justifies the following definition.
n n

2,27 Definition: We say that a compact operator C is §-compact (see
2. 15) if there is an H-approximating sequence En of

finite dimensional subspaces of H such that

g -Cll , @dmE_| 20 as oo,

o(llmg cm
n n

2.28 Theorem: If T is a bounded linear transformation on H which

commutes with a d-compact operator C, then T has

an invariant subspace,
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Proof: Without loss of generality, assume HTH =%. We

may assume that the sequence En is H-approximating, for if lim E
e

= K € H, the properties of the functioﬁ 8 imply that C = 0 on K+,
But the set {y] C(y) = 0} is a subspace left invariant by T, and if
c+o, énd K'L 4 O,' then it is a proper nonzero invariant subspace for
T,

Inequalities 2,21, 2,25, and 2, 26 yield

lm.. Tno., cn. -, cO. T, || «<]|0. cI. -c|
Ew Ew' Ew- Ew Ew Ew Ew, Eu
for w e *N.
Then
§ ||, TN, CHU_. ~-MN. CI,. THO. , dmE_ || =. 0
Il E, E, E, E, E, E, im u” 1

Lemma 2, 16 demonstrates the existence of a complete decomposition
c o c = : . .
o< M1 S0 & Mw Ew of Ew such that each MX is almost invariant

under HEw T HEw and under HEw C HEw. Hence, theorem 1,11

applies, and T has an invariant subspace,
. We state the following easily demonstrated theorem to
demonstrate a possible direction to go in quest of the goal mentioned

in Note 1. 17 of section 1,

Z.29 "Theorem: Suppose T is a bounded linear operator on H and

E isan H-approximating sequence of finite dimen-

sional subspaces, and P, is a sequence of poly-

nomials such that, for some compact operator C,

lim “pn(HE T ) -C|l = 0. Then T has an
I n n

invariant subspace,
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It might be remarked that the standard theory for self adjoint
operators can be obtained in the manner herein described, but the
machinery required for the proof is essentially that which is required

for the usual type of proofs [cf. Bernstein],
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