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ABSTRACT

The mixing of two miscible fluides in motion in a saturated iso-
tropic porous medium and the stability of the density interface between
them has been studied. The density inberlace was Cormed Ly a line
source introducing a deunser fluid into a uniform confined horizontal
flow. Tt was shown that the half-body thus lormed may be approximsted
to within the density diflerence by ULhe shape when the densitiles are
equal. The mixing of the two fluids by lateral dispersion along such
an interfece was investigated experimentally and it was found that up
to dengily difflerences of at least 1 per cent there was no observable
effect on the lateral dispersion coefficient.

A theoreticel invegtigation has been made of the stability ot
the uniform two-dimensional horizomtal motion of two miscible fluids of
different density in a saturated, isctropic, homogeneous vorous meditm.
The [luia of higher density overlay the lower density fluid and voth
were moving with the same seepage velocity in the same direction. The
analytical solution for the stability was obtalned from the continuity
equation, Darcy's law and the dispersion equation by investigating the
stability of arbitrary sinusoidal perturbations to the velocity vector
and the densgity orofile prescribed by the lateral dispersion of one
fiuld into the other. A stability equation similar to the Orr-
Sommerfeld equation was obtained and a neutral stability curve in a
wave humber - Rayleigh number plane was found by two approximate

zmethods. The growth rates of instabilities were Investigated for a
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linear density profile and it hes been found that although the “low was

always unstable the growth rates of unstable waves could be so low as

to form a quasi-stable flow; examples of such flows have been demon-

strated experimertelly.
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CHAPTER ONE

INTRODUCTION

1.0 Irtroductory Note

It has long been recognized that water reservoirs such as lakes
and ocesans have natural density stratifications arising from differ-
ences in temperature or in dissolved or suspended material. The same
phenomenon also occurs in perous medie containing water or other [luic
as for example occurs in oll fields, in the Ghyben-EKerzberg lens below
some oceanic islands (Wentworth (1), Carrier (2), Wooding (3)) and in
geotnermal rields (Wooding (k)).

However, it ig only relatively recently that men hLeve begun to
exploit thig density stratification and even more recently to study the
consequencies of perturbing a natural stratification. The petroleum
industry i1s again one obvious example of the exploitation of thls phe-
nomenon. Another, somewhat less welcome, example 1s the intrusion of
gea water into coastal ground wabter aguifers when the natural ground
wabter outflow is intercepted by wells or catchments, (Harleman and
Rumer (5); Bear and Dagan (6)).

Similar density stratifications can occur when hot water or
water containing dissolved salts is artificielly injected by recharge
welle or infiltration ponds. ‘OFten when a Zluid of density diflerent
to the ambient flaid is introduced into a porous medium krowledge 1s
required of the process by which mixing of the alien and ambient fluids
occurs. In particular such information should include the role of the

density ditference in the mixing process. An application of this



knowledge is in the mixing of high salinibty reclaimed waste water with
relatively high quelity, low salinity ground water in order that availa-

ble water supplies may be extended.

1.1 Previcusg Work

The mixing of two or more fluids in motion in a porous medium
invoives a microscale molecular diffusion process within the interstices
or pores and a macroscale convective mixing from the arbitrary flow-di-
viding by the porcus medium. The process can be thought of as analogous
to turbulent mixing in fluid flow. Since the process involves more than
Just molecular diffusion and depends on the flow characteristics it is
more generally called hydrodynamic dispersion or simply dispersion.

Dispersion is characterized by being a much "'faster" process
than molecular diffusion, and so regardless of the fact that it is
carried on only orn the scale of geveral pore sizes the cumulative effect
can bte seern on a relatively large scale in a similar way Lo pure molecu-
lar diffugion. Research hag therefore been direcied at finding a dig-
persion equebtion as well as brying to understand the vasic mechanism.

Theoretical research has centered about finding a mathematical
model which will characterize the phenomenon and its behavior and numcr-
ous models have been proposcd. A random walk theory was presented by
Scheidegger (7); and Saffman (8) assumed that a porous medium was analo-
gous to a nelwork of capillaries in order to apply Taylor's (9) tneory
of diffusion in laminar flow in tubes. For ar appraisal of most of the

models that have been proposed the reader ils relferred to articles by



H. 0. Pfannkuck (10) and Bischoff and Levenspiel (11,12).

Scheidegger (13) and de Josselin de Jong (I4) give the equation

to describe the dispersion of & tracer in steady, saturated flow in a
homogeneous isotropic porous mecium, where Dik are the components of

the factor of dispersion and D 1s a symmetric second-order tensor, uy

are the components of the seepage velocity (defined later) and C :Is

(\
&)
[}
|

the relative concentration of the tracer (0 < C < 1) . Bear <15)
cludes from experiments that the factor of dispersion is an inner

product of two tensors: a geometrical dispersivity tensor, of

e

Sk om

the porcous medivm whick measures the tendency of the porous medium Lo
disperse the tracer, and the tensor uzum/lu] which expresses the
irZluence of the velocity on the dispersion.

When the direction of one axis coincides with a uniform flow

then Dik may be written

FaIu 0] 0
Dik = C aIIu 0
I 0] 0 aI1 u_

where aql = DL is the so-called longitudinal dispersion coefficient
and a_._u = Drl.1 5 Tthe lateral dispersion coefficient.

This result is apparently ressonsble, Pfannkuch (10), Harleman

and Rumer (16), for some ranges of the particle Reynolds rumber



(R = ud/v) where d 1is the average particle size; 1t Is obviously
untrue when the velocity is very small or zero as this result could
give digpersion factors smaller than the molecular diffusion rates.
Furthermore, it aséumes oubright thet the molecular diffusion nlays no
part in the dispersion vhenomenon at all, & point still in dispute. It
seems more plausible that Dik/Dm = (R, S, geometry) where D is the
molecular diffusivity, S the Schmidt number and R the particle
Reynolds numher.

There hag been little study of density induced flows in satu-
rated porous media and most is the work of one men.

Weoding (17,3) nas studied the mixing zone at the boundary of a
buoyant ovlume in a saturated porous medium and under the justifiable
assumption that the latersl dispersion coefficient is constant has found
these flows are governed by equations similar to those of laminar incom-
pressible flow for such cases as the Gortler half jet and the Schlichting
solutions for a momentum jet from a slit or point source. Mixing along
the fresh water sea water interface of the CGhyben-Herzberg lens dis also
considered by Wooding (3).

The stability of a vertically moviag interface between immisci-
ble fluids in =z porous medium was studied vy Baffman and Taylor (18) and
the work has oeen extended oy Wooding (19) to include the inlluence of
the longitudinal dispersgion across the interface of ftwo miscible fluids.
Tn addition Wooding (20,21,22) has investigated the gravitational Insta-
bility of a viscous fluid ir a vertical tube containing a porous materi-

al, and also the stability of a liquid of variable density in a vertical
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Hele-SBhaw cell.

The motion and micing of two fluids of differing density and in
horizontal motion one above the other has not been studied previously.
It will be the object of this dissertation to investigate the stability

gnd mixing of such a flow, when the heavier fluid is above the lighter.

1.2 The Problem

A flow such as above could be gencrated in the [ollowing way.
Consider a line source of strength 2Q2 ver unit length discharging half
of its total flow of density Ps into a homogeneous isotropic porous
medium of intrinsic permeability k and confined between two horizontal
paraliel planes distant a apart. The porous medium alsc has a uniform
flow of velccity U and density =5 and moving from left to right,
Figure 1.1. The two fluids are miscible and have kinematic viscosities
Vo vl respectively. The problem is to study the mixing of the two
fluids by dispersion across the interface, and to study the flow sta-

bility.

1.2 The Equations of Motion

In flow in porous media two velocities are generally spoken of.
The superficial velocity wvector .; is teken to be the flow rate dQ
through an area dS in a direction normel to the flow, i.e. the flow

in the direction normal to dS is given by

Y .mnds = a9 (1.1)
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where 1 is the normal to dS end where dS is assumed to be large
compared to the pore size but small compared to the cverall flow curva-
ture.

The seepage velocity wvector a is taken to be the flow rate
through & pore area dSO , tThat is

q -0 ds_ = a4 (1.2)

where again dSO ig large compared to <The individual pore sizes, small

compared to the flow curvature. The superficial porosity Is defined <o
be

das

0

—2 = m (1.3)

and is essentially the same as the volumetric porosity e (sce
Polubarincva-Kochina (23)). Thus rfrom (1.1), (1.2) and (1.3) it is seen
that

-
v = €q

Tne equations of motion for steady flow in a porous medium are known as
Darcy's _ew and have been shown to be, Reference (23), in Cartesian

coordinates,

- - )

vp + pegk + % ov = O (1.4)

where p 1is the pressurc, ¢ the fluld dersity, Vv <vhe [luid kine-

matic viscosity, k the intrinsic permeability, g the gravitational
g . . . - . .

congbant, ¥ & unit vector in the upward vertical direct orn.

Surprisingly, equation (1.4) is even wvalid for unsteady flow,



see Reference (23), provided that the changes in vp with time are

pounded. It is shown that for times T > k/v then the term B?/Bt
6

may be neglected. 8o, if for example k ~ 0{10 ) en” s

2y 2 - -
v ~0(10° ") em”/sec then 0v/0t may be ignored for T > 0(1C h)

seconds.

1.4 Equation of Continuity and Dispersion

The equation of continuity is
d - _
e +v - (pF) = O (1.5)

waen there is no diffusion or dispersion of digsolved material in the
fluid. However, when there is a dissolved substance present it becomes
necessary S0 add an additional mass transfer term to account Zor the
dispersion.

The net efflux of mass from a closed surface S due to dis-

persion is

_[e(Dvc)-'ﬁds
s

where D 1is the dispersion tensor as defined in section 1.1, C 1is
the concentration cf tracer per unit volume. Tals implies a dispersion

term must be added to equation (1.5)

e%fé+v-(p§?) = v - (e DVC)

—

And writing v o= €q



R4 (oD = 7 (D90) (1.6)

where D 1g defined guch that it reduces to the molecular diffusivity
» g - N J . I
in a porous medium wnen d becomes zero. The conservation equatior. for

the tracer (the dispersion equation) is (see section 1.1)

Lig-(Ge) = v - (0v0) (1.7)

Now for small differences in density and concentration the density and

concentration per unit volume are cornected by an equation of state
p-p = B(C-C)) (1.8)

where 01 and Cl are free strear reference quantities.

Equations (1.6) and (1.7) can be rewritten as

o4 pv .3 = (pve) (1.9)

at

ac L .

FTCvea =V (Dve) (1.10)
where

d > = r)

EE - S

Subtracting (1.1C) from (1.9) gives

v g = d(o dlp - ¢) lo _—

Buat from (2.8)
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d(p - ¢) ~ c(ap)
p-Cc ~ ofp)

go that 1f a characteristic velocity UO

and a characteristic length
s, are chosen so that & characteristic Lime is a/Ub then
U
- 0
\Y q O(_Ei_
a(p - ¢) , 1

dt

mlod
S

p -~ C ~ 0

Thus for Ap < p

v o+gq = 0

(1.11)

Furthermore, using (1.11) and (1.8) equation (1.7) can ve rewritten

DG v = v - (D)

To summarize, the equations of motion for a density stratified flow in a

saturated homogeneous porous medium can then ote written

7 +q = O (1.12)
vp + pgk + = 04 = O (1.13)
g o

g% +q - vp = v(DVp) (1.1h)

Now that the eguations of motion have been deduced a study may be made

of *he mixing process, and the flow stability, for the problem specified
in section 1.2.

In the following chapter a soluticn is developed for the mixing
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across the interface shown in Figure 1.1, and in Chapter 3 the stability
of the flow is investigated. Two methods are used to find a neutral
stebility curve in a Rayleigh-rumber wave-number plane, and the growth
rates of unstable waves are lnvestlgated also.

Chapter L outlines the experimental apparatus and procedure used
to confirm the theoretical results developed in Chapter 2, and Chapter 5
details the experimental results from the experimental investigation of
the mixing. The results obtained from the stebility study and the study
of +the mixing are discussed in Chapter 6; conclusions are drawn and

suggestions for further investigatiors are made.
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CHAPTER TWO

THE MIXING LAYER

2,0 Inbroduction

There are two major problems associated with the two-dimensioral
flow system depicted in Figure 1.1. The first is to determine how the
two fluids intermix. The approach to solving this problem is to first
assume the two fluids are immiscible and compute the shape of the
Interface between them. A solution of the dispersicr equation is then
sought in the system of coordinates formed by the streamlines and their
orthogonal trajectories.

The second problem is the question of overall stability of one
fluid flowing over another cf different density in a porous medium.
Since the stability behavior will be intimately connected with the
mixing characteristics the mixing problem will be studied first and the

gtability in the next chapter.

2.1 GShape of the Immiscible Interface

The shape ol the interface between two immisciole iluilds of
different density in motion in a homogeneous isotroplc porous medium
will not depend on the dispersior equation; consequently ~“he equations
of motion for eack fluid will be just the continuity equation (1.10)

and Darcy's Law, equation (1.11)

Vv, = O (2.1)



- k
voev,= 0 (2.3)
- k
where
vy = (upvy)

are the superficial velocity vectors and VysVs and ppsPy are the
constant kinematic viscosities and constant densitieg of tke two Tluids,
and where Zeft-handed Cartesian coordinate axes have peen chosen with
the source point ag origin and the y-axis pointing vertically down.

Now from equations (2.2) and (2.L) it is possible to define

velocity poteantials o, and P, such that

Vivyo= T (2.5a)

Vv, = v, (2.5¢)
where

®, = - X (o, - 0.ey) (2.62)

1 0y 1 1

. ']—,- 6

w, = - o, (o, - peY) (2.6D)
and



It will become evident later that if the potentials are defined
in this way then one solution can be written down for the entire flow
field wnen the densities, but not the .viscogities, are equal.

Since the flow is two-dimensional equations (2.1) and (2.3) im-

ply that there exist stream functions +¢. and ¢, such that

1
o, o,
\)iui = 8;{__ = 55‘“ (2.7&)
- ~ BO__ ~ a‘pl (2 W‘b)
it T 3y T T .

where u, and v, (i = 1,2) are the horizontal and vertical components
- . . . -
of the superficial velocity wvector V.o

Suppose that the interface can be represented by the equation

y = (x)

Then the twc boundary conditions cn the interface are
(1) That there is no flow across the interface; this can ve

written in terms of the potentials definea above as

a@i Bcpi

5 - (g =0 (2.8)
on

y = C(x)

where the prime denotes differentiation with respect to x .

(ii) Trhat the pressures on each side of the interface are equal.

From the definition, equation (2.6), of the potentials this can



=
i

be written as
o} Py ~ C
2 2 1 .
P -, = - (-—————} gk (x) (2.9)

The equations of moticn and the boundary conditions may all be
suitably non-dimensionalized by choosing appropriate characteristic
values of length, a , the depth of the porcus bed, and UO & veloclly,

defined below.

Then let
_ * .,
Ql - Qi Uod
v. = v.¥.U
i i 0

= * .
Pl Pi nga
1
np_‘ = Qpi* . gK >}

where the non-dimensional values are denoted by an asterisk which is

subsequently dropped. The equations of motion then become

1l

vy - v(pl -y) = vy (2.10a)

o = - (p - ) (2.11a)
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v p p
2 -—
N o, {27 by 2
o, ( Py ) ( )
0 = e = b, = =— ¥ 2.11b
2 P2 V= Py

9] D5 - P
2 2 1) - a
:p - —— @n - ( } .v(x) = -0 Q(X) (c.lE)
1 py 72 P1
and
3wy o9
5 ¢ (x) 5 = 0, at vy = C(x); (2.13a)
and
A,
T = 0 at vy = 0O andl (2.13b)
Sy
The boundary coadition upstream is obviously
écpl
= )Y
i (2.1k4)

since there is a uniform flow. The boundary condition at downstream
infinity can be investigated ir the fcllowing way. From equation (2.12)

we can write

Ao e, Op 3
‘1 2 o vy _
35 EIF = -%5 o ¥ = C(x) (2.15)

where s 1is the distance along y = {(x) from the stagnation point.
Now, suppose the interface has a horizontal tangent at infinity, wnich

indeed it must if continuity is to be preserved, then Oy/ds = C which



17

implies

o) P, 99, P

ul(m:Y) = 35

1l

\Y)

5 ug(m,y) (2.16)

i__.l
IR

f1
The velocity distribution will be uniform in each layer at infinity so
that it is possible to write

ul(m)Y> (1 -4da) = ¢

uy{=y) ©d = Q,

where

d = o) .

These equations imply that

0,V 4
: 222
d = (2.17)
P1V18y T 0oV
oVoly * 0-VQ vy 0%,
UQ(”;Y) = ( bV = G;'SE (,y) (2.18)
o.Vv.Q. + p.v.Q drp.
oVpto T PyYi o
ty (=,7) ( o, = 5 () (2.19)

In summary, finding the interface reduces to the following problem in

two-dimensional potential theory.
.2 R .
v $l(x,y) = 0 in Region I

0 in Region II

1l

)
v, (x,v)

with the following boundary conditions on the interface y = C(x)
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0
o, (2, 0(x)) -%c%(x,g(x)) = -8 ((x)
ard
a@i r éqE
55 () - 00 5 () = o
and with

5 (ov) =0 sty = 01
) ) - 4

Jx YT

vy 9% (oy) = PoVale * P11
v, 3 Poo

o9 (ory) = PoVas * PV

3% 2 ¥Y) oG plvj

This is an exceedingly difficult problem to solve since not
orly is the intcrface y = (x) unknown and to bc found as port of the
solution but the boundary condition at <The interface prescribes a Jjump
in the velocity potentials at the interface. The problem is therefore
the simultaneocus solution of two coupled free surface boundary value
problems and eince free surface boundary value problems are notoriously
difficult to solve the simultaneous solution of two coupled systems
would seem to be nearly impossible unless done nuerically. However,
it may be possible to develop an approximate solution which contains
a1l the esgsential characteristics of the cxact solution.

In the following section (2.2) 1t 1s showrn that an approximale

gsolution can be obtalned by developing regular perturbation series



gbout the solution when the densities are equal but the viscosities un-
equal. In Shis way the behavior of the exact solution can be approxi-
mated to within the order of the density difference by laking only the
Tiret terms of the perturbation series. In section 2.3 the solution
when the densities are equal is investigated and the shape of the inter-

face found; and in section 2.4 the mixing along the interfacc is

studied.

2.2 A Perturbation Solution

In view of the fact thal the density difference is small it
wotld seem that a regular perturbatior about the solution when the
dengities are equal wculd offer some simplification. Furthermore, since
& is small © ghould make an ideal parameter for expansion. Thus ex-
pansiong of the Tollowing form are scught for the Irterface shape anc

velocity potentials

2
f(x) = ¢ (x)+0C(x)+27 (x)+ . . .
P = aw . tdq. + 62 Q.. (2.20)
l O:LO ll 12 . . . . .
oW = by,, Tt dc + 82 C +
> o%20 Po1 Pop ™ v e

where y = Qo(x) is the solution for the shape of the interface when
the densities are equal} @lo(x,y), ¢20(x,y) are the corrcspoading
velocity potentials.

These expansions are first substituted into the dynamic boundary

condition equation (2.12) and the ®14(X’Y) expanded in Taylor series
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about ¥ = CO(X> . Collecting terms of equal order in B

%

0(8”) : a (2,0 (x)) - 3 PPagl Lo (1)) = 0 (2.21a)
p
o(8) + gy, (T (x)) - 5§-$21<x,go<x>> = - o (x) (2.21b)
2 Po
o)+ ot (5)) = 28 oyl ()
A, P, O
= s [t Gog () + E 50 Gt )] (e.210)

And from +the kinematic boundary condision (2.8)

”

o,
o) 55 (30, (x))

'
Il

op -
SR CINC)

oy
C(x) 57 (0 (=)

o
0(8) g5 (mCy (%)) - ¢
ete.

and

Aee
. 20
O(bo) F 3y (X;CO(X))

o
0 () 5,70 Gerg ()

Sm
Co(x) 527 (0 (%))

1
Il

See
o(s) 5;21 (x,C_ (%))

ete.

0 (2.22a)
L
o 0 (x) 5270 (x4 (x).
(2.22b)
0 (2.23a)
o
b Cix) 570 (5 (x)
(2.23b)

Now a_ and b are chosen in such a way that Qlo(x,y) and qéo(x,y)



are the analytic continuations of each other in Regions I and II
i.e. mlO(x,y) = mgo(x,y)

Thisg is pogsible, it

e

o
o)
il
|
= o

Using these “wo conditions we can eliminate gi(x) from eguations
(2.22b), (2.23b) and obtain a corndition relating the first derivatives

of 4, P,y 8CTOSS Y = QO(X) s
o 9
11 : 11, .
§§ (A:QO(A)) + QO(A) 3% (K)bo(ﬁ))

Py O op
) (Ef) [53}21 (6,0 (x)) - C2(x) 52 (x,co<x)ﬂ_ (2.24)

The boundary conditions at infinity on the first order pertur-
bations are now required. These are obiteined by expanding equations

(2.18) and (2.19) in vowers of & = pg/pl -1, and give

Sep
o(s°) : EE;O (=,y) = (v a, + lel)/vl (2.252a)
o P
o(sh) : 5= (=y) = - 52 Qy (2.25b)
1
o p
o(6%) + 577 (my) - = (2.25¢)



and similarly

9P, . .

o(s”) 5-}?20 (=,y) = ("QQQ + lel)/vl (2.262)
dep

o(87) : 7 (=y) = - (2.26b)
CII

o(s°) :&2‘ (w,y) = e (2.26¢)

Trhis completes the formulation of the problem Tor calculating the Iirst

order perturbations, and summarizing the first order quantities

V2m11 = C in Region T
2 . .
v Ppy = C in Region IT
Po
Py (6o () = 52 0y (T () = - ()

o %
G, + ) 5t

o [ 0¥ A,
= -f [g—y-gl (x,¢ (x)) - 1 (x) 5.;—1 (X,go(x))]

o, - p

1= B 2
3% (”:Y) = - O—l' Ql
o,

21
5% (0,5) = - Ql



55 (x,y) = © at y = 0,1
oy ;
5= (_OO) .V) = 0

Since Qo(x) is given by the solution of the zeroth order
problem when the densities are equal the first order potential pertur-
bations can then be calculated to within a constant since Neumann
boundary conditlions are given. Thls arbltrariness can be resolved by
placing mll(-h,o) = $21(-h,o) = 0 . (For definition of h see Fig. 2.1.)

Once @ll(x,y) and mgl(x,y) are known it then becomes possi-
ble to compute tThe first order perturbation to the interface shape, Ior

from equasion (2.22b)

op o,
55 (el () - b)) 5 (e (2) )
gi(x) = I (2.27)
o (5

and thus Qi(x) can be calculated. It should ve noted that at x = -h

o

10 1 = »
SE (—h,O) = C, Qo(fh) =

thus it would appear that Qi(—h) = © also. Hence to first order the
interface has a vertical tangent at x = -h .
From equation (2.17)

PpValp

(=) = 4 - —
PV F PVR,
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and this may be expanded in powers of & as follows

uy

(=)

It

HORFNO RN R

= 4 +(1-4a)a s+ (1-4a) a%8% + .
O C (e} O O
where
1 - Voo
o T v.Q. + v.Q
1% 2%

is the half body width when the densitics are equal. Hence it 1s seen
that

G (=) = (1-4) 4,

and that the correction to the interface from the first order term will
be of 0C(8)

It appears therefore that the zeroth order solution is at least
correct to within 0(6) and for all practical purposes there may be nc
need to compute the perturbations, especially as even the problem of
corputing the verturbationg is not an easy one.

The strategy will be to compute the zeroth order solution and
then compute the dispersion as if the zeroth order sciution were the
exact solubtion and check with experimental results; 1if good agreement

is reached then i% will not be necessary to compute the terms of 0(8)

£.3 The Zeroth Order Solution

It has been shown that a perturbation solution can be found to

the problem waen the densities are different provided that a solution
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is known for equal densities.
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This zeroth order solution can ve found

in a straightforward manner (using image methods or conformal mapping)

provided that ncun-dimensional velocity potentials and streem functions

are defined

as below

o %1 4 ~
1.7 X 7
. et
1 ~ Jy -
Vl 2 EE
Yo o _ a0
v, 2 T Jy

The problem is that defined in Figure 2.1.

10

4

~ 20
=T

The line source is represented by a logaritimic singularity of

strength 2v

2%/

the compiex velocity potential

. N2
v,.Q v,.Q (sinn = iV,.Q,
W) = oy 5 oo v e () - £
1 1 \sinh-:— 1
<
where the point 2z = -h has been arbitrarily chosen to have
Re w(z) = Oy = Wy = O

The shape of the interface is thea given by ¥

107 Y20

The solution for both ?1 0 and Pog is given by

(2.28)

=Im w(z)= 0



which gives
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Vv _Q v Q) . v_Q
272 22 - TX Ty 272
LQ1+ 5| v t == tan coth =5~ tan =] - —— =0 (2.29)
1 1 1
which can be rewritten as
-
e sinl Tty coth 24 }
y - (x) = 77 - —= = 0 (2.30)
© sin{ny coth m 1 1
where
- {2v.Q
-’329- = coth™ \)lQl +1 (2.31)
272

as determined by placing

g—:}f(-h,o) = 0,

The slcpe of the Tree gurface can easily e

il

g, (x)

tane — ]
o] LOO

cos(ny) - cos(my coth

Qo'l(y)}

determined and is given by

s (2.32)
2

sin(my) coth(%?) - sin(ny

coth %?)

A velocity discontinuity exists across the interfeace for since

there is a common pressure gradient on the dividing streamline it is

obvious that

NV = NV

1 1s 2 28
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where Vg and Vo, 8Te the respective velocities along the stream-

line. It can easily be chown that

AVERA] 2
" m ______2__2__... r 3 . . _TE}'E o e E_Yl—l
.= 5 sin 7y ;s1n(ﬂy) coth = - uln(ﬂy coth 2) ;
nk 12
+ rcos(ﬁy) - cos(ny coth 7?)1 (2.33)

These results are row used to investigate the mixing along the

interface.

2.4 Solution of the Dispersion Egquation

As s result of veing concerned cnly with steady flow the dis-

persion equation (1.13) can be written

g9 = v+ (DVC) (2.3L)

Now for two dimensional flow with streamline ccordinates

ecquation (2.34) can be written

oC a( ac} d oC
L) ¢ = + ID
LORE A At A - (2.35)
prcvided that the radius of curvature of the streamlines is large,
Wocding (3), Li (24).
_DL and DT’ the longitudinal and lateral coefZicients of dis-
version respectively,are functions of the seepage velocity ¢ provided

e
that the particie Reynolds nurber gd/v 1is large enough ( > 10 © ,

Pfannkuch (lO)) where d is the mean particle gize. DL and DT are
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constant at the molecular diffusion rate in a porous medium for very low
Reynolds numbcrs.

Near the stagnation point the velocity is small, for it may be
shown from equation (2.33) that g~ 0(s) nrear thie point; consequently
D, is almost constant and aDL/Bs *s approximately zero. Furshermore,
520/832 will be small compared %o BEC/GnE since the diffusion zone
will be wvery thin acrossg the interface. The term

9 (D 3C

ds "L Js
is therefore ignored near the stagnation voint.

Downstream, q(s) becomes almost constant since the flow be-
comes uniform, so again D; 1s constant ard BDL/BS is zero BQC/as2
is again small for the same reason above.

Hence in a first approximation the longitudinal dispersicn term

o . oC
S \DL s

is ignored compared to She leteral dispersion term

o D BC)

on ( T Sn

Since the transverse dispersion coefficient DT depends on ¢
and to a first approximation q is constant within the band of dis-
persion (i.e. independent of the coordinste n ), it is possible to

write
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2

a(s) & - p(s) £L (2.35)
- —

The bhoundary corditions are that

clo,n) = 1 (D < n <)

c(o,n) = O (-2 <n <0)

oC _ ~ o

e 0 (n = =+ for all s > 0)

The validity cf the approximations made in writing this equation
will become evident when the experimental results are presented later in
Chapter 5.

Equation (2.35) can be solved easily by assuming there exists a

function h(s) such that a similarity solution may be found,

(2.36)

1i

F(M)

Now substituting equation (2.36) into equation (2.35) it is seen that

(2.36) iz a solution of

I
O

(M) + M FM) (2.37)

provided that

il

h'(s) - h(s)
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z
TGT dJ (2.30)

Now with the given boundary conditions equation (2.37) is easily solved

to give ‘
w2,
T . 1,1 o_ﬂ) 2
Clem) = = [ e at = 543 erl(Jg (2.39)
-
where
n
n = . ‘é . (2.50)
2 )l —z——j—q S (083
From section 2.3 1t is possible to write
y - 5
- [ x4
s = f L1t (dy) dy (2.41)
o)

where
ax _ Sin my.coth = - sin(ay coth =) (2.42)
dy cos(ny) - cos(my coth %11)
and
v
1s
Cl(s) - e

where v, 1is given by equation (2.33) and the interface by equation
(2.29).
It has been skown in this chapter that the shape of the Znter-

face in the two fluid system depicted in Figure 1.1 can be approximated



4o within the order of the density differernce. Furthermore, the mixing
ol the two fluids along the interface has been investigated using this
approximate soluticn.

In Chapter 5 these results will be related to an expcrimental

study and the validity of the approximations confirmed.
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CHAPTER THREE

STABILITY OF THE INTERFACE

3.0 The Stability Equation

Experiments (see Chapter Five) have shcwn Shat it appears to oe
possible to have a more dense fluid in stable horizontal motion above a
less dense fluid, & situation which cannot occur if the two fluids are
at resl or in unilorm vertical mobion (Wooding, (19)). In other words,
the horizontal motion of the interface between the twoe fluids appears
to have a stabilizing effect.

In the previous chapter the mixing between two Iflulds when one
was injected into the other was investigated. It was seen that the flow
downstreamn tended to a uniform motion with one fluid on Top of the
other with a mixing layer between. Thus the stability of this systenm
will be governed by much the same mechanism as if the two fluids had
always been in parallel motior. The following system 1s therefore con-
gidered here.

A viscous fluid of density Ps is assumed to be in uniform
horizontsl motion, in & homogeneous porous medium of intrinsic perme-
gbility k and porosity e , with seepage velocity U in the positive
x-direction overlying a similar fluid of density pl(< pg), alsc in
uniform horizontal motion with the same velocity and in the same di-
rection. The two flows are assumed %o have been divided for -o <x <O
and nmixing begins to occur at the point x = 0 . A stability investi-

gation will be carried out by perturbing the equations of motion to
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obtain a linear fourth order vartial differential equation analogous to
the Orr-Scmmerfeld equation. The flow geometry is pictured in Figure
3-]_.

The equations of moiion are (see secticn 1.4)

vegq = 0 (3.1)
Ip + pgﬁ + %?.a = 0 (3.2)
dp , = .

+q-vp = v . (D7 p) (3.3)
ot

Now introduce the non-dimensional quantities denoted below by asterisks

and assuming ccnstant viscosity

p = p* (0, - p) gt (3.4a)

(,5) = (2,0%) & (3.k0)

po= o* (py - py) (3.4c)

4 = T U (3.4a)
gk (p, - o) ’

u = o (3.ke)

where £ 1is a characterigtic length yet to be defined and U = U/Uo
The couotions {3.11) are substituted into equations (3.3), (3.2),

and (3.1) to give, sz®ter dropping asterisks,
v .3 = 0 (3.5)

Vp + pk +q = O (3.6)



%5) (3.7)

and

gk £ (p, - p4)
Ny = = (3.8)

€ DTiJ

gk £ (o, - 04)
A= = 1 (3.9)
- € DL K

are the lateral anc longitudinal Rayleigh numbers respectively.
The density p , pressure p , and velocities are now per-
turbed by small amounts denoted by a prime which is subsequently dropped

wher the orders of 8 are collected.

p = P+ dp! (3.10a)
p = O+ 38" (3.10p)
u = 24+ du' (3.10c)
v = &v' (3.104)

As a first approximaticn it is assumed that the rate of growth
of the mixing layer car be taken to be very small over some length so
that it may be assumed that ® is a functicn of y alone. This is
tantamount to assuming the "sides" of the mixing zone are parallel and
is the normal assumpbion in consgidering the stability of jets. It will

be shown later that
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30 eV /%

ox ™ X‘372

which rapidly becomes small, compared to 0@ /dy .
Egaations (3.10) are substitused into equations (3.5), (3.6),

and (3.7) and the order of 3 collected to give

§§+%;’ = 0 (3.11)
g—%+u = 0 (3.12)
LWrorv = o (3.13)
U RRECERE ow

Since only two-dimensional disturbances are consgidered equation (3.11)

implies the existence or a stream function such that

ou oy
u = 6? v = - g-}-c-

Tlimination of p from (3.12) and (3.13) gives

du ov _ 08
3y “x C ¥x 7
ie. v = g% (3.15)

FEquations (S.lh) may be differentiated with respect to =x to give



2 . 2 2
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Now since U is assumed constant and 'XL and XT depend only ocn 2£ ,

equation (3.16) may be rewritten using (3.15) to give

2, 2o 9% . 38 _ 3% 1 2y 3% 1 e
v st Y 6—3; - 55 ° 7 (?\Lv \1;)+ay2 (thﬂ;) (3.17)

Now suppose that arbiltrary sinuscidal disturbances are represented by

¢ = ¢(y) ei(ax - act)

wnere ¢ 1ig the non-dimensional wave number

ench
L

and where L 1g the wavelength of the disturbance;

is the non-dimensional complex wave veloclity and x and t are non-
dimensional distance and time as defined previously. Then equation

(3.17) becomes

g

1 iv 2 1 1 ,
ot ) ey [ )+§‘—Lu<y>

Sl

(3.18)
- i (% - ) [4(y) - dPu(x)] + odFory(y)



Note that making the assumption that XL and XT are independent of
% 1s consistent with the approximation that @ is independent of x ,
and therefore Justifiable in a first approximaticn.

The equaticn (3.18) is rather similar to the Orr-Sommerfeld
equation: This is nod surprising, as it has already been mentioned
that Wooding (17,3) has found that the equations governing the motion
of a buoyart plume in a saturated porous medium are sgimilar to those of
a laminar momentum jet in incompressible flow. It would appear the dis-
persion plays a similar role with regard to mass transfer as viscosity
does to momentum transfer in iacompressible flow.

Equation (3.18) may be multiplied through hy J(y) , the
corplex conjugate of ¢(y) , and integrated from -= to = . The

boundary conditions on {(y) , ramely that

(3.19a)

]
O

(£ )

(3.190)

|
O

) =

arc equally true Zor ¥(y) ; hence when (3.18) is integrated, the re-

sult is
I, (2 L) ey s 2
JUEOL e 2 e 61® v@l?) o

-

2 ler |v()|® ay

= s (U- o) | (10 @)® + Pli))®] av+a

8

(3.20)
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A similar operation may be carried out on the conjugate operator for
$Ky) , multiplying through by U{(y) ,

(3.21)

and this leads to egquation

N
rr( I+ L 4 _]:_ ot 2 1 g._. 2
Ll ) el )

- v (% -9 [ {1 e)l

-0

F e Plim1?) ay + of fore)]® ay
(3.21)
Subtracting (3.20) from (3.21) implies

[ee]

2(% - e) [ [ 1@ +oPlsmI?] o = o
which implies that

U= c

xr
since the term under the integral is positive definite.

Taus any waves that might appear must have a phase velocity

equal to the velocity of “low. Furthermore, equation (3.18) can be re-

written

I
) 2. 1.1y .,a .
—_XE—_ - ampt(y) [XE'+ XEJ + X; i (y)

(3.22)

- ae, [ (y) - a0+ der(y)

This equation plus the boundary conditions (3.19) defines an
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eigenvalue problem which will now be investigated.

3.1 The Neutral Stability Curve

The equation (3.22) governing the stability can be rewritten

() - P+ )+ agare, W) + (@t + agade ()= agaf B (y) = O

(3.23)
and the boundary conditions
(=) = 0 (3.2ka)
11;’(:}:00) = 0 (3-2‘413)
where
L -z
XL

The neutral stability curve is the curve in the Rayleigh
number - wave number plane (XT,(X) which corresponds to disturbances
which neither grow nor decay with time. 8Since eguation (3.23) hag real
coefficients and has real boundary conditions then the neutral stability
curve will be generated by the solutions of (3.23) with c; =0 . In
other worde, the principle of exchange of stabilities is wvalid.
Equation (3.23) (with ¢y = 0) is o® fourth order and has four linearly
indeperdent solutions and
n
V) = DA W) (3.25)

i=

By substituting (3.25) into the boundary conditions (3.2L4) four
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homogeneous edquations in four unknowns (Ai) are gencrated. For these
four homogenescus equations to have non-trivial solutions for the Ai
the determinant of the coefficients must vanish. This is the so called
gecular determinent ard it generates the neutral stability curves in
the (hm , &) plane with ®  as a parameber.

However, it is generally not necessary to solve the equation
(3.23) to generate the neutral stability curve. A well-known variational

method due Lo 8. Chandrasekhnar (25) is now employed.

3.2 A Variational Method

Prior to proceeding with the development cf the Chandrasekhar
method consider ® which 1s the steady state density distribufion in

the interfacial zone (see section 2.4)

where D, X, and U are dimensional quantities, and X is the distance
from the start of the mixirg zone.

The two coordinates X and x can be regarded as a geographical
coordinate and a local coordinate respectively. The aim of the stability
analysis will be to investigate local stability in the region of the co-
ordinate X and the approximation made will be that while ® depends
on X it is independent of x . Thisg is equivalent to assuming the

mixing zone has parallel sides locally and is the usual approximation in



L3

considering the stability of laminar jets etbc.

Thus
()T
®'(y) - _______’?’_____% e 4DX
2(xDX/U)
Now choogse £ so that
1
@Y(O) = E 3
then
3
DX
4 = (” 5 ) (3.26)
and
2
1 "X
a'(y) = ze T (3.27)

It is seen that £ depends on the geographical coordinate X
bat is supposed to be independent of the local coordinate x .
The assumption that the mixing zonc has parallel sides can be

checked here

¥
g@wiii
X 3
X’Z

and thus ovecomes small when X becomes large, hence the larger X +the
better the agpproximation.
Thus for neutral stability (ci = 0) we have
.2
e LY

) - P ) ) ) -2 P u) - 0 (3.08)



where we have now

and

V(= =)

4! (:\: 00)

]

Lk

written

(3.29a)

(3.29b)

The essence of the Chandrasekhar method is to expand the functicn I (y)

in orthcgenal functions which satisfy the boundary conditions.

The

orthogonal functions on the doubly infirnite range implicit in (3.24)

are Hermite polynomials, Morse and Feshbach (26), thus we write

$(C) = e
wnere

¢ - -
ard

H () =
Then

¥ (C) =

(N

L aH (0

n=n n nt

(3.30)

(3.31)

(3.32)

Substituting (3.30), (3.31), (3.32) and (3.33) into equation {3.28)

leads to



oo 2 1H 2
-C nth (1 + n)
2o tae |\ (O - T i (©)
(3.34)
au% N%e -C2
t =3 (0) -—5e " E(Q))] =0
7 o5t

Now multiply equation (3.3%4) through by Hm(C) and use the orthogonality

integral for Hermite polynomials

< 2
. _5_1; _ n 1
Jr@ 0ot a =5 2" n
Tnig leads to
= ) T = . » . -2
n§o a A 0 n 0, 1, 2, (3.35)
and since
” o
-2¢ .
J e Hm(z;) IIn(C) ac
m-n mrn-1
2 2 m+n+ 1
= (-1) 2 F(”"‘z‘*‘*& X(m,n)
where
O if m + n is cdd
X(m1n>

L ifm + 0 is even

then
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. n+h . 2 . n+2
la | = Bnth 2 (n+ 4)! ) a (1 + %) B o 2 (n + 2)!
®mn! T 16 Ly
i o m-n mtn-1
Qs uem o, M N B ., 2 pmtantl
T2 8mn 2 a 3 (-1) = ( 2 ) X(m,n)
n el
27
(3.36)

where mn,n =0, 1, 2, . . .

Equation (3.35) can be regarded as an infinite number of homo-
geneous equations in en ianfinite number of unknowns An . TFor ncn-
trivial solutions for A , amnl = 0 ; thus equation (3.36) generates

the neutral stability curve.

3.3 Variatlional Theory Resulsts

In this section results are given from which a graph of Rayleigh
number

o= e D

T“’

can be drawn as a function of « , the non~dimensional wave number,
for neutrally steble disturbances.

To compubc this curve, leading minors of the determinant (3.36)
are successively put equal tc zero. This then defines an intrinsic re-
lation between A , ¢ and n . If values of % and & are given and
the lowest value of A found at waich the deberminent vanishes then
this gives a point on The neutral stability curve.

This Chandrasekhar process is often rapidly coavergent ir that

only & low order leading minor need be taken in order to get a fairly
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precise answer. However, in this case it was necessary to take the
leading minor of order 10 to get sufficient accuracy. Furthermore, as
the value of # decreased tThe convergence became even slower ag it also
did for A large.

The numerical calculations were carried out on the IBM 7094 in
the Booth Compulting Center at the California Institute of Technology.
The determinants were evaluated using a standard library subroutinc
available for this purpose. The results are given for u = C.5 and
® = 0.9 and are the dashed lines on Iigure 3.2.

Several interesting points are brought out by the resuits. The
most obvious result is that the flow is always utnstable when the
Raylelgh number is positive, that is wnen Po > pl . This is not sur-
priging as the analogous incompressible flow, a IZree shear lgyer, is
also always unstable, Tatsumi and Gotoh (27). However, there do exist
waves which are not unstable at a given Rayleigh number. Another
interesting result is that at a given Rayleigh number, an increase in
the longitudinal dispersion will be stabilizing, that is the spectrum
of unstable wave numbers is narrower. According to Harleman ard Rumer
(16) n = >LT/>\L = DL/DT~ 10 and D~ 0° T and since 4 ~u0?
the effect of increasing the flow velocity will be to decrease the
Rayleigh number and increase # . Thus increasing the flow veloclty
will reduce the spectrum of unstable wave numbers, cr have a stabilizing

effect. Thus the higher the velocity the longer the unstable waves.

3.4 An Approximate Solution

The density profile as specified by



Ay
2
e P
a(y) = L r et as + _l
J;[- - p? pl
can be approximated by the profile
P1
A3 = + >
O(j) 1 o - Ol 2 y=z1
y 1 Dl
ely) = - .yl =1
2 O, = D0
2 1
p
1
ely) = - y<-1
F/2 - pl
Then
o, ‘y] > 1
o' (y) ={, ] (3.37)
3 lyl <z

ard the equations of motion become

s ) - (@ )P + o ()

il

e [4"(y) - Fuly)l, |yl > 1

(3.38)

V) - @ e () + o ()

it

- 2 %ag
e L (y) - o4 ()] + = 4(y),
Iyl <1 (3.39)

and these equations are eagily solved. It will be noted that e, hasg
nob been vat equal to zerc Lhis Lime as 1L iIs desired to investlgabe

the growth rates of unstable waves. The boundary conditions are given
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in equationg (3.2L). However, these boundary conditions only apply to
the outer equations (3.38) and matching conditions must be determined
by which the solutions of the inner (3.39) and outer (3.38) equations
can ve related. These matching conditions are required at the points
y =+ 1 and are obtained by integrating equation (3.23) between _ - €
and 1+ ¢ and taking the limit as ¢ - 0 ; similarly between -1 - ¢

and -1+ ¢ (Esch, (28)). This gives, considering the first case

l+e
1" -1+ - r
)T e - 02+l (IFS + o' [ () oy
1-e
l+e 1+e
= %ozciill:(y)]i: - of F ¥(y) ay + xa” f e (yu(y) ay .
l-e 1-¢

Now suppose (y) is conmtinuous, then we can write

1+e 1+e
. [ o . . ite . .
lim | @' (y) dy = Ilim [@w(y)]l_e - lim | ©p'(y) dy
&0 | e-0 SACTR
1t+e 1+e
= -um [ep()ay = uma [y ay
€7 l-e =0 1-¢
ey (O
since ® —» A = constant at y =1 % e . Thus if {¢(y) is continuous

then ¥'(y) , ¥"(y) and ¢“{y) are continuous at y = 1 also. A

gimilar argument applies at v = -1
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The solutions of (3.38) can be writben down as

b)) = oap e e, e ea an My >0

where

B =‘\/oc2n + hoey (3.h0)

But the boundary conditions (3.2L) impliy that

b)) = A e e,y (3.41)

11

3
b)) = ay T ray e y<-1 (3.h2)

For \y‘ < 1 there are three solubions whichk must be considered

separately and they correspond to the three cases implied by
2 812%
2 1T - 2oc,
i
Cage I

Bxgn (3.43)

)\>l—2ac.
i

The solution of equation (3.39) can be written as

wI(y) = By el + B, eV 4 B3 e + B), e >yl <1 (3.44)

wnere
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2 2 %;Lé
a“(1 + ) + rac, Oﬁ(l )_mci) 2]
v o= 2 AR - 2 | 2 |
X
1
2 15 | ®
a™(1 + n) + e, 2 e, 0
(04 1 A
5 = | . L {-7? (L -un) - = =
Case IT1
When
NS
1 - 2xce.,
i
then
y = 0
ard equation (3.39) has a solution
() = B. +By+B, ¥ +B, & ¥
bW = B T BY T By 4
Cage 11X
When
2
R
1 - s
equation {3.39) has the solution
¢Izi(y) = Blcos Yy * B2c03h6y"+ Bysinyy + BusinhBy
where 1
LR 2
2 e, 2 o {1l + n} + A,
v = o (l - %) _ i + ie - i
2 2 2 2

(3.15)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)
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Tach one of these threc cases must be investigated separstely.
The Lour malebling cond liows al oy = 4 L will give eight homogeneous

equasions in 8 unknowns, the four A, and four Bi . For thesc elight

eguations To have nen-trivial szolutliorns the determinant of the coef-

Jlelents of Lhoe AL 3 Bi_ auslh ovaanish, This wlll gerneraue Lhe secular
equation and vhere will be three such secular equations, corresponding

To the three cases above Te iuvestigare. Each cf thesc will invoive

simplifylrg wn O x O delerminani, buw forlumabely the laber is nob cx-
cessive.
?
P
. - 2003
1) Case I A< A

T - e,

Tre determinant obtalred Zrom the matchirg conditions at y = %+ 1 is
1 - & £ cf e” e ¢
5 o 1 1 eV o o' _e”
- -B 0 C re! He re ¥ e
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3

j -8

’ 2
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o 9 4
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X
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Tis determinant simplifies to (fre details arc given ir Appendix B),



ne

2 2 )
(r+a) (r+p)” Gra)® G+p)® (v - 0)

-~ ~

bre (87 - af) (87 - p°) (r° - 4P (r% - gF) e T B)

_e_;.rr (5 . Q’)P (5 s ) (T _ 3)2 (T _ rfs)? (T + 5)?

_4s . o, 2 2 2 2
(8 -a)” (38 -8)" (r+2) (v+3) (r+8) =

o

"hig intrinsic relstion for o, C.y Woo2H2 A was investigaied
numerically to cotcrmine LI any positive roots for A oxisted when
a, =, and W were given. The determirent appearcd “o be & positive
menotonlically increasing tunctior off o for all values of A, ¢y and

#, chosen and an intensive sc&rch ourd no roots on Ghe (k, a) plane,

It was concluded nc roots of any physical significance exist for Case T.

o
2

FEPIRN ~ - -
ii; Case 1I A —_—

- Jie,
1 = :

o

The Jeterminant carn easily be written dowr using ithe mabtching conditions

ané soluticns (3.58), (3.41) and (3.42)

1 1 0 C 1 1 es e“6
0 0 1 1 i -1 -0 o
< -3 0 O c 1 2" -50'5
3 o) o 2 C 1 a0 -6e6
o B° 0 0 o 5 ata® ool ?
0 O GE Eﬁ G o :20-6 ﬁnuu
L —ﬁ3 0 o O o} 530 5770
3 ; 3 -6 30
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The determinant can be simplified to

[e% +a) (