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C h a p t e r  4  

EQUATION OF STATE AND PRESSURE-INDUCED 

CAVITATION OF A CU-ZR BINARY MODEL METALLIC 

GLASS AND LIQUID 

 

    We determined the isothermal equation of state (EOS) in a wide range of 

temperatures and pressures by carrying out molecular dynamics simulations on a 

simple binary model metallic glass. A universal form of EOS proposed by Vinet et al. is 

utilized to fit the data, assuming no phase transitions. Pressure-induced cavitation was 

observed in glassy states and liquids from our simulations. The thermodynamic limit of 

instability and kinetic limit of instability of the cavitation behavior were analyzed. 

Negative pressure is critical to trigger the cavitation. The cavitation barrier height was 

estimated from the classical nucleation theory. The intrinsic origin of cavitation and its 

connection to Poisson’s ratio or the ratio of G/B are investigated. The relationship to 

the deformation and fracture behavior of glasses is discussed. 

 

4.1. Introduction 

It is of primary importance in both the basic and applied sciences of fluids or solids to 

obtain the equation of state (the pressure, volume, temperature (P-V-T) relation). This 
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determines the values of fundamental thermodynamic parameters and helps the general 

understanding of the behavior and applications of a condensed matter. As a fairly new class 

of materials, metallic glasses have acquired considerable attention from scientific and 

technological viewpoints in the last two decades [1, 2]. Unfortunately, to date, knowledge 

of the isothermal equation of state (EOS) of metallic glasses is still far from complete. 

Wang and co-workers studied the elastic properties, as well as the pressure dependence of 

Zr- and Pd-based bulk metallic glasses at ambient temperature in a limited pressure range 

(up to several GPa) and obtained the EOS in terms of the Murnaghan form [3-5]. In this 

chapter, we present the isothermal EOS in a wide range of temperatures and pressures by 

carrying out molecular dynamics (MD) simulations on a simple binary model metallic 

glass. A universal form of EOS proposed by Vinet et al. [6] is utilized to fit the data, 

assuming no phase transitions. 

To describe the yielding in metallic glasses, a Cooperative Shear Model has been 

developed for the glassy state based on Potential Energy Landscape (PEL) / Inherent State 

(IS) theory [7-9]. A scaling relationship among the shear flow barrier, a universal critical 

yield strain, and the isoconfigurational shear modulus G was constructed [9]. The model 

reveals that for a fixed glass configuration, the barrier height for shear flow is proportional 

to the isoconfigurational shear modulus G. It is also found that G has a strong dependence 

on the specific configurational potential energy of the equilibrium liquid, and the 

temperature dependence of G in the liquid state is directly related to the fragility of the 

metallic-glass-forming liquid [10, 11]. In addition, based on the link between elastic 

softening and configurational changes, a rheology law of metallic-glass-forming liquids has 
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been proposed and validated, in which G was identified as the effective thermodynamic 

state variable controlling flow [12]. The isoconfigurational shear modulus G plays a 

controling role in understanding the yielding and rheological behavior of metallic glasses 

and liquids, and it can be utilized to design and develop rather fragile glass-forming 

systems with high ductility and toughness [13-15]. It is therefore natural to ask how the 

bulk modulus B is related to the yielding and fracture behavior of metallic glasses. Zhang 

and co-workers reported the different deformation and fracture behavior in metallic glass 

under compressive vs. tensile loading [16]. It was proposed that the compressive fracture of 

metallic glass is mainly controlled by the shear stress, while the tensile fracture originates 

from radiate cores induced by normal stress, and then propagates mainly driven by shear 

stress. Another intriguing observation is void formation inside shear bands during 

deformation in metallic glass [17]. It is widely believed that cavitation is closely related to 

the fracture behavior of metallic glass. However, how and at what stage in deformation a 

cavity forms remains unclear.  

Here, pressure-induced cavitation is observed in glassy states and liquids from MD 

simulations. The thermodynamic limit of stability and kinetic limit of stability of the 

cavitation behavior are analyzed and interpreted using the isothermal EOS. Negative 

pressure is critical to trigger the cavitation. In the simulations, when the negative pressure 

approaches half the value of the spinodal pressure, the cavitation is triggered. Based on the 

results, we examine the role of the elastic constants, G and B, the ratio G/B, and Poisson’s 

ratio on the deformation and fracture behavior of the liquid and glassy states.    
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4.2. MD Simulations 

In order to obtain numerical results for the isothermal EOS, we performed MD 

simulations using an interatomic many-body Rosato-Guillope-Legrand (RGL)-type 

potential model developed for the Cu-Zr binary alloy system [11, 18]. The original 

simulation cell contains N = 2000 atoms, arranged in a random bcc structure with periodic 

boundary conditions. At the beginning, the system was heated to 2400 K and the structure 

of the liquid phase was allowed to equilibrate (constant-temperature, constant- 

thermodynamic-tension (TtN) method). The system was then cooled to 50 K under zero 

pressure using a quenching rate of 2.5 K/ps (1 ps = 10-12 seconds) to generate the glass 

configuration. The glass transition occurs at 700 K. This yielded the reference shapes and 

size matrices, h0, in the Parrinello-Rahman formalism. Starting with the cell volume V set 

at the equilibrium value V0 (corresponding to zero pressure) at each temperature, we 

carried out constant-temperature and constant-volume (NVT) simulations at incrementally 

larger and smaller volume values to obtain the isothermal EOS. Upon determining the P-V 

relation, NVT simulations were then carried out by first equilibrating 10,000 steps and then 

followed by another 100,000 steps for each state point, where a time step is set to 1 fs (1 fs 

= 10-15 seconds). The equilibration at each state point was monitored by the total energy 

and pressure of the simulation cell.   
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4.3. Results and Discussions 

Figure 4.1 shows the pressure change with atomic volume of the Cu46Zr54 binary model 

metallic glass and liquid at different temperatures ranging from 300 K to 1500 K. The data 

points in Fig. 4.1 were directly obtained from MD simulations, and the pressure is from ~ 

+6 GPa to ~ -6 GPa. Vinet, Smith, Ferrante, and Rose proposed a universal EOS for all 

classes of solids in the absence of phase transitions, and its applicability was examined by 

comparing the predictions from the universal EOS with experimental data for different 

typical materials [6]. Here, we utilized the Vinet-Smith-Ferrante-Rose universal EOS to fit 

the MD simulation data of the Cu-Zr binary model glass, and excellent fitting results were 

found. As shown in Fig.4.1, the solid curves represent the fits. The universal EOS has the 

following form: 
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A knowledge of three equilibrium quantities at each fixed temperature T is necessary for 

the fitting: the equilibrium volume V0, isothermal bulk modulus B0, and isothermal 0)(
P
B

∂
∂ . 
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The notation 0)(
P
B

∂
∂  denotes the zero-pressure value of the isothermal pressure derivative 

of the isothermal bulk modulus, 
0,)( =∂

∂
PTP

B . Based on the fitting parameters, plots of 

volume vs. temperature and bulk modulus vs. temperature were drawn and compared with 

previous MD simulation results. The equilibrium bulk modulus Debye-Grüneisen slope 

from the fitting results was calculated to be [dB/dT] = -35 MPa/K and an exceptional 

consistency is found [11]. It is obvious that the isothermal EOS can be employed to 

analyze the pressure dependence of the glass-transition temperature for this model metallic 

glass.  
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Figure 4.1. Pressure change with atomic volume at different temperatures of the Cu46Zr54 binary 

model metallic glass and liquid. 
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    Cavitation phenomena have been previously studied in liquids like helium, both 

experimentally and through molecular simulations in Lennard-Jones liquids [19-25]. In this 

chapter, negative pressure is found to be critical for the cavitation nucleation to occur. The 

time history of pressure was treated as the primary indicator for the cavity formation and 

was recorded during the simulations at each density point. Fig. 4.2 shows the pressure 

evolution vs. time at 300 K with a beginning pressure of ~ -6.05 GPa and ~ -6.3 GPa, 

respectively. It’s clearly seen from Fig. 4.2 (a) that the pressure fluctuates and equilibrates 

at a constant level of ~ 6.05 GPa through the whole simulation period of 100 ps, and 

therefore no cavity is formed. However, when the pressure approaches ~ -6.3 GPa, 

cavitation occurs after pressure fluctuates for ~ 5 ps. As shown in Fig. 4.2 (b), voids are not 

generated immediately with the pressure drop, and the pressure fluctuates out to ~ 5 ps. At 

this point, the local pressure drops below the critical value; cavitation is triggered, followed 

by a rapid pressure increase. The cavitation pressure here is taken as the threshold pressure 

that triggers the cavitation process simultaneously. A careful visual examination was done 

by checking the simulation cell to confirm cavity formation. After 100 ps of simulation, a 

cavity of ~ 1 nm in diameter was found in the sample. Naturally, samples with cavities 

were not included in the data used to obtain the isothermal EOS diagram in Fig. 4.1.  

Isothermal EOS fitting curves in Fig. 4.1 display a Van-Der-Waals-type loop This 

permits an estimation of the spinodal instability points from the locations of P vs. V. The 

thermodynamic limit of metastability at a certain temperature is the point at which the 

pressure-volume diagram exhibits a minimum, termed the spinodal pressure. Kinetically, 

voids are formed at a pressure above the spinodal pressure (at a fixed temperature) owing 
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to the density fluctuations. We call this the cavitation pressure. Fig. 4.3 shows the 

cavitation pressure as well as the spinodal pressure vs. temperature. Interestingly, it is 

found that the cavitation nearly always occurs when the negative pressure approaches ~ 1/2 

the value of the spinodal instability pressure.  

To save the computational cost of simulations, we systematically studied the cavitation 

behavior of the Cu-Zr binary model liquids at T = 1200 K. The results support the fact that 

pressure is the key for controlling cavitation. Starting from the state point corresponding to 

a volume of 2.15*10-29 m3 and a pressure of -2.58 GPa, we increased the simulation 

temperature to 1300 K while still fixing the volume. No cavitation was found even when 

the higher temperature stimulates faster kinetic movements of the atoms. However, when 

the simulation cell temperature was reduced to 1150 K, cavitation was triggered due to the 

more negative pressure. We carefully examined the cavitation kinetics. Here, the cavitation 

time is defined as the time interval from the starting point of the simulation to the time 

where cavitation nucleates. Figure 4.4 shows the pressure dependence of the cavitation 

time at T = 1200 K. The existence of an energy barrier for nucleation of a first-order phase 

transition such as cavitation is quite general. A common model usually used to study 

cavitation nucleation is the classical nucleation theory [20]. The energy barrier exists 

because the interface between the two phases (liquid and vapor) has a finite surface energy 

per unit area. This energy is the vapor/liquid surface tension α of the model liquid. Since α 

is nonzero, the formation of a void with radius R has an energy cost of 4πR2α. When such a 

void forms, the energy of the whole system contains the work of the negative pressure P 

over the void volume, so that the total energy cost of forming the cavity is  
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3
44 παπ +=Δ . (4.4) 

At negative pressures, this energy has a maximum for a critical radius, Rc = 2α/|P|. The 

energy at this radius establishes the energy barrier for a cavity formation, which is  

2

3

3
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P
E πα

=Δ . (4.5) 

A thermal fluctuation may enable the system to cross this energy barrier. The probability of 

such an occurrence is proportional to the factor 

    )/exp( kTEΔ− , (4.6) 

where T is the absolute temperature and k is Boltzmann’s constant. In this simplified 

model, it is clear that cavitation should be a random process that depends on the 

temperature and pressure. Therefore, the rate of cavitation nucleation is determined by  

    )3/16exp( 23
0 kTPJ παγ −= , (4.7) 

where 0γ  is the microscopic rate of the order of a longitudinal phonon, ~ 1013. The fitting 

curve using the converse of this cavitation rate (the cavitation time scale) from classical 

nucleation theory is shown in Fig. 4.4 as the solid line. It agrees quite well with the 

simulation data. From the fitting parameters, we can estimate the number of atoms 

involved for cavitation nucleation. At a pressure of -2.52 GPa and 1200 K, a barrier height 

of ~ 4 eV is estimated and ~ 10 to 100 atoms should be involved in the activated 

configuration to overcome this energy barrier and to initiate the cavitation.  
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Figure 4.2. Pressure evolution vs. time at 300 K during the whole simulation process. 
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Figure 4.3. Cavitation pressure and spinodal pressure as a function of temperature. 
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Figure 4.4. Cavitation time vs. pressure at T=1200 K and the fitting curve obtained from classical 

nucleation theory. 
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    Considering the fact that the pressure is proportional to the equilibrium bulk modulus, 

B0(T) in the Vinet-Smith-Ferrante-Rose universal EOS, we notice that a higher spinodal 

pressure will be obtained for a material with  higher B if the other two factors, X and 

)(0 Tη  (see Equations 4.1-4.3) remain constants. This implies that it is more difficult for a 

void to form in the equilibrium system. One expects that B must be related to the barrier 

height for cavitation nucleation. Recall from the previous studies on the cooperative shear 

model, that the shear flow barrier in the glassy states is proportional to the 

isoconfigurational shear modulus G [9]. The barrier W for shear flow is related through a 

scaling law to a universal critical yield strain γC0, the shear modulus G for a fixed glass 

configuration, and the effective volume of cooperative shear zones (CSZ) Ωeff  = ζΩ.  

    W = 8
π 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Gγc

2ζΩ (4.8) 

The core volume of a CSZ is Ω and ζ is an “Eshelby” factor correcting for matrix 

confinement of the CSZ. From this model, a lower G value implies easier hopping between 

local energy minima in the potential energy landscape. Combining shear and cavitation 

events, we propose that the plasticity of metallic glasses is controlled by the number of 

shear events that occur before a catastrophic cavitation event is triggered. The ratio of G/B 

is then related to the ratio of the shear barrier to the cavitation barrier and therefore to the 

relative rate of cooperative shearing vs. cavitation events [26]. When a metallic glass is 

subjected to an applied load which includes negative hydrostatic pressure (e.g., uniaxial 

tension), the nucleation slip on a shear band would be limited by the nucleation of 
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cavitation within the shear band core. In turn, the total accumulated shear band slip 

proceeding cavitation would be related to the ratio of the barrier height of the two 

processes. This is then related to G/B and to Poisson’s ratio. This approach may provide a 

rationale for the reported correlation between fracture toughness, ductility and G/B (or ν).  
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4.4. Chapter Concluding Remarks 

In summary, we determined the isothermal equation of state (EOS) in a wide range of 

temperatures and pressures by carrying out molecular dynamics simulations on a simple 

binary model metallic glass. A universal form of EOS proposed by Vinet et al. was utilized 

to fit the data, assuming no phase transitions. Pressure-induced cavitation was observed in 

glassy states and liquids from our simulations. The thermodynamic limit of instability and 

kinetic limit of instability for cavitation behavior were analyzed. Negative pressure is a 

critical parameter in triggering cavitation. The cavitation barrier height was estimated from 

the classical nucleation theory. A possible explanation for the reported correlation between 

ductility, fracture toughness, G/B, and Poisson’s ratio was suggested.    
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