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A STUDY OF CROSS POLARTZATION EFFECTS IN PARABOLOIDAL ANTENNAS

Vassilios Kerdemelidis

ABSTRACT

In this report the induced surface current method is used to
investigate the spatial structure of the radiated electric field for
a number of paraboloidal antennas. The parabololds are excited by
three different types of feeds, namely, a small electric dipole, an
elemental plane wave source, and a rectangular horn.

For the case of electric dipole excltation, formulas are derilved
that show the following characteristics:

(i) For a reflector of constant ratio of focal length to the
aperture diameter the magnitude of the cross-polarized lobe nearest
to the antenna axis (paraboloid axis) remains constant relative to the
maximum of the main lobe of the principally-polarized wave and is inde-
pendent of the aperture size.

(ii) For a given aperture size the magnitude of the cross-
polarized component relative to its own principally-polarized maximum
decreases with the focal length.

(iii) The position of the maximum of the cross-polarized lobe
depends only on the aperture size and 1s independent of the focal
length.

The problem of cross-polarization is also solved by using a
simple model which gives results that are in surprisingly close
agreement with those obtalined by the more complete expressions. In

addition this crude model explains the angular variation of the
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amplitude of cross-polarization component at angles not necessarily
small from the paraboloid axis.

For a paraboloid excited by an elemental Huyghens source the
cross-polarization in the forward direction is reduced but the com-
ponent in the laterally-directed radiation is increased relative to
that of an electric dipole.

In the case of the horn-excited paraboloid we obtain a
formula that explains the experimentally-observed large cross-
polarization.

Finally, we show that the problems of the paraboloids
excited by a small electric dipole and a plane (Huyghens) source are

merely particular cases of the horn excltation problem.
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Partial List of Symbols

Q,B,¢ the parabocloidal coordinates
B = Bo equation of the paraboloidal reflector surface
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antenna efficiency, or alternately,

the antenna gain

electric fleld polarized in O direction {see Fig.5)
electric field polarized in the @' direction,

called the cross~polarized component

the above field components normalized to Eﬁ
maximum



1. INTRODUCTION

1.1 General

The transmission of signals through épace requires wave-launching
and receiving devices (antennas). Since for various reasons the maxi-
mum transmitter power may be limited, the efficiency of launching and
reception of the electromagnetic energy is of great importance.

A large number of various types of antennas has been developed.
The type of antenna used depends on its function; antennas have been
developed for high-galn narrow~band operation, for broad-band low-gain
operation, nearly isotropic, with sharp spatial characteristics, broad
radiation characteristics, etec.

Classification of Antennas. From the above one can see that there

are many ways of classifying antennas. One possible means of antenna
differentiation can be the frequency dependence of the various antenns
parameters. This type of classification 1s of importance, for example,
in multichannel communication systems or any systems utilizing broad-
band signals.

Antenna Fundamentals (1)

It seems appropriate, at this point, to define a number of terms
associated with antennas in general.

Antenna Pattern. The graphic plot of the magnitude of a field

component at every point in space is called the absolute field (com-
ponent) pattern. The field intensity may be expressed in units
relative to its value at some reference direction or relative to the

field of some reference antenna.
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Power Pattern. The plot of the time-average power flow per unit

solid angle at each point is the power pattern. This plot may be the
total power pattern or the power due to a particular field component.

Antenna Galn. Antenna gain is defined as the ratio of the power

rer unit solid angle in the direction of maximum radiation of antenna
to the power per unit solid angle in the direction of maximum radiation
of a reference antenna for the same input power. This ratio is usually
denoted by the symbol @ , and the usual reference antenna is either
the isotropic or the half-wave antenna. An isotropic antenna is a fic-
titious source that radiates equally in all directions.

Feed. The feed is the primary antenna radiator or exciter.

Reflector. The reflector is a metallic body used for focussing
the primary radlation into a sharp or other required pattern. A common
reflector is a section of a paraboloid of revolution.

Antenna. Antenna is the composite feed-reflector system.

Polarization. The polarization of electromagnetic radiation is

defined as the direction of the vibration of the electric vector. If
an antenna is designed to operate with a given (principal) polariza-
tion, then any energy radiated with s polarization at right angles to
the principal represents loss. The knowledge of this spurious or
croés-polarized component, as 1t 1s usually called, may be of consider-
able importance in some antenna applications.

1.2 Paraboloidal Reflector Antenna (2)

A paraboloidal antenna (see Fig. 1) is made up of a primary
source, called the exciter or the feed, and a section, usually circu-

lar, of a paraboloid of revolution, called the reflector, The exciters
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may take many forms: the most common types are the electric dipole and

horns.
EXCITER (FEED)
REFLECTOR e
_ ____%_ __ _a ANTENNA
/- AXIS
FOCUS OF THE
PARABOLOID

Fig. 1. Configuration of a dipole~excited
paraboloidal antenna

Its broad-bandedness, high gain and desirable mechanical prop-
erties combine to make the paraboloildal reflector antenna one of the
most popular in the microwave range. Some of the desirable mechanical
properties of the antenna are:

(1) Smaller size of radomes for a given large gain compared

with yagis or horﬁ-paraboloidal reflector antennas.

(ii) Simplicity of structure and absence of highly resonant
lengths.

The use of this type of antenna in radio astronomy, radar, and
radio-telephone trunk lines, requires a good knowledge of its gain
properties, its over-all radiation, and its polarization characteris-

tics.
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One of the earlier works on the paraboloidal antenna appears
to be that of R. Darbord (3) who used a geometrical optiecs approach
to deduce the reflected field in the aperture. This is the so-called
"aperture" method. Darbord, however, did not compute the radiation
characteristics of the antenna. Morita (4) incorrectly used the field
at the surface of the reflector as the aperture field to compute the
radiation. Aperture field is the field at the opening of the reflec-
tor.

Wwedensky (5), employing the aperture method, computed the far-
zone field. However, he neglected the cross-polarized component.

E. U. Condon (8) took into account the cross-polarized
aperture component and, using the same approech and approximations,
computed the cross-polarized far-zone field. For dipole excitation
he found that there were four symmetrically-placed sidelobes very
close to the main lobe and at h5o to the principal planes. Planes of
symmetry or the principal planes for the paraboloidal reflector

antenna are the xz- and yz-planes (see Fig. 2).

APERTURE
' X
REFLECTOR /—ELECTRIC DIPOLE
»Z
o
FOCUS

Fig. 2.
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The cross-polarization sidelobes have magnitudes considerably
greater than the first sidelobes of the principal polarization and,
consequently, are troublesome in radar applications. The above
sidelobes are sometimes called "Condon lobes".

Using the aperture* method, E.M.T. Jones (7) computed the
principal polarization in the prinqipal planes and the cross-
polarization fields of paraboloids excited by dipoles and combinations
of dipoles. Jones found that a reflector fed by a certain combination
of an electrlic and a magnetic dipole, gave zero cross-polarized com=-
ponent at the aperture and therefors In the far-zone field. This cer-
tain combination of electric and magnetic dipoles glves & ratio of
electric and magnetic fields that is the same as the free-space
impedance. It was found experimentally (7,8) that paraboloids excited
by plane wave sources such as horns and waveguide radiators gave much
larger cross-polarized components than predicted theoretically. This
latter discrepancy had been attributed by Kinber (8) to the fact that
the field inside a waveguide is not a single plane wave but a combina-
tion of two plane waves at some angle to each other; and that the
combination of electric and magnetic dipoles does not give y-directed
components in the zero order approximation, oniy.

Cutler's (9) investigations showed that the effect of the phase
variation at the feed due to its physical size has only a small effect

on the gain patterns of the antenna.

*The terms "aperture" and "current" methods are explained more fully
in Section 2.1.



-6

D. Carter (10) formulated the far-zone field of a paraboloid in
the form of an integral. He assumed an axisymmetric illumination and
" using a digital computer, evaluated the fields in principal planes up
to an azimuthal angle of 900.

The radiation characteristics of antennas beyond this angle
(6 = 90°) have received little attention. H. N. Kritikos (11) used an
extended aperture method to compute the field on the axis at the back
of the paraboloid. Hi§ simple method gives resulis that are in agree-
ment with those of Tartakovskii (12). In the Extended Aperture method
Kritikos considered the spherical wavefront of the exciter as the
source of the far-zone field and assumed that the only effect of the
reflector was to block part of this wavefront. However, by virtue of
the approximations, this method is applicable only near the axis at
the back of the parsboloidal antenna.

The only approach similar to the present treatment was that due
to Kinber, but he did not evaluate the integrals and investigated only
the radiation near the axis of the paraboloid and then only in the
principal planes and plenes at MSO to the principal. 1In his analysis
Kinber assumed an electric dipole feed.

In all of the above-mentioned papers approximation methods were
used to deduce the radiation field. No account was taken of the
exciter near-zone field, the effect of the paraboloid's curvature on
the refléctor current, or the effect of the finite size of the reflec-
tor. No exact solution to the problem is known at present. However,

corrections to the assumed approximate field distributions heve been
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derived by a number of investigators.

J. B. Keller (13) introduced the notion of diffracted rays to
obtain a correction to the geometrical optics theory. Keller's method
gives good results in directions close to the edges of the reflector.

Other corrections to the geometrical optics approximations were
made by L. B. Tartakovskii and V. L. Tandit (14,15). However, their
results, especlally the edge correction, are of little practical use
due to the complicated form of the resultant expressions.

The so-called shadow correction (15) in improving the estimate
of the surface current magnitude on the reflector, takes account of
the fact that the field behind an infinite reflector is zero.

The case of the infinite paraboloid excited by an electric
dipole was lnvestigated by E. Pinney (16) and later by I. P.
Skal'skaya (17). Pinney used Laguerre functions in his solution of
the problem and the results were given in the form of double series.
Skal'egkaya's results are in the form of contour integrals. In both
cases the results are usable only in the 1limit of small wavelengths
(geometrical optics approximation).

The above brief summary of the technical literature provides an
idea of the state of the art as far as the theoretical analysis of
the paraboloidal reflector antennas in the microwave range is con-
cerned. The two papers on the wide-angle radiation from the
antennas are those of D. Carter (10) and of L. B. Tartakovskii (12).
Carter's results are not amenable to physical interpretation and
Tartakovskii's results, while quite Interesting, have a number of

serious shortcomings. These are:
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(1) The % dependence of the Tield from the exciter to the
reflector is not taken into account.

(i1) The @-dependence is approximated unnecessarily.

(1ii) The arbitrary form of the illumination assumed, although
mathematically tractable, is not of a form easily realiz-
able in practice. Alsoc, his results are given in a form
vwhere the principal and the cross-polarized radiation are
not easily distinguishable.

The cross-polarization component of paraboloidal antennas excited
by electric dipoles had been investigated by both Jones and Kinber in
& rather limited way near the antenna axis.

Thus in no one single work is the problem of principal and cross-
polarization radiation solved 1n such a way that the results are
applicable to all points in space. Also, no work considers the com-
binations of electric and magnetic dipoles in combinations other than
those giving plane waves.

In our paper we evaluate the [undamental electric dipole inte-
grals. These expressions are then combined to obtain the required
components, whether principal or cross-polarized, of the far-zone
radiation field for the cases of the electric dipcle alone and com-

binations of electric and magnetic dipoles.

1.3 Objectives of this Study

The objective of this paper is the study of the radiation charac-
teristics of a paraboloidal antenna for a nunber of feeds. We wish
to gain a physical insight into the polarization properties of these

antennas. We also wish to obtain solutions of this problem without

resorting to the gpproximation introduced by the above-mentioned
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workers, so that the results will be applicable throughout all space.
In particular, we want to investigate more fully the polarization
near the antenna axis and, if possible, deduce simple formulas that
describe the polarization structure for the feeds considered.

The effects of variation of the ratio

Focal length (f)
Aperture Diameter (D)

on the cross-polarized and principal polarizations for the following

two cases will be investigated:

(1) Varying f , keeping D constant

(ii) Varying D , keeping ratio f/D constant.

In his paper, Jones shows how a plane wave is constructed by a certain
combination of electric and magnetic dipoles. Other combinations of
these dipoles have not been investigated until recently (18). We shall
investigate the effect on the components of the paraboloid surface
current of the variation of the relative magnitudes of the two dipoles.
We shall also look into thé possibilities of synthesis of the required
combinations of the dipoles by the use of waveguide feeds.

Lastly, we will explain from our theoretical results the
unexpectedly large cross-polarization observed by Jones in his experi-

mental investigations of a paraboloid excited by a horn.



~10=

2. THEORY

2.1 Introduction

In this paper the general microwave antenna problem is first
formulated. The basic formulas obtained are then approximated into
forms that are practically tractable. From these approximate formulas

the two most commonly-used approaches, nemely the "aperture" and the

1"

induced surface "current" methods, are discussed. Assumptions common

to hoth methods are:

(i) The reflector is considered to be in the far-zone fileld

of the feed antenna.

(i1) The pattern and hence the current of the feed antenna is

not affected by the presence of the reflector.

(111) Plene-wave boundary conditions are assumed to hold, i.e.,
the radius of curvature of the reflector is large compared

with the wavelength of operation and the induced current
on the reflector is given by J_ = 2(n x Elnc)
Hinc

. Here
is the incident magnetic field of the feed.
In all cases the current on the shadow side of the reflector is assumed
to be zero.

In the induced current method, the currents flowing on the con-
ductors are found by the use of the above assumptions and the
radiated fields are computed by taking these currents as the new

gources.

In the agperture method, one further assumption is made that the
energy travels between the reflector and the aperture as predicted by
the geometrical optics. This means that the currents or fields at the

reflector surface may be projected onto the aperture with the
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appropriate phase factor. It is then obvious that one cannot expect
the diffracted field computed from the aperture distribution to give
the correct result anyvwhere, except near the axis of the paraboloid.
The correct surface of integration is the reflector surface. For
shallow reflectors the aperture approach should give comparable
results for angles not necessarily small.

Thus the superiority of the surface current method over the
aperture method lies in the following facts:

(1) Correct region of integration assures, within the
approximations made, the validity of the results

everywhere.

(i1) Methods may be devised to compensate for the effects
of the reflector edge, curvature, and the near field

of the exciter.

(i11) All the cross-polarized components of the far field may

be determined at all points in space.

2.2 Formulation of the Microwave Antenna Problem

The rigorous solution of antenna problems presents great mathe-
matical difficulties. Only a very small number of cases has been
solved exactly up to the present time. The usual method of solving
the microwave antenna problem is to divide it into two--the internsl
and the external. The internal problem consists of finding the field
at some open part of the antenna stfucture (the aperture). The
external.problem reduces to the determination of the radiation field
at large distances from the antenna for a given field distribution at

the aperture. Before considering the two problems In detail we
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describe a principle that will be of use in the later analysis.

Principle of Equivalence (19). As a rule, in antenna theory

the electromagnetic field is computed from either a given distribution
of currents and charges or from the field given at a defined surface
(aperture). The principle of equivalence may be stated as: "For
electromagnetic fields established by given sources, the surface cur-

rents and charges and the tangential and normal components of the field

vectors E and H at the surface are equivalent". Stated mathemati-
cally,
m
axE = I
nxH =-J:
. (1)
e
2 E—_Eps
i m
neH =-20p

On the surface of an ideal conductor these reduce to nxE=0 and
n - H=0 . In general, however, when the defined surface passes
through a dielectric medium, the equivalent magnetic surface currents
and charges must be taken into consideration.

Formulation of the Problem in Two Parts

Consider the system depicted below (Fig. 3).

S APERTURE
\\\ S .
S[ : Vi \ 2
| L )
!
REFLECTOR 1Sa’S~—FEED ANTENNA
|

/

7
-

Fig. 3
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The whole space is divided into two regions. Iet the antenna region
be Vi and the outside Va . The two regions are connected through
surface 82 . The internal region is enclosed by the surface

g = Sl + 52 . A known current distribution on the feed antenna is
assumed. We now divide the problem into two parts, the internal and
the external. The internal problem entails the determination of the
fields inside volume Vi and the external the finding of the fields
in the volume Va . These fields are mutually coupled and this coupl-
ing is expressed by equations 1. The vectors E and H satisfy
Maxwell's equations in the entire unbounded space and the tangential
component of E vanishes on Sl . Also, the tangential components of
E and H remaln continuous across the dielectric-air interface. The
fields, of course, satisfy the edge conditions at the sharp edges of
the conductors and the radiatlon condition insures uniqueness of the
results. The basis of the method is the solution of the internal
problem neglecting coupling to the external problem through the surface

3, . Fleld values on 82 are then used to solve the external problem.

2
In the solution of the internal problem the conditions are usually
idealized. ©Since the surface S encloses'all the sources, no foreign
currents flow in space Va ; and the external fields are due to
phenomena in region Vi or their resultant on the surface 8 . We
are novw free to choose the aperture of the antenna. The fundamental
difference between the direct (current) and the indirect (aperture)

methods is that in the former one considers the fields or currents at

the conducting surface Sl y while in the latter a further
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approximation 1s involved in estimating the aperture field. This
further approximation consists in assuming that the energy travels
in straight lines between the reflector surface and aperture plane,
and consequently limits the accuracy of the results to certain
directions. For any arbitrary distribution of currents and charges
in space, the electric and magnetic fields E, H are given by the

-iwt
following expressions (20), assuming e time dependence.

. 1 e
- V@ +iwA - T VXA

es)
Il

Iz
]

vXé-uv¢m+imuée (2)

e
and where the functions @, A, ém and A~ satisfy the equations

Vg + K8 = - ofe

VA KA - -ug

V2¢m+ k2¢m = - pm/u

VaSH k4% = —eg” (3)
B=VxA VA= iopued
D=-vx é? v . £e= iwLLEQm

where pm is defined as a magnetic charge, i.e., V « B = pm and

m
J is defined as a magnetic current. These quantities satisfy

Maxwell's equations

]

VxH=Jd -1wD V+:D= p

VXE=1iwB V- B= O

and
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- 1D

m
VxE - g + iw@
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ic

|

The solutions of the inhomogeneous wave equations are of the forms:

1>
0

v

I
I

where

From equation 3
i
- V@ =— V(V-.A
P=gen VOV B
and

i e
"V < s VA

Substituting this into equations 2, we obtain

E

H

i fc_T_(_r_') G(|z - z*]) av'

‘o [P ae - ol av
v

f
F i
| —
<
b
>
+
[ e
€
| m—
=
+
A
<

il
)
€
[ o |
=
+
A
<
=
—
]
m I~
—
<]
4
b>(D
-

Cast these into operators forms (Ref. 20, p.2h)

E =iw(3+L§W)-é—
- k

This may now be rewritten as

(L)
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ik|r - r'|

1 =" =
E:iwu[[(3+—§W) -e—-————-——:———} '_{(E') av!
2Lk ba|z - ']

Jix|r - r'|
Jf (Vo) x I(x') av' (7)

hﬂ]r - |

since

oIz - x| REEEEN

- - t
Vhalz -z V z -z

Then we may rewrite

W) olrr') = (a+ 3 9V) 6(nr)

with the double gradient now operating with respect to the primed

coordinates only.

In the far-zone defined by

r>r' and kr > 1
vhere r = yr - r and r' = yr' - r' , the following approximation
is valid ‘
(£ - 5'{ = \/r +T' =2r « 1
vy r-e I
S =

where e. = _1_‘_/1' .
' ik(|r - 2']) ik(r -
Thus, replacing e - - y e

1

by 1/r , we obtain
|z -r']
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1 eikr 1 -ike + r!
U+ —= VV) G(r,r') = U+ —=—=VV)e T
2

eikr -ike . '
=(u=-e_ e ) —~—e
= =r =r' lLgr

Since (u-e.e) -d = J-gle -J)

1]

e X (e x )
we finally get the expression for the far-zone electric field:

iw ikr ~ike -r!
T x[ 8. % e T J(rv)av'| +

E(E) = Ly Zr
v
e JIET i ike - r'
A
or
ilop  ikr f ,
B -[- 12 ) e x| {o, x 2w +
v .
1 m -ike . r'
+ = (5_')} e T av' (9)
o)

vwhere cop = \/pu/e = zZ

In problems where J's are surface currents, we substitute d - is
and Em e'gg and the volume of integration becomes a surface of
integration. The above derived formula for the far-zone field holds
for any regular surface, i.e., surface having a defined tangent plene
at all points.

.If the surface of integration is a conductor, then £$ =0

and we have the current formula:
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; i -ike . 1!
iop e . =
E(r) = - ———e_x (e, XJ J (e T Tav) (9a)

S]

m

If, however, the surface of integration is Sy 2 then {S must be

taken into account. Using the principle of equivalence, we substi-
inc m

tute into equation 9 for J_ = -(n x ) and I, = (pn x E) and

obtain the expressions for the far-zone fleld:

Lan eikr inc 1 'ikfg'ﬁ'
- - 1
R e I P e Bt Lt
Saperture (10)

In our analysis the incident fields will be due to electric dipole
alone and combinations of electric and magnetic dipoles. The
excliters will be assumed to be at the focus of the paraboloid of revo=-
lution.

2.3 Approximate Solution

Consider the paraboloid shown in Fig. 4 with the origin of
the rectangular coordinates at the focus. The exciter is assumed
to De small relative to the wavelength of operation, and located at

the focus.

REFLECTOR (R)

’/—EXCHER

2

Fig. 4. Geometry of Paraboloid
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We wish to compute the current on the surface R of the reflector by

assuming plane-wave boundary conditions
J = 2(nxH (11)

i.e., employing the usual current method.

Iet be a unit radius-vector from origin to a point

£,
on the reflector surface,

- 2 H : * ' -
g, = sin ¥ cos @ e +sin ¥ sin @ e,- 08 g, (12)

Also, let n De a unit vector, normal to the paraboloidal surface at

the same point as for SIS

v \ ¥
. — -gin — - gin = s8in @'e + B
.. 1= -sin 3 cos @ e, n 3 ) g+ co

¥
2 -2

(13)

Expressions 12 and 13 are derived in the appendix Al.

The relatlion between the E and H fields in the radiation

zone is

inc inc
p XxE )
-0 —

I
=3

( (14)

where 1 1s the free-space impedance. Then substituting equation 14

into equation 11, we obtain

J = [n X (Po Xginc)} .

= o

By vector expansion formula this may be put into the form

2 inc ine
=@ BT e - ET

but



- - ¥
(n - Eo) = - cos 3
_=2 inc ¥ _ine
Jg =5 (@ E7) p +cosZE (15)

specific types of feeds will now be considered

3. ELECTRIC DIPOLE FEED

3,1 Formulation of the Dipole Integrals

The far-zone electric field due to a small electric dipole at

the origin of coordinates and directed along the x-axis is given by
Eoelkr 2 2 2
E=— [(cos ¥ cos @' +sin ') e
. . 2 s,
sin 29’ sin“y sin 2y cos §
e + e
2 -y 2 -z

(16)

The paraboloidal system of coordinates is given by (21)

X = ap cos @

y = ozBsian
z = % (G?— 52)

2 2 2 1, 2 2 ‘
r= /x5 v+ 2 =-2-(Ot+6)= p+ z (17)

The equation of the reflector in paraboloidal coordinates is

p = B

o}

0 €a<qu
e}

For points on the surface of the paraboloid, since B = BO , We

have



a? _ a2
cos ¥ = - Z
o+ BO
2ap
sin ¥ = o
a + B
sin % = =
o +B
p
K o)
CO8 = = (18)
2 2
Vo s gl

The current on the surface B = B in paraboloidal coordi-

nates is then

1kp°
MEO 20 5 2 . 2 ,
gs = _ﬁ_ e {ﬁb(ﬁo - a cos 2() e, " Boa sin 2¢ Ey
ikof
—
- a(ag- Bf) cos ¢l§.z} - (19)

(F+ 35)5/2

where we have used equations 18, 16 and 13 in equation 15. The
far-zone field due to these currents may now be found by the equation

9a, where is is the surface current density confined to surface

B -8B, -

The radiation vector N 1is defined as (22)

a1

-ik e * ¢
N = e T J(r') as’ (20)
S
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!
€
T
[
5

i.e., E=-;—¢ e *%{e xN) (21)

=

=

&
I

o= B
e 7! :l:____._o_cosg_aaosinGCOS(¢—¢')

and element of area d4dS' 1is

/2. .2
| R— [0 t
s ap, + B, dodg

Angles @, ¢, ¢' are defined in Fig. 15 , Appendix 1. The radiation

vector, equation 20, becomes on substitution of these values of

'g' and ds?

2
iks
hg 2O(l+cos e) 2 % o 5
N = —2E e Jr [BO(BO - cos 2p9') e,

3=0 a=0

2
- B, @ sin op! g " Ot(Clg- Bi) cos ' Ez} X

ikof

51~ cos 6) - ika B sin & cos(f-¢')
« & o ada dg!
2 202
(@ +8.)
2
1Kp°

Then the radiation vector may

L s (1+ cos @) Qﬁae

let N _=-—E e . 2
0X 17 © 2

Bo

be written as
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2n %
N = ff [(53- Oégcos 2¢t) e Q’esin 2" SY -
Em/ﬂ 0 0
ikO?
LA RN 2
- X (a - Bo)cos @ ey} e
o da 4@’ (22)
2.2
(a+ B,)

We now write the radiation vector in terms of its rectangular com-
ponents

N = N.e +N e +N e (23)
- X =X y =y z ~z

We will consider each component separately. The component Nx will
be considered in some detail; the other components are derived in a
similar way.

The integration with respect to @' will be carried out first.

We have (23)
-ix cos(¢- ¢') (A + 2 f:o (_i)n (A) cos n(¢ -¢')
o =3, N In

Substituting X = ko 50 sin @ and performing the integration with

respect to @' , we get for N,

2
N aQ, ikg - cos0)
2
N = _%X_—E Qﬂf 52 J (Z'a)+ dcos gJ,(Z2'a) = @ do
X o o 2 2 2,2
ena /B % (d” + B))

where Z' = kBOSin e .
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Now let a =t , then equation 22 may be written as
o]

1 iwt2
L 2 2 2 ] e t dt
= t t
N, NOX 50 Jr{ﬁo JO(Z )+ &t cos og JE(Zt) (aztg 2)2
o b+ By
where Z=kqQpsine
00
2
w=k Qb(l- cos ©) .
Setting ao/BO = g , we obtain
2
1 iW‘;
2 2 ] e t 4t
= + 2 ——
N, Noxj[so JO(Zt) b o cos ¢J2(Zt) - 555 (21)
0 (1+q %)

These integrals will be evaluated in the following pages in exact and

approximate forms.

3.2 Exact Evaluation of the Dipole Integrals

Congider the integral

iwt2

1 ol

2 J (zt) t dt

SO T (25)
0

2 2, 2 iw .
If we let Zt =V, 1 =q /2 , ip = =5 » then equation 25

7
becones
. 2
7 1p.V
Mgy - 1[ e 2 Jo(V) vav
o Z2 A 1+ n2V2)2

Integrating by parts we obtain the double series
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iw
2 © o 2 m
I(l)(Z) _¢ , }: 2: (2q % (n+1) ! (min) ' (=iw) " JIpne1 (2)
e} 2
(1+q°)° n=0 mw=0 1*q n! mt ZtOHL (26)
Now 2
(2) axél) I e 2y L(2zt) 24t
) (2) == N
o (1+4q £ )
1w
_ e 2 X (2q2 fl (n+1) ¢ (mn) (i)™
(1+q )2 n,m=0 l+q2 ni ml
J 1
min+l M0+l
X m+n+2 Jm+n+l
Zm+n+l 7,
' = w min+l
But Jm+n+l(z) Jm+n+2(Z) * 7 m+n+l(Z)
Thus,
EE 2.n m
z 2 ! (-
I(2)(Z) = e” @ oo (2¢7) (n+l)!(mn)!(-iw) Jm+n+2(Z)
1 (1+69)2 120 =0 (L+q™)® nt my 7o+l (27)

Similarly, all the integrals of the form
1wt2
5 s
Jp(zt) t at

22
(14q £ )7

S)(Z _

O b

1 , .
can be derived from Ié )(Z), equation 25.
Wé are nov in a position to evaluate the radiation vector com-

ponents (see Appendix A2).
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From equation 24 we then have

N, =N, [’Bi Iél) + o? cos 2f I (z)]

X
Similarly,
N =N of sin 2¢ 1(3)(2)
y ox o 2
and iq
0 2 (k) 2 (2)
N, = 3 cos @ N . [06 I /(2) - B,
Also N =N u&q
X 00X X
N = N_ sin2g N
Yy X ¥
N = N _cos¢ N
z X Z
1 2
Here Ié ), Ig ) , ete., are expressed in the form of a series and

these series will converge as long as factor £1, i.e.,

7
g tan % £1 , or © é’Gcr , where

B
-1,1 -1 o
= 2 % =)y =2t ——
ecr an (q) an (a )

In the region © > ch , the shadow region, the integrals will have

to be evaluated in inverse powers of w/Z .
Thus in the range of © where =n 2 0 >'ch » we start with

the original integral, equation 25:

2

iwt~
1 e 59, (zt) t dt

Iél)(z) - Jf (14 q2t2)2
0

Substitute, as before Zt =V , ip=—=»xr, N =q /%
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Then
ipV2

Z g% 3_(2t) Vv av

(1) 1 f ©
T Z) =
fo) ( ) 2 A (l + 112 V2)2

Integrating by parts, we obtalin the series

1 V2 7
()% 1 o o (2¢7) (m+n)!(n+l)! Jm(V) e
I, =2 12722 = |
0 7z (l+l'] vV ) m=0 n=0 (l+T] v )n Zg-n m! nt )\'n(xv)m ]O
iw
- 5? i? (2q§)n (n+l) H(men)! e 2 75 (2) -
m=0 n=0 {l+q )n+2 n: m! (iw)m+n;1 m
R S g? ﬁ%) (2q2)n (m+n) ! (n+1)! g
(l+q2)2 m=0 n=0 Em n! (ml)e (iW)m+n+I (28)

For ©>6_ , |iw| >> 1 so that it suffices to take n =0 .

iw 2, .
(1)* o 2 1 @ Jm(z) eZ /2iw
I = —77r = - (29)
(1+q7)" mgo (1w/2)®  1w(14q5)?

o]

which is & rapidly converging form. Here the second term is obtained
from the summation of the corresponding series.

The other integrals for the range of 6 , ©.p <o =, can

(1)

*
be evaluated from IO (z) by differentiation as before. Thus in

the range =n =20 > ch we obtain for the radiation vector components:

*

N; = Nox‘{Bg Iél)* + ai cos 2¢ IéB)}

O
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2 *
N*¥ = N o sin 28 1(3)
y oxX © 2
iy _« * *
* ox_ O 2 _(4) 2 _(2)
= e——m—— -
and
1
_ o § o2 (b 2 (2)%
U¢?'— Bo {05 Il Bo Il
ete
Also % %
N= e W +e N +e N . (30)
3 )%
Values of IéJ) and their derivations are given in Appendix A3.

Some of the series are expressed in an alternative form in Ak.

3.3 Approximate Evaluation of Dipole Integrals.

SRECI

can be simplified further (7). In the case of interest « varies in

For ease of computation the integral forms of I

the range 0 < « é’ob € BO or t £ 1, so that the expression
1

2
(1+q” ¢
approximated by a polynomial to a high degree of accuracy. Using the

AN will vary slowly with +t . Then this expression may be
)

least squares method (24) of approximation, we express the function

1
O/ o .2
(1 + O/BS <)

2

. 2 h
as a polynomial A.O + Aet + Aht . The constants Ab’ A2, Ah are
functions of 05, BO and. will have to be computed for each pair of

values (ab’ﬁo)'

Consider the integral, equation 25, again
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i
1 2
(1) e JO(Zt) t dt
I Z) = .
D@ - | —

Substitute the polynomial expansion for the denominator and integrate

in series, to obtain

o0 .
Iél>(Z) = {(Al + A, +A) % éé% (- %; " 7.2 -

2oarza) Y (m)(-ETs (2) 4
= 5) el i z m+2
Z m=0

ha o X L
+ —-Z-l?t I>r;0 (m+1l) (m+2) (- %)m Jm+3(Z)} &2 . (31)

Similarly for Ié3)(2) 5

iW‘tE 5
L 2
J (2%) e t~dt
1§3)(z) = - RN
0 (L+qt)
1 X ( iwm
= ¢ (A Ayt Al;) 7 mz=o - "'Z') Jm+3(Z)
2 (g en) 3 (ma)(- 2%
- ;5 At 24 g::o(mnu ) (- ) I 7Z) +
hAh X | iw\m 1-21
+——Z-§ InZzo(m+l)(m+2)(- —Z-) Jm+5(Z) e . (32)

We may now compute radiation vector 1\TX ; gilven as before by
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N =N {Iél) ai + ai cos 29 IS)} =N (/f”

The remaining radiation vector components are found in the same way.

The argument of Jm(Z) varies over a wide range of values. For
large values of Z , Jm(Z) converges very slowly so that if w/z > 1

questions of convergence arise, i.e., for the range where © > Gcr .

In this case we evaluate the integrals in inverse powers of w/2 and

ve get the expressions

1 iwts

(1) (1) 2 _ 2 b
I/= 1) = e JO(Zt)t (AO+ AtT+ A tT) at
0

e

1w

iw -
= { _ L(AO+ At Ah) é?;o (%%Z)m Jm(z) -

o L -1\
— (A 2a) ;éo (1) (G77) T,(8) +
LA 00

L -i B
> (m+l)(m+2)(;,72) Jm(Z)]

+-————
(iw)2 m=0

1 D Zm -1 \m
Tl 3 m (w/Z B
m=0 2 m!

2A 0 m R
2 (m+1) 27 -1 \m
sy &2

m=0 2% ! /2 *
Lha fes) m
b (m+1) (wr2) 7 -_i__)mi{
i (1w)° mZ=o o™ m: (W/Z (33)

The series of the form
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S(z) _ i? (m+1) (w+2) + « (min) 2z
n m=0 2" (m+g)! (iw/z)™
may be put into the following closed form
- z/21g
Siﬂ) =T Tooi (2" e ) (34)
Z" oZ

for n2 4 and B = w/Z . For the derivation of formula 34, see
Appendix A7.

The radiation vector components are given in Appendix A5 for

0486 <0 and in Appendix A6 for = > @ > © .
cr cr

3.4 Computation of Results

The feed antenna is usually linearly polarized in some direc-
tion and the polarization of the composite antenna is referred to
this initial polarization. Field component polarized in the same
direction as the feed is called principal polarization, and the com-
ponent at right angles to it is called the cross-polarized field.

In our case the electric dipole is directed along the x-axis
so the polarization components will be related to this axis.

Introduce a new system of coordinates (r,@}ﬁ) as shown in
Fig. 5 with the polar axis along the dipole (x-) axis. We wish to

express the new radiation vector components Na and Na in terms

of N , N and N components. We have
X Y z

Ny = - Nxsin © + cos 5(Nycos'5 + stin'ﬁ)

- Nysin ¢ + N_cos g .

Ks
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REFLECTOR P

$ °F

Fig. 5. Dipole Coordinate System

The relations between the (6,%) and (6,6) systems (see Fig. 5 )
are -

~  8in © sin @

cos 8 = sin 0 cos @ cos @ =

]

\/l - Sin29 cosggzﬁ

~ cos ©

g = >
2
\/l-sin e cos 0

~

2 2
sin © = \/l— sin © cos § sin

From the cxpressions for the field given by equation 21, we have

E ~ (g, x (e, xN)) (35)

If we write
l\{:grl\lr +§5N5+_e_§51\15

then substitute into equa'tion 35, we get

E ~ - (351\15+§5N5) (36)
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so0 that components of the field Ea* and Ea' are proportional to

N'gv and N@" y respectively, i.e.,

By ~-¥ By ~ - Ny

or

E(S) . lop oHer - N_sin G+ cos 8(N cos § + N sin #) ¥ (37)
or X Yy y

. ikr
iwp e - ~y -
E = - Nsin ¢ + N cos 8
¥ o { Nosin § + N, ¢} (38)
Here Ea 1s a new component of the electric field that did not exist

in the original feed polarization.

Now Ea‘ may be rewritten as

iop elkr

Eg, = —— {; odgcos o + L/Z3Sig ° } sin 2¢ (39)

where a&;'s are defined earlier.
To avoid cumbersome calculations, the electric field compon-
ents are normalized with respect to the maximum value of the princi-

pally polarized radiation, i.e., the maximum of E@) which is given

by
B top ™ [
e -0 b *lo=0 (37a)
| W 2
] i o)
‘ G: O [o]

where
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1 1 ) in the exact solution of dipole
A =§H+f integrals, and,
A i (A + "o + fE-) in the approximate cas
=3 A =+ 3 n D e.

Then for any point in space, the normalized expressions for E@' and

E@’ are given by

1A
By, = S {} (1- sin29 cosg¢)aﬁf +
AB? \/l- sin0 cos2¢

2 2 2 . 2 2
i i i l-s8in © cos
. 8in @ sin 20/ 040 . 5in 22 cos ¢04§>} i V( i cos @ (40)

2 ¥ Ek.ai A

iA
e L sin © .
Eah = 2{;45005 e - a%z ——z;——} sin 2¢ (41)

1.-sin20 0082¢ ABO

where A = —59 (1 + cos 8) and

2 2 ~
V&-ﬂngcmg¢_ i sin ©
i 2 = D
2k A 2k A
o} o}
is the contribution of the dipole fleld to the principal field. In
equations 37a and 37b we have neglected the effect of the dipole field
on the maximum lobe, since it is relatively small.
In the forward direction 6 < ch the principasl field without
the dipole field contribution will be called the scattered field. It

is due to the reflector currents alone and is given by



=35~

1A
ES/S) = — & S 5 {-(l— sinEO cosEQS)dig +
°n A8 V1 - sin“e cos Y

., 2 2 . 2
L 5in (o) ;in 24 o0 043 , Ein Eg cos ¢ 042 } (42)

The radiated fields are computed from formulas 40, 41, or 42
by using the appropriate values ofc/yqs . Care must be taken to use

the correct expression for the ranges 0 € 9 € .p and ch <8 <.

3.5 Theoretical Results Obtained for the Case of a Reflector Excited
by a Small Electric Dipole

3.5 (1) Antenna Gain in Principal Polarization

Let us start with equation for E@h . The maximum of Eﬁn

occurs along the axis of the paraboloid, i.e., at ® = 0

ikag
5 )
Eah o E—_E- g_ Bo Iél)(z)} - ——EE_—
e -0 Aﬁo e -0 2kaol\

From equation 26 we have

00 2
I(l)(Z) B 1 S (2q )n (n+1)!
=0 2 2
° © =0 (L+qg ) n=0 1+g (n+1)t ol
m=0
oL
2(1+4q)
Hence
I~
1kBO 5
B ie ko
%) 0

2
Edipole (L +4g)
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Then the gain G with respect to a small electric dipole is

Bas
S 2
G = 10 log 10 " (Ed' )
or 1ip
kagz kai 5
G = 10 log,. n ) +1 - sin k B (43)
10 2 2 o}
1+g 1+q

where 17 1is now the efficiency of the antenna defined as the ratio of
power incldent on the reflector to the total power radiated by the

dipole. It is given by equation 7.26 of reference (19),

3

cos © + l cos>” @
cr 8 c

ol

1
N o= '§+ r
The sine term in equation 43 is due to phase angle between the para-
boloid radiation and direct radiation from the dipole. For large

paraboloids

k OP >> 1
0

Then the gain is

2

2
G = 10 logyn (—3) (bs)
1+g

Usually we have g € 1 . For ¢ < 1 , we obtain approximately

2 2
G= 20 loglo(k ao) - 8.6 ¢° + 10 log;, 1

Fig. 10 shows graphs of principal polarization patterns for wvarious
apertures.
3.5 (ii) Front-to-Back Ratio

This is defined as the ratio of power radiated per unit solid
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angle in the forward directicn (6 = 0) +to the power radiated per

unit solid angle in the back direction (@ = =n).
From the exact evaluation of the integral as given by equation

26, we find, using equation 40

> 1KkB°
1ik Oto e
E§ 0=0 N 14 2 - X Edipole (k&)
= 4 0=0
Similarly for E§ at 6 = n , from equation 4O
: ol i
2 o o ) e
- _ o (Eq ) (n+l)! e _1|xE
®lo=xn | (14¢° fZo 1+a°  (2ik ozi)r”l di
(47)

2
If k a is large, one may take the first term of the series in
equation L47. Actually, the seriecs may be summed in a closed form. To

this end let us consider (25)

( q2 )n (n+1) g

o
s(v) = ), (= (48)
n=0 1l+g ik ai)n
where S(1) 1is equal to the infinite series of equation 47.
Integrating equation 48 term by term, we get
00 q2 2 n
[S(y) ay = | Y (Z) —L—, |y (49)
n=0 1l+q°~ (ik ao)

This sum converges as long as

| &
2 2 < 1
l+g iko:o

Now

e=0
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2
g

< 1
l+q2

and

2
ik'ao} is a large number.

2
If we assume ¥y < k(zo then we may sum the right hand side of

equation 49 as an infinite geometric series, i.e.

fs<y> ay = —5

1.4V

ik ai(l + q2)

From this
3 y
s(y) = = ( )
) - & T
o o1
- 2
(1 -ay)
Hence 1
s(1) = —
(1-4)
where
2
A = __g.____ = - 1B

ik P(L+a°)
)
Then from equations 43 and U4 we obtain for the front-to-back ratio

F/B , the following expression:
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2 2.
B (]2 (kof/(1+a7)) % 1= (507/(14q°)) sin 187
F _ |“énlo=0|
B~ 2
» 2
Eonlgzﬂ (1+ 12 K) + 575 5 [(l-Bg)cos ko§+ 2B sinkogl
(1+q7) (1+a7) (1+B7)
(50)
ko 5
2 2 . sin kB
ko 2 o]
o} 1+g
= el ) P (51)
1+4g 1+ ——p p €08 kol
l+q )

From this approximate form, equation 51, for the F/B ratio, we see
2
that the effect of kob on the ratio is more important than that of

2 2
kB, » For small q and large ko the maximum F/B is

max F/B = G ,

where G 1s now the galn in the principal polarization, but defined

as

3.5 (iii) Antenna Gain Versus Focal ILength for a
Constant Aperture D .

If we neglect the contribution of the direct radiation from
the electric dipole onto the maximum lobe of the paraboloidal antenna,
then the gain is given by equation Lk.

it Go , The gain for f/D = 0.25 , is taken as reference--
fo being the focal length of this reference antenna and D the

aperture diameter-~-then for constant aperture D and focal length

=n f we have
o]
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and (l‘l)

™
o
i
OQ
=
i
™
o
B

Where

Then the ratio of power gains for the two antennas of same

aperture and the ratio of thelr focal lengths n , is

Gn
Rn=§—
o
n 2
~ A )
l+n
This ratio Rn has a maximum value at n = 1 . However, & plot of

Rn against n shows that it is not a symmetrical function of n

about its maximum at n = 1 . This is shown analytically as follows

R, _ 2(1- n2)
dn 493

let n=11+28, &>0 . We obtain

an an 3
B — - — =608 >0
dn 1+3 dn 1-5

Here we see that Rn decreases slovwer on the slde n > 1 . This is
due to the fact that the 1llumination of the reflector of focal length
greater than f is more uniform in the E-plane than that of the

o

reflector of focal length smaller than f_ . This uniformity of
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illumination also explains some of the experimental results of Jones
where the half-power angle in the E-plane tends to a constant value

with the increase in focal length.

3.5 (iv) Cross-Polarization

Because of the directions of the current components on the
reflector, one would expect that the cross-polarization component
near the antenna axis will be mainly due to the y-directed currents.
On the basis of this observation we shall investigate the position
and magnitude of the cross-polarization maximum near the main lobe.

(a) The position of the cross-polarization maximum near the
axis will now be found. Using the results of the approximate analysis
and assuming Z very small, i.e., near the antenna axis, we have

approximately from equations 4l and 31, 32, etc.

I5(2) 0, (Z) 55(2)} (52)
jieg ~{C - C + C 5
¢n‘g_)o { 1 z 2 2 3,3
where
cl = A.O + A2 + Au
02 = 2(A2 + eAl‘_)
03 = 8Ah

To determine the position of Eﬁh maximum, we differentiate it with

respect to © and equate to zero. Accordingly,



OEx J J J
n 3 L 5
L {2[01—-—--0 40 -Z-,I} -

06 72 24 3
J J J
b 5 e} }
-| Q. = =C_ =+ C_ —= = 0 (53)
[ 12 2,2 3.3
Z\n 1
As Zz-0 (6-0), J(2) ~(35) 57 ,and (Z~kaps) .

Substituting these approximate values into equation (53), we

obtain
oE
6n—u ‘YZ—YZ3} = 0 (5"")
06 1 2
where
C C C 7
1 2 3
= 2 -
L8 [1?8 16 513 | ¢
'Y‘ = —3_—-— C -E§+_C—3_-
2 Lilg 1 10 120_

From equation 54 we find

T
7 = =
"

Since Z ~ kabﬁosin © , we have for the angular position of the maxi-

N

mum the expression

T

sin 6 == © =~
rad ka B 15
[ee]

For a small change in the range of 06 y B we expect that constants
- o

Ao’ A2 and A)+ s and consequently constants Tl’ Yo vary only slightly.

For D -~ 30A , we thus have
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(55)

For a given constant aperture, if the ratio of focal lengths of two

paraboloids is n , where

n [¢] n —
I N
n
and sperture D = QBBO = const.,
then if
NONE'
oo
g(n) L _ L
rad n) (n) =
Ve " Rap,
e
A
b (o)
= = 8 ;» & constant.
kobﬁo rad

Here O(O) and G(n)

are the positions of maxima for two different
focal lengths fo and fn . Hence the angle at which the maximum of
cross~polarization occurs is a function of the aperture only, and is
independent of the focal length. It tends toward the paraboloidal

axis with the increase of the aperture size. As a check we compute

the angles of the cross-polarization maxims for two apertures

_ o5, _ 8 = Y2y o 0
D=25.80 (for A=3cm aq =B =6.2cm7%) @ o = 2T
B 1/2 o )

D=37.2> (and A = 3 cm, a =B, = 75h em™ 7)) @ ~ 1.9

-

These values agree very well with those computed from the complete
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expressions and plotted in Fig. 6.

(v) We now investigate the variation of the maximum of the
cross-polarization with foecal length for a given constant aperture.
The approximate formula for the relative magnitudes of the maxima

near the antenna axis (i.e., © is small) is given by

elAae cos © Cc C C
5] 1 2 3 2 .,
Ea ~ 7S s T Z2” sin 20

o}

sin 2 2 2 2
- ————_g 1 7 (kabﬁo) gmax

E@n A
But
L
gma.x -
kogﬁo.
therefore,
16 sin 2
%], ~ P To) o2
Where
c c C

(ko2 73 _
LTl v T d e /B, -

When o =B, i.e., £/D = 0.25 , we obtain the largest maximum

of the cross-polarization component. Its magnitude is given by

16 sin 2¢ 2
46 sin 24 (a® = 1)

o~
and to the firat order is independent of the aperture size. This

magnitude is, of course, given relative to the maximum of the princi-

pal polarization so that it increases in absolute value with the size
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2
of the aperture. However, for a given constant aperture D =20 =
= hfo and a ratio of focal lengths n , the ratio of magnitudes be-

tween the two maxima is given by

2 2
R = Eﬂ = % 1
n“qz”;?qz’
or o] o]
R, = 1/n2 (56)

For example, when fn/fO =2 we get
=-12 db .
20 l,ogl0 Rrl
This agrees with the results in Fig. 7.

3.6 Interpretation of the Results on the Basis of a Simple Model

Now we shall consider a simple model to explain the observed
experimental results, namely, (i) the maximum of cross-polarization
components approaches the paraboloidal axis with the increase in aper-
ture size, and (ii) the magnitude of this maximum decreases with the
focal length for a glven constant aperture. The purpose of the present
approach is to give a physical insight into the mechanism by which the
cross-~polarization pattern is generated.

From the considerations of the surface current on the reflector
we find that its y-component lincreases monctonically from the apex of
the paraboloid to a maximum at aiax = 2&5 = 4f . This places the
maxirum outside the aperture planes of the antennas under considera-
tion and consequently the largest value of the y-directed current

component will occur at the rim of the reflector. The y-directed com-

ponent of current that flows on the reflector surface is due to its
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curvature.

Because of the symmetry of the problem, one vwould reasonably
expect that we can get a rough approximation to the currents on the
paraboloid by postulating that the y-component of polarization is gen-
erated by four current filaments equally spaced at the aperture plane
and at angles @ = 90O to each other. These four current filaments
o}

o]
may be considered as four dlpoles placed at ¢ = h5o, 1350, 2257, 315

and directed as shown in Fig. 8

X
~. I}
—
Yy 4 D
-—

APERTURE PLANE
Fig. 8. Model for y-directed Polarization

in the Forward Direction

The resultant field due to these four dipoles is given by the follow-

ing expression
A elkr

SO .2, .2 kD . = ] _
Ey«/Est e \/1 sin"® sin @ {cos[ 5 sin 6 cos (@ E)

- COS[EEQ sin 6 sin(g - -E-)]} (57)

Here \/i - sin29 sin2¢ is the field of each individual dipole, and
the curly bracket is the form factor of the four equally-spaced point
sources with their different phases taken into account.

To find the principal maximum of the cross-polarized radiation

from the expression 57, we assume that the dipcle field is uniform
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for small values of © , i.e.

2 2
\/1-singsin¢ ~ 1.
The stationary values of equation 57 w.r.t. @ are given by the

expression

OF kXD sin ©
_a_g ~— {cos(;ﬁ - %:-) Sin[—k%)- sin 6 cos(¢§ - %)] - |

- sin(p - %) sini:%? sin © sin(@ - %)}} = 0

(58)
By symmetry, the maxima will occur in the planes @ = n/4 and
@ = 3n/4 and hence we consider the particular plane @ = n/k : 1In
this case equation 58 reduces to
OE
_ KD . (kD _, )
% = sin( 5 sin 8) cos ® = 0
Near the axis © =0, cos @ ~ 1 , thus %? sin(%? sine) = 0 .
This means that %? sin @ =nn , but k = 2ﬂ/x . Hence,
2x D _
< 3 sin @ = an .
Solving for © , we get
-1l ., n
8 = sin (571) . (59)

Near the antenna axis sin @ ~ @ and we obtain the approximate formula

for the position of the cross-polarization principal maximum

o~ G (60)
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Since the distance of the effective current filaments from
the axis of the parabola will be somewhat less than D/2 , one can
see how well this rough model explains the positions of the observed
maxima. Formula 59 shows that maxima will occur at regular intervals.
For D = 37.2)\ , for instance, this interval is AQOC& 20 , thus, in
good agreement with the graphs of the complete expressions, Figs. 6,

7 and 9.

For a given aperture the distances between the assumed effec-
tive current filaments are, to a first approximation, independent of
the focal length. Hence the position of the first maxlimum wlll
remain constant.

However, if the focal length is increased while the aperture
is kept constant, the largest current will still occur at the rim,
but its magnitude will decrease. This decrease in the magnitude of
the y-directed current filament explains the reduction in the y-
directed radiation component with the increase in the foeal length.
One would also expect this reduction in magnitude to occur on the
grounds that the reflector curvature decreases with focal length.

Incidentally, the complete expressiton 57 shows that the
cross-polarization in the planes =0, n/2 is zero, as would be
expected from the symmetry of the problem.

Fig. 9 shows graphs of principal and cross-polarization pat-

10
terns for ¢ = 225 , £f/0 = 0.25 and aperture D = 25.87 . For

this aperture Gmax = NS x:2.2° which is in good agreement with the

results of the graphs.
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L.  PLANE WAVE SOURCES

4.1 Introduction

In his paper Jones showed that a combination of electric and
magnetic dipoles oriented at right angles to each other and having a
certain ratio of electric to magnetic currents gives a plane wave
source. In our coordinate system, Fig. 5, the electric dipole is
directed along the x-axis and the magnetic dipole along the y-axis.

Jones also showed that in the zeroth order approximation a
plane wave source induces no y-directed current on the reflector.
Thus cross-polarization is only due to the z-directed current.
Because of its orientation, the z-directed current component will con-
tribute little to the cross-polarization near the axis of the
paraboloid. However, Jones found experimentally that for horn -
radiators the magnitude of the cross-polarization component is com-
parable to that of an electric dipole alone. His experiments also
showed that the cross-polarization decreases as the horn is flared
out in the H-plane.

Kinber explained the phenomenon by the fact that the waves in
the horn exciter cannot be considered as one plane wave, but as a
combination of at least two plane waves propagating at an angle to
each other. He also claimed that, in the zeroth order approximation
only, the combination of electric and magnetic dipoles gives no
y-directed component..

In the following we show how to obtain the plane wave source

by the combination of electric and magnetic dipoles and also show that
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the higher order contribution to the y-polarized current is due to
the radially-directed induction field of the dipole and is l/ko§
times smaller than that given by the electric- dipole alone. Thus
for large apertures (i.e., for large kag) vwhich Jones used in the
experiment, it is obvious that the first order correction to the
y=-directed component of current would be of the order of 20 db below
that of the electric dipole alone, while the experimentally-
determined cross-polarization for horns was only slightly below that
due to the small electric dipole by itself.

Finally, we consider the excitation of the paraboloidal

reflector antennas by horn radiators.

4.2 Huyghens Source

The far-zone field for a magnetic dipole located at the

orlgin and oriented along the y-axis of coordinates is given by the

expression
inc M eikr
= —— 8 + e sin cos Q' 61
3 S fe,c08 ¥+ g st v cos g (61)
where

M is a constant for a given magnetic dipole.

Other symbols have the same meaning as for the electric dipole.
The surface current on the paraboloid due to thls magnetic

dipole is given by
_'O

K = {(9_ - E%%) o, - (p,+ n) Einc} - (e2)

Substituting equations 12, 13 and 61 into equation 62 we get,

after some manipulation
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K = %?-{?os % [(l- cos V) cosz¢' + cos W] e, +
+ sin % sin W'Eig—ggl e +
V vy
+ [-cos @' (sin % cos ¥) + cos @'(sin ¥ cos-g)].gzg (63)

The current on the reflector due to a small electric dipole at the
origin (focus) and directed along the x-axis is given by equation 16.
Then the total current on the surface of the paraboloid is the sum of

the currents given by the expressions 16 and 63.
= K +
LT I (64)

If now we adjust the dipole currents so that M = EO or ratio of
moments glven by

dy I

Z - 1 (the free space impedance),
dv Ie
where Im is the equlvalent magnetic current

Ie is the electric dipole current,

then equation 64 becomes
2E
= o ¥ ' osi ¥
K, = . {cos 2(1 + cos V) e, + cos @' sin ¥ cos 2‘92} (65)

or in the paraboloidal coordinates

28 (283 o ei }
= e + cos @' e
S {(a2+ 82)3/% = (o 832 7

(66)

The radiation vector for the surface currents given by equation

66 is then
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ik 5 a
kg E © (1 + cos &) “% 2
o O 2 3
N = e 2B~ e +
$=0 a=0
1koP .
, (1~ cos 8) - ika B _sin © cos(P -@') .
+252CXcos @ EZJe 2 © %
° (a"+ B)
, (67)
or
N = N e +N e (68)
where
1wt
, g(zt) e  tat
=2
NX BO Noxf 2 2.2 (69)
5 (L +4a7t%)
iwt?
and o 2
= -2 s ¢ N TL(Z4)e ;o
N, == 9 Boco oX 2,2\2 (70)
o (1+q7t)
We may rewrite equations 69 and 70 in terms of
1 2
Ié ) s Ii ) , etc., as follows
N, = 2B N I(l)
X 0 0oX O
and (2) (71)

=
it

-2iq B cos ¢ N, I

If the aperture illumination is tapered, then we may use a
2
factor (L - Tt°)" +to take this into account. Here ¥ is the

required tapering.
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Let us now consider the case of tapered illumination with n = 1,

then we may rewrite equations 69 and 70 as

1wt
- y 5 J (zt) e 2 t 4t
_ (o]
N = 28 N f (1L - vt%)
X o Tox 2.2.2
o (L +q7t7)
> (1) (3)} ,
Similarly for NZ
_ (2) (u)}
N, = ei aOBOcos @ Nox {Il - 11, (73)

where the values of the integrals are determined as for the case of
the dipole excitation. These values are given in Appendix A2.

For the range 0 £ 0 £ gcr the normalized far-zone fields are

given by the following modified expressions

iA

_ e T sin 29 st
By = = = (<)) sin @ (74)
N, \/l- sin"9 cos ¢
and
iA
Eévn = € {-(l- Sin2@ COSE¢) Jﬂ;{ “+
N \/l- sin% co-.32¢

sin 20 co 2 !
) n 2 SMfz} (75)

2

with the notation

Sy = w5 {5 al]

and
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4, - 2iag, S0 - )

and the normalization constant for the illumination taper Y is given
'by

2+ 2
el ; - loge(l +q7) .

(o]
nIo 1o

2q l+g

We now investigate the contributions of the first order dipole
fields to cross-polarization in y-direction.

Let us consider the expressions for the fields of small electric
and magnetic dipoles. From Kraus (1), p. 133, we write for the

electric dipole fields

€ - —i— sin'a
o e r + 2
kr
i A
= 2€ —_— } cos @
r 2] {krz

and for the magnetic dipole field, p. 158 of reference (1),

=
it
=

[ea)
l

1 i , 2 . 2
By = € {;+-—-—§} \/1—51n9 sin"¢

kr
where

e9 is a constant

e

is the angle defined in Fig. 5, i.e.,

g .
cos © = sin © cos ¢

~ 2 2
sin @ = }/1-sin"0 cos' §

When we combine the fields due to E

o and E¢m we see that the first
order correction term to the y-directed current is zero as in the case

of the zeroth order. The only contribution is that due to the
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component Er of the electric dipole. This component 1s proportional

2
to : 1wt
1 - 2
8 f Jl(Zt) e t dt
N ~—s N sin ¢ (76)
y 2 "o 222
kB 0 (L+gt) :

2
For kﬁo’v 80 , which corresponds to the case where D = 37.2\ , the
contribution is 20 db below that due to the dipole zeroth order com-
ponent. Thus the experimentally-observed large cross-polarization

cannot be explained by this argument.

4.4 Horn Exciters

For a transverse electric (TE) wave propagating in a waveguide
of height b and width a , we have the following field components

(26) (See Fig. 10)

X
a —m
i
b
y - '
z
Fig. 10
ilop -YZ wm Y nmX
= - H = — B5in ———
By TE “x Z) v %O
k
Z
(77a)
_ o=l ~YZ i . Ty FAMX
Ex = ZTE Hy = > B sin cos =
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where ZTE = - —;— is the waveguide impedance for the TEzm mode.
Also,
2 2 w2
L
¢
and (770)
2 T 2 o, 2
kz - (a) +(b

The lowest (fundamental) mode for this type of guide is the TE1 4 mode,
given by £ =1, m =0 . There is no variation of field strength in

the x-direction in this mode.

For TElO mode we get from equations 74

e T2 g- sin I (78)

=
»

1]
=
«

!

la
n
ve
o

If, keeping the height constant, we flare out the waveguide in the
H-plane gradually, the TElO mode will still carry most of the wave
energy. Since the transition is assumed to be smooth, we may neglect
the disturbance (higher order harmonics) caused by it. The width a
of the guide is now a variable. If we let a = n()\/2) then substi-

tuting for a in the expressions far kZ and y vwe get

o2 2 2 2

kZ = (—E—) and Y = (—E—)

A A

n — n —

2 2

or
2 27, 2 1

A (1-3) (79)
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Solving equation 79 for y Wwe obtain

y-xm@ -2 (%)

Here we take the negative square root for propagation in the positive
z=-direction.

If we set y = ~ik ' , then the expressions 78 for the field

becone
=iy
E =2 H = —F §H
X TE ¥ -iky V]
or
Zo
= = H

E, = 77 (81)

where

ZO is the free space impedance

Thus for TElO wave

Z
Iy

L

1-=%
n

and
o= 1-% (82)

n

For plane waves in free space we have

E
= - g
H

¥

so that the quantity v' is a measure of deviation in the dipole
magnitude ratioc from that of the plane wave dipole ratio.

If v' =1, we have plane wave condltlons. This requires



that from equation 82

or
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Thus plane wave conditions will occur only for an Iinfinitely flared

guide.
For the case of v' = 0 , equation 82 gives
1
1- S 0
n
or
n- 1
then
E
= ~ o
E
¥
i.e.,
E.> H
X g

and so electric dipole conditions result. If the waveguide is cut

to form a horn radiator we have, neglecting any discontinuity effects

at the aperture, the ratio between the equivalent electrlc and mag-

netic dipoles relative to the free-space ratio

1
v
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In general the aperture impedance 1s different from that of
free space so that we will have reflected waves in the horn. If we

define the reflection coefficient T as

Erefl 7z -7
r-= = - 2 TE
inge
Ex ZO + ZTE
this gives
Tot inc refl inc
= E + E = (1 + DE
X X X X
and inc (83)
Tot inc Ex
o= (L-T) B =(1-T)

From equations 81 and 83 we obtain

T
RN T O S
Zo £ 1-T v '
o H v v
y

Here vy 1is the actual value of the ratio of the two effective funda-

mental dipoles. We then have

N
I

1
1 é;—,—

or
vi £y €1 (84)
Thus the actual value of the ratio v will be somewhat greater than
that computed by equation 82,
We are now ready to compute the radiation components from &
parabolold excited by a combination of electric and magnetic dipoles

whose ratio of magnitudes relative to the free-space ratio is denoted
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by v . Current on the surface of the paraboloid is given by

2

(L= cos ¥) (1-v) ES%_EQ ] e -

=X

2R
KE + VEm. ) {éos g ((l'FV) (EEE_Q_t_E) -
U}

(L - »)(1 - cos V) cos ¥ sin 29

22 Zy

+cos¢[singcos ¥(L=v) +vsin¢rcosg] _e_Z} (85)

Introducing the paraboloidal coordinates for the trigonometric
functions V¥ and integrating to find the far-zone fields, we get for

the radiation vector components

NoX [:&5(1 + v) I(l) +-a§(l - v) cos 20 I;3)]

Nx - o)
: 2 (3)
= sin 20 o (1L = I
Ny Nox ¢ o( v) 2
and ia
_ 2 () 2 (2) o
N, =N [ao(l-v) I, '+ Bo(l+ v) L COSQS(’E;)
2
where the integrals Iél), Ii ), etc..have already been evaluated in

the electric dipole case, i.e., they can be evaluated exactly or
approximately with different series for 0 £ 6 < Gcr and for
0 <O <£qx.

cr
The only parameter that requires further computation is v
and this depends on the reflection coefficient I (equation 81). Thus
the values of T' must be known in each particular case.

In Fig. 12 we plot the magnitude of the y-directed component

of radistion vector relative to that of an electric dipole.
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5. CONCLUSIONS

In this theoretical work we have derived a number of functions
of fundamental importance in the paraboloidal antenna theory. Using
these functions we investigate the space structure of the far-zone
fields for a number of sources. The functions can also be used to
find any one of the polarization components.

The electric dipole illumination and the integrals arising from
the dipole~induced currents on the reflector surface are of basic
importance, since the integrals arising from any exciting source can
be easily deduced from those for the electric dipole.

With the aid of the dipole integrals, we investigate the radia-
tion characteristics of the paraboloidal reflector antennas excited by
combinations of electric and magnetic dipoles. In our case these
dipoles are oriented at 90O to each other. By varying the relative
magnitudes of the dipole currents we can simulate a variety of sources
such as horn exciter, plane wave sources and loop antennas.

Using a waveguide as the exciter and varying the H-plane flare
we find that we can realize a whole series of various combinations of
electric and magnetic dipoles. Thus the electric dipole and plane wave
exciters are but special cases of the horn feed problem. Simple
approximate formulas are derived that show how the required ratio of
the dipole magnitudes can be obtained by varying the H-plane width of
the waveguide.

For the electric dipole we derive formulas that give the approxi-

mate angular variation cross-polarization maxima near the main lobe of

the antenna. Formulas are also derived that relate the magnitude of
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this cross-polarization maxima to the main lobe magnitude.

These formulas can easily be modified to the case of waveguide
excitation. The positions of the maxima of cross-polarization, for
same reflector apefture, will not change as can be seen from the
physical reasoning. However, the magnitudes of these maxima will
be modified by a factor related to the ratio of the horn aperture to
the waveguide width, which is the same thing as the ratio of the
electfic to magnetic dipole magnitudes. The results obtained explain
in a guantitative way the large cross-polarization measured by Jones for
a paraboloidal reflector excited by a small horn.

The effect of the discontinuity at the open end of the horn may
be taken into account by the éxperimentally—found reflection coeffl-
cients. This reflection causes a change in the ratio of magnitudes of
the equivalent dipoles..

The cross-polarization at wide angles (i.e., near 900) is found
to be due to the combination of the y-directed and the z-(axially)-
directed currents. The analysis shows that the latter component of
current increases in magnitude with the flaring-out of the horn
radiator. In fact, the difference between this component excited by an
electiric dipole and that by an infinitely-flared guide is more than 6db,
i.e.; twice that due to the electric dipole alone.

The rapid angular variation of the magnitude of the cross-
polarized component may be explained in the case of the electric dipole
by the rough model of four dipoles.

Plots of the principal (fundamental) and cross-polarized com-

ponents show very small variations of magnitude with the azimuthal
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angle © , indicating that a good portion of the energy lost in the
side lobes is concentrated near 6 = 90O to the parabola axis.
This constitutes a large part of the literally-radiated cross-
polarized energy ccomponent, even though larger maxima occur in the
forward and backward directions close to the paraboloid axis.

In conclusion, although the rectangular horn exciters are
simple in construction, they do not provide the lowest cross-polariza-
tion for the case of paraboloidal reflectors. (Consequently,
rectangular horns are not recommended as sources if minimum cross-

polarization is a requirement.
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Appendix Al
(a) To find the unit vectors n and p (Fig.13)

(i) n is the unit normal to the paraboloidal surface.

Raflecior
>z
!
Components n_ = |n| cos ¥ n_ = -|n| sin ¥ cos ¢
mp z 1= 2’ x = 2 ?
A
n, = -|n| sin 5 sin ¢
but IE' =1
80 n = -sin < cos e - sin ¥ sin B e + cos LA
- 2 - 2 -y 2 =z

(1i) Radius vector from origin to point (¥,@) , as before

©
]

N -'EO{ cos ¥ , py = lgo' sin ¥ cos ¢ ,

oy = IEOI sin ¥ sin ¢

or gin ¥ sin e + sin cos e =~ cos e
fe, Voosfe Ve,

AD
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(b) Element of surface area in paraboloidal coordinates (Fig. 1)

(a,B,8)

s = (paf) (L)
cos ) ’
Now D= OB
V@3 () ¥
ay = = co8 7

= Ay = £
For B Bo s ¥ — cos > do

Therefore,
2 2
s = o !
BO \/a+Bo ag' ao

(c) To determine the value of (e, r') in paraboloid coordinates,

(see Fig. 15)

In triangle BCD we use the cosine rule to find an expression

for =a

2 2 2
a =R %tan e + tangw - 2 tan © ta.n)Z cos p}
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END VIEW

HORIZ. AXIS




-72a
Where
cos u = cos(f - @g")
Consider triangle ABD, formed by

AB= Rfcos ¥ , AD= Rf/fcos ® , and BD = a

2
Using the cosine rule in triangle ABD we get for a

2
2
R2 . 2R cos A o
> + 5= - ————————=a =
cos § cos @ cos @ cos ¥

2
- R° [tan 6 + tangly + 2 tan ¥ tan @cos(f -¢')]

Solve for cos A

cos A = cos @ cos ¥ - sin © sin ¥ cos(f -¢@"')
We may now compute e * I' = |£' cos(m - A\)
et = -lE'[[cos ¥ cos 6 - sin ¥ sin 6 cos(f - ¢')]

Substitute for sin ¥ , cos ¥ their equivalent in terms of «a,B and

obtain

o - 62
e + T' = -[ - __§_J9 cos @ ~Qf sin @ coS(¢ - ¢'i
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Appendix A2

Exact Solutions of Radiation Integrals for Electric Dipole

For 0<€e <0
cr

-1,1
vhere o,. = 2 tan (E) and q = QB/BO

iwte

(1) e JO(Zt) t dt
I =J[‘ 1+ q2t2)2

(20%)?(n+1) 2 (mn) L (-130)" &

(z)

m+n+1

m=0 n=0 (1+¢%)% nt mi ™0+
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Appendix A3

Exact Evaluation of Radiation Integrals for

Electric Dipole Exciter
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Appendix Ak

Summation of Serie
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Appendix A5

Approximate Evaluation of Radiation

Integrals for the Case of the Electric Dipole
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Appendix A6

Approximate Evaluation of Electric Dipole Integrals
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Appendix A7

Closed Form Sum for Series of Type
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In series
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