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Chapter 4

Thermomechanics of mid-ocean

ridge segmentation1

4.1 Abstract

The mechanics responsible for the initiation of the orthogonal pattern characterizing

mid-ocean ridges and transform faults are studied using numerical models. The driv-

ing forces are thermal stresses arising from the cooling of young oceanic crust and

extensional kinematic boundary conditions. Thermal stress can exert ridge-parallel

tension comparable to spreading-induced stress when selectively released by ridges

and ridge-parallel structure. Two modes of ridge segment growth have been iden-

tified in plan view: An overlapping mode where ridge segments overlap and bend

toward each other and a connecting mode where two ridge segments are connected

by a transform-like fault. As the ratio of thermal stress to spreading-induced stress

(γ) increases, the patterns of localized plastic strain change from the overlapping to

connecting mode. The orthogonal pattern marks the transition from one mode to

the other. Besides the amount of stress from each driving force, the rate of stress

accumulation is crucial in determining the emergent pattern. This rate-dependence

is characterized by the spreading rate normalized by a reference-cooling rate (Pe′).

When Pe′ is paired with the ratio of thermal stress to spreading-induced stresses

(γ′), they define stability fields of the two modes. The obliquely connecting, the or-

1Accepted for publication in Physics of Earth and Planetary Interior, 2008.
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thogonally connecting, and the overlapping mode are similar to ridge-transform fault

intersections observed in ultraslow, slow to intermediate, and fast spreading centers,

respectively. The patterns are also sensitive to the strain weakening rate. Fracture

zones were created in part as a response to thermal stress.

4.2 Introduction

Mid-ocean ridges and transform faults intersect to make various patterns, one being

the idealized orthogonal pattern prominently characterizing plate boundaries. How-

ever, the processes responsible for the emergence and stability of such patterns re-

main poorly understood. Mid-ocean ridges are a hierarchical system of discontinuous

ridge segments offset by different types of discontinuities (Macdonald et al., 1991).

Segmentation at different scales has invited multiple theories for their origin (e.g.,

Macdonald et al., 1991; Phipps Morgan, 1991; Abelson and Agnon, 1997). It remains

unclear whether the hierarchy is the product of different mechanisms working at dif-

ferent scales or the scale-dependence of a single mechanism. While the overall trend

of mid-ocean ridges is imposed by the geometry of continental breakup and passive

margin formation, the geometric coincidence between passive margins and mid-ocean

ridges led Wilson (1965) to first propose that transform faults are inherited from

preexisting structures. Subsequent studies proposed that stepping half-grabens (e.g.,

Cochran and Martinez, 1988; McClay and Khalil, 1998), segmented gravity and mag-

netic anomalies (e.g., Behn and Lin, 2000), or segmented weak regions (e.g., Watts

and Stewart, 1998) along passive margins ultimately lead to the discontinuities found

along mid-ocean ridges. However, other observations support the hypothesis that

the orthogonal ridge-transform system is emergent and not solely due to preexisting

conditions. Sandwell (1986) presented three lines of evidence supporting this hy-

pothesis:1) that single straight ridges can develop into an orthogonal pattern, 2) the

existence of zero offset fracture zones, and 3) a positive correlation between ridge

segment length and spreading rate.

Differences in the rate of energy dissipation between ridge segments and trans-
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form faults have been suggested to lead to the orthogonal pattern (Lachenbruch, 1973;

Froidevaux, 1973). According to this theory, energy dissipation can be more efficient

at a spreading center than a transform fault and, as a result, the minimized ridge

segment length by an orthogonal pattern results in the least energy dissipation. How-

ever, it was subsequently shown that the orthogonal pattern could be created without

assuming higher energy dissipation at the spreading centers (Oldenburg and Brune,

1975). Atwater and MacDonald (1977) also questioned the validity of the minimum

energy dissipation argument based on inconsistency with observations.

The observation of the oblique fabric of normal faults around ridge-transform

fault intersections is such that they must result from both a ridge normal and a ridge

parallel component of stress (Gudmundsson, 1995). Gudmundsson (1995) proposed

the expansion of a plate’s perimeter as an origin of ridge-parallel tension. However,

Gudmundsson’s hypothesis does not address the possibility that each ridge segment

can grow instead of forming fracture zones, and the observed fabric often requires a

low degree of mechanical coupling across transform faults and the associated shear

stresses (e.g., Fujita and Sleep, 1978; Fox and Gallo, 1984; Grindlay and Fox, 1993;

Behn et al., 2002). Also, changes in the direction of plate motion were suggested

to lead to the development of the orthogonal pattern (Menard and Atwater, 1969),

but this mechanism is not sufficiently general to explain most present mid-ocean

ridge systems where changes in plate direction have been limited. A more plausible

source for ridge-parallel tension is the cooling of oceanic lithosphere. Thermal cooling

stresses make a significant contribution to the stress state of oceanic plates. Heuristic

calculations (Collette, 1974), a calculation based on a plate cooling model (Turcotte,

1974; Sandwell, 1986), the presence of near-ridge seismicity (Wiens and Stein, 1984;

Bergman and Solomon, 1984), and geoid anomalies over fracture zones (Parmentier

and Haxby, 1986; Haxby and Parmentier, 1988) all indicate that thermal stresses

can contribute significantly to a ridge parallel component of stress. Thermal stresses

are isotropic, but mid-ocean ridges themselves and numerous ridge parallel faults can

release thermal stresses in a selective (i.e., ridge-perpendicular) direction when these

structures form (Fig.4.1). Therefore, the resultant unreleased stress due to cooling
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Figure 4.1: Ridge segments and other ridge-parallel structures can release thermal
stress in the ridge-normal direction, while leaving ridge-parallel residual stresses. Ar-
rows represent the direction and the magnitude of components of thermal stresses
aligned along ridge-perpendicular and ridge-parallel directions. (a) Before ridge seg-
ments are created, thermal stress is isotropic and its horizontal components are equal
in magnitude. The future location of ridge segments are marked by the pairs of gray
dashed lines. (b) The ridge-parallel component becomes dominant when the ridge-
normal principal stress is released by the formation of ridge segments (pairs of solid
lines). A possible trace of a structure connecting the ridge segments is denoted by a
dashed curve.

would be dominated by the ridge-parallel component.

Analog experiments using paraffin wax have been more successful than others

in studying the emergence of patterns similar to those found at mid-ocean ridges.

Oldenburg and Brune (1972) designed an experiment in which the surface of molten

wax was chilled by a fan. The basin containing the molten wax was heated from

below. One side of the solidified wax is pulled to generate extensional stresses. They

observed the spontaneous growth of an orthogonal system of ridge, transform faults,

and fracture zones with characteristics similar to natural systems. They concluded

that the orthogonal ridge-transform fault system is a preferred mode of plate separa-

tion and that a weak shear resistance on transform faults is required for the system’s

stability (Oldenburg and Brune, 1975). Based on the high volume change of cooling

wax, Sandwell (1986) interpreted that orthogonally intersecting structures made in
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wax originated as a mechanism to release thermal stress. Wax was also used to study

the microplate formation in a fast-spreading environment (Katz et al., 2005).

The success of the wax models implies that the orthogonal pattern of ridges and

transform faults are caused by a combination of spreading and thermal stresses. How-

ever, to more fully understand the physics while adding additional processes critical

for mid-ocean ridges, we turn to a numerical approach. In numerical simulations,

known representative values for the Earth’s material can be directly used in models.

In addition, numerical experiments allow for a better control on testable mechanisms

and a wide range of parameter values. Numerical models can also be used to make

explicit predictions of geophysical observables such as bathymetry and gravity.

Our goal is to reveal the mechanism responsible for the emergence of the orthog-

onal pattern at mid-ocean ridges using a 3-D numerical method. Our approach is

distinguished from previous 3-D numerical models for the mid-ocean ridge system

that treated transform faults as pre-existing structures or as boundary conditions

(e.g., Parmentier and Phipps Morgan, 1990; Furlong et al., 2001). In our study,

transform faults and fracture zones, as well as ridge segments are all created as a

response of a mechanical system to given initial and boundary conditions. A 2-D

elastic damage model has been developed (Hieronymus, 2004), but differed from ours

in terms of geometry, material properties, and the physical processes incorporated.

We focus our attention on the first order segments and discontinuities, corresponding

to ridge segments and transform faults, respectively (Macdonald et al., 1991).

4.3 Numerical method

We use SNAC, an explicit Lagrangian finite difference code, to model the dynamics

associated with the initiation of ridge-transform fault systems in three dimensions.

SNAC is a framework-based software, using the energy-based finite difference method

to solve the force balance equation for elasto-visco-plastic materials (Bathe, 1996).

The details of the algorithm are presented in Appendix A.

Implementing the elasto-visco-plastic material type in SNAC is crucial because
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localization of plastic strain occurring due to bifurcation inherent to plasticity can

be regarded as a large-scale manifestation of localized deformation like fault zones.

Propagating ridge segments, transform faults, and fracture zones are all represented

by localized plastic strain. In addition, a vertical gradient of temperature determines

the transition from cold plastic material near the top to hot Maxwell viscoelastic

material below.

Cooling of newly formed lithosphere is one of the key phenomena for modeling the

mid-ocean ridge system. SNAC computes thermal diffusion using the same type of

solver as the solution of the momentum equation. Temporal variation of the tempera-

ture field contributes to the isotropic components of stress through thermal expansion

and contraction.

We use an elasto-visco-plasticity (EVP) model in which total strain is the sum of

contributions from elastic, viscous, and plastic components (e.g., Albert et al., 2000).

This material model assumes a Maxwell viscoelastic rheology at all times, but if the

stress exceeds a specified criterion before being relaxed then yielding occurs. We use

a Mohr-Coulomb yield criterion and a power-law viscosity (Lavier and Buck, 2002).

The EVP constitutive relations allow a wide range of material behavior to emerge:

Elastoplastic when temperature is low and viscoelastic at high temperatures. To

induce localization, a strain-weakening rule is applied to the yield criteria. The rule

is usually a piecewise linear function of accumulated plastic strain such that the plastic

material properties (cohesion and angle of internal friction) decrease with increasing

plastic strain (Lavier et al., 2000). In addition, elements are assigned initial finite

plastic strain so that localization initiates from those elements. In this way, we can

prevent the occurrence of localized plastic deformation adjacent to the boundary of

the computational domain.

4.4 Model setup

We model a hot block of oceanic lithosphere that cools while it is stretched at a given

spreading rate. Spreading initiates ridge segments, which in turn releases accumulat-
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Figure 4.2: Geometry of the model domain. (a) 60×5×60 km domain with equal 1
km grid spacing in each direction. Two plastic seeds, controlling initial localization,
are embedded with 30 km separation in the x and z directions. (b) Two side surfaces
normal to the x axis are pulled at a constant velocity. The other two sides, normal
to the z axis, have free-slip boundary conditions, where the normal velocity (vz) and
tangential components of traction (tx and ty) are 0. Zero heat flux is assumed for
all the side walls, but the top surface temperature is fixed at 0 ◦C. See the text for
thermal and mechanical boundary conditions for the bottom surface.

ing thermal stress only in the ridge-normal direction. The ensuing process is governed

by given parameters and boundary conditions.

The domain is 60×5×60 km and is discretized into 1-km cubic elements (Fig.4.2a).

Initial temperature is uniformly 1300 ◦C except along the top surface, where temper-

ature is 0 ◦C. The top surface remains isothermal at 0 ◦C, while the bottom surface

has a composite boundary condition. By the zero heat flux condition, heat is lost

until the bottom temperature decreases to 750 ◦C; thereafter the bottom temperature

is kept at 750 ◦C. These thermal initial and boundary conditions are intended to be

those of hypothetically pristine oceanic lithosphere that is about to cool and extend.

Heat fluxes are zero on all the side walls. We assume that the distinctive thermal

structure of slow and fast mature ridges result from long-term spreading, not given

initially. In reality, the thickness of lithosphere is not constant over the distance of 60

km across a spreading center. However, we assumed it to be initially uniform in order

to exclude the influence of pre-existing structures. If the variation in lithospheric

thickness is predefined, so would the pattern we seek because the thinnest part will

develop into spreading centers unless other perturbations are considered.
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Velocity boundary conditions are applied to two sidewalls while the other two

are free-slip (Fig.4.2b). The bottom surface was supported by a frictionless denser

foundation called a Winkler foundation (e.g., see p. 95 in Watts, 2001). This bottom

boundary condition works in such a way that normal tractions are applied in the

opposite direction to the deflection of the bottom surface and with a magnitude given

by the surface integral of pressure change, (ρm − ρf )g∆h(x), where ρm is the mantle

density at the bottom of the domain, ρf is the assumed density of the foundation, g

is the gravitational acceleration, and ∆h(x) is the change in the vertical coordinates

at location x. For simplicity, we assume (ρm − ρf ) is fixed at 50 km/m3. The two

tangential components of traction are set to be zero.

Two ridge segments develop as narrow regions of localized strain. Strain localiza-

tion initiates from two seeds, elements with non-zero plastic strain and offset by 30

km in both horizontal directions (Fig.4.2a). In addition, we assumed a piecewise lin-

ear function in strain weakening such that 100 MPa of cohesion is reduced to 50 MPa

at 1 % plastic strain, and to 10 MPa at 3 %. All the plastic parameters (cohesion,

internal friction angle, and dilation angle) are kept the same after plastic strain grows

larger than 3 %. Unfortunately, strain weakening is poorly constrained by geological

observations (Scholz, 2002; Lavier et al., 2000). Parameters related to the constitutive

law are listed in Table 4.1.

4.4.1 Base model and its variations

One model is referred to as the base case and produced a nearly orthogonal transform

fault that connected ridge segments (Fig.4.3). The imposed constant spreading rates

are equivalent to time-varying forces required to maintain the spreading rate (Lavier

and Buck, 2002; Gurnis et al., 2004). The spreading-parallel component of this force

(Fx), as a function of time, is useful for monitoring the change in the state of stress.

Fx for the base case (Fig.4.3a) shows that the system was initially in equilibrium

with 1.22×109 N/m of external force remaining invariant for about 7000 yrs. The

pattern of localization was determined during this phase, and it was not affected by
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Table 4.1: Parameter values
Model v (cm/yr) αv (×10−5K−1) κ (×10−6m2/s) ǫps,1 C1 (MPa) ǫps,2

base 3 6 1.12 0.01 50.00 0.03
1 1 6 1.12 0.01 50.00 0.03
2 10 6 1.12 0.01 50.00 0.03
3 3 5.49 1.12 0.01 50.00 0.03
4 3 6.51 1.12 0.01 50.00 0.03
5 3 6 0.915 0.01 50.00 0.03
6 3 6 1.36 0.01 50.00 0.03
7 2 6 1.12 0.01 50.00 0.03
8 4 6 1.12 0.01 50.00 0.03
9 3 5.76 1.12 0.01 50.00 0.03
10 3 6.24 1.12 0.01 50.00 0.03
11 3 6 1.02 0.01 50.00 0.03
12 3 6 1.22 0.01 50.00 0.03
13 2.5 6 1.12 0.01 50.00 0.03
14 3.5 6 1.12 0.01 50.00 0.03
15 3 5.88 1.12 0.01 50.00 0.03
16 3 6.12 1.12 0.01 50.00 0.03
17 3 6 1.07 0.01 50.00 0.03
18 3 6 1.17 0.01 50.00 0.03
19 3.3 6.6 1.12 0.01 50.00 0.03
20 3.03 6.06 1.12 0.01 50.00 0.03
21 3.3 6 1.232 0.01 50.00 0.03
22 2.7 5.4 1.12 0.01 50.00 0.03
23 2.97 5.94 1.12 0.01 50.00 0.03
24 2.7 6 1.008 0.01 50.00 0.03
25 4.68 6.6 1.12 0.01 50.00 0.03
26 4 6.34 1.12 0.01 50.00 0.03
27 3.73 6.24 1.12 0.01 50.00 0.03
28 2.27 5.76 1.12 0.01 50.00 0.03
29 2 5.69 1.12 0.01 50.00 0.03
30 1.34 5.49 1.12 0.01 50.00 0.03
31 2.5 5.65 1.12 0.01 50.00 0.03
32 2.0 5.46 1.12 0.01 50.00 0.03
33 1.34 5.19 1.12 0.01 50.00 0.03
34 2.00 5.19 1.12 0.01 50.00 0.03
35 2.50 5.19 1.12 0.01 50.00 0.03
36 1.34 4.90 1.12 0.01 50.00 0.03
37 2.00 4.90 1.12 0.01 50.00 0.03
38 2.50 4.90 1.12 0.01 50.00 0.03
w1 3 6 1.12 0.01 50.00 0.02
w2 3 6 1.12 0.02 50.00 0.05
w3 3 6 1.12 0.01 25.00 0.03
w4 3 6 1.12 0.01 75.00 0.03
w5 3 6 1.12 0.01 50.00 0.03
w6 3 6 1.12 0.01 50.00 0.03
w7 3 6 1.12 0.01 43.75 0.03
w8 3 6 1.12 0.01 56.25 0.03

density = 2950 kg/m3; Lame’s constants (λ, µ) = 30 GPa, respectively;
ǫps,0 = 0, C0=100 MPa, C2 = 10 MPa;
n=3, Q=380 kJ/mol, and A=1.73×105 (Pa·s)1/n for viscosity



64

Figure 4.3: (a) Fx, force required to extend the domain at the applied velocity in
the x-direction as a function of time. (b) Depth profiles of temperature and viscosity
are taken at the point P marked in (a) and compared at different time steps (0, 3,
7, 10.2, and 15 Kyrs). The rise in Fx at ∼7 Kyrs coincides with the cooling and
significant increase in viscosity of the subsurface (1-2 km deep) layer. 3-D rendering
of the second invariant of plastic strain at the same set of time steps: (c) 3 Kyrs, (d)
7 Kyrs, (e) 10.2 Kyrs, and (f) 15 Kyrs.
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Figure 4.4: A 3-D representation of the surface topography from the base model at 15
Kyrs on top of the model domain. Plastic strain on the surface of the model domain
indicated through grey scale shading.

subsequent deformation. When the subsurface layer cooled sufficiently, the exponen-

tially increased temperature-dependent viscosity rendered the layer elastic and thus

the overall stiffness of the model increased (Fig.4.3b). Consequently, Fx increases in

response to this change after 7000 yrs in the Fx versus time plot. As deformation due

to spreading and thermal stress continues, the cooled portions of the layer yield and

become weaker beneath ridge segments (Fig.4.3e). This leads to the decrease of Fx

(Fig.4.3a).

The total elapsed time, about 15 Kyrs, was insufficient to develop into the mor-

phology seen at mature mid-ocean ridges, as shown with topography along with the

deformed mesh and accumulated plastic strain (Fig.4.4). However, it shows the deep-

ening trend of bathymetry away from ridge segments and troughs along ridge-normal

localized bands, consistent with an actual ridge-transform fault intersection. The

curvature of zones of localized strain at the inner corner is consistent with the fabric

of structures observed at slow spreading ridge-transform fault intersections (Fox and

Gallo, 1984).
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Figure 4.5: Modes of interaction between two mutually approaching ridge segments.
The orthogonal ridge-transform fault geometry is a special case of the connecting
mode. The angle, θ, is used as a measure of a connecting patterns orthogonality
spanning the range 0◦ to 45◦.

Models varied from the base case in terms of their pattern of localization. The

patterns could be grouped based on their geometry into two modes: “Connecting”

and “overlapping” (Fig.4.5). They are end members of the modes of interaction

between two mutually-approaching ridge segments. Connecting modes are further

characterized by the angle θ between the connecting segment and the ridge-normal

direction; θ ranges from 0◦ to 45◦, and the orthogonal pattern, corresponding to

θ=0◦, falls in the middle of the morphological range from high-θ connecting modes

to overlapping modes.

To assess quantitatively the relative influence of thermal stress and spreading-

induced stress on the appearance of localization patterns, we introduce a dimension-

less number γ. γ is defined as the ratio of the first invariant of thermal stress to the

first invariant of spreading-induced stress:

γ =
|I thermσ |
|Isprσ | . (4.1)

Spreading-induced stress is given by constitutive relations for linear isotropic elastic-
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ity:

σsprij = λδijǫ
spr
kk + 2µǫsprij , (4.2)

where λ and µ are Lamé’s constants. Thermal stress is given as (e.g., Boley and

Weiner, 1960):

σthermij = −(3λ+ 2µ)δijαl(T − T0), (4.3)

where αl is the linear thermal expansion coefficient, T is temperature, and T0 is the

reference temperature. When extension in one horizontal direction and zero-strain in

the other two directions is assumed, extensional stresses are, from (4.2),

σspr11 = λ (ǫspr11 + ǫspr22 + ǫspr33 ) + 2µǫspr11 = (λ+ 2µ)ǫspr11

σspr22 = λǫspr11

σspr33 = λǫspr11 ,

(4.4)

Then, the first invariant of spreading-induced stress becomes

Isprσ = σspr11 + σspr22 + σspr33 = (3λ+ 2µ)ǫspr11 , (4.5)

The first invariant of thermal stress is obtained from (4.3):

I thermσ = σtherm11 + σtherm22 + σtherm33 = −(3λ+ 2µ)αv(T − T0), (4.6)

where αv is the volumetric thermal expansion coefficient and is equal to 3αl. Substi-

tuting (4.5) and (4.6) into (4.1) and taking the absolute value, we obtain

γ =
|(3λ+ 2µ)αv(T − T0)|

|(3λ+ 2µ)ǫspr11 | =
|αv(T − T0)|

ǫspr11

=
|αv(κ∇2T )∆t|

ǫ̇spr11 ∆t
≈ αv(κ∆T/D

2)

ǫ̇spr11

=
καv∆T

ǫ̇spr11 D
2
,

(4.7)

where ǫ̇spr11 is the strain rate associated with a half-spreading rate, ∆t is the charac-
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teristic time of thermal diffusion, ∆T is the absolute temperature difference between

surface and bottom, κ is the thermal diffusivity, D is the thickness of the domain.

ǫ̇spr11 can be further approximated as v/L, where v is the half-spreading rate and L is

the width of the domain:

γ =
καvL∆T

vD2
. (4.8)

When γ is defined as in (4.8), it represents the relative importance of conductive

cooling with respect to spreading in determining the dominant state of stress for

emergent oceanic lithosphere although it is not the stress ratio itself. Since the domain

geometry (D and L) and the temperature initial condition (∆T ) are common to all

the models, we vary the remaining three parameters, v, αv, and κ to determine their

influence on the pattern of localization.

Another measure of the system is introduced because the same value of γ can be

achieved by different values of parameters that are varied in the same proportion.

Those models with the same γ but different parameters can produce considerably

different patterns because the growth rates of stresses from cooling and spreading are

different even for the proportionally varied parameters. The absolute value of rates is

important because the material strength governed by plasticity is finite. So, we use

the Peclet number as another measure of the system which we physically interpret

here as the ratio of forced spreading rate (v) to cooling rate (κ/D). To ensure that

separate measures of each process are not inherently correlated by sharing common

parameters, we compute them with respect to reference values of v and κ/D. Thus,

a pair of non-dimensional numbers, and γ′ and Pe′, are defined as

γ′ =
καvL∆T

vrefD2
, (4.9)

Pe′ =
vDref

κref
, (4.10)

where vref is 3 cm/yr, κref is 10−6 m2/sec, and Dref is 5 km.

Strain weakening during plastic deformation is characterized by a reduction in co-

hesion, C(ǫps), as plastic strain (ǫps) accumulates. We define a dimensionless number,



69

Figure 4.6: The piecewise linear variation of cohesion as a function of accumulated
plastic strain (ǫps). Two-stage weakening was assumed in this study. ω, the work per
unit volume done to reduce 90 % of the initial cohesion, is used to quantify different
weakening rules. C0 and C2 are 100 MPa and 10 MPa, respectively, for all the models.

ω, as follows:

ω = 1.0 −
∫

C(ǫps)dǫps

Crefǫ
ref
ps,2

, (4.11)

where Cref is a reference value of cohesion, and ǫrefps,2 is a reference value of accumulated

plastic strain where cohesion becomes 10 % of its initial value (Fig.4.6). Cref and

ǫrefps,2 are 100 MPa and 3 %, respectively. ω is proportional to the normalized work

per unit volume done to reduce cohesion until plastic strain reaches a given value,

ǫps,2. In this study, the initial value of cohesion (C0) and ǫps,2 are always equal to Cref

and ǫrefps,2. If ω is higher than the base model, then more work would have been done

to reduce cohesion; such a model ends up with lower cohesion even with the same

amount of accumulated plastic strain. Table 4.1 lists values of all model parameters.

4.5 Results

We group models either with different γ and the same weakening rates (base case to

model 38 in Table 4.1) or models with the same γ but different strain weakening rules

(W1 to W8).
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4.5.1 Variation of γ

Using a subset of models with the same weakening rate (base case to model 38 in Table

4.1), localization patterns show a clear trend in the modes of interaction between ridge

segments when arranged in order of increasing γ (Fig.4.7). Patterns corresponding

to relatively high γ (> 0.24) are those of oblique spreading ridges. For the highest γ,

corresponding to the strongest influence of thermal stress, two propagating segments

are connected by a 45◦-oblique ridge segment. θ decreases as γ becomes smaller and

thus the spreading-induced stress becomes stronger. Eventually, a nearly orthogonal

pattern emerges within a narrow range of γ, from 0.22 to 0.23. When γ becomes

smaller than 0.22, two ridge segments grow, overlap, and then bend toward each

other. When the spreading-induced stress becomes even stronger (γ < 0.1), each

segment propagates through the domain instead of bending or being connected by

a shear band. The same trend is observed in both results after a constant time

(Fig.4.7a) or after constant extension (Fig.4.7b).

When the force associated with spreading is plotted as a function of extension,

we find two clearly divided populations of curves that correspond to the connecting

and overlapping modes (Fig.4.8). In terms of the rise time of Fx, the base model

falls on the boundary between these two groups. The differences in the shape of

the curves in Fig.4.8 can be quantified when the curves are integrated over their

extended distance. The portion of the Fx curves after the peak does not exhibit

a clear distinction between modes as before the peaks; consequently, we integrate

Fx from 0 to the extension corresponding to the peak of Fx. The integrated values

have units of work per unit length. When only one of the parameters v, α, or κ

was varied from the base model, the work decreases with increasing γ (gray symbols,

Fig.4.9). As γ decreases and the work increases, the angle between the connecting

segment and the spreading direction (θ, Fig.4.5) decreases, marking the transition to

the overlapping mode at its minimum. Among models in the overlapping-mode, the

correlation between work or γ and θ is not as clear. When two parameters (v and α,

or v and κ) are varied simultaneously, models do not show systematic variations in
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Figure 4.7: Patterns of localized plastic strain, made on the top surface of models,
are arranged in order of increasing γ. The patterns were captured (a) after 10.6 Kyrs
and (b) after a given amount of spreading-induced strain, 0.535 %. As γ increases,
the mode of interaction between two mutually-approaching ridge segments changes
from oblique rifting through orthogonal rifting to overlapping-bending.
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Figure 4.8: For various models, Fx as a function of amount of extension. The base
model (thick solid line) forms a boundary between curves for models in connecting
modes (thin gray solid lines) and those models exhibiting overlapping modes (thin
dashed lines).

mode or θ (black symbols, Fig.4.9). Modes and the values of θare mixed in the low-γ

ranges. Thus, γ and work cannot uniquely predict the emerging pattern for all the

models even though there is an obvious correlation.

The inability of predicting the emergent pattern is resolved when the Peclet num-

ber is considered as well, as shown when γ′ is varied against Pe′. Since Pe′ is a

separate measure of the spreading rate with respect to a reference cooling rate, we

are able to separate the two rate-dependent processes that are inherent in γ. All

the models with the same weakening rate are plotted in Fig.4.10. In contrast to

the previous work versus γ plots, here the domains of each mode can be clearly di-

vided. The boundary between the two modes that define the orthogonal pattern can

be roughly traced along a single curve. The variation in θ is also systematic within

the connected-mode domain. For a given spreading rate (constant Pe′), θ increases
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Figure 4.9: Work done by the external extension until the peak in Fx versus γ for
models with a single parameter (v, α, or κ) varied from the base model (gray symbols)
and those with two parameters varied simultaneously (either v and α, or v and κ,
black symbols). Work and γ show an overall negative correlation. Models with
connecting-mode patterns (crosses) show an approximately monotonic increase in θ
as γ increases and work decreases. However, the modes of deformation and θ appear
mixed in the low range of γ, indicating that γ and work cannot be unique indicators of
emerging patterns. The overlapping-mode models (triangles) exhibit neither a broad
variation in θ nor a one-to-one relation between work and γ.
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Figure 4.10: Plot of Pe′ versus γ′. The domain of connecting and overlapping mode is
well defined and the boundary between them defines the stability field of the orthog-
onal pattern. Within the connecting-mode domain, the variation in θ is systematic:
θ becomes smaller as the values of Pe′-γ′ pair gets closer to the inferred region of
orthogonal pattern.

as thermal stress becomes dominant; for a given set of cooling-related parameters

(constant γ′), θ increases as spreading becomes slower. The inferred stable region

of orthogonal patterns suggests that when spreading rate is sufficiently small the

overlapping mode is unable to form, regardless of γ′.

The transition from one faulting pattern to another occurred at specific values of

Pe′, which was confirmed by a suite of higher resolution models. We solved models on

a mesh with half the horizontal grid spacing. The vertical resolution was not changed

to maintain the same cooling rate with the original models and γ′ was fixed at 0.202,

the same value as the reference model. As Pe′ increased from 1.585 (corresponding

to the spreading rate, v=1 cm/yr) to 4.756 (v=3 cm/yr), models with the higher

resolutions exhibited the same transition with the reference grid spacing from the

obliquely connecting to the orthogonal pattern (Fig.4.11). The patterns varied from

the orthogonal to overlapping when Pe′ was further increased to 6.342 (v=4 cm/yr)

(Fig.4.11), as also seen in the models with the reference resolution.
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Figure 4.11: Models with a twice higher horizontal resolution than those in Fig.4.10.
confirm that the transition of patterns occurs at consistent values of Pe′. The γ′ of
0.202 was the same for all the compared models.
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Figure 4.12: For models with different weakening rates Fx is plotted as a function of
the amount of extension. Models that are relatively slower in weakening (thin gray
lines) develop larger differences between the lowest and the highest value in Fx and
connecting-mode patterns emerge from them. In contrast, faster-weakening models
(dashed lines) showed smaller differences between the lowest and the highest Fx and
developed overlapping-mode patterns. This solid line corresponds to the base model,
which developed an orthogonal pattern.

4.5.2 Variation in rate of weakening

The rate of strain weakening is another pattern-controlling factor. The eight models

(W1 to W8 in Table 4.1) share the two-stage weakening parameterization (Fig.4.6),

but differ in the rate of cohesion reduction. Fx-extension curves for these eight models

are shown in Fig.4.12. Models with higher ω (eqn. 4.11) consistently resulted in the

overlapping patterns, while the connecting mode appeared in the models with lower

ω. The map-view patterns from those models, taken after 10 Kyrs, are arranged in

the order of increasing ω in Fig.4.13, demonstrating the sensitivity of pattern to ω.

ω represents the amount of cohesion reduced after strain weakening occurred.

Since the first appearance of localization from the seed elements is ridge segments

that propagate in the direction perpendicular to the spreading direction, different
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Figure 4.13: Patterns of localized plastic strain on the top surface are arranged in
the increasing order of ω. The smaller ω is, the larger is the cohesion at any point in
accumulated plastic strain as long as cohesion is larger than 10 % of its initial value
(see Fig.4.6). Patterns show the transition of patterns from high-θ connecting modes
through the orthogonal pattern to overlapping modes as ω increases.

values of ω have a prominent influence on that propagation. When a model has a

higher ω while all other parameters remain the same compared to the base case, a

lower level of cohesion is achieved and the propagation of ridge segments is facilitated.

The net effect is equivalent to reducing γ by increasing the spreading rate, and the

mode of interaction between two ridge segments becomes overlapping. In contrast,

when a model has a lower value of ω while all other parameters remain the same as

the base model, the model remains at a relatively high level of cohesion and ridge

propagation is hindered. As a result, a high-θ connecting mode emerges because the

net effect is to raise γ by lowering the spreading rate.

4.6 Discussion and conclusion

Our model results are in good agreement with observations: As spreading rate (v)

increases while all other variables remain constant, γ decreases and the mode of

ridge interaction changes from connecting to overlapping. Consistent with this trend,
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orthogonal ridge-transform fault intersections are often found in the slow-spreading

Mid-Atlantic Ridge (MAR). The overlapping mode of interaction would correspond to

the formation of microplates, which are found only at the fastest spreading East Pa-

cific Rise (EPR) (Naar and Hey, 1991). The large-θ connecting modes for the models

at the lower end of Pe′ appear to be relevant to the very-slow-spreading ridges (Dick

et al., 2003). The Southwest Indian ridge (SWIR) between the Atlantis II and Gauss

fracture zones, one of the very-slow-spreading oceanic ridges, shows a resemblance to

the patterns of large-θ connecting mode seen in our low-γ models: Segments that are

normal to the spreading direction alternate with oblique ones (see Fig.5a in Dick

et al., 2003). According to Atwater and MacDonald (1977), observations show that

slow spreading centers (v < 3 cm/yr) are oblique to transform faults in most cases;

spreading centers with intermediate rates (v ≈ 3 cm/yr) intersect transform faults

both orthogonally and obliquely; only fast spreading centers (v > 5 cm/yr) are nearly

orthogonal to transform faults. Thus, it is consistent with these observations that the

slow-spreading Southwest Indian ridge falls in the high-θ connecting-mode domain of

the Pe′-γ′ plot, while the intermediate-spreading mid-Atlantic ridge corresponds to

the relatively low-θ near the field of orthogonal patterns (Fig.4.10).

The deformation patterns found in the models are consistent with where actual

ridge systems fall in the domain of Pe′-γ′ (star symbols in Fig.4.10). Assuming the

same thermal parameters with the base case, the γ′ value remains the same with that

of the base case, 0.22, while the half-spreading rate (v) determines the value of Pe′

and thus the position on the plot. The SWIR with v=1 cm/yr is located well within

the high-θ connecting-mode domain; the MAR, spreading at v=2.5 cm/yr, falls in

the low-θ connecting-mode region, implying that slight variations in thermal state or

spreading rate can yield both orthogonal and obliquely connecting patterns; and the

fast-spreading EPR (v > 10 cm/yr) is in the overlapping-mode region.

It is possible that simplifications made in our model are the source of the discrep-

ancy between modeling results and observations. For example, one of the factors that

influence the localization pattern but was not addressed in this study is the offset

between ridge segments. While observations on the newly formed oceanic basins sup-
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port the discrete nucleation of spreading centers and their propagation as assumed in

our model (e.g., Taylor et al., 1995), we did not take into account other characteris-

tics inherited from the continental rifting phase. The size of our models is also fixed

at the smallest possible for the first-order segmentation, and only the initial stage

of pattern formation is considered. The mid-ocean ridge systems, however, exhibit

a relatively wide range of ridge segment and transform fault lengths. They show

a large amount of variability in the patterns of ridge-transform fault intersections,

too. The EPR, for example, is dominated by overlapping segments but also has some

orthogonal ones. The MAR has both orthogonal and oblique segments. The SWIR

and the Gakkel ridge show the most striking variability implying that for the same

spreading rate adjacent segments can be either orthogonal or oblique (M. Cannat,

pers. comm.). However, it can be inferred from our model that segmentation is likely

to be variable for one given spreading rate because factors such as magma supply

rates, hydrothermal cooling and rheological properties are critical in determining the

nature of segmentation and they are highly variable along axis as well as between

mid-ocean ridge systems.

The assumed value of the volumetric thermal expansion coefficient (αv) needs

further justification. Typical values of v for rocks composing oceanic crust are 2

to 3×10−5 K−1 (Turcotte and Schubert, 2001), whereas we take 6×10−5 K−1 as a

reference value. Volume change due to solidification is included in this larger value.

Since oceanic crust was once melted and our initial temperature is well above the

elastic temperature limit (∼700 to 900 ◦C ) (Reiter et al., 1987), we believe that it

is essential to account for thermal stresses accumulated since the time of partial melt

solidification, provided that newly-formed oceanic crust can retain at least a portion

of those stresses. If the liquid-to-solid phase change is taken into account, a jump

in density (inversely proportional to volume change in case of mass conservation) is

expected at the moment of phase transition (e.g., Kushiro, 1980). Below the elastic

temperature limit, αv becomes close to the conventional value. Thus, the value of

αv we used can be thought of as an average over the entire cooling process. One of

the waxes that easily created the orthogonal patterns (Oldenburg and Brune, 1975),
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Shell Wax 200, is also characterized by a large density change from solidification and

subsequent cooling (Sandwell, 1986).

Mantle upwelling patterns and their relation to along-axis segmentation have been

studied extensively (e.g., Parmentier and Phipps Morgan, 1990; Shaw and Lin, 1996;

Barnouin-Jha et al., 1997; Magde and Sparks, 1997; Choblet and Parmentier, 2001).

However, the causal relation between them is not clear (Phipps Morgan, 1991). The

time scale of mantle flow models is also significantly different from that of this study:

It takes no longer than 10 Kyrs for the patterns of strain localization to emerge,

while the time scale associated with mantle convection is typically on the order of

million years. The segmentations were speculated to cause axial variations in man-

tle upwelling, not vice versa, because the patterns were made without the organized

mantle upwelling in numerical experiments with an elastic damage model (Hierony-

mus, 2004). Our results support this point of view because the patterns were created

without explicit consideration of mantle flow. Thus, we suggest that the patterns

of ridge segments and transform faults are determined during the earliest period of

spreading without substantial influence from mantle flow patterns. Later in time, the

patterns are possibly modified by the change in plate motion, mantle upwelling, and

magma supply.

Fracture zones were made in our models as a response to thermal stress. The

thermal stress origin is consistent with previous analyses of thermal stress (Collette,

1974; Turcotte, 1974; Sandwell, 1986) and the role of ridge segments to release only

the ridge-normal component of thermal stress assumed in this study. The orientation

of their straight portion is parallel to the spreading direction as observed in mid-

ocean ridge systems and wax experiments. The timing of fracture zone formation

was always later than the emergence of patterns, which confirms the thermal origin of

fracture zones because a sufficient amount of thermal stress alone would take longer

to accumulate until yielding. Fracture zones were found to connect to the end of

the non-connected branch of ridge segments rather than to extend in parallel from

transform faults as most often found in the mid-ocean ridge systems (Fig.4.4).

Similar patterns were found to emerge from 2-D elastic damage models (Hierony-
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mus, 2004). Comparable patterns included oblique 45◦-connection (OC), transform

fault (TF), and overlapping spreading centers (OSC). While keeping all other pa-

rameters the same as in their TF models, OCs require a stronger shear weakening

due to distortional energy (defined as the double contraction of deviatoric stress and

deviatoric strain tensors), while OSCs need a larger tensile strain as well as zero con-

tribution to shear weakening from the distortional energy and the second invariant of

deviatoric stress. The importance of the amount of tensile strain is comparable to our

results: Larger applied strains correspond to faster spreading rates in terms of emer-

gent patterns. Adjusting their damage properties roughly corresponds to varying our

strain-weakening parameter, ω. However, the fundamental difference from our study

is their emphasis on material properties rather than loading conditions. Although it

was implied that different oceanic lithospheres are composed of inherently different

materials, Hieronymus’s study did not address the reason and processes responsible

for such heterogeneity. On the contrary, we showed that the inclusion of thermal

stresses is critical to determining the patterns in the mid-ocean ridge systems and

that the differently loaded ridge systems can produce different patterns even for the

same material properties. This allows our work to be more closely linked to the un-

derlying physics as well as previous works which invoked thermal stress as the key

driving force in mid-ocean ridge segmentation (Oldenburg and Brune, 1972, 1975;

Collette, 1974; Turcotte, 1974; Sandwell, 1986). We note that rheology and loading,

the two fundamental aspects of continuum mechanical problems, are not mutually

exclusive. In the future it would be desirable to adopt an elasto-plasticity combined

with damage.

In summary, we showed that selectively-released thermal stress can be a significant

source of ridge-parallel tension. Numerical thermo-mechanical models showed that

the resultant ridge-parallel tension from cooling and ridge-normal extension by far-

field tectonic forces together create variation in the mode of interaction between

two mutually-approaching ridge segments. The ratio of thermal stress to spreading-

induced stress is a first-order measure of the mode that subsequently develops. When

the rates of each driving process are measured separately, the models were clearly
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divided into different modes of interaction. In general, the larger ratio of thermal

stress to spreading-induced stress leads to the connecting mode, while the smaller

ratio to the overlapping one. This correlation can translate to the observed correlation

between the spreading rate and the modes of intersection between spreading centers

and transforms faults. Magma-supply models have been successful in explaining the

along-axis variability of mid-ocean ridge systems. Factors considered significant in

those models such as magma supply rate and hydrothermal cooling eventually give

rise to the local variations in thermal state. In that sense, our thermo-mechanical

model would be complementary to such a long-term mode. A better understanding

of the segmentation of the mid-ocean ridge systems would come from longer-term

models that incorporate the continental rifting and magma supply models. In light

of the high sensitivity of models to strain-weakening rates, it would be also crucial to

use geologically-constrained plastic parameters.
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