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Abstract

A study of the shock-reflection domain for steady flow is presented. Conditions defining

boundaries between different possible shock-reflection solutions are given, and where possi-

ble, simple analytic expressions for these conditions are presented. A new, more accurate

estimate of the steady-state Mach stem height is derived based on geometric considerations

of the flow. In particular, the location of the sonic throat through which the subsonic con-

vergent flow behind the Mach stem is accelerated to divergent supersonic flow is considered.

Comparisons with previous computational and experimental work show that the theory pre-

sented in this thesis more accurately predicts the Mach stem height than previous theories.

The Mach stem height theory is generalized to allow for a moving triple point. Based on

this moving triple point theory, a Mach stem growth rate theory is developed. This theory

agrees well with computational and experimental results. Numerical computations of the

effects of water vapor disturbances are also presented. These disturbances are shown to be

sufficient to cause transition from regular reflection to Mach reflection in the dual-solution

domain. These disturbances are also modeled as a simple energy deposition on one of the

wedges, and an estimate for the minimum energy required to cause transition is derived.

Experimental results using an asymmetric wedge configuration in the Ludwieg tube

facility at the California institute of Technology are presented. A Mach 4.0 nozzle was

designed and built for the Ludwieg tube facility. This Mach number is sufficient to provide

a large dual-solution domain, while being small enough not to require preheating of the

test gas. The test time of the facility is 100 ms, which requires the use of high-speed cine-

matography and a fast motor to rotate one of the two wedges. Hysteresis in the transition

between regular to Mach reflection was successfully demonstrated in the Ludwieg tube facil-

ity. The experiments show that regular reflection could be maintained up to a shock angle

approximately halfway between the von Neumann condition and the detachment condition.

Energy deposition studies were performed using an Nd:YAG laser. Triggering transition
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in this manner is found to depend on the location of the energy deposition. This finding

is consistent with the numerical work presented in this thesis. Experiments were also

performed to measure the Mach stem height and its growth rate. These results are compared

with the theoretical estimates presented in this thesis. Excellent agreement between the

steady-state Mach stem height and the theoretical estimates is seen. Comparisons of Mach

stem growth rate with theoretical estimates show significant differences, but do show good

agreement regarding the time required to reach the steady-state height.
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Chapter 1

Introduction

When a shock wave propagates over a solid wedge, the flow generated by the shock impinges

on the wedge thus generating a second reflected shock, which ensures that the velocity of

the flow is parallel to the wedge surface. Viewed in the frame of the reflection point, this

flow is locally steady, and the configuration is referred to as a pseudosteady flow. When

the angle between the wedge and the primary shock is sufficiently large, a single reflected

shock is not able to turn the flow to a direction parallel to the wall and transition to Mach

reflection occurs. These are illustrated in Figure 1.1

Much of the research in the field of Mach reflection has been done in this pseudosteady

configuration. The concern of this thesis, however is the transition between regular and

Mach reflection in steady flow. If a wedge is placed into a steady supersonic flow in such

a way that its oblique attached shock impinges on a flat wall parallel to the free stream,

the shock turns the flow toward the wall and a reflected shock is required to turn the flow

back to a direction parallel to the wall. When the shock angle exceeds a certain value, the

deflection achievable by a single reflected shock is insufficient to turn the flow back to a

direction parallel to the wall and transition to Mach reflection is observed. Both regular

reflection and Mach reflection in steady flow are illustrated in Figure 1.2.

The fundamental question regarding regular reflection and Mach reflection, is at which

flow conditions they occur.

Most steady flow studies of shock reflection have considered a wedge placed above a

planar surface. In experiments, the planar surface is most often replaced by a plane of

symmetry in order to remove boundary layer effects. In his 1943 report, von Neumann [1]

also considered this problem. He did so by first considering regular reflection, where the

incident shock reflects directly off the planar surface. He notes that the purpose of the
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(a) (b)

Figure 1.1: Pseudosteady regular reflection (a) and Mach reflection (b). The primary shock
is traveling from left to right over the wedge.

(a) (b)

Figure 1.2: Steady regular reflection (a) and Mach reflection (b). The free-stream flow is
from left to right.
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Figure 1.3: Steady von Neumann reflection. The free-stream flow is from left to right.

reflected shock is to turn the flow from behind the incident shock back to its initial angle.

However, he considers the fact that the reflected shock has a maximum turning angle, and

therefore a reflection directly off the planer surface (regular reflection) may not always

be possible. Based on this maximum turning angle, he defines what he calls the extreme

condition, which would later come to be known as the detachment condition. Simply put,

the detachment condition is the largest incident shock angle for which the oblique reflected

shock can turn the flow back to its original angle.

Von Neumann [1] in his analysis of Mach reflection considers the pseudosteady case.

He defines Mach reflection as the configuration in which the incident shock does not reflect

off the planar surface, but rather reflects from a triple point above the planar surface. In

addition to the reflected shock from this triple point there is an additional shock, the Mach

stem, which lies between the triple point and the planar surface. Also, a slipline originates

from this triple point because of the different flow conditions behind the reflected shock and

behind the Mach stem; even though the pressures behind both are the same.

In addition, von Neumann [1] postulates the possibility for what he calls quasi-stationary

Mach reflection, which in the case of steady flow is simply Mach reflection. The condition

for quasi-stationary Mach reflection is that the pressure behind the reflected shock is equal

to the pressure obtained behind a stationary normal shock. This condition would later be

renamed the von Neumann condition. For low Mach numbers von Neumann calculated

that Mach reflection was not possible, although something resembling Mach reflection ex-

isted in experiments. He called this type of reflection extraordinary Mach reflection, which

would later be renamed von Neumann reflection. Von Neumann reflection is illustrated in

Figure 1.3.

The conclusion of von Neumann [1] is that in the parameter range where Mach reflection

is possible, transition will in practice occur at the quasi-stationary Mach reflection condition,
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i.e., the von Neumann condition. He also concluded that when Mach reflection is not

possible, transition to extraordinary Mach reflection, i.e., von Neumann reflection, will

occur at the detachment condition.

Although von Neumann’s work [1] was a definitive step in the understanding of shock

reflection phenomena, it missed some of the subtleties involved. In particular, the difference

between the transition conditions for steady and pseudosteady flows were not recognized.

Later in 1975, Henderson and Lozzi [2] proposed a mechanical equilibrium condition.

This condition states that the pressure behind the reflection must be continuous as the flow

transitions from regular reflection to Mach reflection. This condition therefore corresponds

to the von Neumann condition. Experiments in 1977 by Hornung and Kychakoff [3] observed

that in steady flow at high Mach number transition occurs at the von Neumann angle.

In 1979, the distinction between the transition criteria for steady flows and those for

pseudosteady flows was pointed out by Hornung, Oeretel, and Sandeman [4]. They argue

that the von Neumann condition should be used for steady flows and the sonic condition for

pseudosteady flows. For practical purposes the sonic and detachment conditions are almost

indistinguishable, and different papers state the transition criteria as either the detachment

condition or sonic condition. A single condition encompassing both the von Neumann

condition for steady flows and the sonic condition for pseudosteady flows was referred to as

the information condition. The condition states that in order for a Mach stem to exist, it

is necessary that information about a length scale can reach the region near the reflection

point in order to scale the Mach stem length.

In steady flow, any disturbance in the flow that is strong enough to set up a small Mach

reflection would open an information information path from the boundary conditions to

the reflection point. This is because once the Mach stem is set up, the flow behind the

Mach stem is subsonic, and a permanent information path is established. The original

paper proposed that start-up disturbances were the cause of the initial transition, but later

experiments showed that basic tunnel disturbances, such as dust or unsteadiness of the

free stream, could also open such an information path. This also implies that without any

disturbances, regular reflection is possible at shock angles greater than that at the von

Neumann condition. This means that in steady flow, between the von Neumann condition

and the detachment condition there is a region where both regular reflection and Mach

reflection are possible, which is referred to as the dual-solution domain. The existence of
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the dual-solution domain suggested the possibility of hysteresis in transition between the two

reflection configurations. However, experiments by Hornung et al. did not observe regular

reflection past the von Neumann condition. In the pseudosteady case, information about

a length scale can reach the reflection point only if the flow behind the regular reflection

is subsonic; therefore, in the pseudosteady case transition to Mach reflection occurs at the

sonic condition, which is very near the detachment condition.

In 1979, Henderson and Lozzi [5] attempted to obtain regular reflection above the von

Neumann condition, without success. Experiments by Hornung and Robinson in 1982 [6],

further strengthened the argument that in steady flow transition occurs at the von Neumann

condition.

In pseudosteady flows, accurate predictions of Mach stem height exist; however, until

1989, similar predictions of Mach stem height in steady flows did not exist. In 1982, the

experiments of Hornung and Robinson [6] provided data on the Mach stem height in steady

flow for various flow parameters. In 1989, Azevedo [7] published analytical predictions of

the Mach stem height as part of his dissertation. The theory presented by Azevedo offered

a simple solution for the Mach stem height that, however, underpredicted experimental

values.

Using direct simulation Monte Carlo computations, Ivanov, Gimelshein, and Beylich

[8] were able to demonstrate that there is indeed a hysteresis phenomenon between the

von Neumann and detachment condition, as predicted by Hornung, Oeretel, and Sandeman

[4]. No noise was added in the computations done by Ivanov and Gimelshein, and the

transition from regular reflection to Mach reflection was seen to occur at the detachment

condition. In their computations, they also examined transition in the opposite direction

and found that transition from Mach reflection to regular reflection occurred within the dual

solution domain, at neither the detachment nor von Neumann condition. In the same year,

Chpoun et al. [9] confirmed the hysteresis phenomenon experimentally. A more detailed

experimental study by Ivanov et al. [10] also demonstrated hysteresis with regular reflection

up to the vicinity of the detachment condition.

Further experimental confirmation of the possibility of regular reflection existing in the

dual solution domain was given by Sudani et al. in 2002 [11]. In this paper, Sudani et al.

also show that various small disturbances can trip the flow from regular reflection to Mach

reflection in the dual solution domain. Their findings, as well as those of Chpoun et al.
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[9] and Ivanov et al. [12], explain why in most previous experiments transition occurred at

the von Neumann condition and not inside the dual-solution domain. In particular, these

authors showed that even small flow disturbances, such a tunnel dust, can cause transition

from regular reflection to Mach reflection.

Some researchers, including Yan et al. [13], have suggested that using energy deposition

to trip from Mach reflection to regular reflection within the dual-solution domain is possible.

Both the experiments and the computations were done within the dual-solution domain with

fixed wedge positions and an initial Mach reflection. In experiments, they were not able to

transition from Mach reflection to regular reflection. They were only able to temporarily

decrease the size of the Mach stem. In numerical experiments, they successfully transitioned

from Mach reflection to regular reflection. This transition may however have been due to

insufficient refinement, and the Mach stem simply decreases to a size smaller than a cell

size and therefore effectively disappears.

1.1 Outline and Contributions

In this section an outline of the subsequent sections is presented, followed by an overview

of the new contributions made by each section. Detailed substantiation of these claims are

left to the respective sections.

First, a detailed shock analysis determining the domain boundaries of shock reflection

in steady flow is presented. In particular, where possible, analytic solutions for boundaries

between different solutions are presented and limiting values for these boundaries are given.

A new method for estimating the steady-state size of a Mach stem is presented based

on the flow parameters and the flow geometry. These results are compared with previous

theories, experiments and computations, as well as with current experiments and compu-

tations. This analysis of Mach stem height is expanded to allow for a moving triple point.

In particular, the analysis shows that for a given triple point speed, there exists a single

corresponding Mach stem height. A theory for the Mach stem growth rate is then devel-

oped based on this analysis. The growth rate of the Mach stem is compared with current

experiments and computations.

A detailed look at the effects of disturbances on the possibility of tripping the flow

between regular reflection and Mach reflection in the dual-solution domain is presented. It
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is observed that the shock created as a result of the impact of dense particles on the wedge

can cause transition from regular reflection to Mach reflection. Because of this result, the

simplified case of direct energy deposition on the wedge is considered. A simple estimate of

the lower bound of the required energy for transition to occur is presented. This estimate

is compared with computational work on the minimum energy required for transition from

regular reflection to Mach reflection to occur.

Most of the work in this thesis focuses on the case the reflection is generated by two

wedges with a symmetry plane between them. However, for experimental simplicity, the

experiments conducted as part of this thesis were performed with one fixed wedge and

one movable wedge. Therefore, a simple method by which to compare symmetric and

asymmetric results is presented.

The experimental setup for the hysteresis and the energy deposition experiments is

presented. First, the hysteresis phenomenon is confirmed to exist in the Ludwieg tube

facility. Since the Ludwieg tube facility has a short test time, only 100 ms, the effect of

wedge rotation speed on the transition from regular reflection to Mach reflection is studied.

The transition from regular reflection to Mach reflection due to deposition of energy on one

of the wedges is also examined. This transition due to energy deposition leads to a rapid

growth of the Mach stem from its initial regular reflection condition to the steady-state

Mach stem height. This growth is compared with numerical and theoretical predictions.

The main contributions of this thesis are presented below:

• A more accurate prediction for the steady-state Mach stem height is given. The predic-

tion model is based on gas-dynamical and geometric flow considerations, and focuses

on determining the location of the sonic throat formed behind the Mach stem. This

sonic throat is allowed to occur anywhere downstream of the leading characteristic of

the aft wedge expansion.

• A prediction for the Mach stem growth rate from regular reflection to the steady-state

Mach stem height is presented. This is the first theory of the growth rate of a Mach

stem, and shows that Mach stems smaller than their steady-state size will grow until

they reach their steady-state height.

• Numerical experiments show that small flow disturbances, such as dust particles or

energy deposition, can cause transition from regular reflection to Mach reflection
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inside the dual-solution domain. For the case of a dense particle, the importance of

the impact shock, created when the particle impacts one of the wedges, is observed.

• Experiments show that using the newly constructed Mach 4.0 nozzle and the exist-

ing Ludwieg tube, hysteresis between regular reflection and Mach reflection can be

observed. Regular reflection was maintained approximately halfway into the dual-

solution domain. It is experimentally shown that the faster the shock configuration

enters the dual-solution domain the further into the dual-solution domain regular

reflection can be maintained.

• Experiments show that depositing energy onto one of the wedges can cause transition

from regular reflection to Mach reflection. The importance of the deposition location

is observed and is qualitatively consistent with the numerical and theoretical work of

this thesis.

• Both the steady-state Mach stem height and Mach stem growth rate were measured

experimentally. Excellent agreement between the Mach stem height theory, developed

in the thesis, and experimental measurements is seen. The time to reach the steady-

state Mach stem height agrees well with the theory developed in this thesis, although

significant differences on the time-history of the Mach stem exist.
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Chapter 2

Shock Reflection Domain

2.1 General Compressible Flow Equations

Throughout this thesis the medium is assumed to be a perfect gas. The reason for presenting

yet another discussion of shock reflection domains is that a number of anloytical solutions

have been found that have not previously been given. Many compressible flow equations

will be used that may be found, e.g., in NACA Report 1135 [14]. The pressure ratio across

an oblique shock, ξ, is a function of the incoming Mach number, Mx, the shock angle, α,

and the ratio of specific heats, γ. Mx refers to the Mach number in region x; the free-stream

Mach number is denoted M∞. Note that regardless of which way the shock is inclined the

shock angle is always taken to be positive. These basic parameters are shown in Figure 2.1.

Specifically, the pressure ratio is

ξ (Mx, γ, α) =
2γM2

x sin2 α − (γ − 1)
γ + 1

. (2.1)

Similarly, the flow deflection, θ, and Mach number, M , behind an oblique shock are also

functions of Mx, γ, and α, and are given by

θ (Mx, γ, α) = cot−1

[(
(γ + 1) M2

x

2
(
M2

x sin2 α − 1
) − 1

)
tan α

]
, (2.2)

and

M (Mx, γ, α) =

√
(γ + 1)2 M4

x sin2 α − 4
(
M2

x sin2 α − 1
) (

γM2
x sin2 α + 1

)[
2γM2

x sin2 α − (γ − 1)
] [

(γ − 1) M2
x sin2 α + 2

] . (2.3)
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M (Mx, γ, α)Mx

α

θ (Mx, γ, α)

Figure 2.1: Basic flow parameters. Mx is the incoming Mach number, θ is the flow deflection
angle, α is the shock angle, and M (Mx, γ, α) is the flow Mach number behind the oblique
shock.

Setting the right-hand side of Equation 2.3 equal to unity produces a special shock angle

value, α∗,

α∗ (Mx, γ) = sin-1

√√√√√γ − 3 + M2
x (γ + 1) +

√
(γ + 1)

[
(M2

x − 3)2 + γ (M2
x + 1)2

]
4γM2

x

. (2.4)

Another special value of the shock angle occurs when the flow deflection angle is maximum.

This condition is found by setting the derivative of Equation 2.2 with respect to α equal to

zero, i.e., ∂M(Mx,γ,α)
∂α = 0. The shock angle for maximum deflection, αθmax , is given by

αθmax (Mx, γ) = sin-1

√√√√
(γ + 1)

M2
x − 4

γ+1 +
√

M4
x + 8γ−1

γ+1M2
x + 16

γ+1

4γM2
x

. (2.5)

A final special value of the shock angle is simply the Mach angle, αμ, which is given by

αμ (Mx) = sin-1 1
Mx

. (2.6)

This corresponds to a wave of zero strength.
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Figure 2.2: Regular reflection with supersonic downstream flow. Part (a) shows an example
of regular reflection with supersonic flow downstream of the reflected shock. For simplicity
the expansion wave originating from the downstream corner of the wedge is not shown.
Part (b) shows an example shock polar diagram demonstrating regular reflection.

2.2 Possible Shock Reflections

There are several possible shock reflections. These are regular reflection with supersonic

downstream flow (RR), regular reflection with subsonic downstream flow (RRs), Mach re-

flection with supersonic flow downstream of the reflected shock (MR), Mach reflection with

subsonic flow downstream of the reflected shock (MRs), Mach reflection with a forward

facing reflected shock (MRf), inverted Mach reflection (IMR), and von Neumann reflection

(vNR).

2.2.1 Regular Reflection

The simplest configuration possible is regular reflection with supersonic flow downstream of

the reflected shock. An example of regular reflection is shown in Figure 2.2(a). In this case,

the reflected shock turns the flow by the exact same amount as the incoming shock, i.e., the

reflected shock turns the flow by the wedge angle so that the flow is again parallel to the

free-stream flow. The reflected shock, in this case, is sufficiently weak that the flow behind

it remains supersonic. Figure 2.2(b) shows an example shock polar with regular reflection.

The point where the reflected shock polar intersects the zero deflection line is denoted with

a circle.
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0
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Figure 2.3: Regular reflection with subsonic downstream flow. Part (a) shows an example of
regular reflection with subsonic flow downstream of the reflected shock. For simplicity the
expansion wave originating from the downstream corner of the wedge is not shown. Part
(b) shows an example shock polar diagram demonstrating regular reflection with subsonic
flow downstream of the reflected shock. The reflected shock polar only crosses the zero
deflection line above the sonic point.

2.2.2 Regular Reflection with Subsonic Downstream Flow

This case is identical to the regular reflection case, except that the flow downstream of the

reflected shock is subsonic. An example of regular reflection with subsonic downstream flow

is shown in Figure 2.3(a). As in the previous case, the reflected shock turns the flow by

the exact same amount as the incoming shock, i.e., the reflected shock turns the flow by

the wedge angle so that it is again parallel to the free-stream flow. The reflected shock is

strong enough to cause the flow downstream of it to be subsonic. Since the shock angle for

maximum flow deflection and sonic condition are very close, this condition can only exist

for a narrow range of shock angles at any given Mach number. Figure 2.3(b) shows a shock

polar with subsonic flow downstream of the reflected shock. We see in the figure that the

reflected shock polar crosses the zero deflection line above the sonic point (denoted by an

asterisk); therefore, the flow downstream of the reflected shock will be subsonic.

2.2.3 Mach Reflection

This case is also known as direct Mach reflection. Mach reflection exists when a reflected

shock is unable to turn the flow by the required amount, i.e., the maximum flow turning

angle at the given Mach number is less than the wedge angle. The Mach stem is inclined

slightly downstream so that the flow behind the triple point is angled slightly downward.
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Figure 2.4: Mach reflection. Part (a) shows an example of Mach reflection. For simplicity
the expansion wave originating from the downstream corner of the wedge is not shown.
Part (b) shows an example shock polar diagram demonstrating Mach reflection. At the
triple point the Mach stem has the properties of the flow given at the intersection of the
two shock polars, which is denoted by a circle.

This means that the reflected shock needs to turn the flow by an angle that may be smaller

than the wedge angle. This is illustrated in Figure 2.4(a). The flow behind the reflected

shock and the flow behind the Mach stem must have the same flow angle and pressure.

Figure 2.4(b) shows a shock polar for Mach reflection. The circle indicates the intersection

of the reflected shock polar and the incident shock polar, giving pressure and flow angle

behind the reflected shock and behind the Mach stem at the triple point. Further from the

triple point, the Mach stem has the properties given by the points along the incident shock

polar between the circle and the zero deflection line.

2.2.4 Mach Reflection with Subsonic Downstream Flow

This case is almost identical to the Mach reflection case except the flow behind the reflected

shock is subsonic. Mach reflection with subsonic downstream flow, like Mach reflection,

exists when a reflected shock is unable to turn the flow by the required amount, i.e., the

maximum flow turning angle at the given Mach number is less than the wedge angle. The

Mach stem is inclined slightly downstream (with concave upstream curvature) so that the

flow behind the triple point is angled slightly downward. This means that the reflected shock

no longer needs to turn the flow by the wedge angle but is strong enough to produce subsonic

downstream flow. This is illustrated in Figure 2.5(a). The flow behind the reflected shock

and the flow behind the Mach stem must have the same flow angle and the same pressure.
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Figure 2.5: Mach reflection with subsonic downstream flow. Part (a) shows an example of
Mach reflection with subsonic flow downstream of the reflected shock. For simplicity the
expansion wave originating from the downstream corner of the wedge is not shown. Part (b)
shows an example shock polar diagram demonstrating Mach reflection with subsonic flow
downstream of the reflected shock. At the triple point the Mach stem has the properties of
the flow given at the intersection of the two shock polars, which is denoted by a circle.

Figure 2.5(b) shows the reflected shock polar.

2.2.5 Mach Reflection with a Forward-Facing Reflected Shock

It is possible for Mach reflection to exists with a forward facing reflected shock, i.e., the

reflected shock is inclined upstream at the triple point (convex upstream curvature). This

condition can only exist if the flow downstream of the reflected shock is subsonic. This is

necessary in order to allow the reflected shock to curve and become perpendicular to the

wedge at the wedge surface, see Figure 2.6(a). The flow behind the reflected shock and the

flow behind the Mach stem must have the same flow angle and the same pressure. Fig-

ure 2.6(b) shows the reflected shock polar with the reflected shock intersecting the incident

shock to the right of the initial deflection angle. The fact that the intersection, illustrated

by the circle, occurs to the right of the initial deflection angle means that the reflected shock

is forward facing.

2.2.6 Inverted Mach Reflection

In certain cases, it is possible for the Mach stem to be inclined upstream so that the flow

behind the triple point is inclined upward. The flow downstream of the reflected shock

is also subsonic in this case. This is necessary in order to allow downstream disturbances
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Figure 2.6: Mach reflection with a forward-facing reflected shock. Part (a) shows an exam-
ple of Mach reflection with a forward facing reflected shock. The flow downstream of the
reflected shock is subsonic. For simplicity the expansion wave originating from the down-
stream corner of the wedge is not shown. Part (b) shows an example shock polar where the
reflected shock polar intersects the incident shock polar to the right of the initial deflection
angle.

to influence the shock configuration. Inverted Mach reflection can only exist when regular

reflection is also possible, since in inverted Mach reflection the reflected shock has to turn

the flow by more than the wedge angle, see Figure 2.7(a). The flow behind the reflected

shock and the flow behind the Mach stem must have the same flow angle and the same

pressure. Figure 2.7(b) shows the shock polar and a circle indicates the intersection of

the incident and the reflected shock polars. This intersection occurs to the left of the zero

deflection line; hence, the Mach reflection will be inverted.

2.2.7 Von Neumann Reflection

The most complicated type of reflection is von Neumann reflection. This occurs when the

reflected shock polar never intersects the incident shock polar, as shown in Figure 2.8(b).

A simplified schematic of von Neumann reflection is shown in Figure 2.8(a). Because the

details of von Neumann reflection are outside the scope of this thesis, readers are referred

to the recent work by Skews and Ashworth [15], who present experimental verification of

the details of von Neumann reflection. Their experimental work appears to confirm the

existence of a series of supersonic patches and shocks behind the intersection of the incident

and the reflected shocks as suggested by Tesdall and Hunter [16].
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Figure 2.7: Inverted Mach reflection. Part (a) shows an example of inverted Mach reflection
where the flow downstream of the triple point is inclined upward. The flow downstream
of the reflected shock is subsonic. For simplicity the expansion wave originating from the
downstream corner of the wedge is not shown. Part (b) shows an example shock polar in
the case of inverted Mach reflection. The intersection between the incident and the reflected
shock polars occurs to the left of the zero deflection line.
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Figure 2.8: Von Neumann reflection. Part (a) shows an example of von Neumann reflection.
There is no true Mach stem, since the incident shock simply curves and becomes perpen-
dicular to the surface. Because of the lack of a true Mach stem, a triple point is not clearly
defined. For simplicity the expansion wave originating from the downstream corner of the
wedge is not shown. Part (b) shows an example shock polar in the case of von Neumann
reflection. In this case the incident and the reflected shock polars do not intersect and there
is no triple point solution.
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1

1∞

αMW

M∞

Figure 2.9: Flow over a zero-degree wedge producing a Mach wave. The flow in region 1 is
therefore identical to the free-stream flow.

2.3 Domain Boundaries

2.3.1 Mach Wave Condition

For any given free-stream Mach number, M∞, a minimum shock angle exists. This angle is

the Mach wave angle, αMW, and is given simply by

αMW = αμ (M∞) . (2.7)

This defines the lower boundary of the Mach reflection domain, since no incident shock

can exist with a shock angle less than αMW. A Mach wave produces a zero-flow deflection

angle. A representative Mach wave is shown in Figure 2.9. An example of the shock

reflection domain considering only the Mach reflection condition is shown in Figure 2.10.

2.3.2 Sonic Incident Shock Condition

If the incident shock is strong (i.e., if the flow behind the incident shock is subsonic), a

reflected shock is not possible; therefore, no shock reflection can occur. This sets the upper

boundary for the reflection domain since no incident shock with a higher angle can produce

a shock reflection. This boundary is defined by the flow behind the incident shock being

sonic. Specifically, the relation for the leading shock angle at this condition, αSIS, is given

by

αSIS = α∗ (M∞, γ) . (2.8)
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Figure 2.10: Shock reflection domain, for γ = 1.4, considering only the Mach wave condition.

In the limit of M∞ going to ∞, this relationship becomes

lim
M∞→∞

αSIS = sin-1

√
γ + 1
2γ

. (2.9)

The reflection domain, for γ = 1.4, considering only the sonic incident shock condition,

is shown in Figure 2.11. No shock reflection is possible for shock reflection above αSIS.

2.3.3 Detachment Condition

The detachment condition for a given Mach number is defined as the incident shock angle

at which the maximum flow turning angle by the reflected shock equals the flow turning

angle of the incident shock. For a shock angle larger than that at the detachment condition

regular reflection is not possible. This is illustrated by the example in Figure 2.12. An

example of the shock polar diagram for the detachment condition is shown in Figure 2.13.

To find the incident shock angle at the detachment condition, αD, the flow turning angle of

the incident shock and the maximum flow deflection angle of the reflected shock must be
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Figure 2.11: Shock reflection domain, for γ = 1.4 considering only the sonic incident shock
condition.
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αD (θ1)D

Figure 2.12: Flow over a wedge producing an incident and reflected shock. The wedge angle
is equal to the maximum deflection angle of the reflected shock given the flow Mach number
in region 1.
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Figure 2.13: Example of the detachment condition for M = 4 and γ = 1.4. Note that the
maximum deflection of the reflected shock corresponds to θ = 0. The ∗ denotes the sonic
points of the shock loci.

the same. The Mach number behind the leading oblique shock at this condition is

(M1)D = M (M∞, γ, αD) . (2.10)

Therefore the following must be satisfied,

θ (M∞, γ, αD) = θ
(
(M1)D , γ, αθmax ((M1)D , γ)

)
. (2.11)

Solving Equation 2.11 for αD produces a fifth-order polynomial in sin2 αD,

D0 + D1 sin2 αD + D2 sin4 αD + D3 sin6 αD + D4 sin8 αD + D5 sin10 αD = 0, (2.12)
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where

D0 = −16 (2.13)

D1 = 32M2
∞ − 4M4

∞ − 48M2
∞γ − 16M4

∞γ + 16γ2 − 16M4
∞γ2

+ 16M2
∞γ3 + 4M4

∞γ4 (2.14)

D2 = −16M4
∞ + 4M6

∞ − M8
∞ + 104M4

∞γ + 16M6
∞γ − 4M8

∞γ

− 64M2
∞γ2 − 32M4

∞γ2 + 8M6
∞γ2 − 6M8

∞γ2 − 56M4
∞γ3

− 16M6
∞γ3 − 4M8

∞γ3 − 12M6
∞γ4 − M8

∞γ4 (2.15)

D3 = M8
∞ − 64M6

∞γ + 4M8
∞γ + 96M4

∞γ2 + 64M6
∞γ2 + 14M8

∞γ2

+ 64M6
∞γ3 + 20M8

∞γ3 + 9M8
∞γ4 (2.16)

D4 = 8M8
∞γ − 64M6

∞γ2 − 32M8
∞γ2 − 24M8

∞γ3 (2.17)

D5 = 16M8
∞γ2 (2.18)

Note that there is only one physical solution to this equation, i.e., only one solution for

sin2 αD real and bounded between zero and one, for all Mach numbers greater than unity.

In the limit of M∞ going to ∞, the polynomial from Equation 2.12 becomes

lim
M∞→∞

(− (γ + 1)4 sin4 αD + (γ + 1)2
(
9γ2 + 2γ + 1

)
sin6 αD

− 8
(
3γ3 + 4γ2 − γ

)
sin8 αD + 16γ2 sin10 αD

)
= 0 (2.19)

Excluding the case where sin2 αD = 0, there are three solutions for sin2 αD. The only

physical solution is

lim
M∞→∞

αD = sin-1

√
1
6γ

(
3γ2 + 4γ − 1 −

√
9γ4 + 36γ3 − 2γ2 − 44γ + 1 cos ζD

)
, (2.20)

where

ζD =
π

3
+

1
3

tan-1
12
√

3γ (γ − 1)−1 (γ + 1)5 (27γ2 + 36γ + 1)

27γ4 − 162γ2 − 152γ − 1
. (2.21)

An example of the reflection domain, considering only the detachment condition, is

shown in Figure 2.14. For shock angles greater than the detachment angle regular reflection

is not possible.
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Figure 2.14: Shock reflection domain, for γ = 1.4 considering only the detachment condition.

2.3.4 Von Neumann Condition

The von Neumann condition is defined as the incident shock angle, αvN, where the total

pressure rise across both the incident and reflected shock equals that of a single normal

shock. In addition, the flow turning angle of the incident shock equals that of the reflected

shock. For shock angles above αvN, inverted Mach reflection is impossible since the reflected

shock polar intersects the incident shock polar to the right of the zero-deflection line. Sim-

ilarly, for shock angles below αvN, direct Mach reflection is impossible since the reflected

shock polar intersects the incident shock polar to the left of the zero-deflection line. The

shock structure at the von Neumann condition is shown in Figure 2.15.

A representative shock polar at the von Neumann condition is shown in Figure 2.16.

The Mach number, behind the leading oblique shock, at this condition is

(M1)vN = M (M∞, γ, αvN) . (2.22)
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Figure 2.15: Flow over a wedge producing a triple point. At the von Neumann condition
the Mach stem is normal to the free-stream flow and therefore the flow behind it is parallel
to the bottom surface. In addition, both the pressure and flow angle behind that reflected
shock match that of the normal Mach stem.
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Figure 2.16: Example of the von Neumann condition for M = 4 and γ = 1.4. Note that
the intersection of the incident and reflected shock polars corresponds to a normal incident
shock. The ∗ denotes the sonic point of the shock loci.
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For the von Neumann condition to be satisfied, the following two equations must be true:

ξ
(
M∞, γ,

π

2

)
= ξ (M∞, γ, αvN) ξ ((M1)vN , γ, (α1)vN) , (2.23)

θ (M∞, γ, αvN) = θ ((M1)vN , γ, (α1)vN) , (2.24)

where (α1)vN is the angle of the reflected shock with respect to the flow in region 1. The

first of these two equations can easily be solved by inverting Equation 2.1,

2γ (M1)
2
vN sin2 (α1)vN − (γ − 1)

γ + 1
=

ξ
(
M∞, γ, π

2

)
ξ (M∞, γ, αvN)

. (2.25)

Therefore,

(α1)vN = sin-1

√√√√(γ − 1) + (γ + 1)
ξ(M∞,γ, π

2 )
ξ(M∞,γ,αvN)

2γ (M1)
2
vN

. (2.26)

The final solution for αvN is found numerically using the following equation:

θ (M∞, γ, αvN) = θ

⎛
⎜⎝(M1)vN , γ, sin-1

√√√√(γ − 1) + (γ + 1)
ξ(M∞,γ, π

2 )
ξ(M∞,γ,αvN)

2γ (M1)
2
vN

⎞
⎟⎠ . (2.27)

Note that this equation does not have a solution for all Mach numbers. Specifically, the

free-stream Mach number, M∞, must be above a certain value, (M∞)svN. To calculate this

value, let αvN = sin-1 1
(M∞)svN

+ ε, where ε is a small positive value. From equation 2.2 we

see that

θ

(
(M∞)svN , γ, sin-1 1

(M∞)svN

+ ε

)
=

4 [(M∞)svN]2 − 4

[(M∞)svN]2 (γ + 1)
ε + O (ε2

)
. (2.28)

Similarly, from Equation 2.1,

ξ

(
(M∞)svN , γ, sin-1 1

(M∞)svN

+ ε

)
= 1 +

4
√

[(M∞)svN]2 − 1γ

γ + 1
ε + O (ε2

)
, (2.29)

ξ
(
(M∞)svN , γ,

π

2

)
=

2γ [(M∞)svN]2 − (γ − 1)
γ + 1

, (2.30)

and, from Equation 2.3, we can find the Mach number behind the incident shock in this
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special case, (M1)
s
vN, to be

(M1)
s
vN = (M∞)svN

2

[√
1 − 1

[(M∞)svN]2
(
2 + [(M∞)svN]2 (γ − 1)

)]

γ + 1
ε + O (ε2

)
. (2.31)

Substituting Equations 2.28 through 2.31 into Equation 2.27, produces

−
2
(
[(M∞)svN]2 − 1

) 5
4

√
−2 +

4[(M∞)svN]2−4

γ+1

(M∞)svN

(
2 + [(M∞)svN]2 (γ − 1)

) √
ε + O (ε) = 0. (2.32)

To lowest order this is satisfied when

−2 +
4 [(M∞)svN]2 − 4

γ + 1
= 0. (2.33)

This equation has two solutions, one positive and one negative, we will take the positive

solution,

(M∞)svN =

√
γ + 3

2
. (2.34)

Again, in order for the von Neumann condition to exist, the free-stream Mach number must

be greater than (M∞)svN. At this Mach number, von Neumann reflection occurs when the

incident shock is a Mach wave; therefore, the shock angle at this limiting condition, αs
vN, is

αs
vN = sin-1

√
2

γ + 3
. (2.35)

It is also interesting to look at the limiting value of αvN as M∞ goes to ∞. Taking the

limit of the left-hand side of Equation 2.27 as M∞ goes to ∞ gives

lim
M∞→∞

θ (M∞, γ, αvN) = cot-1
[
tan αvN

(
γ + 1

2 sin2 αvN
− 1
)]

. (2.36)

Also, as M∞ goes to infinity, the pressure ratios become

lim
M∞→∞

ξ
(
M∞, γ,

π

2

)
=

2γM2∞
γ + 1

, (2.37)

lim
M∞→∞

ξ (M∞, γ, αvN) =
2γM2∞ sin2 αvN

γ + 1
, (2.38)
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and the Mach number behind the leading oblique shock becomes

lim
M∞→∞

(M1)vN = lim
M∞→∞

M (M∞, γ, αvN)

=
(γ + 1)2 − 4γ sin2 αvN

2γ (γ − 1) sin2 αvN
. (2.39)

Substituting Equations 2.36 through 2.39 into 2.27, taking the cotangent of both sides and

squaring both sides produces

lim
M∞→∞

L1 sin6 αvN − L2 sin4 αvN + L3 sin2 αvN − L4

2 (γ2 − 1) sin2 αvN

(
sin2 αvN − 1

)2 [sin2 αvN (γ + 1) − 2
] = 0 (2.40)

where

L1 = 8γ2 (γ + 1) , (2.41)

L2 = 2γ
(
3γ3 + 5γ2 + 9γ − 1

)
, (2.42)

L3 =
(
γ5 + 3γ4 + 10γ3 + 6γ2 − 3γ − 1

)
, (2.43)

L4 = (γ − 1) (γ + 1)3 . (2.44)

The numerator of this equation has three solutions; the only physical solution is

lim
M∞→∞

αvN = sin-1

⎛
⎝
√

γ3 + γ2 + 3γ − 1 −
√

γ6 + 2γ5 − γ4 − 4γ3 + 15γ2 + 2γ + 1
4γ (γ + 1)

⎞
⎠ .

(2.45)

An example of the reflection domain, considering only the von Neumann condition, is

shown in Figure 2.17.

2.3.5 Sonic Reflected Shock Condition

An important condition is that for which the flow behind the reflected shock in the Mach

reflection configuration is sonic. This is important because if the flow is supersonic behind

the reflected shock, the reflected shock can not be forward-facing.

In addition, if the flow behind the reflected shock is supersonic, then inverted Mach

reflection is not a physical solution. This is because, as was discussed earlier, whenever

inverted Mach reflection is possible regular reflection is also possible, as is seen in Fig-
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Figure 2.17: Shock reflection domain, for γ = 1.4 considering only the von Neumann
condition.

ure 2.7(b). Therefore, in order for the inverted Mach reflection to be chosen over regular

reflection the back pressure must be raised and this increase in back pressure must be com-

municated to the reflected shock. Figure 2.18 shows an example of the flow at the sonic

reflected shock condition. An example of this condition is shown in Figure 2.19. The sonic

reflected shock condition can be written as

ξ (M∞, γ, (αs)SRS) = ξ (M∞, γ, αSRS) ξ ((M1)SRS , γ, (α1)SRS) , (2.46)

θ (M∞, γ, (αs)SRS) = |θ (M∞, γ, αSRS) − θ ((M1)SRS , γ, (α1)SRS)| , (2.47)

1

2

3

∞

αSRS

Figure 2.18: Flow over a wedge producing sonic flow behind the reflected shock. That is to
say, M2 = 1.



28

-30 -20 -10 0 θSRSl θSRSu 30 401

10

P
P
∞

θ (deg.)

Figure 2.19: Example of the sonic reflected shock condition for M = 2.5 and γ = 1.4. Note
that there are two reflected shock loci that intersect the incident shock locus at their sonic
point. The ∗ denotes the sonic point of the shock loci.

where (αs)SRS is the angle of the Mach stem with respect to the incoming flow, and since

the flow behind the reflected shock is sonic,

(α1)SRS = α∗ ((M1)SRS , γ) , (2.48)

(M1)SRS = M (M∞, γ, αSRS) . (2.49)

Equation 2.46 can, after much algebra, be solved for (αs)SRS. The solution is

(αs)SRS = sin-1

√√√√√γ − 1 − 1+γ(2M2∞ sin2 αSRS−1)
2

(
ζSRS − 1 +

√
(ζSRS−3)2+γ(ζSRS+1)2

γ+1

)
2M2∞γ

,

(2.50)

where

ζSRS =
4 + 4M2∞ sin2 αSRS (γ − 1) + M4∞ sin2 αSRS

[
γ2 + γ

(
2 − 4 sin2 αSRS

)
+ 1
][

2 + M2∞ sin2 αSRS (γ − 1)
] [

1 + γ
(
2M2∞ sin2 αSRS − 1

)] . (2.51)

The sonic reflection condition can then be found by numerically solving

θ (M∞, γ, (αs)SRS) = |θ (M∞, γ, αSRS) − θ ((M1)SRS , γ, (α1)SRS)| , (2.52)
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Figure 2.20: Shock reflection domain, for γ = 1.4 considering only the sonic reflected shock
condition.

for αSRS. Note that for Mach numbers below a certain value, no physical solution for αSRS

exists.

An example of the reflection domain, considering only the sonic reflected shock condition,

is shown in Figure 2.20.

2.3.6 Normal Reflected Shock Condition

The normal reflected shock condition occurs when the reflected shock is perpendicular to

the flow behind the incident shock. This condition separates regions where the reflected

shock is inclined forward from where the reflected shock is declined, with respect to the

incoming flow. A sample shock structure for the normal reflected shock condition is shown

in Figure 2.21. An example of a shock polar at this condition is shown in Figure 2.22. The

normal reflected shock condition can be expressed as

ξ (M∞, γ, (αs)NRS) = ξ (M∞, γ, αNRS) ξ
(
(M1)NRS , γ,

π

2

)
, (2.53)

θ (M∞, γ, (αs)NRS) = θ (M∞, γ, αNRS) − θ
(
(M1)NRS , γ,

π

2

)
, (2.54)
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Figure 2.21: Flow over a wedge producing a reflected shock that is perpendicular to the
flow behind the incident shock.
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Figure 2.22: Example of the normal reflected shock condition for M = 1.6 and γ = 1.4. Note
that the intersection of the reflected and incident shock polars occurs when the reflected
shock is normal. The ∗ denotes the sonic point of the shock loci.
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where (M1)NRS is the Mach number behind the incident shock, and (αs)NRS is the angle of

the Mach stem. Since,

θ
(
(M1)NRS , γ,

π

2

)
= 0, (2.55)

Equation 2.54 can easily be solved for (αs)NRS in terms of αNRS. Finally, the incident shock

angle at the normal reflected shock condition, αNRS, can be found numerically by solving

ξ (M∞, γ, (αs)NRS) = ξ (M∞, γ, αNRS) ξ
(
(M1)NRS , γ,

π

2

)
. (2.56)

For incident shock angles greater than αNRS Mach reflection with a backward-facing reflected

shock is impossible, whereas for shock angles less than αNRS Mach reflection with a forward-

facing reflected shock is impossible. Note that a solution to this equation only exists for

Mach numbers above a critical value, (M∞)sNRS. This critical value will correspond to

(M∞)svN, since for a Mach wave, a normal reflected shock will intersect the incident shock

polar along the zero deflection axis; therefore,

(M∞)sNRS = (M∞)svN =

√
γ + 3

2
. (2.57)

As before, the shock angle at this limiting condition, αs
vN, is

αs
NRS = αs

vN = sin-1

√
2

γ + 3
. (2.58)

An example of the reflection domain, considering only the normal reflected shock con-

dition, is shown in Figure 2.23.

2.3.7 Sonic Forward-Facing Reflected Shock Condition

Another important condition is when the sonic point of a forward-facing reflected shock

polar intersects the incident shock polar. For incident shock angles above this value, αSFRS,

no forward-facing Mach reflection is possible. Figure 2.24 shows an example of the shock

structure when the reflected shock is forward facing, and the flow behind the reflected shock

is sonic. An example of this condition is shown in Figure 2.25. The sonic forward-facing
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Figure 2.23: Shock reflection domain, for γ = 1.4 considering only the normal reflected
shock condition.
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Figure 2.24: Flow over a wedge producing sonic flow behind the forward-facing reflected
shock.
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Figure 2.25: Example of the sonic forward-facing reflected shock condition for M = 1.45
and γ = 1.4. Note that the intersection of the reflected and incident shock polars occurs
when the reflected shock is forward facing and at its sonic point. The ∗ denotes the sonic
point of the shock loci.

reflected shock condition can be written as

ξ (M∞, γ, (αs)SFRS) = ξ (M∞, γ, αSFRS) ξ ((M1)SFRS , γ, (α1)SFRS) , (2.59)

θ (M∞, γ, (αs)SFRS) = θ (M∞, γ, αSFRS) + θ ((M1)SFRS , γ, (α1)SFRS) , (2.60)

where (αs)SFRS is the angle of the Mach stem with respect to the incoming flow, and

(α1)SFRS = α∗ ((M1)SFRS , γ) , (2.61)

(M1)SFRS = M (M∞, γ, αSFRS) . (2.62)

Note that Equations 2.59 through 2.62 are identical to Equations 2.46 through 2.49 except

for a sign difference between Equations 2.60 and 2.47. As was done for the sonic reflected
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shock condition, Equation 2.59 can be solved for (αs)SFRS. The solution is

(αs)SFRS = sin-1

√√√√√γ − 1 − 1+γ(2M2∞ sin2 αSFRS−1)
2

(
ζSFRS − 1 +

√
(ζSFRS−3)2+γ(ζSFRS+1)2

γ+1

)
2M2∞γ

,

(2.63)

where

ζSFRS =
4 + 4M2∞ sin2 αSFRS (γ − 1) + M4∞ sin2 αSFRS

[
γ2 + γ

(
2 − 4 sin2 αSFRS

)
+ 1
][

2 + M2∞ sin2 αSFRS (γ − 1)
] [

1 + γ
(
2M2∞ sin2 αSFRS − 1

)] .

(2.64)

The sonic forward-facing reflected shock condition can then be found by numerically solving

θ (M∞, γ, (αs)SFRS) = θ (M∞, γ, αSFRS) + θ ((M1)SFRS , γ, (α1)SFRS) , (2.65)

for αSFRS.

Note that for Mach numbers below a certain value, (M∞)sSFRS, no physical solution for

αSFRS exists. At this limiting Mach number, the shock angle corresponds to a Mach wave.

We can therefore set αSFRS = sin-1 1
(M∞)sSFRS

+ ε, where ε is a small positive value, and

performing much algebra, yields

(M∞)sSFRS =

√
γ2 − 6γ + 2 + 2

√
4γ4 + 18γ3 − 8γ2 − 54γ + 49 cos σSFRS

3 (γ2 − 1)
, (2.66)

where,

σSFRS =
1
3

tan-1
3
√

3 (γ + 1)3 (γ3 − 5γ + 4)2 (5γ3 + 113γ2 + 220γ − 104)

11γ6 − 6γ4 + 378γ3 − 21γ2 − 1134γ + 718
. (2.67)

At this limiting value of Mach number and at the sonic forward-facing reflected shock

condition the shock angle, αs
SFRS, is

αs
SFRS = sin-1 1

(M∞)sSFRS

. (2.68)

An example of the reflection domain, considering only the sonic forward-facing reflected

shock condition, is shown in Figure 2.26.
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Figure 2.26: Shock reflection domain, for γ = 1.4 considering only the sonic forward-facing
reflected shock condition.

2.3.8 Sonic Condition

A final condition is when the flow behind the reflected shock of a regular reflection is sonic.

This corresponds very nearly to the detachment criterion, since the sonic shock angle is

very nearly the maximum deflection shock angle. The sonic condition can be written as

θ (M∞, γ, αS) = θ ((M1)S , γ, (α1)S) , (2.69)

where

(α1)S = α∗ ((M1)S , γ) . (2.70)

Through an identical process as was used for the detachment condition, we can write a

sixth-order polynomial in sin2 αS,

S0 + S1 sin2 αS + S2 sin4 αS + S3 sin6 αS + S4 sin8 αS + S5 sin10 αS + S6 sin12 αS = 0,

(2.71)
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where

S0 = −8 (γ + 1) + 20M2
∞ − 4γ2M2

∞, (2.72)

S1 = 8M2
∞ − 44M4

∞ + 4M6
∞ + 16γM2

∞ + 52γM4
∞ + 16γM6

∞ − 24γ2M2
∞

+ 12γ2M4
∞ + 16γ2M6

∞ − 20γ3M4
∞ − 4γ4M6

∞, (2.73)

S2 = 6M4
∞ + 25M6

∞ − 4M8
∞ + M10

∞ − 54γM4
∞ − 130γM6

∞ − 16γM8
∞ + 4γM10

∞

+ 16γ2M2
∞ + 82γ2M4

∞ + 4γ2M6
∞ − 8γ2M8

∞ + 6γ2M10
∞ + 14γ3M4

∞

+ 66γ3M6
∞ + 16γ3M8

∞ + 4γ3M10
∞ + 3γ4M6

∞ + 12γ4M8
∞ + γ4M10

∞ , (2.74)

S3 = −4M6
∞ − 2M8

∞ − 2M10
∞ + 100γM6

∞ + 88γM8
∞ − 8γM10

∞ − 64γ2M4
∞

− 140γ2M6
∞ − 52γ2M8

∞ − 20γ2M10
∞ − 52γ3M6

∞ − 88γ3M8
∞ − 24γ3M10

∞

− 10γ4M8
∞ − 10γ4M10

∞ , (2.75)

S4 = −2M8
∞ + 2M10

∞ − 62γM8
∞ − 6γM10

∞ + 96γ2M6
∞ + 130γ2M8

∞ + 46γ2M10
∞

+ 62γ3M8
∞ + 46γ3M10

∞ + 8γ4M10
∞ , (2.76)

S5 = 8γM10
∞ − 64γ2M8

∞ − 48γ2M10
∞ − 24γ3M10

∞ , (2.77)

S6 = 16γ2M10
∞ . (2.78)

In the limit of M∞ going to ∞, the polynomial from Equation 2.71 becomes

(
γ4 + 4γ3 + 6γ2 + 4γ + 1

)
sin4 αS − (10γ4 + 24γ3 + 20γ2 + 8γ + 2

)
sin6 αS

+
(
8γ4 + 46γ3 + 46γ2 − 6γ + 2

)
sin8 αS − (24γ3 + 48γ2 − 8γ

)
sin10 αS

+ 16γ2 sin12 αS = 0. (2.79)

Excluding the case where sin2 αS = 0, there are four solutions for sin2 αS. The only physical

solution is

lim
M∞→∞

αS = sin-1

√
3γ (2 + γ − ζS) − 1 − ζS −√2 (γ − 1) (γ [9 − 6ζS + γ (6 + γ − ζS)] − ζS)

8γ
,

(2.80)

where

ζS =
√

γ2 − 1. (2.81)
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Figure 2.27: The shock reflection domain, for γ = 1.4 considering only the sonic condition.

An example of the reflection domain, considering only the sonic condition, is shown in

Figure 2.27.

2.3.9 Complete Reflection Domain

There are seven possible types of reflection: supersonic regular reflection (RR), subsonic

regular reflection (RRs), Mach reflection with a supersonic backward-facing reflected shock

(MR), Mach reflection with a subsonic backward-facing reflected shock (MRs), Mach reflec-

tion with a forward-facing reflected shock (MRf), inverted Mach reflection (IMR), and von

Neumann reflection (vNR). Combining all of the conditions mentioned earlier, and system-

atically removing impossible shock configurations from each region produces the final result

shown in Figure 2.29 for a ratio of specific heats of 1.4. Appendix A shows the Mach re-

flection domain for other values of the ratio of specific heats. The general curves separating

the various regions are in good agreement with those of Chapman [17].
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Chapter 3

Mach Stem Height Prediction

Consider the reflection of a shock, generated by a wedge in steady supersonic flow, from a

wall (single wedge configuration) or from a plane of symmetry (double wedge configuration).

For a sufficiently high free-stream Mach number, there exists a range of wedge angles (the

dual-solution domain) in which both regular and Mach reflection are possible. To date there

is no accurate method of predicting the height of a Mach stem in steady flow. Predictions of

Mach stem height can be important in the design of supersonic inlets if the inlet is expected

to experience Mach reflection. An accurate prediction of the Mach stem height may also be

useful in understanding the behavior of the shock reflection in the dual-solution domain.

Azevedo [7, 18] (see also Ben-Dor [19]) developed a theory based on the location of

the sonic throat formed by the initially converging flow behind the Mach stem. However,

his prediction consistently underestimated the actual Mach stem height. The aims of the

present work are to relax some of the assumptions made by Azevedo in order to obtain more

accurate predictions of Mach stem height, and to analyze the rate of growth of a Mach stem

starting from a regular reflection in the dual solution domain. Work by Li and Ben-Dor [20]

corrects some of the flaws in the theory of Azevedo, but gives very similar approximations

of Mach stem height, which differ significantly from the experimental work of Hornung and

Robinson [6]. The works by Li et al [21] and Schotz et al. [22] consider downstream influences

on Mach stem height; however, the experimental work of Chpoun and Leclerc [23] shows

that the Mach stem height does not vary with downstream conditions. This is as expected,

since the flow in the expansion region and downstream of the sonic throat is supersonic and

therefore these influences cannot affect Mach stem height. There is therefore no need in the

current work to consider the flow downstream of the expansion wave corresponding to the

sonic throat.
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3.1 Problem Setup

The problem setup is shown graphically in Figure 3.1. We can either consider two opposing

wedges, or for inviscid flow, a wedge above a flat plate. The wedge, with a length w, is

declined at an angle θ1 with respect to the free-stream flow and produces a shock at an

angle α. The height of the triple point above the surface is the Mach stem height, denoted

s. In the case of two symmetric wedges, s is half the total Mach stem height. At the triple

point a slipline is created, which is initially declined at an angle δ with respect to the surface

or plane of symmetry. The reflected shock from the triple point is inclined at an angle φ

with respect to the surface.

In general the Mach stem height, s, is a function of the Mach number, M , the ratio of

specific heats, γ, the spacing between the wedge and the flat surface, g, the angle of the

wedge, θ1, and the wedge length, w. That is to say

s = f (M,γ, g, θ1, w) , (3.1)

where f is an unknown function. Nondimensionalizing this relationship we find that

s+ = f+
(
M,γ, g+, θ1

)
, (3.2)

where f+ is the nondimensional version of f , s+ = s
w , and g+ = g

w . Normalizing lengths by

w is a good choice, since, in experiments, w will almost always be a fixed length and not a

function of the wedge angle θ1.

3.2 Mass and Momentum Balance

Azevedo [7] considers a problem setup as shown in Figure 3.1 subject to several assump-

tions. First, he assumes that the sonic throat occurs where the leading characteristic of

the expansion fan intersects the slipline. Second, he assumes that the region between the

slipline and the symmetry plane, and between the Mach stem and the sonic throat is an

isentropically converging ideal gas flow with a straight streamline TH. To analyze the flow

Azevedo applies conservation of mass and momentum.

Azevedo first considers the conservation of mass. Specifically, he considers the mass
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flow entering between the wedge tip, O, and the symmetry plane. This mass flow can then

be equated to the mass flow through EF , FH, and s	. Equating these two mass fluxes

produces the following equation:

ρ∞u∞ (g + w sin θ1) = ρ1u1 sin μ1EF + ρ2u2 sinμ2FH + ρ	u	s	, (3.3)

where μ1 and μ2 are the Mach angles and are given by

μ1 = sin−1 1
M1

, (3.4)

μ2 = sin−1 1
M2

. (3.5)

Next, he considers the conservation of momentum in the free-stream flow direction. Equat-

ing the pressure and momentum flux between the wedge tip and the solid surface with the

pressure and the momentum flux through EF , FH, and s	 produces

P∞ (g + w sin θ1) − P1

(
w sin θ1 + sin (μ1 + θ1) EF

)− P2 sin (μ2 + δ) FH − P	s	

= ρ1u
2
1 sin μ1 cos θ1 EF + ρ2u

2
2 sin μ2 cos δ FH + ρ	u

2
	s	 − ρ∞u2

∞ (g + w sin θ1) . (3.6)

Similarly, for conservation of momentum perpendicular to the free-stream flow direction, he

finds that

P∞ (xs + w cos θ1) + P3x	 − P1

(
w cos θ1 + cos (μ1 + θ1)EF

)− P2 cos (μ2 + δ) FH

= −ρ1u
2
1 sin μ1 sin θ1EF − ρ2u

2
2 sin μ2 sin δ FH. (3.7)

Azevedo takes P3 to be the average pressure in Region 3, which is the average of the pressure

at the sonic throat and the pressure right behind the Mach stem. The numerical result is

almost identical if we take P3 to be the integrated pressure using the area ratio relationship.

Equations 3.3, 3.6 and 3.7 can be written in nondimensional form with the superscript +

refering to nondimensional quantities. Specifically, density is normalized by the free-stream

density, ρ∞, velocities are normalized by the free-stream velocity, u∞, pressures are nor-

malized by twice the free-stream dynamic pressure, ρ∞u2∞, and distances are normalized
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by the wedge length, w. With these normalizations, equations 3.3 through 3.7 become

g+ + sin θ1 = ρ+
1 u+

1 sinμ1EF
+ + ρ+

2 u+
2 sin μ2FH

+ + ρ+
	 u+

	 s+
	 , (3.8)

P+
∞
(
g+ + sin θ1

)− P+
1

(
sin θ1 + sin (μ1 + θ1) EF

+
)
− P+

2 sin (μ2 + δ) FH
+ − P+

	 s+
	

= ρ+
1

(
u+

1

)2 sin μ1 cos θ1EF
+ + ρ+

2

(
u+

2

)2 sinμ2 cos δFH
+ + ρ+

	

(
u+

	

)2
s	

+ − g+ − sin θ1,

(3.9)

P+
∞
(
xs

+ + cos θ1

)
+ P+

3 x+
	 − P+

1

(
cos θ1 + cos (μ1 + θ1)EF

+
)
− P+

2 cos (μ2 + δ) FH
+

= −ρ+
1

(
u+

1

)2 sin μ1 sin θ1EF
+ − ρ+

2

(
u+

2

)2 sinμ2 sin δFH
+
. (3.10)

Note that

P+
∞ =

P∞
ρ∞u2∞

=
1

γM2∞
. (3.11)

We can now apply the shock jump conditions and the equation of state for a perfect

gas. Specifically, we will use the following relations:

ρ1u1

ρ∞u∞
=

sinα

sin (α − θ1)
, (3.12)

ρ2u2

ρ1u1
=

sin (θ1 + φ)
sin (φ + δ)

, (3.13)

ρ	u	

ρ∞u∞
=

s

s	
, (3.14)

ρ1u
2
1 = γP1M

2
1 , (3.15)

ρ2u
2
2 = γP2M

2
2 , (3.16)

ρ	u
2
	 = γP	, (3.17)
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which in nondimensional form can be written as

ρ+
1 u+

1 =
sin α

sin (α − θ1)
, (3.18)

ρ+
2 u+

2 =
sin α sin (θ1 + φ)

sin (α − θ1) sin (φ + δ)
, (3.19)

ρ+
	 u+

	 =
s+

s+
	

, (3.20)

ρ+
1

(
u+

1

)2 = γP+
1 M2

1 , (3.21)

ρ+
2

(
u+

2

)2 = γP+
2 M2

2 , (3.22)

ρ+
	

(
u+

	

)2 = γP+
	 . (3.23)

With these relations we can rewrite Equations 3.8 through 3.10 as

g+ + sin θ1 =
sin α

sin (α − θ1)
sin μ1EF

+ +
sin α sin (θ1 + φ)

sin (α − θ1) sin (φ + δ)
sinμ2FH

+ + s+, (3.24)

1
γM2∞

(
g+ + sin θ1

)− P+
1

(
sin θ1 + sin (μ1 + θ1) EF

+
)
− P+

2 sin (μ2 + δ) FH
+ − P+

	 s+
	

= γP+
1 M2

1 sinμ1 cos θ1EF
+ + γP+

2 M2
2 sin μ2 cos δ FH

+ + γP+
	 s	

+ − g+ − sin θ1, (3.25)

1
γM2∞

(
xs

+ + cos θ1

)
+ P+

3 x+
	 − P+

1

(
cos θ1 + cos (μ1 + θ1)EF

+
)
− P+

2 cos (μ2 + δ) FH
+

= −γP+
1 M2

1 sin μ1 sin θ1EF
+ − γP+

2 M2
2 sin μ2 sin δ FH

+
. (3.26)

At this point there are five unknowns, xs
+, x+

	 , s+
	 , EF

+, and FH
+, but only three equa-

tions. Therefore, to close the system, Azevedo uses two geometric relationships, which state

that the expansion fans much connect the sonic throat with the aft wedge corner:

x	 = cos (μ1 + θ1) EF + cos (μ2 + δ) FH − xs, (3.27)

s	 = g − sin (μ1 + θ1)EF − sin (μ2 + δ) FH. (3.28)
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These equations can be written in nondimensional form as

x+
	 = cos (μ1 + θ1)EF

+ + cos (μ2 + δ) FH
+ − x+

s , (3.29)

s+
	 = g+ − sin (μ1 + θ1) EF

+ − sin (μ2 + δ) FH
+
. (3.30)

There are now five equations for five unknowns. They can now be written in matrix

form and solved. We will use the fact that

M2
1 sin μ1 = M1 (3.31)

M2
2 sin μ2 = M2 (3.32)

The matrix equation is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 Ar a14 a15

0 0 a23 a24 a25

1
γM2∞

P+
3 0 a34 a35

1 1 0 a44 a45

0 0 1 a54 a55

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x+
s

x+
	

s+
	

EF
+

FH
+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g+ + sin θ1

g++sin θ1

γM2∞
+ g+ + sin θ1 − P+

1 sin θ1

− 1
γM2∞

cos θ1 + P+
1 cos θ1

0

g+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.33)
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where

a14 =
sin α

sin (α − θ1)
sinμ1, (3.34)

a15 =
sin α sin (θ1 + φ)

sin (α − θ1) sin (φ + δ)
sin μ2, (3.35)

a23 = γP+
	 + P+

	 , (3.36)

a24 = γP+
1 M1 cos θ1 + P+

1 sin (μ1 + θ1) , (3.37)

a25 = γP+
2 M2 cos δ + P+

2 sin (μ2 + δ) , (3.38)

a34 = γP+
1 M1 sin θ1 − P+

1 cos (μ1 + θ1) , (3.39)

a35 = γP+
2 M2 sin δ − P+

2 cos (μ2 + δ) , (3.40)

a44 = − cos (μ1 + θ1) , (3.41)

a45 = − cos (μ2 + δ) , (3.42)

a54 = sin (μ1 + θ1) , (3.43)

a55 = sin (μ2 + δ) , (3.44)

and Ar is the area ratio between s+ and s+
	 . This matrix equation agrees with the results

of Azevedo.

Given the geometry, the Mach number, and the ratio of specific heats, all the parameters

of the matrix equation can be calculated. The shock angle, α, the Mach number and the

pressure behind the leading oblique shock, M1 and P1, can be calculated using the oblique

shock relations:

cot θ1 = tan α

(
(γ + 1) M2∞

2
(
M2∞ sin2 α − 1

) − 1

)
, (3.45)

P1 = P∞
2γM2∞ sin2 α − (γ − 1)

γ + 1
, (3.46)

M2
1 =

(γ − 1) M2∞ sin2 α + 2
sin2 (α − θ1)

(
2γM2∞ sin2 α − (γ − 1)

) . (3.47)

Equation 3.46 can be expressed in nondimensional form as

P+
1 =

1
γM2∞

2γM2∞ sin2 α − (γ − 1)
γ + 1

. (3.48)

Since Azevedo assumes that the Mach stem is a normal shock, the Mach number and
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pressure just behind the Mach stem, Ma, and Pa can be found using the normal shock

relations,

Pa = P∞
2γM2∞ − (γ − 1)

γ + 1
, (3.49)

M2
a =

(γ − 1) M2∞ + 2
2γM2∞ − (γ − 1)

. (3.50)

Nondimensionalizing Equation 3.49 gives

P+
a =

1
γM2∞

2γM2∞ − (γ − 1)
γ + 1

. (3.51)

Again using the oblique shock relations we find the flow angle, the pressure, and the Mach

number in Region 2 to be

cot (θ1 − δ) = tan (φ + θ1)

(
(γ + 1) M2

1

2
(
M2

1 sin2 (φ + θ1) − 1
) − 1

)
, (3.52)

P2 = P1
2γM2

1 sin2 (φ + θ1) − (γ − 1)
γ + 1

, (3.53)

M2
2 =

(γ − 1) M2
1 sin2 (φ + θ1) + 2

sin2 (φ + δ)
(
2γM2∞ sin2 α − (γ − 1)

) . (3.54)

As before, P2 can be written in nondimensional form as

P+
2 = P+

1

2γM2
1 sin2 (φ + θ1) − (γ − 1)

γ + 1
. (3.55)

The angle of the slipline, δ, can be calculated using triplepoint theory. This theory states

that the pressure and flow angle must be continuous across the slipline. Up to this point, we

have been assuming that the Mach stem is a normal shock; however, to accurately analyze

the local flow around the triple point, the angle of the Mach stem must be considered.

A close-up of the triple point is shown in Figure 3.2. Note that the region behind the

Mach stem is referred to as a′ rather than a, for the purposes of calculating the triple point

deflection angle when an oblique Mach stem is used; whereas, for calculating the flow in

the converging flow behind the Mach stem a normal Mach stem is considered. There is

no closed-form solution to this problem, so an iterative scheme must be used. The two
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Figure 3.2: Triple point with a Mach stem that is not perpendicular to the flow.

following equations are solved for φ and β:

P+
2 = P+

a′ , (3.56)

δ2 = δa′ . (3.57)

These equations are

P+
1

2γM2
1 sin2 (φ + θ1) − (γ − 1)

γ + 1
=

1
γM2∞

2γM2∞ sin2 β − (γ − 1)
γ + 1

, (3.58)

tan (φ + θ1)
(

(γ + 1) M2
1

M2
1 sin2 (φ + θ1) − 1

− 2
)

= tan β

(
(γ + 1) M2∞

M2∞ sin2 β − 1
− 2
)

. (3.59)

With φ known, Equation 3.52 can be used to solve for δ. Finally, in order to solve Equa-

tion 3.33, the area ratio, Ar, and pressure ratio, P�
Pa

, of the converging flow behind the Mach

stem must be calculated. These are

Ar =
1

Ma

(
2

γ + 1

(
1 +

γ − 1
2

M2
a

)) γ+1
2(γ−1)

, (3.60)

P	

Pa
=
(

2
γ + 1

(
1 +

γ − 1
2

M2
a

)) γ
γ−1

, (3.61)

since the point � corresponds to the sonic throat. At this point, all the terms in the matrix

in Equation 3.33 are known and the linear system can be solved. Finally, Azevedo solves

for the Mach stem height by using the geometric relationship

s = g + w sin θ1 − (w cos θ1 + xs) tan α. (3.62)
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In nondimensional form this is

s+ = g+ + sin θ1 −
(
x+

s + cos θ1

)
tan α. (3.63)

This last equation is not needed since we see that in Equation 3.33 there is a subsystem

of equations for s+
	 , EF

+, and FH
+, which is sufficient to solve for the Mach stem height

given that s+ = Ars
+
	 . We can write this system simply as

⎛
⎜⎜⎜⎝

Ar a14 a15

a23 a24 a25

1 a54 a55

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

s+
	

EF
+

FH
+

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

− 1
γM2∞

cos θ1 + P+
1 cos θ1

0

g+

⎞
⎟⎟⎟⎠ . (3.64)

In this case the Mach stem height would be calculated using the area relationship of the

sonic throat behind the Mach stem,

s = Ars	, (3.65)

or

s+ = Ars
+
	 . (3.66)

The analysis so far produces a geometry which is not self-consistent. Specifically, the

pressure in Region 2 is taken to be constant, which is not consistent with the fact that

the flow in Region 3 is of varying pressure. Furthermore, there are two other equally valid

solutions for s+, besides that given in Equation 3.66.

Specifically, as Azevedo writes,

s+ = g+ + sin θ1 −
(
xs

+ + cos θ1

)
tan α, (3.67)

which states that the height of the Mach stem must be equal to g plus the height of the

wedge minus the height of the incident shock. Another equally valid way of writing the

Mach stem height is

s+ = s	
+ + x	

+ tan δ. (3.68)

All three of these calculations, Equations 3.66, 3.67 and 3.68, for the Mach stem height

produce slightly different answers. Again, this is due to the fact that the pressure in Region

3 varies and is not consistent with the assumption of constant pressure in Region 2. It is



52

important to note that there is no simple way of matching the pressure across the slipline.

Since the pressure is not correct a solution that tries to conserve momentum is also incorrect

and produces an inconsistent geometry. Therefore, it may be useful to fix the geometry and

continue to allow the pressure across the slipline to be mismatched.

3.3 Geometric Solution

In Azevedo’s solution the most restrictive assumption is that the sonic throat occurs at the

leading characteristic of the expansion fan. Also, Azevedo does not force the geometry to

be self-consistent, specifically, the condition that the slipline, TH intersects the expansion

wave, FH, and the sonic throat at a point is not imposed. To solve the latter problem

we can write five equations that fix the geometry, assuming that all shocks and sliplines

are straight. It is important to not that these equations implicitly satisfy the mass and

momentum equations because the shock-jump conditions, which are used to generate the

geometry, satisfy the mass and momentum equations. These equations are

sin αOT + s = g + w sin θ1, (3.69)

s	 + sin (δ + μ2)FH + sin (μ1 + θ1)EF = g, (3.70)

cos α OT + cos δ TH − cos (δ + μ2) FH − cos (μ1 + θ1)EF = w cos θ1, (3.71)

cos αOT + cos φTF − cos (μ1 + θ1)EF = w cos θ1, (3.72)

sin αOT − sin φTF − sin (μ1 + θ1)EF = w sin θ1. (3.73)

Given the area ratio between s and s	, we can write cos δ TH as

cos δ TH = cot δ (Ar − 1) s	. (3.74)
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Making the substitution for TH, and nondimensionalizing the equations, produces

sin α OT
+ + Ars

+
	 − sin θ1 = g+, (3.75)

s+
	 + sin (δ + μ2)FH

+ + sin (μ1 + θ1)EF
+ = g+, (3.76)

cos α OT
+ + cot δ (Ar − 1) s+

	 − cos (δ + μ2) FH
+ − cos (μ1 + θ1)EF

+ = cos θ1, (3.77)

cos αOT
+ + cos φTF

+ − cos (μ1 + θ1)EF
+ = cos θ1, (3.78)

sin αOT
+ − sin φTF

+ − sin (μ1 + θ1)EF
+ = sin θ1. (3.79)

This can then be written in matrix form as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin α Ar 0 0 0

0 1 sin(δ + μ2) sin(μ1 + θ1) 0

− cos α − cot δ (Ar − 1) cos(δ + μ2) cos(μ1 + θ1) 0

− cos α 0 0 cos(μ1 + θ1) − cos φ

− sin α 0 0 sin(μ1 + θ1) sin φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

OT
+

s+
	

FH
+

EF
+

TF
+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g+ + sin θ1

g+

− cos θ1

− cos θ1

− sin θ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.80)

Finally, the Mach stem height, s, can be calculated using Equation 3.66. These equations,

unlike those used by Azevedo, do not explicitly include the conservation of mass and mo-

mentum. However, if we consider the slipline to be a solid wall, we see that mass and

momentum are conserved. This is because if the slipline were a solid wall the assumptions

made in this analysis are exact, since the entire geometry is self-consistent, and all of the

shock jump conditions used conserve mass and momentum. Unfortunately, like Azevedo’s

solution, the pressure across the slipline is not continuous.
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Figure 3.3: Flow setup, allowing for a sonic throat downstream of the leading characteristic,
used to predict the Mach stem height.

3.4 Generalized Geometric Solution

The problem still remains that all of these solutions assume that the sonic throat of the

flow behind the Mach stem occurs at the leading characteristic of the expansion fan. To

eliminate this problem, we will allow the sonic throat to occur further downstream. This

generalized setup is shown in Figure 3.3. The geometrical considerations are the same as

those leading to Equation 3.80, with F and H replaced by F ′ and H ′, respectively. Also, μ1′

and μ2′ refer to the Mach angle along the characteristic corresponding to the sonic throat,

rather than along the leading characteristic. A key point of this theory is that the flow right
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above the sonic throat is parallel to the free-stream flow.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin α Ar 0 0 0

0 1 sin(δ + μ2′) sin(μ1′ + θ1) 0

− cos α cot δ (1 − Ar) cos(δ + μ2′) cos(μ1′ + θ1) 0

− cos α 0 0 cos(μ1′ + θ1) − cos φ

− sin α 0 0 sin(μ1′ + θ1) sin φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

OT
+

s+
	

F ′H ′+

EF ′+

TF ′+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g+ + sin θ1

g+

− cos θ1

− cos θ1

− sin θ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.81)

The slipline angle, δ, and the reflected shock angle, φ, are calculated as before using triple

point theory. The Mach angle along the characteristic, μ2′ , is calculated knowing that the

flow just above the slipline must turn through an angle of δ in order to be parallel to the

free-stream just above the sonic throat,

δ = ν (M2′) − ν (M2) , (3.82)

where the Prandtl-Meyer function, ν, is defined as

ν (M) =
√

γ + 1
γ − 1

tan−1

√
γ − 1
γ + 1

(M2 − 1) − tan−1
√

M2 − 1. (3.83)

Since M2 is known from Equation 3.54, solutions for M2′ and μ2′ may be obtained. μ1′ is

more difficult to determine since the flow deflection angle is not simply δ, because the flow

has passed through part of the expansion before it reaches the shock, as opposed to the

flow in Region 2, which first goes through the reflected shock. This means that the flow in

Region 1 must turn through an angle of δ + δe, where δe is the extra turning required to

compensate for the fact that the reflected shock is weaker at F ′ than at T . Specifically, the

reflected shock at the point F ′ must turn the flow through θ1 − δ − δe. Using oblique shock
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relations produces

cot (θ1 − δ − δe) = tan (θ1 − δ − δe + φ)

(
(γ + 1) M2

1′

2
(
M2

1′ sin
2 (θ1 − δ − δe + φ) − 1

) − 1

)
, (3.84)

where M1′ is given by the Prandtl-Meyer function,

δ + δe = ν (M1′) − ν (M1) . (3.85)

Equations 3.84 and 3.85 can then be solved simultaneously for δe and M1′ . At this point,

μ1′ is known and Equation 3.81 can be solved. Once the matrix equation has been solved,

the Mach stem height, s, can be calculated using Equation 3.66.

3.5 Numerical Calculations

Numerical simulations of the flow were performed for various conditions using the Am-

rita software system. This software system has been constructed by James Quirk [24] and

has been extensively tested by the current author [25]. It is a system that automates

and packages computational tasks in such a way that the packages can be combined (dy-

namically linked) according to instructions written in a high-level scripting language. The

present application uses features of Amrita that include the automatic construction of an

Euler solver, automatic adaptive mesh refinement according to simply chosen criteria, and

scripting-language-driven computation and postprocessing of the results. The Euler solver

generated for the present computation was an operator-split scheme with HLLE flux and

kappa-MUSCL reconstruction.

The coarse grid for the Mach stem height calculations was 330×140, to which two levels

of adaptive mesh refinement by a factor of 2 were applied. This results in an effective grid

of 1320 × 560. The mesh was refined based on a density gradient criterion as well as along

the surface of the wedge. An example of the grid is shown in Figure 3.4, with an enlarged

section shown in Figure 3.5.
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Figure 3.4: Representative mesh refinement for the calculation of the Mach stem height
using Amrita.

Figure 3.5: Englarged region of a representative mesh refinement for the calculation of the
Mach stem height using Amrita.
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Figure 3.6: Comparison of current Mach stem height calculations against those of Azevedo
[7, 18] and of Li [20], measurements by Hornung and Robinson [6], computations by Vuillon
et al. [26], and current computations done using Amrita. γ = 1.4 and g/w ≈ 0.4.

3.6 Mach Stem Height Results

A comparison of the current theory with that of Azevedo [7, 18] as well as the theory of Li

and Ben-Dor [20], the numerical results of Amrita, and the experimental results of Hornung

and Robinson [6] is shown in Figure 3.6. This figure shows the significant improvement

made using the generalized geometric solution. Overall agreement with the experimental

data of Hornung and Robinson and with computational results is good. Of course differences

between theory, computations and experiments remain. There are several reasons for these

discrepancies. First, the slipline originating from the triple point is not in fact straight.

Second, the reflected shock will curve through the expansion fan. Third, viscous effects will

cause a shear layer with negative displacement effect to develop along the slipline.

It is important to note that the data which both Azevedo [7, 18] and Li and Ben-Dor [20]

attribute to Hornung and Robinson [6] are in fact not the data presented in that paper.

The actual data of Hornung and Robinson are significantly different and show higher Mach

stem heights than what is presented by Azevedo and by Li and Ben-Dor. Figure 3.6 shows

the actual results presented by Hornung and Robinson.
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Figure 3.7: Flow setup, allowing for a moving triple point, used to calculate the Mach stem
height growth.

3.7 Moving Triple Point Analysis

The triple point analysis presented earlier assumed a stationary Mach stem. We will now

consider the case where the Mach stem moves with an upstream velocity, UMs, subject to

a quasi-steady flow assumption. This may occur in a steady free stream, e.g., if transition

to Mach reflection is initiated by some disturbance when the flow is initially in the dual-

solution region. The rate at which the Mach stem moves upstream, UMs, is related to the

speed at which the triple point travels up along the lead shock, Utp, by

Utp =
UMs

cos α
. (3.86)

Figure 3.7 shows the flow setup when the triple point is moving.

To perform the triple-point analysis we must examine the flow both in the lab-fixed

reference frame and in the frame of the triple point. Quantities calculated in the reference

frame of the triple point are denoted with a superscript tp. The flow Mach number coming
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Figure 3.8: Moving triple point with a Mach stem that is not perpendicular to the flow.

into the Mach stem, M tp∞ , is

M tp
∞ =

√
(M∞ + Mtp cos α)2 + (Mtp sin α)2, (3.87)

where

Mtp =
Utp

a∞
. (3.88)

Since the leading oblique shock is stationary in the lab frame we can write the Mach

number in region 1, M1, and the normalized pressure in region 1, P+
1 , as

P+
1 = ξ (M∞, γ, α) , (3.89)

M1 = M (M∞, γ, α) . (3.90)

To calculate the flow in region 2, we must consider the flow first in the reference frame of

the triple point. The normalized pressure, Mach number and flow angle in region 2 can be

written as

P+
2 = P+

1 ξ
(
M tp

1 , γ, φtp
)

, (3.91)

M tp
2 = M

(
M tp

1 , γ, φtp
)

, (3.92)

θtp
2 = θtp

1 − θ
(
M tp

1 , γ, φtp
)

, (3.93)

where

M tp
1 =

(
(M1a1 cos θ1 + Utp cos α)2 + (M1a1 sin θ1 + Utp sin α)2

a2
1

)1/2

, (3.94)

θtp
1 = tan-1 M1a1 sin θ1 + Utp sin α

M1a1 cos θ1 + Utp cos α
. (3.95)
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Converting back into lab-fixed coordinates, we see that

φ = φtp − θtp
1 . (3.96)

Similarly, the normalized pressure, Mach number, and flow angle in region a′ can be written

as

P+
a′ = ξ

(
M tp

∞ , γ, βtp
)
, (3.97)

M tp
a′ = M

(
M tp

∞ , γ, βtp
)
, (3.98)

θtp
a′ = θtp

∞ − θ
(
M tp

∞ , γ, βtp
)
, (3.99)

where

M tp
∞ =

√
(M∞ + Mtp cos α)2 + (Mtp sin α)2, (3.100)

θtp
∞ = tan-1 Mtp sin α

M∞ + Mtp cos α
. (3.101)

Converting these values back into lab-fixed coordinates, produces

β = βtp − θtp
∞, (3.102)

δa′ = tan-1 M tp
a′ aa′ cos θtp

a′ − Utp cos α

M tp
a′ aa′ sin θtp

a′ − Utp sin α
, (3.103)

where aa′ is the speed of sound in region a′.

As we did earlier in Equations 3.56 and 3.57, we impose

P+
2 = P+

a′ , (3.104)

δ2 = δa′ . (3.105)

The effect of a moving Mach stem is shown in Figure 3.9. As one would expect, if

the Mach stem is moving upstream, the pressure behind the Mach stem is higher, and

if the Mach steam moves downstream, the pressure is lower than in the stationary case.

The speed at which the Mach stem can move downstream is limited by the fact that a

reflected shock must be able to exist. Specifically, it is not possible for the triple point to
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Figure 3.9: Shock polar illustrating the effects of a moving Mach stem. In the case where
the Mach stem is moving upstream the pressure ratio is higher than the stationary-case
value, and vice-versa. Each point on the moving triple point curve represents the pressure
and deflection angle for a given Mtp. M∞=4, γ=1.4, θw=24◦.

be moving downstream so fast that the relative flow into the reflected shock is subsonic.

This means that the perpendicular component of the flow into the reflected shock must be

supersonic. As the flow speed into the reflected shock decreases, the pressure rise across

the reflected shock also decreases, and we would expect the pressure and the flow deflection

to be similar to that of the leading shock alone. In other words, as the triple point moves

downstream, the jump across the reflected shock becomes weaker and the flow deflection

across the reflected shock decreases. This is indeed seen in Figure 3.9, where the moving

triple-point line terminates near the incident shock point.

3.8 Mach Stem Height Variation

As the Mach stem grows, it also slows down. Thus, for a given Mach stem speed a corre-

sponding Mach stem height exists. Using Equation 3.81 and substituting the modified flow

parameters, as found in Section 3.7, it is possible to calculate the Mach stem height at a

given Mach stem speed. Conversely, given a Mach stem height, the Mach stem speed can
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be calculated. At the steady-state Mach stem height, the Mach stem velocity will of course

be zero. Of special interest is the speed of the Mach stem when the height is different than

the steady-state height, in particular, the speed of the Mach stem during the Mach stem

growth phase.

To understand the growth phase of the Mach stem, let us consider a very small Mach

stem, as is shown in Figure 3.10. If the Mach stem were stationary, the slipline originating

from the triple point would have a finite angle and therefore reach the wall before the

leading characteristic. Since it is not physically possible for the slipline to intersect the wall

we know that this solution can not be correct, and therefore the Mach stem must move in

order to produce a different slipline angle. Specifically, we need the slipline angle to be at a

small enough angle such that it reaches the first characteristic. We therefore now know that

the triple point must move in a way as to decrease the slipline angle. Let us now consider a

slipline angle sufficiently small that it intersects the first characteristic just above the wall.

In this case, the area ratio between the Mach stem and the intersection of the slipline with

the first characteristic would be very large.

From Figure 3.9, we see that the deflection angle is decreased if the shock is moving

upstream. Additionally, the flow Mach number behind the Mach stem will decrease if the

Mach stem moves upstream, which produces a large area ratio. Based on this we can

hypothesize that for small Mach stems, the Mach stem must travel upstream. Based simply

on geometry, a Mach stem traveling upstream also increases in height.

The moving Mach stem changes the slipline angle, δ, the reflected shock angle, φ, the

Mach angle in region 2′, and the area ratio between the Mach stem and the sonic throat,

Ar. Assuming quasi-steady flow, that is to say, the speed at which the triple point grows

is slow compared to the flow speed, Equation 3.80, with modifications taking into account
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wave.
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the moving Mach stem, becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin α Ãr 0 0 0

0 1 sin(δ + μ̃2) sin(μ1 + θ1) 0

− cos α − cot δ̃
(
Ãr − 1

)
cos(δ + μ̃2) cos(μ1 + θ1) 0

− cos α 0 0 cos(μ1 + θ1) − cos φ̃

− sin α 0 0 sin(μ1 + θ1) sin φ̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

OT
+

s+
	

FH
+

EF
+

TF
+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g+ + sin θ1

g+

− cos θ1

− cos θ1

− sin θ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.106)

where ˜ denotes the value depending on the speed of the Mach stem. These modified values

are derived from Equations 3.96, 3.103, 3.92 and 3.100.

Figure 3.11 illustrates the solution to the relationship between Mach stem velocity and

Mach stem height as given by Equation 3.106.

Given the numerical relationship between Mtp and s/w it is possible to calculate the

evolution of the Mach stem. Specifically,

ds

dt
= Utp sin α. (3.107)

In non-dimensional form, this becomes,

d (s/w)
d (a∞t/w)

= Mtp sin α, (3.108)

where Mtp is dependent on s/w, M∞, g/w, γ, and θ1. The calculation is quite straight-

forward and a comparison between the expected Mach stem growth and a numerical calcu-

lation done using Amrita is shown in Figure 3.13. Figure 3.6 shows that the steady-state

Mach stem height grows rapidly with wedge angle. This means that even small errors can

result in a large height difference. It is therefore reasonable to expect better agreement at

lower steady-state Mach stem heights. Figure 3.12 shows the comparison of the Mach stem
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Figure 3.11: Mach stem velocity as a function of Mach stem height based on Equation 3.80.
Positive Mtp indicates upstream speed. Calculated for M∞=4, g/w=0.4, γ=1.4, and
θ1=25◦.

height growth for a wedge angle of θ1=23◦.

In Figure 3.13 we see that the predicted Mach stem height is about 60% greater than

in the numerical computation. This figure represents what is a relatively extreme case.

Specifically, the numerically calculated Mach stem height, s/w, is slightly under 0.2, whereas

most theoretical predictions of Mach stem height, including those presented in this thesis,

only appear to be valid for Mach stem heights below about 0.1. Experimental results

presented later in this thesis show that for large Mach stems, the theory developed in this

thesis significantly over predicts the Mach stem height. We see in Figure 3.14, that there is a

significant difference between the shape of the slipline originating from the triple point and

the slipline used in the theoretical estimate. Specifically, the computed slipline gradually

approaches 0◦ thereby giving it a lower average angle. This lower average angle causes a

decrease in the Mach stem height. For the cases considered, the theory appears to locate

the throat formed by the flow downstream of the Mach stem quite accurately.
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Figure 3.12: Theoretical and numerical results for the height of the Mach stem as a function
of time as it grows from an initial regular reflection condition. Calculated for M∞ = 4,
g/w = 0.3907, γ = 1.4, and θ1 = 23◦.
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Figure 3.13: Theoretical and numerical results for the height of the Mach stem as a function
of time as it grows from an initial regular reflection condition. Calculated for M∞ = 4,
g/w = 0.42, γ = 1.4, and θ1 = 25◦.
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Figure 3.14: A quasi-schlieren image showing a comparison between the theoretical shock
structure and an Euler computation. The image shows that the shape of the slipline in the
computation is significantly different from what is assumed in the theory. This difference
between computation and theory most likely accounts for most of the error between the
two. The theoretical lines are shown as dotted lines. Calculated for M∞ = 4, g/w = 0.42,
γ = 1.4, and θ1 = 25◦.

3.9 Three-Dimensional Mach Stem Growth

Consider a three-dimensional flow with a regular reflection in the dual-solution domain.

When a Mach stem is first formed, it is both small in height and in width in the spanwise

direction. As it grows it both increases in height and expands outward in the spanwise

direction. This opening is referred to as a mouth because of its shape [11]. The spanwise

region where the transition from a Mach stem to a regular reflection occurs is characterized

by a 5-point theory. This point exists at the intersection of five shocks, those being the

incoming shock, the regularly reflected shock, the Mach stem, the Mach stem reflected shock,

and a fifth shock dividing the downstream flow region between the regular reflection and

the Mach reflection. Farther away from this point, we can expect the behavior of the Mach

stem to follow that of the two-dimensional theory in the appropriate frame of reference. We

can therefore conclude that the expansion rate of the Mach stem in the spanwise direction

is determined by a complex system of five shocks; whereas, the overall change in height of

the Mach stem is governed by the two-dimensional theory presented in Section 3.8. Using

the two-dimensional theory for the height and setting the spanwise expansion of the Mach

stem to a constant, produces the evolution of a Mach stem that is seen in Figure 3.15. This

figure shows the Mach stem as it would be seen by an observer looking downstream.
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Figure 3.15: Three-dimensional growth of Mach stem with height s, and spanwise width
x, which is propagating outward at a Mach number Mx. Curves for flow times, (a∞t/w),
between 1 and 10, in increments of 1, with the lower curves corresponding to lower times.
Calculated for M∞ = 3, g/w = 0.4516, w = 150, γ = 1.4, and θ1 = 21◦.

This theory assumes that the Mach stem starts at a point and therefore predicts a

cusp at the center of the Mach stem corresponding to the point where the Mach stem

started. This, however, is not seen in computations and is believed to be because, in the

computations, the tripping from regular reflection to Mach reflection occurs over a finite

span portion of the regular reflection. This initial finite span is most likely due to the fact

that the disturbance given is more than what is required to trip from regular reflection to

Mach reflection. Essentially, in the computations, the Mach stem starts with a finite width.

For accurate comparisons with computations, an additional parameter, the initial width of

the Mach stem, must be included. This initial width essentially separates the two halves of

Figure 3.15 and produces curves similar to Figure 3.16.

For comparison with three-dimensional calculations done using AMROC [27], the two-

dimensional theory was used to calculate the change in height as a function of time at each

spanwise point along the Mach stem. The expansion rate in the spanwise direction was taken

to be a constant and was set to the best-fit value as was the initial Mach stem width. From

dimensional analysis we can see that indeed the spanwise growth should be constant, since
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Figure 3.16: Growth of a Mach stem considering a Mach stem with an initial finite width,
s, and spanwise width of Mach stem, x, which is propagating outward at a Mach number,
Mx. Curves for flow times (a∞t/w) between 1 and 10, in increments of 1, with the lower
curves corresponding to lower times. Calculated for M∞ = 3, g/w = 0.4516, w = 150,
γ = 1.4, and θ1 = 21◦.

it will depend only on the local flow conditions around the five shock solutions; therefore,

x

c∞t
= h (M∞, γ, θw) , (3.109)

which gives a constant spanwise expansion speed for any given flow parameters. The use

of the two-dimensional theory from Section 3.7 and the best-fit spanwise growth rate yields

very good agreement to computations. Figures 3.17 through 3.19 show the progression of

the three-dimensional Mach stem with time, both computationally and theoretically.
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Figure 3.17: Numerical and theoretical growth of Mach stem height, s, and growth in the
spanwise direction, x, at a∞t/w=0.11. The Mach stem is propagating outward at a Mach
number, Mx = 0.5916. Calculated for M∞ = 3, g/w = 0.4516, w = 150, γ = 1.4, and
θ1 = 21◦.
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Figure 3.18: Numerical and theoretical growth of Mach stem height, s, and growth in the
spanwise direction, x at c∞t/w=0.39. The Mach stem is propagating outward at a Mach
number, Mx = 0.5916. Calculated for M∞ = 3, g/w = 0.4516, w = 150, γ = 1.4, and
θ1 = 21◦.
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Figure 3.19: Numerical and theoretical growth of Mach stem height, s, and growth in the
spanwise direction, x, at c∞t/w=0.79. The Mach stem is propagating outward at a Mach
number, Mx = 0.5916. Calculated for M∞ = 3, g/w = 0.4516, w = 150, γ = 1.4, and
θ1 = 21◦.
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Chapter 4

Dense Gas Disturbances

It has been observed by Sudani et al. [11] that water vapor can cause transition to occur

closer to the von Neumann condition than it does otherwise. The studies by Sudani et al.

did not fully account for the mechanism by which water vapor causes transition from regular

reflection to Mach reflection. This section will present two-dimensional computations where

water vapor is modeled as a dense and cold region of gas. Calculations where the impact of

the dense gas on the wedge is modeled as an energy deposition are also presented. In the

case of energy being deposited on the surface of the wedge, a minimum required energy for

transition is given. In addition, several three-dimensional calculations were performed. In

all computations presented here, the free-stream pressure and density are set to unity.

4.1 High Density Gas Region

Numerical studies using high-density gas regions were conducted in both two dimensions

and three dimensions. The results of these studies are presented in this section.

The first set of numerical studies model the disturbance as a small, cold, and dense

region of gas. Initially, the gas has the same pressure and velocity as the free stream.

All two-dimensional computations were performed using Amrita [24] with the assistance of

James Quirk. The details of the Amrita system are discussed in Section 3.5. In all the

cases, the free-stream Mach number was set to 4, and the ratio of specific heats was set to

1.4. The computational domain was 300 cells wide and 240 cells high. Each cell could be

refined to either 9 cells or 81 cells depending on the local density gradient. The geometry

in all calculations is two symmetric wedges with a wedge spacing, g, of 50 cells. The wedge
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length, w, depends on the wedge angle, θ1, and is given by

w = 70/ sin (θ1) . (4.1)

A schematic of the important parameters of the computational setup is shown in Figure 4.1.

4.1.1 Evolution of High Density Gas Region

In the computations, the dense gas is inserted upstream of the leading oblique shock and

has an initial radius of 1 cell. An example quasi-schlieren image shows the dense gas just

after it is inserted is shown in Figure 4.2.

As the region of gas travels downstream, it will pass through the leading shock and into

the slower region behind the leading shock. Once the particle is in Region 1, a bow shock

will form in front of it. An example of the bow shock in front of the lump of gas is shown

in Figure 4.3. With respect to the lump of gas the flow is from upper right to lower left,

and we should therefore expect an oblique shock to the upper right of the lump of gas. In

addition to the bow shock, there is also a small disturbance on the leading oblique shock

where the particle crossed it.

At a later time, the bow shock of the dense gas will impact the wedge and reflect. This

is seen in Figure 4.4. The recompression shocks behind the dense gas are also seen, and

the disturbance on the leading oblique shock has smoothed out. Since the dense gas is not

solid, it is stretching and does not remain circular.

After the bow shock first impacts the wedge the dense gas will travel through the

reflected bow shock and impact the wedge. The passing of the dense gas through the

reflected bow shock will cause a disturbance on that shock. These shocks are seen and

labeled in Figure 4.5

The reflected bow shock and shock due to the impacting of the dense gas on the wedge

propagate outwards from the impact point and convect downstream with the flow; this is

seen in Figure 4.6.

If the reflected bow shock and impact shock are sufficiently strong they will both impact

the leading oblique shock. Depending on the strength of the two shocks, it is possible for

both to reach the leading oblique shock, neither to reach the leading oblique shock, or only

the reflected bow shock reaches the leading shock. In this particular case, as is shown in
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Figure 4.1: Flow setup used for the Amrita simulations of dense gas disturbances.
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Figure 4.2: Quasi-schlieren image showing a circular area of gas with a radius of 1 cell and
a density of 1500 times the free-stream density. The particle is 75 cells above the centerline,
and the wedge angle is 25◦.
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Figure 4.3: Quasi-schlieren image showing an area of gas with an initial radius of 1 cell and
an initial density of 1500 times the free-stream density, after it has propagated downstream
through the leading oblique shock. The dense gas originated 75 cells above the centerline,
and the wedge angle is 25◦.
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Figure 4.4: Quasi-schlieren image showing an area of gas with an initial radius of 1 cell and
an initial density of 1500 times the free-stream density, after its bow shock has impacted
the wedge. The lump of gas originated 75 cells above the centerline, and the wedge angle
is 25◦.
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Reflected Bow Shock

Disturbed Bow Shock

Recompression Shock

Figure 4.5: Quasi-schlieren image showing an area of gas with an initial radius of 1 cell and
an initial density of 1500 times the free-stream density, after it has impacted the wedge.
The dense gas originated 75 cells above the centerline, and the wedge angle is 25◦.
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Reflected Bow Shock

Impact Shock

Figure 4.6: Quasi-schlieren image showing the reflected bow shock and impact shock from
an area of gas with an initial radius of 1 cell and an initial density of 1500 times the free-
stream density as the reflected bow shock and the impact shock reach the incident shock.
The dense gas originated 75 cells above the centerline, and the wedge angle is 25◦.
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Reflected Bow Shock

Impact Shock

Figure 4.7: Quasi-schlieren image showing the reflected bow shock and impact shock from
an area of gas with an initial radius of 1 cell and an initial density of 1500 times the free-
stream density after they have reached the leading oblique shock. The dense gas originated
75 cells above the centerline, and the wedge angle is 25◦.

Figure 4.7, both the reflected bow shock and the impact shock reach the leading shock.

As the impact shock travels downstream it will pass over the reflection point, and locally

increase the shock angle. This is seen in Figure 4.8.

If the disturbance is strong enough, a Mach stem will form. The first sign of a Mach

stem is shown in Figure 4.9.

Once the Mach stem is formed a communication link between the expansion wave and

the Mach stem is created. This communication tells the Mach stem how large it should

be, and it will continue to grow until it reaches its steady state height. An example of this

growth in shown in Figure 4.10.
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Reflected Bow Shock

Impact Shock

Figure 4.8: Quasi-schlieren image showing the reflected bow shock and impact shock from
an area of gas with an initial radius of 1 cell and an initial density of 1500 times the free-
stream density after the impact shock has passed over the reflection point. The dense gas
originated 75 cells above the centerline, and the wedge angle is 25◦.
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Figure 4.9: Quasi-schlieren image showing the creation of a Mach stem due to an area of gas
with an initial radius of 1 cell and an initial density of 1500 times the free-stream density
impacting the wedge. The dense gas originated 75 cells above the centerline, and the wedge
angle is 25◦.
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Figure 4.10: Quasi-schlieren image showing the growth of the Mach stem created by an area
of gas with an initial radius of 1 cell and an initial density of 1500 times the free-stream
density impacting the wedge. The dense gas originated 75 cells above the centerline, and
the wedge angle is 25◦.
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4.1.2 Mechanism of Transition

There are two significant shocks produced by the dense gas impacting the wedge. The first

is the bow shock and the second is the impact shock. Assuming that a gas region of a given

size is sufficiently dense that the speed of the gas region does not change significantly, the

bow shock will be independent of the gas density. However, the impact shock will depend

heavily on the total mass, or more specifically, the kinetic energy of the dense gas. Because

of this difference between the bow shock and impact shock it is useful to study whether or

not transition happens as a function of the mass of the dense gas region.

We will examine two cases; one where transition does occur, and one where it does not.

Specifically, we will consider a wedge angle of 25◦, a dense gas with an initial radius of 1 cell

located 75 cells above the centerline, a free-stream Mach number of 4, and a ratio of specific

heats of 1.4.

The first case we will consider is a density ratio between the gas region and the free

stream of 1300. Figure 4.11 shows a quasi-schlieren image taken at the time when the

impact shock is closest to the leading shock. In the figure, the impact shock almost reaches

the reflection point. In this case, transition from regular reflection to Mach reflection will

not occur.

If we increase the density by less than 8%, to 1400 times the free-stream density, tran-

sition will occur. Figure 4.12 shows a quasi-schlieren image taken at the time when the

impact shock is closest to the leading shock. In the figure, the impact shock reaches the

leading shock just upstream of the reflection point.

Since, in both cases, the bow shock is virtually identical, we see that the determining

factor in whether or not transition from regular reflection to Mach reflection occurs is the

strength of the impact shock. This suggests that to understand the mechanism by which a

dense gas region can cause transition we should study the impact shock.

4.1.3 Three-Dimensional Results

While the two-dimensional computations provide great computational efficiency, three-

dimensional computations were also performed to confirm that the general phenomena

observed in the two-dimensional calculations are indeed accurate.

All three-dimensional computations were done using AMROC [27] and performed in
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Figure 4.11: Quasi-schlieren image at the time when the impact shock is closest to the
leading shock. In this case transition to Mach reflection will not occur. The initial density
ratio between the gas region and the free stream is 1300.
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Figure 4.12: Quasi-schlieren image at the time when the impact shock is closest to the
leading shock. In this case transition to Mach reflection will occur. The initial density ratio
between the lump of gas and the free-stream density is 1400.
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collaboration with Ralf Deiterding. The domain consisted of 90 × 90 × 90 cells, with each

cell being able to be refined up to 4 × 4× 4. The front and back of the domain were set to

extrapolate, thereby producing infinite span wedges. By doing this the three-dimensional

effects of the flow at the ends of the wedges were neglected. The computations were per-

formed on DataStar at the San Diego Supercomputer Center at University of California,

San Diego.

The domain size was set to 240 × 240 × 240 (i.e., each unrefined cell had a side length

of 8/3). The wedge length, w, was set to 150, and the wedge spacing, g, was set to 50. The

free-stream Mach number, M∞, was 4 in all cases and the ratio of specific heats, γ, was 1.4.

In the three-dimensional calculations a single reasonably sized region of dense gas was

not sufficient to cause transition from regular reflection to Mach reflection. Only if the

single region of gas were about 10,000 times denser than the free stream and a few percent

of the wedge length would transition occur. In order to be a reasonable representation of

experimental observations, which show that many very small particles can cause transition,

it was necessary to model a series of dense regions of gas instead of just one; this is seen in

Figure 4.13. Using a series of dense regions of gas, it is possible for the individual regions

of gas to be 1,500 times denser than the free stream and only a few cells wide. An example

of 55 individual regions of gas, each with a density 1,500 times the free-stream density and

with a particle radius divided by the wedge length that is 0.0133, is seen in Figure 4.13.

After the 55 particles pass through the leading shocks some of them impact the wedge

and produce impact shocks like those seen in the two-dimensional calculations. These

disturbances then effects the leading shock waves and produce a buldge in them that looks

like a pair of lips. This is seen in Figure 4.14.

Figure 4.15 shows the beginning of the Mach stem growth. The center region of the figure

shows a small Mach stem. The three-dimensional growth of the Mach stem is sometimes

compared to the opening of a mouth, because of the way the Mach stem gains in height

while simultaneously spreading outwards.

After the Mach stem has had sufficient time, it reaches the steady-state size at the

center, while the outer parts continue to grow. This is seen in Figure 4.16.

Finally, the entire Mach stem will reach its steady-state height, this is seen in Figure 4.17.
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Figure 4.13: 55 lumps of dense gas inserted upstream of the leading shock waves. Unlike the
two-dimensional computations, many individual lumps of gas are required to cause tripping.



90

Figure 4.14: The 55 lumps of dense gas inserted upstream of the leading shock waves have
passed through them and left a small disturbance on the leading shocks. This disturbance
looks like a pair of lips.
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Figure 4.15: The disturbance of the 55 lumps of dense gas has caused the regular reflection
to begin to transition to Mach reflection.
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Figure 4.16: Portions of the Mach stem have reached their steady-state height, while in the
outer regions the Mach stem continues to grow.
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Figure 4.17: The entire Mach stem has reached its steady-state height.
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4.2 Energy Deposition

The study of a dense lump of gas impacting the wedge suggested that it is the shock formed

by the impact itself that is key in determining whether transition from regular reflection to

Mach reflection occurs. Because of this, it is useful to study the simplified case of energy

deposition directly on the wedge surface. In the two-dimensional case, the shock formed

by this energy deposition will be cylindrical, and while it is strong will behave according to

blast-wave equation for strong shocks, as obtained by Sedov [28].

4.2.1 Minimum Energy Requirement

A minimum required energy can be constructed by the fact that the blast wave must reach

the leading shock in order to have an influence on whether or not transition from regular

reflection to Mach reflection occurs. In order to determine if the blast wave will reach the

leading shock, we must know the trajectory of the shock as a function of time and of the

amount of energy deposited. This analysis neglects the effects of the leading oblique shock

on the blast wave and of the expansion wave off the aft wedge corner. Summarizing the

work of Sedov [28], we can write the radius of the blast wave, Rs, as a function of the

time, t, the energy deposited, E0, and the density and pressure into which the blast wave

is propogating, ρ1 and P1, respectively. Rs can then be written as

Rs = f (t, E0, ρ1, P1) , (4.2)

where f is a function yet to be determined.

The rank of the dimensional matrix consisting of Rs, t, E0, ρ1, and P0 is three; therefore,

we can form two non-dimensional groups. The non-dimensional form of Equation 4.2 is

Rs

(
P1

E0

)1/ν

= f

(√
γP1

ρ1

(
P1

E0

)1/ν

t

)
, (4.3)

where ν equals 1, 2, 3 for planar, cylindrical, and spherical shock waves, respectively.

The two-dimensional computations presented in this thesis correspond to ν = 2, whereas

the experimental results using energy deposition and the three-dimensional computations

correspond to ν = 3.



95

If the shock is strong, the shock jump conditions become

v′2 =
2

γ + 1
vs, (4.4)

ρ′2 =
γ + 1
γ − 1

ρ1, (4.5)

P ′
2 =

2
γ + 1

ρ1v
2
s , (4.6)

(4.7)

where vs is the speed of the shock, v′2, ρ′2, P ′
2, are the velocity, density, and pressure,

respectively, immediately behind the shock. We see that for a strong shock, the shock jump

conditions do not involve P1. When the shock is strong we will denote f(x) as f strong(x),

which is given by

f strong(x) = K1x
2

ν+2 , (4.8)

where K1 is a constant, for a given γ and a given symmetry. We can then solve for the

radius of a strong blast shock, Rstrong
s , which gives

Rstrong
s = K2E

(
1
ν
− 2

ν(ν+2)

)
0 ρ

− 1
ν+2

1 t
2

ν+2 , (4.9)

where K2 is another constant and is related to K1 by

K2 = K1γ
1

ν+2 . (4.10)

Equation 4.9 simplies to

Rstrong
s = K2

(
E0

ρ1

) 1
ν+2

t
2

ν+2 . (4.11)

This equation is known as Sedov’s Equation, and applies only for strong shocks. By defining

a scaled energy, E, where E = α(γ, ν)E0, Equation 4.11 can be written as

Rstrong
s =

(
E

ρ1

) 1
ν+2

t
2

ν+2 . (4.12)

The flow in the entire region behind the shock, assuming a strong shock, is given by
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Sedov [28]. The flow equations are

vstrong
2

v′2
=

(ν + 2) (γ + 1)
4

V
r

Rstrong
s

, (4.13)

ρstrong
2

ρ′2
=
[
γ + 1
γ − 1

(
(ν + 2) γ

2
V − 1

)]α3
[
γ + 1
γ − 1

(
1 − ν + 2

2
V

)]α5

×
[

(ν + 2) (γ + 1)
(ν + 2) (γ + 1) − 2 [2 + ν (γ + 1)]

(
1 − 2 + ν (γ − 1)

2
V

)]α4

, (4.14)

P strong
2

P ′
2

=
[
(ν + 2) (γ + 1)

2
V

]2ν/(ν+2) [γ + 1
γ − 1

(
1 − ν + 2

2
V

)]α5+1

×
[

(ν + 2) (γ + 1)
(ν + 2) (γ + 1) − 2 [2 + ν (γ + 1)]

(
1 − 2 + ν (γ − 1)

2
V

)]α4−2α1

. (4.15)

V is given by the following relationship:

r

Rs
=
[
(ν + 2) (γ + 1)

2
V

]−2/(ν+2) [γ + 1
γ − 1

(
(ν + 2) γ

2
V − 1

)]α2

×
[

(ν + 2) (γ + 1)
(ν + 2) (γ + 1) − 2 [2 + ν (γ + 1)]

(
1 − 2 + ν (γ − 1)

2
V

)]−α1

. (4.16)

The exponents α1, α2, α3, α4, and α5 are given by

α1 =
(ν + 2) γ

2 + ν (γ − 1)

[
2ν (2 − γ)
γ (ν + 2)2

− α2

]
, (4.17)

α2 =
1 − γ

2 (γ − 1) + ν
, (4.18)

α3 =
ν

2 (γ − 1) + ν
, (4.19)

α4 =
α1 (ν + 2)

2 − γ
, (4.20)

α5 =
2

γ − 2
. (4.21)

The total energy added to the flow, E0, is given by

E0 = kν

∫ Rstrong
s

0

⎛
⎜⎝P strong

2

γ − 1
+

ρstrong
2

(
vstrong
2

)2

2

⎞
⎟⎠ rν−1dr, (4.22)
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where kν = 1, 2π, 4π, for ν = 1, 2, 3, respectively. This can be rewritten as

E0 = kν

∫ Rstrong
s

0

⎛
⎜⎝

P strong
2
P ′

2
P ′

2

γ − 1
+

ρstrong
2
ρ′2

ρ′2
(

vstrong
2
v′2

v′2
)2

2

⎞
⎟⎠ rν−1dr, (4.23)

Substituting in the values for strong shocks from Equations 4.4 through 4.7 produces

E0 = kν

∫ Rstrong
s

0

⎛
⎜⎝

P strong
2
P ′

2

2
γ+1ρ1v

2
s

γ − 1
+

ρstrong
2
ρ′2

ρ1
γ+1
γ−1

(
vstrong
2
v′2

2
γ+1vs

)2

2

⎞
⎟⎠ rν−1dr. (4.24)

The speed at which the shock travels, vstrong
s , can be found by differentiating the radius of

the shock, Rstrong
s , as given in Equation 4.12 with respect to time. This produces

vstrong
s =

dRstrong
s

dt
=

2
ν + 2

(
E

ρ1

) 1
ν+2

t−
ν

ν+2 . (4.25)

Substituting Equation 4.25 into Equation 4.24 gives

E0 = kν
8ρ1

(ν + 2)2

(
E

ρ1

) 2
ν+2

t−
2ν

ν+2

∫ Rstrong
s

0

⎛
⎜⎝

P strong
2
P ′

2
+ ρstrong

2
ρ′2

(
vstrong
2
v′2

)2

(γ − 1) (γ + 1)

⎞
⎟⎠ rν−1dr. (4.26)

Letting λ = r
Rstrong

s
and changing the limits of integration produces

E0 = kν
8ρ1

(ν + 2)2

(
E

ρ1

) 2
ν+2

t−
2ν

ν+2
(
Rstrong

s

)ν ∫ 1

0

⎛
⎜⎝

P strong
2
P ′

2
+ ρstrong

2
ρ′2

(
vstrong
2
v′2

)2

(γ − 1) (γ + 1)

⎞
⎟⎠λν−1dλ.

(4.27)

Substituting into Equation 4.12 gives

E0

E
= kν

8
(ν + 2)2

∫ 1

0

⎛
⎜⎝

P strong
2
P ′

2
+ ρstrong

2
ρ′2

(
vstrong
2
v′2

)2

(γ − 1) (γ + 1)

⎞
⎟⎠λν−1dλ. (4.28)

The function f(x), defined in Equation 4.3, must be determined computationally for non-

strong shocks. In order to compute f(x) an Euler solver developed by Nicolas Ponchaut was

used [29]. The solver uses a domain between the origin and the shock. Because the domain

is bounded by the shock, shock refinement is not needed, since there are no discontinuities
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Figure 4.18: Initial density, pressure, and velocity profiles for the Euler solver based on
Sedov’s equations with ν = 2 and γ = 1.4

in the flow. For the computation, 500 cells were used, and the cells expanded as the domain

grew. The code ran with a CFL of 0.5 for 691,320 time steps. The code was run with

cylindrical symmetry and a ratio of specific heats of 1.4. The pressure and density in front

of the shock were both set to unity, and the energy added was 1000. The initial condition was

set to be Sedov’s strong shock flow solution. This initial condition is shown in Figure 4.18.

The numerical solution for f(x) was then matched with f strong(x) at early times. This

matching is shown in Figure 4.19

Knowing the complete solution for f(x) it is possible to find the energy, E0, required for

the blast wave to reach the leading oblique shock. The blast wave will convect downstream

with the mean flow in Region 1 as is shown in Figure 4.20. The limiting case of the blast

wave reaching the leading shock, is when it reaches the reflection point. Therefore, the

limiting case is defined as the energy required for the blast wave to just reach the reflection

point. Based on Figure 4.20, we can write the minimum distance, lmin between the blast

wave and the reflection point as

lmin =
√

(l1 − u1t)2 + l22 − Rs, (4.29)
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Figure 4.19: The graph to the left of 0.1164 is from Sedov’s exact solution for strong shocks,
and the graph to the right of 0.1164 is the Euler solution. Very good continuation of Sedov’s
solution is seen. ν = 2 and γ = 1.4.

where u1 is the flow speed in Region 1, and

l1 = d cos
(

tan-1

(
d

x2 − x1

)
− θ1

)
, (4.30)

l2 = d sin
(

tan-1

(
d

x2 − x1

)
− θ1

)
. (4.31)

x1 and x2 are given by

x1 = −d cot θ1, (4.32)

x2 = G cot α − G cot θ1, (4.33)

The conditions for the minimum energy required for the blast wave to reach the reflection
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Figure 4.20: Flow setup considering energy deposition along the wedge surface showing the
blast wave just reaching the point of reflection.
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point is

Rs =
√

(l1 − u1t)2 + l22, (4.34)

Us =
dRs

dt
=

u1 (u1t − l1)√
(l1 − u1t)2 + l22

. (4.35)

This condition states that in the minimum energy case, the blast wave will reach the re-

flection point and then retreat from the reflection point. When the blast wave originates

sufficiently far from the reflection point even a Mach wave can reach the reflection point,

in this case the minimum energy required is zero. This occurs when

l1
l2

≥ M1. (4.36)

Substituiting in the values of l1 and l2, gives a limiting value of d,

cot
(

tan-1

(
d

x2 − x1

)
− θ1

)
≥ M1. (4.37)

Figure 4.21 shows a lower bound on the energy required when the free-stream Mach

number is 4, the ratio of specific heats is 1.4, wedge angles are between 22◦ and 25.5◦ in

increments of 0.5◦ and the wedge opening, G, is 120.

For a spherical, rather than a cylindrical, blast wave, the energy required dramatically

increases, as is seen in Figure 4.22.

Using Amrita [24] and an iterative technique, the energy required to cause transition

can be calculated. The Euler solver was set to run a case and then output whether or not

transition to Mach reflection occurred. A standard bisection method was then employed

using this information. To increase the speed of the routine, previous results were used to

calculate a first guess when a different wedge angle was used. The results of 47 separate

cases are plotted in Figure 4.23.
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Figure 4.21: A lower bound on the energy, E0, required for the blast wave to reach the
point of reflection. If the energy added is less than this minimum energy, transition from
regular to Mach reflection is impossible. Computations done for M = 4, ρ∞ = 1, ν = 2,
γ = 1.4, and G = 120. The wedge angle, θ1, varies between 22◦ and 25.5◦ in increments of
0.5◦.
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Figure 4.22: A lower bound on the energy, E0, required for the blast wave to reach the
point of reflection. If the energy added is less than this minimum energy, transition from
regular to Mach reflection is impossible. Computations done for M = 4, ρ∞ = 1, ν = 3,
γ = 1.4, and G = 120. The wedge angle, θ1, varies between 22◦ and 25.5◦ in increments of
0.5◦.
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Figure 4.23: Energy, E0, required for transition from regular to Mach reflection to occur.
The solid line represents the theoretical minimum energy curve as discussed earlier in this
section, the dashed line represents the curve fit to the computational results. The × in-
dicates that transition did not occur at the given condition; whereas, the ◦ indicates that
transition did occur. Computations done for M = 4, ρ∞ = 1, ν = 2, γ = 1.4, G = 120, and
wedge angle, θ1 = 25◦.
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Chapter 5

Asymmetric Oblique Shocks

The theory for the reflection of two shocks at different angles with respect to the flow can

be developed in much the same way as was done in Chapter 2. A generalized setup allowing

for different oblique shock angles in presented in Figure 5.1.

For the purposes of this section, we will limit ourselves to higher Mach numbers, and

consider only Mach reflection and regular reflection, allowing for subsonic flow downstream

of the reflected shock. First we will consider the detachment condition. For shock angles

greater than this condition, regular reflection can not exist. In Section 2.3.3, we said the

flow angle behind the reflected shock must be equal to that of the incoming flow; however,

when there are two incident shocks of different angles this is no longer true. The flow

directions after the reflected shocks must be the same; however, they do not need to be

parallel to the free-stream flow. An example shock polar at the detachment condition is

shown in Figure 5.2. The detachment condition for asymmetric wedges is defined simply

as the point at which the two reflected shock polars intersect once and are tangent at the

intersection. This condition can also be thought of as the point where any further separation

of the reflected shock polars would result in no intersection of the two polars. A plot of the

detachment condition for various Mach number is shown in Figure 5.3. Figure B.1 is the

detachment condition plotted with shock angles rather than deflection angles.

Similarly, an example shock polar at the von Neumann condition is shown in Figure 5.4.

This condition occurs when both reflected shock polars and the incident shock polar intersect

one another at a single point. A plot of this condition for various Mach numbers is shown

in Figure 5.5. Figure B.2 is a similar plot of the von Neumann condition, but plots the

shock angles instead of the deflection angles.

The von Neumann and detachment conditions at Mach 4, are shown together in Fig-
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Figure 5.5: Von Neumann condition for asymmetric wedges. Curves are for Mach number
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Figure 5.6: Dual solution domain for M=4 for asymmetric wedges. The lower curve is the
von Neumann condition, the upper curve is the detachment condition.

ure 5.6 and Figure B.3. The region between the two curves represents the dual-solution

domain for asymmetric wedges. A line of slope 1 through these curves would produce the

dual-solution domain for symmetric wedges.

5.1 Symmetric Analogy

The steady-state Mach stem height and growth rate were examined experimentally. The

theory developed in Chapter 3 was based on a symmetric wedge configuration, whereas

the current experimental work uses asymmetric wedges for experimental simplicity. For

configurations that are near symmetric, a conversion based on the distance, in the shock
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angle space, from the von Neumann condition can be used. These equivalence curves, i.e.,

curves equidistant from the von Neumann condition, are shown in Figure 5.7.
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Chapter 6

Experimental Setup

Several experiments were conducted using the Ludwieg Tube at the Graduate Aeronatuical

Laboratories of the California Institute of Technology (GALCIT). The details of the facility

and the specific test setup will be discussed in this chapter.

6.1 Ludwieg Tube

A Mach 4 nozzle was designed, constructed and taken into operation for the existing Ludwieg

tube at GALCIT. The Ludwieg tube consists of a 17 m long 300 mm inner diameter tube,

a transition piece to allow for the upstream insertion of particles, an axisymetric nozzle, a

diaphragm station (located either just upstream of the throat or downstream of the test

section) and a dump tank; see Figure 6.1.

Before a run, the tube is filled with the test gas at a pressure of up to 700 kPa and

the dump tank is evacuated. To start the run, the diaphragm is ruptured, thus causing an

expansion wave to propagate through the nozzle and into the tube. When the diaphragm is

in the downstream position, the diaphragm is ruptured in a controlled way using a cutting

device. In the future upstream position, the diaphragm is ruptured by creating a sufficient

pressure difference across the diaphragm, since any cutting device upstream of the nozzle

would disrupt the flow. During the time it takes for the expansion wave to travel to the

end of the tube and for the reflected wave to return to the nozzle, the reservoir conditions

for the nozzle flow are almost perfectly uniform, thus giving a constant condition test time

of 80 to 100 ms.

A Mach number of 4 was chosen because it is necessary to operate at a Mach number

for which the dual-solution domain has a shock angle range that is not too small. Also, to
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Figure 6.1: Overview drawing of the Ludwieg tube laboratory. The dump tank is shown on
the right, the expansion tube on the left, and the test section in between.

avoid having to heat the gas in the tube, it is necessary to operate at a Mach number no

higher than 4, to avoid condensation of the test gas in the nozzle expansion.

At this Mach number it was better to make the nozzle axisymmetric rather than rect-

angular. In part, this is to eliminate the unavoidable secondary flow in the corners, and

the complications of a circular to rectangular transition piece. Since the test rhombus is

very slender at Mach 4, a considerable portion of the test rhombus lies downstream of the

nozzle exit, so that a useful portion of the test section can be fitted with flat windows set

back from the nozzle edge, so that no reentrant corner is visible to the flow.

The contours for the Mach 4.0 nozzle, shown in Figure 6.4 and listed in Table C.1, and

the original Mach 2.3 nozzle were designed by J. J. Korte of NASA Langley Research Center.

Korte [30, 31, 32] uses an efficient code to solve the parabolized Navier-Stokes equations

and couples this with a least-squares optimization procedure. The objective function of the

least-squares routine consists of the Mach number distribution along the centerline and the

exit profile of both the Mach number and flow angle. By doing this, the nozzle contour is

designed to compensate for viscous effects. Detailed drawings of the Mach 4.0 nozzle are

shown in Appendix C. The Mach 2.3 nozzle has been calibrated by using the weak Mach

wave technique. Weak waves are generated by thin adhesive strips taped to the walls. These

are visualized using the schlieren technique, thus giving a pattern of lines that correspond

very closely to the characteristics in the flow, see Figure 6.2. Measurement of the angles

at the intersection of these lines gives the Mach number and flow angle distribution in the

entire nozzle flow. The resulting distribution of Mach number along the centerline of the
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Figure 6.2: Composite schlieren image of the Mach waves generated in the Ludwieg tube
nozzle by thin transverse strips of adhesive tape attached to the top and bottom walls [33].

nozzle is compared with the design curve in Figure 6.3. The results established that the

Mach number is constant in the test rhombus at 2.30 ± 0.05 and the flow angle is constant

across the test rhombus at 0± 1◦, i.e., to within the measurement error of the method. [33]

6.1.1 Governing Equations

The flow properties in the test section can be determined based the geometry of the Ludwieg

tube and the initial conditions. Specifically, the stagnation pressure, P0 in the test section

will depend on the initial pressure, Pi, and the area ratio between the throat and the

expansion tube, At
Ai

. The flow Mach number in the expansion tube is given by,

At

Ai
=
(

γ + 1
2

) γ+1
2(γ−1)

Mi

(
1 +

γ − 1
2

M2
i

)− γ+1
2(γ−1)

. (6.1)

The stagnation pressure, P0, can then be calculated by considering the characteristic through

the expansion wave, in particular,

P0

Pi
=

⎛
⎜⎝ 1 + γ−1

2 M2
i(

1 + γ−1
2 Mi

)2

⎞
⎟⎠

γ
γ−1

. (6.2)

6.2 Mach 4 Nozzle

Since the expansion takes only about 100 ms to travel from the nozzle to the end of the

tube and back, any time that the flow needs to establish itself in the nozzle reduces the test

time. It is therefore important that the nozzle design allows for a relatively fast start-up

process. Computations done assuming an infinite dump tank and a diaphragm downstream

of the nozzle are shown in Figure 6.5. The image shows the initial condition at t = 0ms,
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Figure 6.3: Distribution of Mach number along the centerline of the Ludwieg tube nozzle
from measurements of the Mach wave angles in Figure 6.2. Here, the notation “shock”
indicates the waves from the front of adhesive tape, “expansion” those from the back. The
solid line represents Korte’s design computation [33].
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Figure 6.4: Mach 4.0 nozzle contour designed by J. J. Korte of NASA Langley Research
Center.

when the diaphragm separates the high pressure gas in the tube and nozzle from the low

pressure region in the dump tank. At t = 4 ms the shock generated by the diaphragm

rupture has traveled downstream into the dump tank and an expansion wave propagates

upstream through the nozzle. At t = 8 ms the expansion wave has partially reflected from

the nozzle and formed a reflected shock, this shock is seen just downstream of the throat.

At t = 12 ms and t = 16 ms the reflected shock continues to travel downstream through the

nozzle. It is important to note that the reflected shock is moving against the nozzle flow

and therefore travels slowly in the lab-fixed frame. At t = 20 ms the reflected shock has

traveled downstream past the first expansion characteristic from the end of the nozzle, and

steady flow in the test section is established. A 20 ms startup time is quite acceptable and

is almost identical to the startup time with the previous Mach 2.3 nozzle.

Early experiments showed that the flow, using the downstream diaphragm, did not

properly start. An image taken halfway through the test time is shown in Figure 6.6. The

maximum steady flow time achieved with this configuration was no more than 20 ms.

Amrita simulations were conducted to understand the problem, in particular, the prob-

lem was modeled with a finite dump tank to understand the importance of the back pressure
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Figure 6.5: Start-up process of the Mach 4 nozzle computed using Amrita. Each image
represents that value at a different time in the start-up process assuming an infinite dump
tank.
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Figure 6.6: Experimental flow at approximately 50 ms into the test time showing unstart.

Figure 6.7: Simulation showing the unstart of the nozzle, 51.8 ms after the rupturing of
the diaphragm, as a result of the reflected shock from the end of the dump tank. The left
boundary condition, just upstream of the throat, is extrapolated, while the right boundary
condition, at the end of the dump tank, and the outer wall of the dump tank are reflective.

and the shock generated when the diaphragm is ruptured.

6.3 Dump Tank

In previous experiments using the Ludwieg tube with a Mach 2.3 nozzle the shock that

propagated into the dump tank and reflected back posed no problems. However, with

the Mach 4.0 nozzle this reflected shock returned to the section and disrupted the flow.

Computations using Amrita with the dump tank fully modeled confirmed this problem. An

extensive study of possible solutions was made to find a way both to reduce the strength

of this reflected shock and to prevent it from reentering the test section. Figure 6.7 is a

simulation done using Amrita and shows the reflected shock from the dump tank inside the

test section and Figure 6.8 shows an x-t diagram of this computation.

In the simulations, the addition of a baffle and a tube extension inside the dump tank,

at least computationally, solved the problems associated with the reflected startup shock.
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0ms

100 ms

Figure 6.8: Quasi-schlieren x-t diagram of the nozzle unstart with the downstream di-
aphragm. The quasi-schlieren image is taken at progressive times along the centerline of
the Ludwieg tube. The solid vertical line represents the downstream end of the test section;
clean flow is obtained if the reflected shock in the dump tank should not cross this line.



119

Figure 6.9: Simulation showing undisturbed flow in the test section, 51.7 ms after diaphragm
rupture. The influence of the reflected shock has been kept away from the test section as
the result of the addition of the baffle and tube extension. The left boundary condition,
just upstream of the throat, is extrapolated, while the right boundary condition, at the end
of the dump tank, and the outer wall of the dump tank are reflective.

Figure 6.9 shows an Amrita computation with the addition of the baffle and the tube

extension. The flow inside the test section remains steady throughout the 100 ms of test

time. The design and placement of the baffle and extension tube are shown in Figure 6.10.

The baffle is supported by three Unistruts attached to the dump tank flange. There is also a

505 mm outer diameter tube placed between the three Unistruts and attached to the dump

tank flange.

A sensitivity study in Amrita with respect to the location of the baffle showed that the

baffle had to be placed within about one foot of the design location, which, given the limits

to fully model the physics of the problem, was cause for concern. Experiments with these

modifications to the dump tank again resulted in flow unstart, very similar to what is seen

in Figure 6.6. The more drastic modification of moving the diaphragm upstream of the

throat was then considered.

6.4 Upstream Diaphragm Station

Further computations done using Amrita, with the diaphragm moved just upstream of the

converging nozzle section, showed no problems with flow unstart and also produced a flow

start time of only 3 ms, as opposed to the 20 ms required with the downstream diaphragm.

Two quasi-schlieren images of the flow after the rupturing of the upstream diaphragm are

seen in Figures 6.11 and 6.12. Figure 6.13 shows an x-t diagram of this computation.

Unfortunately, there are significant drawbacks to having the diaphragm upstream of

the test section. Specifically, the ruptured diaphragm will cause disturbances due to its

presence and due to the production of small pieces of debris. Experiments conducted using

an upstream mylar diaphragm of 5 mils had a first startup process, and unstart of the flow
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Figure 6.10: Dump tank with modifications including the addition of a baffle and a tube
extension. The baffle is connected to the dump tank with a series of unistruts.

Figure 6.11: Simulation showing the starting of the nozzle, 2.7 ms afterthe rupturing of the
diaphragm located just upstream of the converging section of the nozzle. The left boundary
condition, just upstream of the throat, is extrapolated, while the right boundary condition,
at the end of the dump tank, and the outer wall of the dump tank are reflective.

Figure 6.12: Simulation showing the correctly started flow 50.1 ms after the rupturing of the
diaphragm located just upstream of the converging section of the nozzle. The left boundary
condition, just upstream of the throat, is extrapolated, while the right boundary condition,
at the end of the dump tank, and the outer wall of the dump tank are reflective.
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Figure 6.13: Quasi-schlieren x-t diagram of the nozzle successfully starting with the up-
stream diaphragm. The quasi-schlieren image is taken at progressive times along the cen-
terline of the Ludwieg tube. The solid vertical line represents the downstream end of the
test section; clean flow is obtained if the reflected shock in the dump tank should not cross
this line.
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was not experienced until after the reflected expansion wave from the tube returned to the

test section.

6.5 Adjustable Wedge Model

A double wedge model was constructed with the lower wedge being fixed at an angle of

23.6◦ and the upper wedge being adjustable. The upper wedge angle is controlled using a

rotary servo motor with a 5:1 gear ratio. The assembly of the adjustable wedge is shown in

Figure 6.14. The wedge is supported by two vertical posts, and its motion is controlled by

a connecting rod, which is connected to the motor.

6.5.1 Motor and Gear Box

A Parker Electromechanical BE342KR brushless servo motor with a Bayside PX34-005

inline planetary gearhead with a 5:1 gear ratio is used. The motor itself provides a maximum

speed of 5000 rpm and maximum torque 3.12 N·m. This provides a maximum speed of

1000 rpm and a maximum torque of 15.6 N-m after the gearhead. It is estimated that

aerodynamic forces on the wedge generate a torque on the wedge not exceeding 7 N-m.

In most cases, since the initial tube pressure in the present experiments is less than the

maximum tube pressure, the actual torque on the wedge will be significantly smaller.

The motor is a controlled by a Parker Compax3 programmable servo positioner. The

position of the motor as a function of time is specified by 4 parameters, those being the

change in angle, Δθ1, the maximum angular speed, θ̇	
1, the maximum angular acceleration,

θ̈	
1, and the maximum angular jerk,

...
θ

	
1. These 4 parameters then specify the time the move

will take. For experimental purposes, we would prefer to specify the angle change, Δθ1, the

time in which this should occur, T , and the fact that we would like to follows a smooth

“S-curve” Given these requirements, we can relate the various move parameters,

θ̇	
1 = 2

Δθ1

T
, (6.3)

θ̈	
1 = 8

Δθ1

T 2
, (6.4)

...
θ

	
1 = 32

Δθ1

T 3
. (6.5)
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Figure 6.14: Wedge assembly consisting of a wedge, a connecting rod, a support structure,
a motor, and a gearhead. The wedge rotates about the rod that runs through the wedge
and the two vertical supports.
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6.6 High Speed Schlieren Photography

The Ludwieg tube was equipped with a high speed schlieren system. The primary compo-

nent of the system is a Visible Solutions Phantom v7.1 camera. At the full resolution of

800× 600 px the camera has a frame rate of 4,800 fps. The frame rate increases to 8,300 fps

at 512× 512 px and to 27,000 fps at 256× 256 px. A key feature of the camera is the ability

for the user to specificy the exact aspect ratio and resolution. By doing this, no pixels are

wasted on uninteresting parts of the flow, this results in the effective resolution and the

speed being higher compared to that of a fixed-aspect-ratio camera.

The light source for the system is an Oriel 66181 and a corresponding power supply.

The unit has a 1000 W Quartz Tungsten Halogen lamp. The remainder of the schlieren

setup is a standard Z-fold configuration.
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Chapter 7

Experimental Hysteresis

Computationally, the hysteresis phenomenon is easily demonstrated. However, experimen-

tally, due to tunnel noise, the hysteresis phenomenon is more difficult to show and the

range of angles over which the hysteresis occurs is reduced. Examining the hysteresis in the

Ludwieg tube provides a metric of the quietness of the tunnel. That is to say, the further

one can go into the dual-solution domain while maintaining regular reflection, the quieter

and cleaner the tunnel. This can be measured as a percentage between the von Neumann

condition and the detachment condition.

In order to demonstrate the hysteresis phenomenon, the upper adjustable wedge was

set so that the shocks are below the von Neumann condition, and therefore only regular

reflection is possible. This initial configuration is shown in Figure 7.1.

The angle of the upper wedge was then slowly increased, over 40 ms, to bring the shocks

into the dual-solution domain, while maintaining regular reflection. Figure 7.2 shows regular

reflection inside the dual-solution domain, and illustrates the highest angles obtainable in

the Ludwieg tube, without transitioning to Mach reflection.

A slight increase in the upper wedge angle will cause a transition to Mach reflection

inside the dual-solution domain. Figure 7.3 shows a schlieren image just after transition to

Mach reflection has begun. The image shows the three-dimensionality of the Mach stem,

with both regular reflection and Mach reflection being visible in the image.

As the upper wedge angle continues to increase, the Mach stem grows in size. This larger

Mach stem, corresponding to the high incident shock angle from the upper adjustable wedge,

is shown in Figure 7.4.

With Mach reflection established, the wedge angle can be decreased. Figure 7.5 shows

Mach reflection inside the dual solution domain, where previously between Figures 7.1 and
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Figure 7.1: Demonstration of the hysteresis phenomenon in the Ludwieg Tube. The initial
wedge angles were set so that only regular reflection was possible. M = 4.0, αlower = 33.9◦,
αupper = 25.9◦, t = 13.4 ms.

Figure 7.2: Demonstration of the hysteresis phenomenon in the Ludwieg Tube. The condi-
tions are within the dual solution domain, just below the point where transition to Mach
reflection will occur due to tunnel disturbances. M = 4.0, αlower = 33.9◦, αupper = 39.8◦,
t = 49.0 ms.
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Figure 7.3: Demonstration of the hysteresis phenomenon in the Ludwieg Tube. Transition
to Mach reflection is just beginning to occur due to tunnel disturbances. M = 4.0, αlower =
33.9◦, αupper = 39.9◦, t = 49.3 ms.

Figure 7.4: Demonstration of the hysteresis phenomenon in the Ludwieg Tube. The upper
wedge angle is relatively large, and a large Mach stem exists. M = 4.0, αlower = 33.9◦,
αupper = 45.0◦, t = 64.6 ms.
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Figure 7.5: Demonstration of the hysteresis phenomenon in the Ludwieg Tube. The upper
wedge angle is relatively large, and a large Mach stem exists. M = 4.0, αlower = 33.9◦,
αupper = 37.9◦, t = 81.7 ms.

7.2 there was regular reflection.

As the upper wedge angle is decreased further, the von Neumann condition is ap-

proached. Once this condition is reached, the Mach reflection must cease and the reflection

will return to regular reflection. The angles at which the transition back to regular reflection

occurs agree very well with the theoretical von Neumann condition of αupper = 33.9◦ and

αlower = 33.0◦.
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Figure 7.6: Demonstration of the hysteresis phenomenon in the Ludwieg Tube. Return to
regular reflection as the von Neumann condition is approached. M = 4.0, αlower = 33.9◦,
αupper = 33◦, t = 85.7 ms.
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Chapter 8

Experimental Transition

Besides transitioning from regular reflection to Mach reflection by increasing the wedge

angle to a sufficient extent that the tunnel disturbances cause transition, it is also possible

to introduce a disturbance to induce this transition.

In the current experiments, a laser is focused on the fixed wedge and energy is deposited

on it. The effects of energy deposition are explored computationally and analytically in

Section 4.2. This deposition of energy can cause transition from regular reflection to Mach

reflection.

In order to enter into the dual-solution domain with regular reflection, the hysteresis

phenomenon explored in Chapter 7 is utilized. In particular, the upper adjustable wedge is

first set to an angle such that only regular reflection is possible (as seen in Figure 8.1), and

is then slowly rotated into the dual solution domain (as seen in Figure 8.2), while remaining

below the point where tunnel disturbances would cause transition. The vertical black line

seen in the images is used to properly compensate the images for any rotation, so that shock

angles can be accurately measured.

Visualization of the blast wave created by the energy deposition, as discussed in Sec-

tion 4.2, was done by examining the deposition of energy without flow. Figure 8.3 shows

the deposition of energy on the lower wedge and the resulting single blast wave. Unfortu-

nately, in order to detect the blast wave a high pressure and density were required, both of

which were much higher than what is experienced during the actual flow experiment. As a

result, the blast wave is weak, since the energy is normalized by the pressure, as is seen in

Equation 4.3.

The disturbance on the leading shock, due to the blast wave from the energy deposition,

results in an outward bulging of the leading shock. This is seen in Figure 8.4.
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Figure 8.1: Initial shock configuration below the von Neumann condition. Only regular
reflection is possible. M = 4, αlower = 33.8◦, αupper = 29.9◦.

Figure 8.2: Shock configuration before laser energy is deposited onto the lower wedge. Both
regular reflection and Mach reflection are possible. M = 4, αlower = 33.8◦, αupper = 36.0◦.
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(a) (b)

(c) (d)

Figure 8.3: Blast wave resulting from the deposition of energy on the lower wedge using a
laser. The exposure of each image was 3 μs, with 38 μs between exposures. The circular
light seen inside the lower wedge in images (b), (c), and (d) is used to indicate that the
laser has fired.

Figure 8.4: The leading shock is disturbed in the region of the reflection due to the laser
energy, which was previously deposited. Transition to Mach reflection will immediately
follow. M = 4, αlower = 34.5◦, αupper = 35.8◦.
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Table 8.1: Summary of transition for various energy deposition locations.
Location (d/G) Transition from RR → MR

0.553 Yes
0.594 Yes
0.645 Yes
0.689 Yes
0.752 Yes
0.811 No
0.867 No

8.1 Energy Deposition Location

Figure 4.23 shows the importance of energy deposition location on the possibility for tran-

sition to occur from regular reflection to Mach reflection. This was studied experimentally

by focusing the laser at various positions along the wedge. For positions on the wedge close

to the centerline, i.e., small d, transition from regular reflection to Mach reflection always

occurred. However, it was found that there was a maximum distance from the centerline

beyond which transition would not occur. This is because, for large d, the blast wave has a

large distance to travel before reaching the reflection point, and hence becomes too weak to

cause transition once it does reach the reflection point. The fact that transition occurs for

small d means that the energy is sufficient for the blast wave to reach the reflection point

in all cases. A summary of the six energy location experiments is given in Table 8.1. For

the asymmetric case, G is taken to be half the distance between the leading edges of the

two wedges, and d is measured from this dividing line.

These results are shown graphically in Figure 8.5, where the energy deposition points

that caused transition are marked with a ◦, and deposition points that did not lead to

transition are denoted with a ×.

8.2 Tunnel Disturbances

Disturbances inherent to the test facility can also cause the flow to trip from regular re-

flection to Mach reflection. To explore this, the wedge was moved at different speeds into

the dual-solution domain without any artificially added disturbances. The angle at which

transition occurred was then measured, which provides a qualitative measure of the flow

quality. Since the test time of the GALCIT Ludwieg tube is limited to about 100 ms of
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Figure 8.5: Energy deposition points on the lower wedge. Deposition points which lead to
transition are denoted with a ◦; whereas, deposition points that did not lead to transition
are denoted with a ×.

flow time, the wedge must be moved relatively quickly. Although the move occurs over

many flow times, the effect of the wedge rotation speed on tripping from regular to Mach

reflection was explored. One might expect that as the wedge is moved faster, transition

would occur earlier; however, it was found that at higher speeds it was possible to obtain

higher shock angles while maintaining regular reflection.

The characteristic flow time for the lower wedge is

τ =
w

U1
, (8.1)

where U1 is the speed behind the incident shock of the lower wedge. For the current exper-

iments, w=50.8 mm, and U1=983 m/s, which gives a characteristic flow time, τ , of 59 μs.

Figure 8.6 shows the effect of wedge rotation speed on the transition point. Transition from

regular reflection to Mach reflection occurs approximately halfway into the dual-solution

domain.

Most often when transition from regular reflection to Mach reflection occurs due to

tunnel disturbances, no visible disturbance is noticed. However, in a few cases, a signifi-

cant disturbance just before tripping from regular reflection to Mach reflection is observed.

Figure 8.7 shows a small piece of dust, possibly a piece of the diaphragm, traveling down-



136

 

 

30

34

38

42

46

30 33.8 38

t/τ = 1356
t/τ = 847
t/τ = 593
t/τ = 339

αlower (deg.)

α
u
p
p
e
r

(d
eg

.)

Figure 8.6: Effect of wedge rotation speed on tripping due to tunnel disturbances. As the
wedge is rotated faster, higher shock angles are obtained while maintaining regular reflec-
tion. The lower curve is the von Neumann condition and the upper curve is the detachment
condition. Transition occurs approximately halfway into the dual-solution domain.

stream near the centerline. Because of the speed of the object, it is only seen in one frame.

Immediately after this object leaves the field of view, transition to Mach reflection begins.



137

��

(a) (b)

(c) (d)

Figure 8.7: Tunnel disturbances, such as dust, are capable of tripping the flow from regular
reflection to Mach reflection. Frame (b) shows a small piece of dust near the centerline.
After the piece of dust crosses the incident shocks transition to Mach reflection begins.
Images taken with a 3 μs exposure and 121 μs between frames. M = 4, αlower = 33.9◦,
αupper = 36.4◦
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Chapter 9

Experimental Mach Stem Heights

Table 9 gives Mach stem height results for various upper wedge angles from the current

experiments.

The results shown in Table 9 are plotted, along with the theoretical calculations of

Chapter 3, the previous experimental results of Hornung and Robinson [6], and the current

computations discussed in Section 3.5, in Figure 9.1. Very good agreement between the

theoretical, computational, and current experimental work is seen. The experimental work

of Hornung and Robinson consistently show higher Mach stem heights than the current

experiments. The current experimental results show smaller than predicted Mach stem

heights at high incident shock angles. The behavior of the Mach stem at high incident

shock angles is consistent with the numerical results shown in Figure 3.13. The reason for

this is believed to be due to the curvature of the slipline.

Table 9.1: Mach stem heights measured at various upper wedge angles.
αupper αlower αequiv. g/w s/w

34.7 33.6 34.1 0.395 0.027
35.8 34.4 35.1 0.394 0.047
36.8 33.5 35.1 0.391 0.055
39.6 33.3 36.2 0.383 0.099
39.9 33.7 36.5 0.384 0.106
43.0 33.5 37.6 0.380 0.146
42.8 34.2 37.9 0.381 0.147
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Figure 9.1: Comparison of current experimental Mach stem height results against the the-
oretical estimates of Chapter 3, measurements by Hornung and Robinson [6], and current
computational work done using Amrita. γ = 1.4 and g/w ≈ 0.4.

9.1 Experimental Mach Stem Growth

A theoretical growth rate for a Mach stem starting at regular reflection is presented in

Sections 3.8 and 3.9. The growth rate can be measured from the new experimental data.

With the wedges in the dual-solution domain with regular reflection, energy was deposited

on the lower wedge, as discussed in Chapter 8. The deposition of energy causes the flow

to trip from regular reflection to Mach reflection. Since the initial flow is inside the dual-

solution domain, where the steady-state Mach stem height is finite, the Mach stem quickly

grows to this steady-state height.

Figure 9.2 shows the measured Mach stem heights at various times together with the

theoretical estimate of Section 3.8. The experiments show a near linear growth rate, until

the steady-state height is reached. The initial rapid growth of and subsequent asymptotic

approach to the steady state predicated by the theory is not observed. Very good agreement

is seen between the steady-state height, as well as with the time required to reach the steady-

state height. The video from which the growth rate was measured was recorded with 38 μs

between frames.
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Figure 9.2: Comparison of current experimental Mach stem growth rates with the theoretical
estimate of Sections 3.8. γ = 1.4 and g/w ≈ 0.4.
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Chapter 10

Conclusions and Future Work

The entire shock-reflection domain for steady flow is examined. Conditions defining bound-

aries between different possible shock reflection solutions are given. Where possible, analytic

expressions for these conditions are presented. The detachment condition and the sonic con-

dition are found to be solutions to a fifth-order polynomial and a sixth-order polynomial,

respectively. Simple, previously known solutions for the sonic incident shock condition

and the Mach wave condition are also given. Nonlinear equations for the von Neumann

condition, for the normal reflected shock condition, for the sonic forward-facing reflected

shock condition, and for the sonic reflected shock condition are given, all of which can be

solved numerically. Many limiting cases, specifically, solutions for high Mach number or

for minimum required Mach number, are found. In the case of the sonic incident shock

condition, the detachment condition, the von Neumann condition, and the sonic condition,

analytic solutions for the infinite Mach number limit are given. Minimum Mach numbers

for the von Neumann condition, for the normal reflected shock condition, and for the sonic

forward-facing reflected-shock condition are found to have simple analytic solutions.

A new, more accurate, estimate of the steady-state Mach stem height is presented.

The theoretical estimate is based on geometric considerations of the flow. In particular,

there exists a sonic throat behind the Mach stem as a result of the converging nozzle

formed by the slipline generated behind the triple point. The placement of this sonic throat

may occur anywhere behind the first characteristic of the expansion fan generated by the

aft corner of the wedge. This theoretical estimate is compared with previous theoretical,

computational, and experimental work. In addition, new computations of the steady-state

Mach stem height are presented. Very good agreement between the current computations

and current theoretical estimate is observed. Comparisons with previous computational and
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experimental work show that the theory presented here more accurately predicts the Mach

stem height than previous models. A limiting assumption of the current theory is that the

slipline generated by the triple point is straight until it reaches the sonic throat. Future

efforts should allow for a curved slipline, which should produce a more accurate estimate of

Mach stem height.

The Mach stem height theory developed here is also generalized by allowing for a moving

triple point. Considering the relationship between the speed of the triple point and the

quasi-steady Mach stem height, a Mach stem growth rate theory is developed. This theory

agrees well with the computational study of Mach stem growth rates presented. The Mach

stem growth rate theory is then compared to three-dimensional numerical results. There

currently exists no estimate for the spanwise growth rate of the Mach stem. Therefore,

the spanwise growth rate is fitted to the numerical data and the Mach stem height, at

any given location, is based on a time-shifted value of the two-dimensional Mach stem

height. Relatively good agreement between the numerical and the theoretical calculations

of the three-dimensional Mach stem heights is observed. Because of the need for a finite

disturbance to cause the transition to Mach reflection, the initial Mach stem shape is not

consistent with the theoretical estimates, but this difference diminishes with time.

Numerical computations of the effects of water vapor disturbances are presented. These

disturbances are modeled as high-density regions of gas. These dense regions of gas are

placed upstream of the incident shock and allowed to convect downstream. Because of the

additional momentum associated with it, this region of gas will, if properly placed, impact

the wedge. There will be both a reflection of the bow shock of the dense region and an

impact shock. The numerical investigation shows that it is the impact shock that is pivotal

in determining whether or not transition from regular reflection to Mach reflection will

occur. In the two-dimensional calculations, where the dense region of gas is essentially an

infinitely long cylinder, only one small region of dense gas is required to cause transition. In

three-dimensional studies, where these dense regions are spherical, it is shown that a large

number of these dense regions are required to cause transition.

Because of the complexities associated with particles impacting the wedge, and for

experimental simplicity, it is possible to consider the impact of the dense gas on the wedge

as a form of energy deposition. A theoretical estimate of the minimum energy required

to cause transition from regular reflection to Mach reflection is presented. This limit is
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calculated based on the condition that the blast wave from energy deposition must be

sufficiently strong to reach, and therefore influence, the transition point. An exact solution

for strong shocks and an Euler computation for weak shocks are combined to calculate the

minimum energy required for the energy deposition to influence the reflection point. This

estimate of minimum required energy is compared with numerical results and very good

agreement is seen when the energy is deposited close to the reflection point.

Experimental results using an asymmetric wedge configuration, for experimental sim-

plicity, are presented. However, the theory developed in this thesis is based on symmetric

wedges. Therefore, calculations of the dual-solution domain for asymmetric wedges is pre-

sented. In addition, an approximate method to compare asymmetric results with symmetric

results is given.

The Ludwieg tube facility at the California Institute of Technology was retrofitted with

a Mach 4.0 nozzle. This Mach number is large enough to provide a sufficiently large dual-

solution domain, while being small enough not to require preheating of the gas. The test

time of the facility is 100 ms, which requires high-speed cinematography and a fast motor

to rotate the wedge.

The first experiments conducted on shock reflection in the Ludwieg tube verified the

hysteresis phenomenon. The ability to enter the dual-solution domain with regular reflec-

tion is a qualitative measure of the quietness of the facility. Hysteresis was successfully

demonstrated in the Ludwieg tube facility. The experiments show that in the Ludwieg tube

facility, regular reflection could be maintained until approximately halfway between the von

Neumann condition and the detachment condition.

Energy deposition studies were performed using a 200 mJ Nd:YAG laser. The distur-

bance caused by the blast wave from the laser is seen to affect the incident shock, and in

some cases, causes transition from regular reflection to Mach reflection. The location on

the wedge where the energy is deposited is important in determining whether or not tran-

sition occurs. This finding is consistent with the numerical work presented in this thesis,

which shows that the energy required to cause transition depends on the location where the

energy is deposited. Future studies should measure the amount of energy deposited on the

wedge, so that an accurate minimum energy for transition can be calculated as a function of

deposition location. The best way to measure the energy deposited is to visualize the blast

wave caused by the energy deposition. Attempts to do this in the current experiments were
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unsuccessful, because the densities required to visualize the blast wave were so high that

the blast wave was effectively a Mach wave, and therefore an energy could not be estimated.

Experiments were also performed to measure Mach stem height and its growth rate.

These results are compared with the theoretical estimates presented in this thesis. Excel-

lent agreement between the steady-state Mach stem height and the theoretical estimate is

seen. Comparisons of Mach stem growth rate with theoretical estimates show significant

differences, but do show good agreement in the time required to reach the steady-state

height. The reasons for these differences are unknown, and may be attributable to three-

dimensional effects.
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Appendix A

Mach Reflection Domain
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Appendix B

Alternative Plots
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Figure B.1: Detachment condition for asymmetric wedges. Curves are for Mach number
2.5, 3, 4, 5, 6, 10, and 15. The lower curves correspond to higher Mach number.
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Figure B.2: Von Neumann condition for asymmetric wedges. Curves are for Mach number
2.5, 3, 4, 5, 6, 10, and 15. The lower curves correspond to higher Mach number.
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Figure B.3: Dual solution domain for M=4 for asymmetric wedges. The lower curve is the
von Neumann condition, the upper curve is the detachment condition.
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Appendix C

Mach 4 Nozzle Design

Table C.1: Mach 4 nozzle contour (in inches) by J. J. Korte.

Distance Radius Distance Radius Distance Radius

-5.2395 6.0000 -3.2977 2.9220 -1.2765 1.9447

-5.2125 5.8616 -3.1913 2.8414 -1.1701 1.9198

-5.1061 5.4924 -3.0849 2.7648 -1.0638 1.8972

-4.9997 5.1968 -2.9785 2.6921 -0.9574 1.8768

-4.8933 4.9454 -2.8722 2.6230 -0.8510 1.8587

-4.7869 4.7242 -2.7658 2.5575 -0.7446 1.8427

-4.6806 4.5259 -2.6594 2.4952 -0.6383 1.8289

-4.5742 4.3454 -2.5530 2.4362 -0.5319 1.8172

-4.4678 4.1796 -2.4467 2.3803 -0.4255 1.8077

-4.3614 4.0262 -2.3403 2.3274 -0.3191 1.8003

-4.2551 3.8833 -2.2339 2.2773 -0.2128 1.7951

-4.1487 3.7498 -2.1275 2.2301 -0.1064 1.7919

-4.0423 3.6245 -2.0212 2.1855 0.0000 1.7909

-3.9359 3.5065 -1.9148 2.1436 0.0392 1.7910

-3.8296 3.3953 -1.8084 2.1044 0.0791 1.7914

-3.7232 3.2901 -1.7020 2.0676 0.1196 1.7922

-3.6168 3.1906 -1.5956 2.0333 0.1608 1.7932

-3.5104 3.0963 -1.4893 2.0014 0.2027 1.7946

-3.4041 3.0069 -1.3829 1.9719 0.2451 1.7963

Continued on Next Page. . .
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Table C.1 – Continued from Previous Page

Distance Radius Distance Radius Distance Radius

0.2882 1.7983 2.1594 2.0292 4.2953 2.3951

0.3319 1.8006 2.2672 2.0466 4.3816 2.4103

0.3764 1.8033 2.3799 2.0651 4.4688 2.4257

0.4215 1.8062 2.4979 2.0846 4.5569 2.4412

0.4673 1.8095 2.6215 2.1052 4.6458 2.4569

0.5139 1.8131 2.6477 2.1096 4.7356 2.4727

0.5614 1.8170 2.6859 2.1160 4.8260 2.4886

0.6099 1.8212 2.7305 2.1236 4.9173 2.5047

0.6593 1.8257 2.7797 2.1319 5.0092 2.5209

0.7099 1.8306 2.8326 2.1409 5.1018 2.5372

0.7617 1.8358 2.8886 2.1504 5.1950 2.5537

0.8148 1.8413 2.9474 2.1604 5.2888 2.5702

0.8694 1.8472 3.0086 2.1709 5.3832 2.5868

0.9255 1.8535 3.0720 2.1818 5.4781 2.6036

0.9833 1.8603 3.1374 2.1930 5.5735 2.6204

1.0429 1.8674 3.2047 2.2046 5.6694 2.6373

1.1044 1.8750 3.2738 2.2166 6.4149 2.7688

1.1681 1.8831 3.3444 2.2288 6.5255 2.7883

1.2341 1.8917 3.4166 2.2413 6.6358 2.8077

1.3024 1.9008 3.4903 2.2541 6.7459 2.8271

1.3734 1.9105 3.5654 2.2672 6.8557 2.8465

1.4471 1.9208 3.6418 2.2805 6.9654 2.8658

1.5237 1.9317 3.7195 2.2941 7.0749 2.8851

1.6035 1.9433 3.7984 2.3079 7.1842 2.9044

1.6866 1.9556 3.8785 2.3220 7.2935 2.9237

1.7732 1.9687 3.9598 2.3362 7.4027 2.9429

1.8636 1.9825 4.0421 2.3506 7.5120 2.9622

1.9579 1.9972 4.1255 2.3653 7.6213 2.9814

2.0564 2.0127 4.2099 2.3801 7.7306 3.0007

Continued on Next Page. . .
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Table C.1 – Continued from Previous Page

Distance Radius Distance Radius Distance Radius

7.8401 3.0200 11.2621 3.6102 15.6508 4.2852

7.9498 3.0393 11.3943 3.6321 15.8229 4.3092

8.0597 3.0586 11.5278 3.6542 15.9964 4.3332

8.1699 3.0780 11.6626 3.6764 16.1711 4.3571

8.2804 3.0974 11.7986 3.6988 16.3471 4.3810

8.3912 3.1168 11.9360 3.7212 16.5243 4.4048

8.5024 3.1363 12.0747 3.7438 16.7028 4.4286

8.6141 3.1559 12.2148 3.7664 16.8825 4.4524

8.7262 3.1755 12.3562 3.7892 17.0634 4.4761

8.8389 3.1952 12.4990 3.8121 17.2454 4.4997

8.9521 3.2150 12.6431 3.8351 17.4286 4.5232

9.0660 3.2349 12.7887 3.8582 17.6130 4.5467

9.1805 3.2548 12.9357 3.8814 17.7984 4.5700

9.2957 3.2749 13.0841 3.9047 17.9849 4.5933

9.4116 3.2950 13.2339 3.9280 18.1724 4.6165

9.5283 3.3152 13.3851 3.9515 18.3610 4.6396

9.6458 3.3356 13.5378 3.9750 18.5506 4.6625

9.7641 3.3560 13.6919 3.9986 18.7411 4.6853

9.8833 3.3765 13.8474 4.0223 18.9327 4.7080

10.0035 3.3972 14.0043 4.0460 19.1252 4.7306

10.1246 3.4179 14.1627 4.0698 19.3186 4.7531

10.2466 3.4388 14.3224 4.0936 19.5129 4.7754

10.3697 3.4598 14.4836 4.1175 19.7081 4.7975

10.4938 3.4809 14.6462 4.1414 19.9097 4.8202

10.6190 3.5022 14.8102 4.1653 19.9609 4.8259

10.7453 3.5235 14.9756 4.1893 20.0120 4.8315

10.8728 3.5450 15.1424 4.2133 20.0632 4.8372

11.0013 3.5666 15.3105 4.2373 20.1143 4.8428

11.1311 3.5883 15.4800 4.2612 20.1655 4.8485

Continued on Next Page. . .
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Table C.1 – Continued from Previous Page

Distance Radius Distance Radius Distance Radius

20.2166 4.8541 21.7001 5.0097 23.1835 5.1534

20.2678 4.8597 21.7512 5.0149 23.2346 5.1581

20.3189 4.8652 21.8024 5.0200 23.2858 5.1628

20.3701 4.8708 21.8535 5.0251 23.3370 5.1675

20.4212 4.8763 21.9047 5.0303 23.3881 5.1722

20.4724 4.8819 21.9558 5.0354 23.4393 5.1769

20.5235 4.8874 22.0070 5.0404 23.4904 5.1816

20.5747 4.8928 22.0581 5.0455 23.5416 5.1863

20.6258 4.8983 22.1093 5.0505 23.5927 5.1909

20.6770 4.9038 22.1604 5.0556 23.6439 5.1955

20.7282 4.9092 22.2116 5.0606 23.6950 5.2001

20.7793 4.9146 22.2627 5.0656 23.7462 5.2047

20.8305 4.9200 22.3139 5.0706 23.7973 5.2093

20.8816 4.9254 22.3650 5.0756 23.8485 5.2139

20.9328 4.9308 22.4162 5.0806 23.8996 5.2184

20.9839 4.9362 22.4674 5.0855 23.9508 5.2230

21.0351 4.9415 22.5185 5.0904 24.0019 5.2275

21.0862 4.9469 22.5697 5.0954 24.0531 5.2320

21.1374 4.9522 22.6208 5.1003 24.1042 5.2365

21.1885 4.9575 22.6720 5.1052 24.1554 5.2410

21.2397 4.9628 22.7231 5.1101 24.2066 5.2455

21.2908 4.9680 22.7743 5.1149 24.2577 5.2499

21.3420 4.9733 22.8254 5.1198 24.3089 5.2544

21.3931 4.9786 22.8766 5.1246 24.3600 5.2588

21.4443 4.9838 22.9277 5.1295 24.4112 5.2632

21.4954 4.9890 22.9789 5.1343 24.4623 5.2676

21.5466 4.9942 23.0300 5.1391 24.5135 5.2720

21.5978 4.9994 23.0812 5.1438 24.5646 5.2764

21.6489 5.0046 23.1323 5.1486 24.6158 5.2807

Continued on Next Page. . .
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Table C.1 – Continued from Previous Page

Distance Radius Distance Radius Distance Radius

24.6669 5.2851 26.6107 5.4396 28.7009 5.5845

24.7181 5.2894 26.6828 5.4450 28.7730 5.5892

24.7692 5.2937 26.7549 5.4503 28.8451 5.5938

24.8204 5.2980 26.8269 5.4556 28.9172 5.5984

24.8715 5.3023 26.8990 5.4609 28.9892 5.6029

24.9227 5.3066 26.9711 5.4661 29.0613 5.6075

24.9738 5.3108 27.0432 5.4713 29.1334 5.6120

25.0250 5.3151 27.1152 5.4765 29.2055 5.6165

25.0971 5.3210 27.1873 5.4817 29.2775 5.6210

25.1692 5.3270 27.2594 5.4869 29.3496 5.6254

25.2412 5.3328 27.3315 5.4920 29.4217 5.6298

25.3133 5.3387 27.4035 5.4971 29.4938 5.6342

25.3854 5.3446 27.4756 5.5021 29.5659 5.6386

25.4575 5.3504 27.5477 5.5072 29.6379 5.6430

25.5295 5.3562 27.6198 5.5122 29.7100 5.6473

25.6016 5.3619 27.6919 5.5172 29.7821 5.6516

25.6737 5.3676 27.7639 5.5222 29.8542 5.6559

25.7458 5.3733 27.8360 5.5271 29.9262 5.6602

25.8178 5.3790 27.9081 5.5320 29.9983 5.6644

25.8899 5.3847 27.9802 5.5369 30.0704 5.6687

25.9620 5.3903 28.0522 5.5418 30.1425 5.6729

26.0341 5.3959 28.1243 5.5466 30.2145 5.6771

26.1062 5.4014 28.1964 5.5515 30.2866 5.6812

26.1782 5.4070 28.2685 5.5563 30.3587 5.6854

26.2503 5.4125 28.3405 5.5610 30.4308 5.6895

26.3224 5.4180 28.4126 5.5658 30.5029 5.6936

26.3945 5.4234 28.4847 5.5705 30.5749 5.6977

26.4665 5.4289 28.5568 5.5752 30.6470 5.7017

26.5386 5.4343 28.6289 5.5799 30.7191 5.7058

Continued on Next Page. . .
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Table C.1 – Continued from Previous Page

Distance Radius Distance Radius Distance Radius

30.7912 5.7098 32.8814 5.8173 34.9716 5.9085

30.8632 5.7138 32.9535 5.8207 35.0437 5.9113

30.9353 5.7177 33.0256 5.8241 35.1158 5.9142

31.0074 5.7217 33.0976 5.8274 35.1879 5.9170

31.0795 5.7256 33.1697 5.8308 35.2599 5.9198

31.1516 5.7295 33.2418 5.8341 35.3320 5.9226

31.2236 5.7334 33.3139 5.8374 35.4041 5.9254

31.2957 5.7373 33.3859 5.8407 35.4762 5.9282

31.3678 5.7411 33.4580 5.8440 35.5483 5.9309

31.4399 5.7450 33.5301 5.8473 35.6203 5.9336

31.5119 5.7488 33.6022 5.8505 35.6924 5.9364

31.5840 5.7526 33.6742 5.8537 35.7645 5.9391

31.6561 5.7563 33.7463 5.8569 35.8366 5.9417

31.7282 5.7601 33.8184 5.8601 35.9086 5.9444

31.8002 5.7638 33.8905 5.8633 35.9807 5.9470

31.8723 5.7675 33.9626 5.8664 36.0528 5.9497

31.9444 5.7712 34.0346 5.8695 36.1249 5.9523

32.0165 5.7748 34.1067 5.8726 36.1969 5.9549

32.0886 5.7785 34.1788 5.8757 36.2690 5.9574

32.1606 5.7821 34.2509 5.8788 36.3411 5.9600

32.2327 5.7857 34.3229 5.8818 36.4132 5.9625

32.3048 5.7893 34.3950 5.8849 36.4853 5.9650

32.3769 5.7929 34.4671 5.8879 36.5573 5.9676

32.4489 5.7964 34.5392 5.8909 36.6294 5.9700

32.5210 5.7999 34.6112 5.8938 36.7015 5.9725

32.5931 5.8034 34.6833 5.8968 36.7736 5.9750

32.6652 5.8069 34.7554 5.8997 36.8456 5.9774

32.7372 5.8104 34.8275 5.9027 36.9177 5.9798

32.8093 5.8138 34.8996 5.9056 36.9898 5.9823

Continued on Next Page. . .
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Table C.1 – Continued from Previous Page

Distance Radius Distance Radius Distance Radius

37.0619 5.9846 39.1521 6.0472 41.2423 6.0973

37.1339 5.9870 39.2242 6.0491 41.3144 6.0989

37.2060 5.9894 39.2963 6.0510 41.3865 6.1004

37.2781 5.9917 39.3683 6.0529 41.4586 6.1019

37.3502 5.9940 39.4404 6.0548 41.5306 6.1034

37.4223 5.9964 39.5125 6.0567 41.6027 6.1048

37.4943 5.9987 39.5846 6.0585 41.6748 6.1063

37.5664 6.0009 39.6566 6.0603 41.7469 6.1077

37.6385 6.0032 39.7287 6.0622 41.8190 6.1092

37.7106 6.0054 39.8008 6.0640 41.8910 6.1106

37.7826 6.0077 39.8729 6.0658 41.9631 6.1120

37.8547 6.0099 39.9450 6.0676 42.0352 6.1134

37.9268 6.0121 40.0170 6.0693 42.1073 6.1148

37.9989 6.0143 40.0891 6.0711 42.1793 6.1162

38.0709 6.0164 40.1612 6.0728 42.2514 6.1175

38.1430 6.0186 40.2333 6.0746 42.3235 6.1189

38.2151 6.0207 40.3053 6.0763 42.3956 6.1202

38.2872 6.0229 40.3774 6.0780 42.4676 6.1215

38.3593 6.0250 40.4495 6.0797 42.5397 6.1229

38.4313 6.0271 40.5216 6.0813 42.6118 6.1242

38.5034 6.0291 40.5936 6.0830 42.6839 6.1254

38.5755 6.0312 40.6657 6.0846 42.7560 6.1267

38.6476 6.0332 40.7378 6.0863 42.8280 6.1280

38.7196 6.0353 40.8099 6.0879 42.9001 6.1292

38.7917 6.0373 40.8820 6.0895 42.9722 6.1305

38.8638 6.0393 40.9540 6.0911 43.0443 6.1317

38.9359 6.0413 41.0261 6.0927 43.1163 6.1329

39.0080 6.0433 41.0982 6.0942 43.1884 6.1341

39.0800 6.0452 41.1703 6.0958 43.2605 6.1353

Continued on Next Page. . .
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Table C.1 – Continued from Previous Page

Distance Radius Distance Radius Distance Radius

43.3326 6.1365 45.4228 6.1660 47.5130 6.1871

43.4047 6.1377 45.4949 6.1668 47.5851 6.1877

43.4767 6.1388 45.5670 6.1677 47.6572 6.1883

43.5488 6.1400 45.6390 6.1685 47.7293 6.1889

43.6209 6.1411 45.7111 6.1694 47.8013 6.1894

43.6930 6.1422 45.7832 6.1702 47.8734 6.1900

43.7650 6.1433 45.8553 6.1710 47.9455 6.1906

43.8371 6.1444 45.9273 6.1718 48.0176 6.1911

43.9092 6.1455 45.9994 6.1726 48.0897 6.1916

43.9813 6.1466 46.0715 6.1734 48.1617 6.1922

44.0533 6.1477 46.1436 6.1741 48.2338 6.1927

44.1254 6.1487 46.2157 6.1749 48.3059 6.1932

44.1975 6.1498 46.2877 6.1757 48.3780 6.1937

44.2696 6.1508 46.3598 6.1764 48.4500 6.1942

44.3417 6.1519 46.4319 6.1771 48.4811 6.1945

44.4137 6.1529 46.5040 6.1779

44.4858 6.1539 46.5760 6.1786

44.5579 6.1549 46.6481 6.1793

44.6300 6.1558 46.7202 6.1800

44.7020 6.1568 46.7923 6.1807

44.7741 6.1578 46.8644 6.1814

44.8462 6.1587 46.9364 6.1820

44.9183 6.1597 47.0085 6.1827

44.9903 6.1606 47.0806 6.1834

45.0624 6.1615 47.1527 6.1840

45.1345 6.1624 47.2247 6.1846

45.2066 6.1633 47.2968 6.1853

45.2787 6.1642 47.3689 6.1859
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Table C.2: Primary components of the Mach 4 nozzle.
Part Number Part Name Quantity

1 Mach 4 Nozzle 1
2 Expansion Tube 1
4 Expansion Tube Female Flange 1
5 Upstream Diaphragm Housing 1
6 Test Section 1
9 Window Housing 2
10 Window Clamp 2
11 Test Section Flange 1
12 Window Blank 2
13 Feedthrough Plug 8
14 Injector Flange 1
15 Injector Block 1
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Appendix D

Double Wedge Model

D.1 Adjustable Wedge Model

Table D.1: Primary components of the adjustable wedge model.
Part Number Part Name Quantity

1 Bearing Mount 2
3 Bearing Mount Cross Rib 2
5 Wedge Shaft 1
6 Window Cap 1
7 Motor-Gearbox Assembly 1
8 Top Gear Shaft 1
9 Motor Mount 1
10 Rocker 1
11 Moving Wedge 1
12 Rod End 2
13 Threaded Rod 1
15 Wedge Rod 1
16 Rocker Housing 1
17 Rocker Housing Lid 1
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Figure D.1: Adjustable wedge model assembly drawing of the various primary components
and their relationships to each other.
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D.2 Fixed Wedge Model

Table D.2: Primary components of the fixed wedge model.
Part Number Part Name Quantity

1 Fixed Wedge 1
2 Vertical Support 2
3 Horizontal Support 1
4 Window Cap 1
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