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ABSTRACT 

 This thesis presents two novel applications of two-dimensional (2D) correlation 

analysis: (1) long standoff detection of explosives using Raman spectroscopy and (2) ex-

amination of morphology development in semicrystalline materials. The power of 2D cor-

relation analysis is its ability to expose and quantify the relationship between changes in 

distinct observables characterizing a system as it evolves in response to a perturbation. 

Most frequently, the observables are spectroscopic (intensity I(νi) at distinct values of the 

spectral variable, νi), so the method is often called “2D correlation spectroscopy.” Diverse 

perturbations, such as mechanical stress, change in thermodynamic conditions (e.g., tem-

perature or pressure), and extent of reaction, have been applied to reveal desired informa-

tion that is obscured in the absence of the perturbation. Even small, subtle changes in re-

sponse to the perturbation become readily resolved with 2D correlation analysis, which ef-

fectively excludes static observables and greatly enhances correlated changes relative to 

random variations.  

 Improvised explosive devices (IEDs) are currently the number one killer of both 

troops and civilians in Iraq and Afghanistan. Effective detection of explosives at standoff 

distances is important to ensure human safety. Implementation of 2D correlation spectros-

copy can increase detection success due to the following advantages of the analysis: (1) 

simplification of complex spectra by separation of overlapped peaks, (2) enhancement of 

spectral resolution and enhancement of signal to noise ratio (SNR) through the spreading of 

peaks over a second dimension, (3) probing specific sequential order of spectral intensity 

changes, and primarily (4) exclusion of stable compounds and selective exclusion of unsta-
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ble explosives. By taking advantage of the unstable nature of explosive compounds through 

the imposition of thermal degradation, it is possible to further separate spectral features cor-

responding to explosives both from a noisy background and any contaminants based on 

their rate of response to heating.  

 A temperature ramp is used to probe Raman features of explosives and their mix-

tures with choice contaminants. Implementation of 2D correlation analysis results in sig-

nificant enhancement of explosive signal relative to background. Effective separation of 

explosive features is demonstrated for two biogenic contaminants: saliva, which represents 

proteins, lipids and saccharides, and diesel soot, which contains heteroaromatic species. We 

discovered that correlation analysis can further provide information on the physical state of 

the unstable compounds, distinguishing crystalline from amorphous states. The well-

established spectral shifts of organic crystals with increasing temperature provide strong 

2D spectral features, which could be utilized for further sample identification. Several as-

pects of the 2D correlation analysis are examined to optimize effectiveness of detection. 

Use of the time-averaged spectrum as the reference for calculating dynamic spectra yields 

the best performance. Normalization schemes are found to be of limited utility: some of 

them enhance specific features, but their application also can result in false positives. The 

only data pretreatment recommended for the application of long standoff detection in arbi-

trary environments is the removal of data offset by the subtraction of the minimum value 

from each spectrum.   

 The ultimate physical properties of semicrystalline materials, such as strength, 

toughness, and transparency, are directly related to their morphology through their molecu-
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lar characteristics and processing conditions. Morphology is examined using small-angle 

and wide-angle x-ray scattering (SAXS and WAXS, respectively), for which 2D correla-

tion analysis is well suited due to its simplification of complex scattering curves through 

the de-convolution of overlapping features, the determination of sequential order of inten-

sity changes, and the enhancement of spectral resolution by spreading data over a second 

dimension. The effects of different molecular characteristics on crystallization of semi-

crystalline polymers are examined by conventional techniques and 2D correlation analysis 

of x-ray scattering data. 

 Model short-chain branched (SCB) polyethylenes are found to crystallize in three 

regimes during quiescent temperature ramps. “Primary-irreversible” crystallization occurs 

at the highest temperatures and is marked by large changes in the morphological parame-

ters (crystallinity, long period, and overall scattering power) as primary lamellae propagate 

relatively rapidly through unconstrained melt. Once the majority of unconstrained melt is 

consumed, secondary lamellar growth occurs in the largest non-crystalline regions between 

primary lamellae marks slower “secondary-irreversible” crystallization that occurs at in-

termediate temperatures. At low temperatures, the values of the morphological parameters 

are equal during cooling and subsequent heating marking the slow formation of fringed mi-

celles that occurs in the “reversible” crystallization regime. While irreversible and reversi-

ble crystallization have been observed previously in SCB materials, this is the first time 

that a physical justification is presented for the separation of the irreversible crystallization 

into primary- and secondary-irreversible regimes. 



 x 

 

  
 Each regime is identified by unique features in the 2D correlation plots. Specifi-

cally, 2D heterospectral analysis of SAXS/WAXS data reveals identical qualitative behav-

ior between a series of branched hydrogenated polybutadienes in each regime: the primary-

irreversible regime is characterized by the intensity redistribution (sign change) only in 

SAXS, the secondary-irreversible regime is characterized by the intensity redistribution 

only in WAXS, while the reversible regime is characterized by the intensity redistribution 

in both SAXS and WAXS. Additionally, two-dimensional correlation analysis provides a 

unique approach to gain insight into subtle changes during morphology development, such 

as the development of density heterogeneities in the non-crystalline regions.  

 The presence of short-chain branches is found to have a profound, diminishing ef-

fect on the formation of oriented structures in response to flow-induced crystallization. 

Crystallization of SCB materials is examined in the presence of high density polyethylene 

(HDPE) in order to expose the effectiveness of the branched materials to propagate ori-

ented morphology. HDPE is found to serve as an effective clarifying and nucleating agent 

for a metallocene copolymer with complex concentration dependence. The SCB material is 

found to be incapable of propagating oriented growth on large length scales. Evidence pre-

sented suggests that this behavior is the result of a buildup of chain defects at the growth 

front which results in a transition from oriented to isotropic crystallization. Hence, it is pro-

posed that size of crystal structures can be controlled by dictating the amount of copolymer 

incorporated during oriented structure formation via the crystallization temperature, allow-

ing for the fine-tuning of ultimate material properties. Ultimately, it is found that both qui-

escent and flow-induced crystallization is dominated by short-chain branching. 
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 Two-dimensional correlation analysis in conjunction with thermal decomposition is 

demonstrated as an effective means to increase the success of detection of energetic com-

pounds using Raman spectroscopy. This combination of analysis and a perturbation that 

elicits a unique response in the compound can be applied to variety of other detection sys-

tems. Additionally, 2D correlation analysis is demonstrated to provide unique insight into 

the morphology evolution during crystallization of semicrystalline materials, which can be 

used to control their material properties. The ideas presented here can be easily applied to 

study phase transitions in other systems, such as block copolymers.  
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NOMENCLATURE 

 
a unit cell parameter 

A(q) autocorrelation intensity 

Â  amplitude of response to perturbation 

b unit cell parameter 

c* overlap concentration 

d sample thickness 

DSC Differential Scanning Calorimetry 

FIC Flow-Induced Crystallization 

G relaxation modulus 

GN
0 plateau modulus 

HDPE high density polyethylene 

HPBD hydrogenated polybutadiene 

I(q) scattering intensity 

Iperp, Ipara light intensity transmitted through crossed and parallel polarizers, respec-

tively 

Im imaginary part of complex number 

J(q) Lorentz-corrected scattering intensity 

Lp long period 

LCB long chain branch 

m total number of discrete spectra 

Me molecular weight of entanglements  

Mn number-average molecular weight 

Mw, Mw,tot total weight-average molecular weight 

Mw,a weight-average molecular weight of long chain branch (‘arm’) 

Mw,b weight-average molecular weight of chain backbone 

Na Avogadro’s number 

Δn birefringence 

P performance parameter 



 xxiii 

 

  
PDI polydispersity  

PE polyethylene 

q scattering wavevector 

Q total SAXS scattering power 

Rg radius of gyration 

Re{} real part of complex number 

SALS Small Angle Light Scattering 

SAXS Small Angle X-ray Scattering 

SCB short chain branch 

t perturbation variable 

tc isothermal crystallization time 

Tc experimental isothermal crystallization temperature 

thold hold-time at elevated temperatures 

Thold elevated temperature used in nucleation studies 

Tm peak melting temperature as determined by DSC 

tmax peak crystallization time 

Tmin, Tmax limits of perturbation variable 

ts shearing time 

Tx peak crystallization temperature as determined by DSC 

ΔT apparent subcooling 

v velocity vector 

WAXS Wide Angle X-ray Scattering 

Wi Wiessenberg number 

Xc WAXS crystallinity index 

yi discrete Raman spectrum 

y~  dynamic spectrum 

z~  orthogonal spectrum  

  

δ sample retardance 
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θ azimuthal angle 

ϑ  time 

λ wavelength 

μ viscosity 

ν spectral variable 

ρ density 

σw wall shear stress 

τr terminal relaxation time 

φ  cospectrum 

Φ 2D synchronous spectrum 

ψ quad-spectrum 

Ψ 2D asynchronous spectrum 

ω frequency 

 
 

 

 


