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 The present thesis explores two applications of two-dimensional correlation 

analysis: 1) detection of explosive compounds in the presence of dynamic background 

signals, and 2) categorizing and understanding transient structure development in semi-

crystalline materials. Two-dimensional (2D) correlation analysis is a powerful technique 

that can be used to both visualize the relationship between intensity changes at different 

spectral points as a result of a perturbation and also elucidate the underlying physical 

phenomena causing the spectral response. It is applied to a set of one-dimensional (1D) 

data representing the response of a sample to a specific perturbation. Many scientific ex-

periments result in these types of datasets, yet application of 2D correlation analysis is 

still mostly limited to the fields of optical and NMR spectroscopy, and furthermore ap-

plied predominately in a laboratory setting.  

1.1 TWO-DIMENSIONAL CORRELATION SPECTROSCOPY 

 With roots in the field of nuclear magnetic resonance (NMR), two-dimensional 

(2D) correlation analysis (usually termed 2D correlation spectroscopy because of its fre-

quent use in vibrational spectroscopy) allows one to examine the relationship between 

changes in spectral intensity at two different spectral variables in response to an external 

perturbation. Its application to vibrational spectroscopy was introduced by Isao Noda 

through the study of infrared (IR) spectral response to a sinusoidal perturbation,1-3 and 

subsequently generalized to allow the use of a perturbation with arbitrary fluctuations.4 

Furthermore, in 2000, Noda introduced mathematical formulations based on the Hilbert-

Noda transformation matrix that greatly simplified the analysis, allowing rapid process-

ing of discrete datasets. These developments resulted in a significant increase in the 

popularity of 2D correlation spectroscopy.5, 6  
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 Generalized two-dimensional correlation spectroscopy is based on the quantita-

tive examination of spectral intensity changes as a function of the external perturbation, t, 

observed at two different spectral variables, ν1 and ν2 (for example, Raman shift as exam-

ined in Chapter 2 and scattering vector as examined in Chapter 4). Most commonly, 

analysis is conducted on a dynamic spectrum, which is defined for each value of the per-

turbation variable on its interval between Tmin and Tmax with respect to some reference 

spectrum, yref: 
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A diversity of perturbation variables have been examined in literature, including strain, 

temperature, applied electric/magnetic field, irradiation, and time (see review by Noda6). 

The intensity at distinct spectral variables ν1 and ν2 tend to vary synchronously when they 

originate from the same molecular species or underlying physical process. Therefore, 

analysis of the synchronous two-dimensional correlation is a useful tool for identifying 

spectral changes that are intimately related. The intensity changes at distinct spectral 

variables tend to lag (lead) one another when, for example, formation of a given species 

is a prerequisite for a subsequent reaction to occur. Therefore, it is useful to characterize 

asynchronous two-dimensional correlations to identify spectral changes that occur se-

quentially. 

 The analysis may be readily understood for the simple case of a sinusoidal per-

turbation in the regime of linear response. A perturbation of the form { }ωϑieTt 'Re=  hav-

ing amplitude T’ would elicit a response at each νi that would oscillate at the same fre-

quency, ω:  
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with amplitude A(νi) and phase β(νi). For distinct values of the spectral variable ν1 and ν2, 

the extent to which variation of intensity occurs simultaneously is captured by the “co-

spectrum,” 

{ })(ˆ)(ˆRe),( 2
*

121 ννννφω AA ⋅≡ , (1.3) 

and the extent which their variations lag (lead) one another is captured by the “quad-

spectrum,” 
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where  is the complex conjugate of . )(ˆ *
iA ν )(ˆ

iA ν

 For a more complicated perturbation and spectral response composed of multiple 

sinusoids, the synchronous 2D correlation spectrum, Φ(ν1,ν2), is defined in terms of the 

cospectra as 
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and the asynchronous 2D correlation spectrum, Ψ(ν1,ν2), is defined in terms of the quad-

spectra as 
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Noda further generalized this analysis to arbitrary functional forms of the perturbation, t, 

and spectral response, )(~),(~
11 tyty ≡ν , by first decomposing the signal into sinusoids and 

representing it in the frequency domain with the application of the Fourier transform with 

respect to the perturbation, t: 
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 In this case of an arbitrary perturbation defined on the interval between Tmin and Tmax, 

the 2D correlation spectrum is given by 
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 To circumvent the complexity and required computing power for the Fourier 

transform calculations, Noda used the well-known Wiener-Khintchine theorem to derive 

the 2D synchronous spectrum from the cross-correlation function4, 7  such that 
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For a rigorous mathematical development, see Appendix 2.1 of reference 5. 

 The asynchronous spectrum can be computed from the cross-correlation of the 

dynamic spectrum, ),(~ ty ν , and its orthogonal spectrum, ),(~ tz ν : 
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To calculate the orthogonal spectrum, Noda utilized the Hilbert transform, which has the 

effect of applying a phase shift of π/2 to each Fourier component of the dynamic spec-

trum, such that 
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where represents the implementation of the Cauchy principal value such that the 

singularity at t = t’ is excluded from the integration. Hilbert transform pairs, here 

∫Pv

),(~ ty ν  
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and ),(~ tz ν , are orthogonal. Hence, through the application of a phase shift in Fourier 

space, the asynchronous spectrum allows for the examination of temporal separation be-

tween intensity changes in real space. 

 To examine some of the advantages of 2D correlation analysis, let us consider a 

simulated dataset, I(ν,t) for Tmin ≤ t ≤ Tmax, containing three peaks (Figure 1.1a). The first 

peak increases quadratically in response to the perturbation, the second peak remains un-

changed, and the third peak decreases linearly in the perturbation variable (Figure 1.1b).  
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Figure 1.1 a) Simulated dataset. b) Evolution of peak intensities with perturbation of peaks in 
a.  

 The synchronous spectrum, Φ(ν1, ν2), is symmetric with respect to the diagonal 

(ν1 = ν2) and reveals simultaneous or coincident changes at two different spectral vari-

ables as the result of the perturbation. Consequently, in Figure 1.2, one observes two 

autopeaks along the diagonal corresponding to the intensity changes of peaks 1 and 3. 

The autocorrelation intensity along the diagonal is always positive and represents the to-

tal amplitude of the intensity variation in response to the perturbation. 
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 In the off-diagonal position corresponding to peaks 1 and 3, one observes cross 

peaks indicating that the change in these two peaks occurs simultaneously. The negative 

sign of these features is consistent with the increase of peak 1 and a simultaneous de-

crease in peak 3 in response to the perturbation. The cross peaks are positive when inten-

sity changes occur in the same direction.  

 The synchronous plot contains no features corresponding to peak 2 since there is 

no change in its intensity in response to the perturbation. This aspect of the 2D correla-

tion analysis allows one to filter out static features, making it suitable for selective detec-

tion of compounds, as is discussed in Chapter 2.  

 

  
synchronous asynchronous

ν1

ν 2

ν1
Figure 1.2 Synchronous (left) and asynchronous (right) spectra corresponding to simulated 
dataset in Figure 1.1. Shaded-in contours are negative, while non-shaded contours are positive. 
The average 1D spectra are plotted on the sides. 

 The 2D asynchronous spectrum, Ψ(ν1, ν2), reveals the extent to which intensity 

changes at two spectral variables lead or lag one another during a perturbation. By its na-

ture, it is antisymmetric and contains no autopeaks. In Figure 1.2, one observes features 

corresponding to peaks 1 and 3, indicating that there is temporal separation between these 

intensity changes.  
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 The sign of the cross peaks reveals the sequential order of peak variations based 

on Noda’s rules.3, 5 Since the 2D asynchronous spectrum is anti-symmetric, it suffices to 

consider the region where ν1 > ν2 (below the diagonal). Interpretation of the sign of a 

cross peak at (ν1,ν2) when ν1 > ν2 in the asynchronous spectrum, Ψ(ν1, ν2), depends on the 

sign of the intensity of the synchronous spectrum at (ν1, ν2): if Φ(ν1,ν2) is positive, then a 

positive asynchronous cross peak below the diagonal indicates that the response at ν1 pre-

cedes that at ν2; if Φ(ν1,ν2) is negative, then that positive cross peak indicates that the re-

sponse at ν1 lags that at ν2 (Table 1.1). In the present case, negative features correspond-

ing to peaks 1 and 3 are observed both in the synchronous and asynchronous plots. There-

fore, the change in peak 3 precedes that in peak 1. This temporal separation can be inter-

preted in a more practical manner as a difference in half intensity and half time of peak 

evolution.8 From Figure 1.1b, it is apparent that peak 3 has greater intensity half-way 

through the perturbation (half intensity) and achieves half of the total intensity change 

earlier along the perturbation (half time) than peak 1, resulting in changes in peak 3 pre-

ceding those in peak 1.  

Table 1.1 Noda’s Rules for sequential order when ν1 > ν2. 
Φ(ν1,ν2) Ψ(ν1,ν2) Interpretation 

+ + ν1 precedes ν2 
+ – ν1 lags ν2 
– + ν1 lags ν2 
– – ν1 precedes ν2 

 In reality, the analysis of 2D spectra can be quite complex, especially in the case 

of the asynchronous spectrum. The introduction of noise can often lead to artificial peaks 

in the asynchronous spectrum.9, 10 Additionally, variations in the peaks themselves (i.e., 

position, shape, height, and width) can lead to patterns with multiple interpretations.11-13 
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These peak effects have been studied through simulated spectra revealing patterns in both 

the synchronous and asynchronous spectra that correspond to some commonly observed 

behaviors.5, 11, 12 For example, a “four-leaf clover” pattern in the synchronous spectrum 

can indicate either two overlapping peaks whose intensities vary in opposite directions or 

a peak that steadily shifts in position. The explanation for the pattern can be discerned by 

evaluating the asynchronous spectrum. A four-leaf clover can be assigned to overlapping 

peaks exhibiting opposite changes in intensity if the asynchronous pattern contains either 

no peaks (if changes are simultaneous) or one pair of complimentary peaks (above and 

below the diagonal if the intensity changes are temporally separated). On the other hand, 

a four-leaf clover in the synchronous spectrum can be assigned to a peak shifting in posi-

tion if the asynchronous spectrum contains a distinct “butterfly” pattern. The importance 

of such patterns is apparent in Chapter 4.  

 Two-dimensional correlation analysis has gathered momentum due to the numer-

ous advantages it provides. It allows for the simplification of complex spectra containing 

overlapped peaks. Additionally, one obtains enhancement in spectral resolution due to the 

spreading of data over a second dimension. It is possible to establish unambiguous as-

signments through correlation of bands, as well as determine specific sequential order of 

intensity changes. Furthermore, Noda’s efforts have resulted in nearly universal applica-

bility of the technique, which is now regularly applied across different disciplines to ex-

amine ‘spectral’ responses to a variety of perturbation types. While the application of 2D 

correlation spectroscopy is still predominantly to optical spectra, approximately 1 in 6 

published experiments have used other analytical probes,6 including x-rays, as is the case 

in Chapters 3 through 5. Although temperature, the most commonly employed perturba-
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tion, is used in the following chapters, composition, chemical reactions, and physical 

processes can also be employed.6  

 Furthermore, the abundant application of 2D correlation spectroscopy has al-

lowed for its further evolution. A summary of this was formulated by Noda in 2008;6 de-

velopments of note are moving window and hetero-correlation analyses. Moving window 

2D correlation analysis (MW2D) is designed to probe complicated spectral responses by 

analyzing smaller subsets of data that are shifted incrementally along the perturbation 

axis to cover the full set. This analysis allows one to gauge the spectral response at spe-

cific points along the perturbation variable rather than the overall response to the full 

range. Further detail and an example of this technique are presented in Chapter 4. Hetero-

correlation analysis is applied to two independent measurements of perturbation-induced 

dynamic spectra. Most frequently, hetero-spectral correlation is applied to a sample’s re-

sponse to a perturbation probed by two different spectral probes. An example of SAXS-

WAXS hetero-spectral correlation analysis is presented in Chapter 4. 

1.2 EXPLOSIVES DETECTION 

 Improvised Explosive Devices (IEDs) continue to be the most effective weapon 

employed against coalition forces in Iraq and Afghanistan. The Joint Improvised Explo-

sive Device Defeat Organization (JIEDDO) is currently implementing over 300 initia-

tives to tackle this problem.14 In this era of persistent conflict and global terrorism, the 

ability to detect explosives in both war zones and high-security installations can save 

human lives.  

 The vast challenge in the detection of explosives is in part due to their nature (e.g., 

small quantities and low vapor pressure) and in part due to concealment in the field and 
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interference from contaminants. Common explosives are known to have very low vapor 

pressures,15, 16 making vapor-based detection, such as infrared spectroscopy, particularly 

challenging. Furthermore, military grade explosives are often found in solid solutions, 

such as RDX in plastic composition C4 (C4) explosive, which further limits their vapor 

pressures.17 Detection of solid-state explosives is usually based on identifying trace 

amounts which requires extreme sensitivity. To compound these intrinsic challenges, ex-

plosives are often found concealed in a large variety of dynamic environments.  

 In a laboratory, when they have been separated from any contaminants, explo-

sives can be detected by many reliable techniques, such as mass spectrometry, ion mobil-

ity spectrometry, and fluorescence quenching of polymers.15, 16 However, few of these 

techniques can be applied at an airport to screen passengers and even fewer still can be 

implemented in the desert environments of Iraq to detect hidden IEDs.  

 Furthermore, in the case of IEDs, it is desirable to accomplish detection at a dis-

tance, in order to ensure human safety. Standoff detection systems are being developed 

based on photodissociation laser-induced fluorescence,18-20 laser-induced breakdown 

spectroscopy,21 terahertz time domain spectroscopy,22 and Raman spectroscopy.23-29 In 

most of these cases, the focus is on improvement of hardware. While this approach has 

resulted in good progress toward effective long standoff detection, further advancement 

can be achieved through data analysis algorithms, such as spectral pattern recognition and 

chemometric-based techniques.15, 30 

 Two-dimensional correlation analysis is well suited for detection applications be-

cause of its simplification of complex spectra and enhancement of spectral resolution. 

Additionally, the unstable nature of explosive compounds lends them to respond strongly 
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to a thermal perturbation, especially when compared to contaminants, such as humic sub-

stances. The possibility of using 2D correlation analysis in conjunction with a thermal 

modulation is examined in Chapter 2.  

1.3 SEMI-CRYSTALLINE MATERIALS 

 More than two-thirds of the annual commercial production of synthetic polymers 

is comprised of semi-crystalline materials. The many advantages of these materials, such 

as light weight, flexibility, chemical resistance and toughness, are the reason they are so 

abundant in today’s society, finding applications in the medical market, electronics, con-

struction, textiles and packaging.31 Specifically, polyethylene (PE) and polypropylene 

(PP) dominate the semi-crystalline polymer market with demand for PE and PP in North 

America just below 40 billion pounds and 21 billion pounds, respectively, in 2006.32 De-

mand is expected to grow because low cost and expanding versatility make these poly-

mers prime candidates to substitute for less desirable materials. For example, PE can be 

used to replace steel in automotive fuel tanks and PP can be used to replace aluminum 

honeycombs as an impact energy absorber.33   

 PP and PE, like other semi-crystalline materials, spontaneously form a nanocom-

posite structure that confers strength from its crystalline domains and toughness from the 

non-crystalline material in between. As such, ultimate physical properties of these mate-

rials are directly related to their morphology (the distribution of crystalline and non-

crystalline regions). The morphology is primarily a function of molecular characteristics 

(molecular weight, molecular architecture, etc.) and processing conditions (thermal and 

flow history).  
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 Fabrication processes with PP and PE include injection molding, film blowing, 

and fiber spinning, and involve non-isothermal conditions, as well as very strong and 

complex flow fields (shear, elongational, or mixed). Different processing conditions can 

alter the spatial organization and alignment of the crystallites, affecting properties such as 

strength, hardness, and surface texture. For example, the elastic modulus of highly-

oriented PE fibers is 100 times that of quiescently crystallized PE.34  

a ba b

 

Figure 1.3 Schematic diagram of a polymer containing both long-chain branches evident in a and 
short-chain branches evident in b. 

 In addition, a polymer’s molecular characteristics can affect its response to proc-

essing conditions. Long-chain branches (LCB) alter melt dynamics affecting the melt’s 

response to a flow field and hence its subsequent morphology. Short-chain branches 

(SCB) can act as crystal defects decreasing melting temperature and crystallinity.35 

Polymers containing SCB and LCB (Figure 1.3) are of particular interest because of their 

rich material properties and are examined in Chapter 3. With advances in synthesis, it is 

now possible to create varying branched polymers on the commercial scale. Low Density 

PE (LDPE), an LCB and SCB material, and Linear Low Density PE (LLPDE), an SCB 

material, comprise over half of the current PE market and are used to make films.36 

Therefore, it is of imperative technological relevance to understand the crystallization 
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process of such linear and branched semi-crystalline materials in order to control their 

physical properties. Crystallization of SCB materials under flow is examined in Chapter 5. 

By understanding the behavior of these materials, we can greatly expand the property en-

velope of semi-crystalline materials, particularly polyolefins.   

 Polymer crystallization studies employ many probes in order to gain insight into 

the hierarchy of structures that are formed by semi-crystalline materials. Wide angle x-

ray scattering (WAXS) provides insight into the crystal unit cell (i.e., type, dimensions, 

coherence) that is on the order of angstroms. Small angle x-ray scattering (SAXS) pro-

vides insight on the organization of these unit cells into nanoscopic (~10 – 100 nm) struc-

tures and distribution of these nanoscopic structures in the non-crystalline regions (e.g., 

chain-folded lamellar stacks which are on the order of nanometers). Small angle light 

scattering provides information on the microscopic structure organization, such as spher-

ulites that are on the order of microns. SAXS and WAXS, which are utilized in Chapters 

3 through 5, rely heavily upon the analysis of a series of one-dimensional (1D) scattering 

curves (intensity versus scattering vector). Scattering curves are usually collected as a 

function of temperature during ramp cooling/heating (crystallization/melting) or time in 

the case of isothermal crystallization. These experiments result in large datasets with 

transient behaviors that are well suited for 2D correlation analysis. Its sensitivity to 

changes in spectral features makes 2D correlation analysis a powerful tool in evaluating 

morphology development in semi-crystalline systems, as illustrated in Chapter 4 for qui-

escent crystallization.  
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