
TRANSITION METAL, COMPLEXES AS PROBES OF 

DNA SEQUENCE-DEPENDENT STRUCTURE 

Thesis by 

Donna Campisi 

in Partial Fufillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1996 

Submitted August 1,1995 



ACKNOWLEDGMENTS 

First of all, I would like to express my gratitude to my advisor, Prof. Jackie Barton, 

for all her support and encouragement during my time as a graduate student. I believe that 

her optimism has truly transformed me from being an inveterate pessimist into someone 

who is more of a realist. Furthermore, I have leamed that a realistic attitude is essential for 

doing good science. I would also like to thank Jackie for all the opportunities with which 

she has provided me. 

Additionally, I would like to thank the members of my thesis committee, Prof. 

Doug Rees, Prof. Hany Gray, and Prof. Nate Lewis for their helpfulness. Thanks also to 

my undergraduate advisor, Prof. Marc Walters of New York University, who started me 

on the path of performing chemical research. 

Next, I would like to acknowledge the members of the Barton Group, past and 

present, a special group of people who have also taught me much. I would specifically like 

to thank Dr. Takashi Morii, for being a wonderful collaborator who also trained me in 

many laboratory techniques and with whom I have had many discussions about science. I 

would additionally like to thank Dr. Sheila David, Dr. Cynthia Dupureur, Dr. Kevin 

Kingsbury, Ayesha Sitlani, and Yonchu Jenkins for cheerfully providing me with metal 

complexes. Thanks are also extended to former members of the Barton Group including 

Dr. Kaspar Zirnmermann, Inho Lee, Dr. Achim Krotz, and Dr. Scott Wakamp. I would 

also like to thank current members of the group for their assistance and friendship, 

including R. Erik Holmlin, Tim Johann, Ai Ching Lim, Yonchu Jenkins, Susanne Lin, 

Brian Jackson, Brian Hudson, Bob Terbrueggen, Kitty Erkkila, Dan Hall, Marilena 

Fitzsimons, Dr. Eric Stemp, Michelle Arkin, Shana Kelley, Dr. Sonya Franklin, Dr. 

Sabine Coates, and Dr. Peter Dandliker. My sincere thanks go to Mo Renta for her 

assistance, advice, and friendship my entire time at Caltech. 



... 
111 

On a more personal level, I would like to thank my friends and my family, who 

have been there for me over the years. I would especially like to acknowledge Drs. Ayesha 

Sitlani and Michael Pustilnik, who belonged to the "night crew" at lab, and have remained 

good fkiends to me to this day. Thanks also go to Sherin Halfon, my classmate and 

apartmentmate at Columbia University, who has also remained a good friend. Thanks go 

to my entire family, who have done a wonderful job of keeping in touch. I thank my 

parents, who have always understood the value of a good education. Finally, thanks go to 

my sister Debbie, for providing me with light moments, and to my sister Teny Ann, who 

will be receiving her Ph.D. in clinical psychology in a few months, for her understanding 

of the graduate school experience. 



ABSTRACT iv 

Different transition metal complexes have been applied in probing variations in the 

structure of double helical DNA. The following probes, which all bind DNA 

noncovalently, have been utilized: R ~ ( ~ h e n ) ~ 2 + ,  RU(TMP)~~+, Rh(phen)2phi3+, 

R h ( T ~ ~ ) ~ p h i 3 + ,  Rh(dmb~y)~phi3+, ~u(phen)~dppz2+, R~(bpy)~dppz~+,  and 

R h ( b ~ ~ ) ~ d ~ p z 3 +  (phen = 1,10 phenanthroline; TMP = 3,4,7,8,-tetramethyl- 1,lO- 

phenanthroline; phi = 9,lO-phenanthrenequinone diimine; dmbpy = 5,s'-dimethyl- 

bipyridyl; bpy = bipyridyl; dppz = dipyrido[3,2-a;2',3'-clphenazine). The local structure 

recognized by A-Rh(~hen)~phiS+ has been defined by comparisons of photocleavage data 

on crystallographically characterized oligonucleotides with their structural parameters. A 

quantitative correlation has been determined between ~-Rh(phen)~~hi3+ photocleavage and 

extent of openness in the major groove due to differential propeller twisting, or interpurine 

angle. Therefore, h - ~ h ( ~ h e n ) ~ ~ h i 3 +  has been developed as a probe of DNA propeller 

twisting in solution. Differences in reaction pathway partitioning between enantiorners of 

~ h ( ~ h e n ) ~ ~ h i 3 +  are attributed to differing extent of shape complementarity with DNA 

binding sites. Rh(TMP)2phi3+ has been explored in probing DNA mismatches in 

solution. Both A-Rh(phen)2phi3+ and ~h(TMP)~phi3+ sensitively mark local structural 

perturbations in an oligonucleotide, arising from substitution of a CG base pair with TG 

and AG mismatches. Rh(phen)2phi3+ and RU(TMP)~~+ have also been applied in probing 

structural variations in the context of a long DNA strand. A C7 stretch is targeted by 

Ru(TMP)32+, an A DNA probe and ~h (~hen )~ph i3+ ,  a B DNA probe. These results 

indicate this sequence is heteronomous, containing wide major and minor grooves. A- and 

~-Rh(~hen)~phi3+ also discriminate structural differences between bent and nonbent DNA 

fragments. Variations in metal complex-DNA interactions have also been examined by a 

gel electrophoretic mobility assay. Intercalator size, hydrophobicity of ancillary ligands, 

metal complex charge, and chirality all influence the extent of DNA retardation. Taken 

together, these studies demonstrate that transition metal complexes can be profitably and 



uniquely applied towards exploring DNA structural heterogeneity. 
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Chapter 1: 

Introduction: DNA Structural Heterogeneity and Probes 
of Sequence-Dependent Structure 

1.1. DNA Global Conformational Variations 

DNA is the repository for the genetic information necessary for life. By 

mechanisms which are not entirely understood, the sequence of DNA directs its three- 

dimensional structure. This DNA structure additionally plays an active role in the events 

involving molecular recognition, events which govern a great number of biological 

processes including transcription and replication. Therefore, an understanding of DNA 

structure is necessary in order to define its contribution to molecular recognition. 

Ultimately, it is envisioned that such knowledge could lead to therapeutic strategies for 

controlling biological recognition events. 

The structure of DNA stores information on a number of levels, the most apparent 

of which include the features of its overall form. The global polymorphism of DNA has 

been well characterized by a variety of methodsl. As shown in Figure 1.1, DNA adopts a 

range of conformations, which include the A, B, and Z forms. These structural families 

differ in many respects, including pitch, groove width, and even chirality. Some 

characteristics of these conformations are compared in Table 1.1. The A form of DNA has 

the smallest helical pitch of these three conformations, while the Z form is the most 

elongated. The A form additionally possesses a narrow, deep major groove, and a wide, 

shallow minor groove. The B form of DNA is characterized by a wide, deep major groove 

and a narrow, deep minor groove. Importantly, the B conformation exhibits a great variety 

of sequence-dependent local structure. The Z conformation is distinguished from the other 

two forms shown here by its left-handed chirality, a dinucleotide repeat, and a "zigzag" 

structure. Z DNA has a wide, almost convex major groove, and a very narrow, deep 

minor groove. 



Figure 1.1. CPK models of the A, B, and Z global conformations of DNA structure. The 

sugar-phosphate backbone is depicted in red and the bases are shown in green. As may be 

seen, DNA exhibits notable structural polymorphism. 





Table 1.1. Structural Characteristics of DNA According to Typea 

Feature A~ B~ Z 

helix diameter 23 A 19.3 A 18.4 A 
pitch 28.2 A 33.8 A 45 A 
base pairs per turn 11 bp 10 bp 12 bp 

groove widthc -majord 2.7 A 11.7 A 
minor 11.0 A 5.7 A 2.7 A 

groove deptlhc -majord 13.5 A 8.5 A - 

minor 2.8 A 7.5 A 9.0 A 
rise 2.56 A 3.38 A 3.7 A 
inclination 10" to 20" -5.9" to -16.4" -7" 

base pair displacement 4.4 to 4.9 A -0.2 to -1.8 A positivee 

aData was originally obtained by X-ray fiber diffraction and X-ray crystallography 
methods. All entries are from compiled from Reference 1, except as indicated. 
bMeasurements are for random sequence DNA. 
CMeasurements based on van der Waals radii. 
dThese values can not be measured for Z form DNA. 
eFrom Reference 9. 
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Global DNA structural characteristics necessarily influence molecular recognition. 

In general, due to steric considerations, grooves which are narrow afford less opportunity 

for sequence-specific recognition than grooves which are wide and accessible. Thus it is 

the major groove of B form DNA which is recognized by the majority of sequence- 

specific proteins. However, within the double helical regions of RNA which adopt the A 

form, specific recognition by proteins tends to predominate in the minor groove2, or where 

the major groove is opened by other structural features, such as bulges. Nonspecific 

recognition by proteins does take place in the minor groove of B form D N A ~  and perhaps 

in the major groove of A form double helical R N A ~ .  Recognition of Z DNA by proteins 

m y  have biological relevances but is as yet poorly understood. 

Aside from differences in groove widths, the global conformations of DNA also 

differ in more subtle respects such as sugar puckering, and positioning of the bases with 

respect to the sugar and with respect to the helical axis (inclination). Sugar puckering 

modes are shown in Figure 1.2A. The A conformation possesses the Cy-endo 

conformation, and sugar puckering in the B form is Cz-endo. Z DNA displays an 

alternating Cy-endo for purines and Cr-endo for pyrimidines. Sugar orientations are 

shown in Figure 1.2B. In correctly matched DNA in the A and B forms, the orientation of 

the base about the glycosidic bond is anti. For Z DNA, the pyrimidines adopt an anti 

orientation, and the purines adopt a syn orientation. Finally, although B form and Z form 

DNA contains bases which are nearly perpendicular to the helical axis, in the A form, the 

bases are notably inclined with respect to the helical axis normal (Table 1.1). All of these 

structural differences are components of the observed global variation. 

It should be noted that each of the aforementioned global conformations occur 

within the context of straight, correctly paired DNA double helices. Structural aberrations 

such as DNA containing noncomplernentary bases, and DNA bending have important 

biological consequences for repair and transcription respectively. The effects of these two 

structural features upon recognition will be further examined in Chapters 3 and 4. 



Figure 1.2. Local structural variation involving the deoxyribose and bases. (top panel) The 

C3*-endo sugar puckering mode (left) is present for A form helices and for purines in Z 

form DNA. The C21-endo sugar puckering mode (right) is present in B form DNA and 

for the pyrimidines of Z form. Adapted from Reference 6. (bottom panel) The rotation of 

the base about the glycosidic bond may be categorized as syrz (left) or anti (right). In 

correctly paired B form and A form DNA, the anti orientation is exclusively used. The 

pyrimidines in Z form DNA also utilize the anti orientation. The syn orientation is adopted 

by the purines in Z form DNA, and by some mismatched bases in right-handed DNA. 

Adapted from Reference 7. 





1.2. Parameters for Defining Local DNA Structure 
8 

The first high-resolution structure of DNA in the B conformation provided many 

details which were not apparent from examination of fiber diffraction studies aloneg. 

Perhaps the most important outcome of these detailed crystallographic studies is that the 

structure of B form DNA, rather than rigidly adopting a fixed, regular conformation, 

shows considerable, sequence-dependent heterogeneity. That these variations in structure 

should be apparent in the crystal form of DNA is even more remarkable; it might be 

expected, then, that DNA in solution should display a breadth of structural variety at least 

as great as that found in the solid state. 

The greatest variations in the local structure of B DNA are observed in the 

positioning of the bases with respect to one another, which is dictated primarily by stacking 

interactions. The complexity of local DNA structure has necessitated the use of a 

standardized coordinate reference frame and definitional parameters9, which are depicted in 

Figure 1.3. These parameters fall into one of two categories, those parameters which 

define either (i) the position of the two bases of a base pair with respect to one another, or 

(ii) the positions of one base pair with respect to that of a neighboring base pair. 

Additionally, the parameters may be categorized as those which define translation of the 

base pair/step with respect to one of the coordinate axes, or those which denote the rotation 

of the base pairlstep about one of the axes. These definitions are all irrespective of the 

DNA sequence involved. Although there are numerous parameters available for defining 

DNA structures obtained from crystallography, the most commonly reported are rise (D,), 

propeller twist (a), helical twist (a), tilt (T), and roll (p). 

1.3. Methods for Elucidation of DNA structure: X-ray 

Crystallography and Nuclear Magnetic Resonance Spectroscopy 

As mentioned above, X-ray crystallography has provided a detailed picture of 

DNA structure in the solid statelo. An important question is: how does the solution 



Figure 1.3. The conventional coordinate frame of reference and parameters for defining 

DNA local structure. A. Definitions of parameters describing the rotation of bases and 

base pairs. Shown are parameters which define (top row) rotations of bases which are 

moving in the same direction, (center row) bases moving in opposite directions, and 

(bottom row) rotations of one base pair with respect to its neighboring base pair. B. 

Definitions of parameters delimiting the translation of bases and base pairs. Shown are 

parameters defining (top row) bases involved in a concerted motion (middle row) bases in 

an opposed, and (bottom row) the motion of two successive base pairs in a base step. 

Figure adapted from Reference 9. 



ROTATION 

M~norf 
groove 3' 

Coordlnote frame 

t 

Opening ( a) 

Twist ($2) 

Tip ( 8 )  inclination ( q ) 

Propeller twist (a) Buckle ( K 1 

Roli ( p )  Tilt ( r )  



Coordinate frame y displacement (dy) x displacement (dx ) 

Stagger (Sz)  Stretch (Sy) Shear ( Sx) 

Rise (Dz) Slide (Dy) Shift (Dx) 



12 
structure, which is more likely to be biologically relevant, compare with structures obtained 

from the crystal? An important difference between the DNA environment in the crystal 

and in solution is the presence of forces which enable DNA helices to pack closely together 

in the ordered manner necessary for crystallization to occur. There are two types of 

crystallography experiments which address the problem of crystal packing effects on DNA 

structure. First, it is useful to examine closely related sequences with the same crystal 

packing for structural differences. Secondly, crystal s t rucms of the same sequence in 

different packing environments may be examined for similarities. Studies of the former 

type indicate that there are sequence-dependent structural differences observed within a 

given packing geometry do exist". However, several studies of DNA with identical 

sequences in two crystallographic environments shows that there are significant structural 

differences, which must be attributed to crystal packing forced2. Therefore consideration 

must be given to packing whenever evaluating crystallographically obtained DNA 

structures. 

Structures acquired by nuclear magnetic resonance spectroscopy do not have the 

particular concern of packing influences. However, it does not appear that this technique is 

capable of determining a unique structure for a given oligonucleotide in solution in the 

sarne precise and detailed manner that characterizes DNA crystal structures13. The most 

commonly used nucleus in NMR experiments is the proton, and the structure of DNA is 

such that most of the protons are situated on the phosphate backbone, and not the bases. 

For this reason, the bases are not as well determined as the backbone by NMR 

spectroscopy. However, as mentioned above, it is the disposition of bases that define the 

most important local structural variation in B-form DNA. The use of multidimensional 

heteronuclear NMR with, e.g., lS~-labelled bases does not yet appear to have surmounted 

this problem. Nevertheless, NMR spectroscopy has been appropriately and extensively 

utilized in examining ligand-DNA, and even protein-DNA interactions in solution14. 

Additionally, some dynamic structural information, such as rates of base pair openings, 



can be uniquely obtained by this technique. How specific structures studied by NMR 13 

compare with those obtained by X-ray crystallography will be discussed in Chapter 2. 

1.4. Enzymatic and Chemical Probes of DNA Structure 

The limitations of X-ray crystallography and NMR in the study of DNA structural 

variation has led to the development of enzymatic and chemical probes. For example, a 

significant limitation of both aforementioned techniques is that the size of DNA amenable 

for study is under 20 base pairs; such considerations do not apply to studies with structural 

probes. These probes also have an advantage in that they allow for structural investigations 

of DNA under a large range of concentrations, and even in the presence of large, DNA 

binding proteins in solution. Therefore, utilization of structural probes importantly serves 

as an augmentation to the use of biophysical techniques, and provides a link between high 

resolution crystallography on oligonucleotides, and the sequence-dependent structure of 

long DNA polymers in solution. 

The most commonly used enzymatic probe is DNase I. At higher concentrations, 

DNase I cleaves DNA fairly nonspecifically, and is used to map or "footprint" protein 

binding regions on DNA. However, this enzyme cleaves DNA in a somewhat selective 

manner at lower concentrations, and has been used to examine sequence-dependent 

structural variations of DNA in solution. It has been shown that DNase I preferentially 

cleaves DNA of mixed sequences, and cleaves poorly on both strands of homopolymeric 

stretches. What is the structural basis for this recognition? Since AT-rich DNA tends to 

exhibit a narrow minor groove, and CG-rich DNA possesses a wide minor groove, it is 

thought15 that this enzymatic probe is recognizing DNA of medium minor groove width 

(approximately 13 A). It is also possible that DNase I cleaves DNA sites having a high 

helical twist valuel6. The cleavage patterns of DNase I1 are complementary to those of 

DNase I, with DNase I1 having a preference for the purine strand of homopolymeric 

stretchesl5b. These opposing digestion patterns are believed to be the result of sequence- 
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dependent positioning of phosphates. Since DNase I performs nucleophilic attack across 

from the 03', it cleaves sites where the surface of the phosphorous atom opposite to the 

03' is accessible to the solvent. Since DNase I1 attacks opposite the 05', it is perhaps not 

surprising that its site-selection is clearly different than that of DNase I. Thus DNase I and 

DNase 11 are useful in examining DNA groove width and conformation of the sugar- 

phosphate backbone. 

Commonly used chemical probes of DNA structure and of protein-DNA 

interactions include Cu(phen)2+ and F~@DTA)~-. The active form of Cu(phen)2+, which 

depends upon the presence of H2@, has been shown by analysis of cleavage chemistry 

and examination of substituted phenanthroline ligands to bind the surface of the minor 

groove of D N A ~ ~ .  This complex prefers the minor groove conformation of B form DNA 

to A form DNA by a factor of 3l5a. Additionally, like DNase I, Cu(phen)2+ also appears 

to recognize DNA possessing intermediate groove widths13b. Another chemical probe of 

local DNA structure is F~(EDTA)~~-;  this complex generates hydroxyl radicals which react 

with hydrogens in the minor groove of DNA. The reactivity of F ~ @ D T A ) ~ ~ -  tracks with 

the accessibility of these minor groove hydrogens. Although this complex employs a 

diffusable mechanism, it does provide information on altered groove widths, and has been 

particularly useful for examining the variations of the minor groove accessibility of bent 

D N A ~ ~ .  

1.5. Transition Metal Complexes As Probes of DNA Local Structure 

A special class of nucleic acid structural probes, consisting of octahedral metal 

complexes, has been developed by the Barton laboratory19. These complexes contain a 

transition metal center, most commonly rhodium or ruthenium, though osmium and 

iridium complexes have recently been synthesized20. This metal center is coordinately 

saturated by, in most cases, three bidentate ligands, which emanate from the metal center in 

a three-dimensional, propeller-like fashion. Since these metal complexes are 
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substitutionally inert, they have a well-defined, rigid structure. This rigidity simplifies to 

some extent the study of recognition, since it is known that the probe will be in the same 

conformation both before and after binding DNA. Significantly, many of these metal 

complexes possess ligands containing no hydrogen bonding functionalities. Therefore 

their recognition is predicated upon shape-selection, which may be defined as a match in 

the shape and symmetry of the DNA binding site with those of the metal complex probe. 

This thesis concerns the application of several transition metal complexes as probes 

of DNA sequence-dependent structure. Short, well characterized DNA substrates have 

been examined in an attempt to refine our understanding of how these molecules interact 

noncovalently with DNA in solution. With these studies as a foundation, the metal 

complex probes have been also been applied to DNA sequences for which there are 

discrepancies between structures derived from other methods. Additionally, DNA 

conformation in the context of long strands has been probed by these complexes. 

Octahedrat metal complexes may interact with DNA by one of three major binding 

modes, as illustrated in the model in Figure 1.4: electrostatic interactions (top), surface 

binding (bottom), and intercalation (center). These metal complex-DNA interactions are 

located at the phosphate backbone, the minor groove, and the major groove, respectively. 

The metal complex which is shown in an electrostatic interaction with the negatively 

charged phosphates of DNA is R ~ ( b p y ) ~ ~ + ;  the bipyridyl ligand does not possess a large 

enough hydrophobic area with which to stabilize any other binding modes. ~ u ( ~ h e n ) ~ ~ +  is 

shown in a surface binding mode. The phenanthroline ligand is more hydrophobic than the 

bipyridyl, which favors intercalation, and to some extent, the depicted close association 

along the minor groove. The intercalative binding mode is illustrated in Figure 1.4 by the 

complex ~ h ( p h e n ) ~ ~ h i ~ + .  Intercalation involves the insertion of the phi ligand between the 

DNA bases, with a concomitant unwinding of the helix. The phi ligand has a large enough 

surface area to ensure intercalation as the primary binding mode of ~h(phen)~phi3+. 

Both surface binding and intercalating metal complexes have been used to probe 



Figure 1.4. Types of metal complex-DNA noncovalent interactions. (top) R u ( b ~ ~ ) ~ ~ +  in 

an electrostatic interaction with the negatively charged DNA sugar-phosphate backbone. 

(center) ~h(phen)~phi3+ binding by intercalation into the major groove of DNA. (bottom) 

R~(~hen)$+  in a surface binding interaction in the minor groove. 
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DNA conformation. An example of a surface-binding probe is ~u('l'M.P)3~+. The bulky 

nature of the 3,4,7,8 tetramethyl phenanthroline ligand in this complex precludes to a large 

extent an intercalative binding mode, which is present for the parent molecule ~u(phen)~2+. 

As shown in Figure 1.5, the large, hydrophobic surface area of RU(TMP)~~+ is a close 

match in size and shape to that of the wide, shallow major groove of the A conformation. 

The width of the minor groove of B DNA, on the other hand, is not wide enough to 

accommodate the complex. Regions of DNA, or RNA, which show enhanced binding by 

Ru(TMP)32+ over the parent molecule ~ u @ h e n ) ~ ~ +  are likely to be in the double helical A 

f o d 1 .  The utility of this complex as a probe is enhanced by the fact that it cleaves DNA 

via a singlet oxygen mechanism upon iKadiation with visible light. 

Intercalating metal complexes have also been much utilized as probes. Two of the 

most important intercalating ligands have been the dppz (dipyrido [3,2: a-2', 3': c]- 

phenazine) and the previously mentioned phi (9,lO phenanthrenequinonediirnine) ligands. 

These ligands are characterized by large aromatic areas available for stacking with the DNA 

bases. Both R u ( ~ h e n ) ~ d ~ ~ z ~ +  and ~h(phen)2phi3+ have been shown by NMR 

spectroscopy to bind primarily via intercalation in the major groove of D N A ~ ~ .  Dppz 

complexes of ruthenium and osmium have luminescent properties that may be used as a 

tag with which to explore protection of the dppz ligand by DNA bases. Phi complexes of 

rhodium have been used to examine DNA solution structure and explore molecular 

recognition. Phi complexes of rhodium and iridium, upon bdiation with ultraviolet light, 

cleave DNA by a nondiffusable mechanism. This useful property allows a direct 

visualization of the location of intercalation sites. 

Shape-selection in combination with intercalation imparts a powerful array of 

recognition possibilities. ~ h ( p h i ) ~ b p ~ 3 +  and Rh(~hen)~~hi3+, shown in Figure 1.6, are 

two molecules whose recognition is governed by shape-selection. Although structurally 

similar, they have very different recognition properties. ~ h ( p h i ) ~ b ~ ~ 3 +  is a sequence- 

neutral complex, which has been used to photofootprint protein-DNA interactions23. On 



Figure 1.5. Surface binding by Ru(TMP)32+ as a probe of the A conformation of nucleic 

acids. Interactions between this complex and the minor groove of (top) B form DNA and 

(bottom) A form DNA. The bulky nature of the ligand in this metal complex hinders 

surface binding in the narrow, deep minor groove of B form DNA. However, a 

complementasy surface for binding by this complex is present in the wide, shallow minor 

groove of DNA. This shape complementarity of R u ( T M P ) ~ ~ +  with DNA is different than 

that of the parent molecule R~(phen)~2+,  which does surface bind the minor groove of the 

B form (shown in Figure 1.4). When R U ( T M P ) ~ ~ +  cleaves DNA to a greater extent than 

does ~ u ( ~ h e n ) ~ 2 + ,  an A form structure is indicated. Figure from Reference 19. 





Figure 1.6. Shape selection in recognition of major groove structure by intercalating 

Rh(phi)3+ complexes. (left) R h ( ~ h i ) ~ b ~ ~ 3 +  binds to DNA in a sequence-neutral fashion. 

It can be seen that the ancillary phi ligand is pulled away from the base stack, thereby 

permitting intercalation at many different types of sites. (right) Rh(phen)2phi3+ binds to 

DNA in a site-selective manner. Due to the overhanging phenanthroline ligands which 

clash with DNA bases at some sites, Rh(phen)2phi3+ can only bind to sequences 

possessing a structure which is open in the major groove. 
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the other hand, Rh@hen)2~hi3+ exhibits a fair amount of site selectivity, and has been used 

as a probe of DNA sequence-dependent structure24. How may this be rationalized? One 

reason is that the bipyridyl ligand, being smaller than the phenanthroline ligand, provides 

less potential for steric hindrance. This notion is supported by the fact that R h ( b ~ ~ ) ~ ~ h i 3 +  

is slightly less selective than ~h(~hen)~phi3+ 25. Another explanation is that 

~ h ( ~ h i ) ~ b p ~ 3 +  has twice the number of binding modes as ~h@hen)~phi3+. Within a 

given intercalation site, the ~ ( ~ l - i i ) ~ b ~ ~ 3 +  molecule may bind with the ancillary phi ligand 

directed either upwards or downwards with respect to the site. The third, and perhaps most 

significant, reason involves the positioning of the ancillary phi ligand in comparison with 

an ancillary phenanthroline ligand. As may be seen in Figure 1.6, the ancillary phi ligand is 

pulled away from the base column for the intercalated ~ h ( ~ h i ) ~ b ~ ~ 3 +  complex. This 

geometry allows the complex to bind to most DNA sites without a great degree of steric 

clashing. By way of comparison, the phenanthroline ligands of the intercalated 

Rh(phen)2phi3+ complex come in close proximity to the DNA bases. Therefore, there will 

be a consequential degree of steric hindrance at sites which are not in some way opened to 

accommodate the ancillary ligands. These steric interactions translate into a site selectivity 

for Rh(phen)2phi3+ which will be further examined below. 

Another facet of DNA recognition by these metal complexes is their chirality. 

Each of these metal complex probes may be resolved into left- and right-handed mirror 

images, or A and A enantiomers. These enantiomers are chemically identical in every 

respect, except the disposition of the ligands about the metal center. Since DNA is a chiral 

molecule itself, the chirality of metal complex probe has a profound influence upon its 

recognition of D N A ~ ~ .  For example, for ~u(phen)~2+, the chirality of the molecule 

controls the binding mode selection. As shown in Figure 1.7, intercalation of this complex 

in the major groove takes place preferentially for the A-isomer over the A-isomer. This 

enantioselective binding results because the ancillary phenanthroline ligands are aligned 

with the groove for the right-handed isomer, whereas for the left-handed isomer, there is a 



Figure 1.7. Basis for enantioselectivity in binding modes of A- (left) and A- (right) 

~ u ( ~ h e n ) ~ 2 + ,  (top) Shown are the interactions of both enantiomers in a surfaGe bound 

mode in the minor groove of B form DNA, with one phenanthroline facing into solution. 

It can be observed that the A-~u(phen)32+ fits snugly in the minor groove, with minimal 

clashing with the DNA sugar phosphate backbone. However, the phenanthroline ligands 

of A- ~ u ( p h e n ) ~ 2 +  do come in close proximity to the backbone, disfavoring this binding 

mode for the A-isomer. (bottom) Shown are the both isomers bound in the major groove 

of B form DNA by intercalation. When bound in an intercalative fashion, the ancillary 

ligands of the A-~u(~hen)32+ are aligned against the groove, which results in significant 

steric clashing with the DNA backbone. On the other hand, the ancillary ligands of the A- 

R~(~hen)32+ are aligned in the same direction as the groove, minimizing the steric 

interactions with the backbone and allowing the intercalative interaction to take place. 

Figure from Reference 19. 





great deal of steric clash with the DNA sugar-phosphate backbone. However, for the 26 

minor groove surface binding interaction, which has one of the phenanthroline ligands 

directed outward towards solution, it is the A enantiomer which has fewer clashes with the 

DNA backbone. These models explain luminescence results which reveal that, indeed, the 

A enantiomer of ~ u ( ~ h e n ) 3 2 +  binds DNA to a greater extent by intercalation, and the A 

enantiomer binds preferentially by a surface bound mode27. 

For the Rh(phi)3+ family of complexes, in which both enantiomers bind mainly by 

intercalation, metal complex chirality still has a great influence upon DNA site selection. 

For similar reasons to those described for Ru(phen)32+, the A-isomer of R h ( ~ h e n ) ~ ~ h i 3 + ,  

bound by intercalation in the major groove, clashes with the right-handed DNA backbone. 

Additionally, both enantiomers of Rh(phen)2phi3+ are also sensitive to base geometries. 

The arrangement of the ligands in either the A or A configuration has a significant 

contribution to site selectivity for ~ ( p h e n ) ~ p h i 3 + ,  the basis for which will be described in 

a quantitative fashion in Chapter 3. When ancillary ligands are increased in size, 

enantioselectivity is enhanced. An extreme case of this type of enantioselective recognition 

occurs with the complex Rh(diphenylbpy)2phi3+, which has very bulky ancillary ligands. 

For this complex, the A enantiomer specifically recognizes the sequence 5'-CTCTAGAG- 

3', by shape-selective means, whereas the A enantiomer does not appear to bind DNA at 

a1128. 

Do differences in the intercalating ligand affect enantioselectivity in binding to 

DNA? A metal complex with a long intercalating ligand, such as Ru(phen)2dppz2+, might 

be expected to show less enantiomeric discrimination in its interaction with DNA; the 

ancillary ligands are not necessarily in very close contact with the bases. This apparently is 

borne out by experimental evidence which suggests that both enantiomers of 

~u(phen)~dppz2+ bind to canonical B form DNA with great affinity but with limited 

sequence selectivity29. However, the enantiomers of this complex do display some subtle 

differences in their geometry of intercalation, as observable by ~ ' M ~ 2 9 b .  The effect of 



27 
such factors as the nature of the intercalating ligand and enantioselection upon binding to 

DNA will be further examined in Chapter 5. 
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Chapter 2: 
Photocleavage by Enantiomers of Rh(phen)~phis+ as a 
Probe of DNA Propeller Twisting in Solution? 

2.1. Introduction 

Although utilization of X-ray crystallography has provided a wealth of detailed 

information about DNA structure, the available techniques for examining DNA structure 

in solution are not as precise1. Since NMR spectroscopy is not useful for examining 

oligonucleotides longer than about 14 bp in length, the development of chemical and 

enzymatic probes of DNA local structure becomes necessary. Important DNA structural 

parameters such as propeller twisting, which was first observed by high-resolution 

crystallography, are difficult to characterize in solution using NMR methods2. How 

propeller twisting varies as a function of sequence, and whether such variation influences 

recognition are interesting questions to consider. 

To this end, we have developed a probe of DNA propeller twisting based on 

enantioselective recognition of DNA by A- and ~-Rh(phen)~phi3+, shown in Figure 2.1. 

This metal complex efficiently binds DNA by intercalation, and upon photoactivation, 

effects strand scission by a nondiffusable mechanism3. Major groove intercalation via 

the phi ligand of this complex has been confmed by two-dimensional NMR 

experiments4. 

The potential suitability of ~h(phen)~phi3+ enantiomers in probing DNA 

propeller twisting was first recognized by comparison of the sequences cleaved on 

restriction fragrnentss. Resolution of ~h(phen)~phi3+ into its A and A enantiomers 

provides discrete structural probes whose difference in cleavage depends only upon shape 

considerations. The A- and A-isomers both cleave to a moderate extent at 5'-NYYN-3' 

steps, (where the italic Y denotes the site of cleavage) and neither show appreciable 

i Adapted from Campisi, D.; Morii, T.; Barton, J.K. Biochemistry 1994,33,4130-4139. 



Figure 2.1. The enantiomers of 13h(phen),phik 



Figure 2.2. Schematic representation of enantiomeric discrimination in binding by A- 

(left) and A-Rh(~hen)~phi3+ (right) as a probe of DNA propeller twisting. 5'-YR-3'(top) 

and 5'-RY-3' (bottom) steps are viewed from the major groove. The phi ligand (heavy 

line) of the enantiomers is oriented into the page for intercalative binding. Intercalation 

by the octahedral metal complex at canonical DNA base steps yields steric clashes 

between the 2,9 hydrogens (circled) of Rl~(phen)~phiS and the bases, unless the local 

conformation leads to an opening in the major groove. Differential propeller twisting at 

5'-YR-3' steps provides an opening in the major groove for the A-isomer; in contrast there 

are clashes at this step between the phenanthroline ancillary ligands and the pyrimidine 

bases for the A-isomer. At the 5'-RY-3' step, neither enantiomer may bind with facility 

since there are clashes between the larger purines and the ancillary ligands of both 

enantiomers; the major groove is closed. 
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cleavage at 5'-NRYN-3' steps6. However, at 5'-NYRN-3' steps, particularly 5'-Y YRR-3' 

steps, there is strong cleavage by the ~ - ~ h ( p h e n ) ~ p h i 3 +  but not by the A enantiomer. 

Those sites which are cleaved preferentially were found to be those which are 

characterized by a high degree of differential propeller twisting7. Thus, these results 

suggested that the shape-selective metal complex might serve to recognize and 

distinguish the propeller twisting of DNA sites in solution on the basis of matching shape 

and symmetry. Figure 2.2 schematically summarizes the proposed basis for this 

enantioselective discrimination at propeller twisted sites. 

Variations in the chemical reactivity of DNA have also been found to be subtly 

dependent upon shape-complementarity. Photoproducts produced by ~ h ( ~ h e n ) ~ ~ h i 3 +  

have been consistent with a reaction mechanism of C3'-hydrogen abstraction by the 

photoexcited intercalated phi ligand3b. This C3'-hydrogen atom abstraction is partitioned 

between two different reaction pathways8. The oxygen-independent pathway yields a 

fragment containing a 5'-phosphate terminus as well as one possessing a 3'-phosphate 

terminus, with free base release. The oxygen-dependent pathway produces a 5'- 

phosphate terminus, and a 3'-phosphoglycaldehyde terminus accompanied by base 

propenoic acid release. The differences in partitioning along the pathways at a given site 

are directed by the distinct shapes and binding modes of A- and A-~h(phen)~phi3+. Thus 

reaction pathway partitioning as a function of sequence provides an additional measure of 

the complementarity in structure between these enantiomers and DNA. 

This chapter describes studies performed to develop Rh(~hen)~phi3+ recognition 

and reaction as a probe of DNA structure in solution. Here the correlation between 

enantioselectivity in cleavage by Rh(~hen)~phi3+ with differential propeller twisting is 

examined quantitatively. Correlations between enantioselective cleavage and other 

helical parameters is also examined. Three crystallographically characterized 

oligonucleotides were studied in solution with A- and A-Rh(phen)2phi3+: (i)The 

Dickerson-Drew dodecamer9, (ii) the Nar I dodecamerlo, and (iii) the CG decamerll. 



These oligonucleotides were chosen because each crystallizes in the B-form and each 

structure had a different crystal packing. A correlation is established in this work 

between enantioselectivity of photocleavage by R h ( ~ h e n ) ~ ~ h i ~ +  and a local structural 

feature of DNA as obtained from crystallographic parameters in the absence of metal 

complex. In addition, the reactivity of this rhodium complex within a site appears to be 

influenced by DNA structure in a sequence-dependent fashion. Thus this work provides a 

foundation for utilization of ~ h ( ~ h e n ) ~ ~ h i 3 +  as a probe of DNA conformational 

variations in solution. 

2.2. Experimental 

Materials. Oligonucleotides were synthesized via the phosphoramidite methodl2, using 

1.0 pM columns on an ABI 39 1 DNA-RNA synthesizer. A reversed- phase, C 18 

Dynamax column was used on a Waters HPLC for the purification of DNA. Labelling 

reactions were done with Y ~ ~ P - A T P  (NEN) and polynucleotide kinase. Labelled 

oligonucleotides were purified by Nensorb columns, and stored dry at 4OC. For non-self- 

complementary oligonucleotides, equimolar concentrations of each strand were heated to 

90°C and cooled over several hours to allow proper annealing to occur. ~ h ( p h e n ) ~ ~ h i 3 +  

was synthesized as previously describedl3. Enantiomers were resolved by column 

chromatography with a chiral eluent4. Quantitation of metal and oligonucleotide 

concentrations was accomplished using a CARY 219 spectrometer, based on ~ ( 3 6 2 )  = 

19,400 M - ~  cm-l. 
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Photocleavage Reactions. Reactions contained 480pM nucleotides ,50mM sodium 

cacodylate buffer, pH 7.0, and 25pM rhodium complex, and were irradiated at 313 nm 

with a 1000W Hg-Xe lamp. Irradiation times were typically 4.5 minutes. Different 

irradiation times gave the same distribution of cleavage, although the total amount 

cleaved was increased with longer irradiation. After photocleavage, an aliquot of each 

reaction mixture was taken and dried in vacuo. These aliquots, along with Maxam- 

Gilbert sequencing reactions14 and controls were then taken up in a NaOH- forrnamide 

dye, heated to 90°C for 3 minutes, chilled on ice for 1 minute, and loaded on a 20%/ 8.3 

M urea polyacrylamide gel. Gels were eluted about 4 hours at 1600V. Upon 

completion, gels were wrapped and exposed to a phosphorimaging plate for 12 hours. 

These plates were scanned on a Molecular Dynamics Phosphorimager. 

Quantitation of Cleavage: Gel electrophoresis experiments were quantified using 

Molecular Dynamics software. DNA was irradiated in the absence of metal (light 

control) to provide a control for damage due to irradiation. Cleavage at each base was 

corrected for any damage shown in this light control as follows: 

where ccm,i is the corrected value of a cleavage band; C i  is the uncorrected integration 

volume of a cleavage band; hi is the intensity value of the corresponding band in the light 

control; c tot and htot are the total number of counts in the cleavage and light control lanes, 

respectively, and x is a factor arbitrarily set to 10 million counts which allows 

comparison of sites in non-self-complementary strands (which are corrected to different 

light control values.) 

After this correction was made for A and A cleavage at each position, a 

normalization which allows for comparison between experiments is performed. The A 

cleavage for each experiment was normalized to 4% total cleavage of the self- 

complementary oligonucleotides. For the NarI dodecamer, cleavage was norrnalized so 

that corrected A cleavage from both strands added together represented 8% of the uncut 
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material. This correction was accomplished to preserve any reactivity differences present 

between the two strands. A cleavage was also normalized relative to 4% A cleavage, thus 

leaving enantioselectivities (A/A) unaffected by the normalization. Actual percent 

cleaved was varied to establish such variations did not affect the distribution of cleavage 

intensities. 

The total cleavage at each base was then obtained by adding together the 

intensities for cleavage to form the 3'-phosphate and 3'-phosphoglycaldehyde termini 

observed on the gel. The amount of cleavage at each site is best represented as a sum of 

cleavage from each strand. Thus, total cleavage at each base step was obtained by adding 

together the corrected cleavage on both strands to the 5' side across the intercalation site, 

as shown below. This 

summation is necessary since cleavage may occur on either strand. Cleavage intensities 

are added in the 5'-direction because in general, photoactivation of Rh(phen)2phi3+ 

promotes cleavage with single base 5' asymmetry, that is, the C3' hydrogen atom of the 

deoxyribose to the 5'-side of the intercalation site appears to be preferentially 

ab~ t r ac t ed~~ .  

Calculation of Differential Propeller Twisting, xp. There are two parameters which 

describe the rotation of a base pair /step about its long axis. Propeller twist (a) is the 

angle at which the bases in a base pair twist with respect to one another; roll (p) is the 

angle which describes the angle between the mean plane of the first base pair in a base 

step with the mean plane of the second base pair of that step. Both parameters then 

contribute to a base step opening or closing toward the major groove. This opening may 

be approximated as the angle between purine planes (neglecting helical twist), as shown 



39 
in Figure 2.3. For each of the four base steps, the calculation of this angle differs. 

However, the pyrimidine roll angle is added in all cases. The expressions are 

xp= a + b + p  (2) 

for the 5'-YR-3' step, 

x p = - ( a + b ) + p  (3) 

for the 5'-RY-3' step, 

xp= (a - b) + p (4) 

for the 5'-YY-3' step, and 

xp= (b - a) + p (5) 

for the 5'-RR-3' step, where a is one-half the propeller twisting value ( a )  at the 5' side of 

the base step, and b is one-half the o value at the 3' side of the base step. a, b, and o are 

all negative by convention15. Just as a negative roll angle describes major groove 

opening, a negative xp value also describes major groove opening. It may be seen that for 

a 5'-YR-3' step, the greater the propeller twisting, the greater the major groove opening, 

whereas for a 5'-RY-3' step, the greater the propeller twisting, the more closed the major 

groove becomes. All values for w and y were taken from the referenced crystallographic 

parameters. Differential propeller twist angle neglecting roll angle, xpnr, was also 

calculated as a comparison. Errors for xp  and xpnr, when included, are represented by the 

range of values calculated using both ends of a self-complementary but nonsymmetrical 

crystal structure9a. 

2.3. Results 

2.3.1. General Features of Photocleavage by R h ( ~ h e n ) ~ p h i &  

Cleavage by the A and A enantiomers differs in position, intensity and in 

partitioning between reaction pathways. For all three oligonucleotides, the cleavage by 



Figure 2.3. Geometrical projections of each of the four base steps. The view is along the 

long axis of the base pairs, with the major groove to the left side of the projection and the 

minor groove to the right side. The purines are shown in white and the pyrimidines in 

gray. The front strand is in the 3'- 5' direction, and is represented by thick outlines. The 

back strand is in the 5'-3' direction and is represented by thin outlines. Roll (p) and xp 

angles show direction of opening. 
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the racemic mixture shows characteristics of both enantiomers, with more similarity to 

that of the A enantiomer. Autoradiograms of polyacrylamide gels which indicate sites of 

cleavage on all three oligonucleotides are shown in Figure 2.4, and the results are 

quantitated in Table 2.1. 

Dickerson -Drew dodecamer: In the Dickerson-Drew dodecamer, the A enantiomer 

cleaves predominately at Cg, with a lesser amount of cleavage at the Cg which is across 

from Cg at the same base step (Figure 2.4A). There is also a moderate amount of 

cleavage at the T8 site by the A enantiomer. The A enantiomer, however, shows an 

equivalent amount of cleavage at the Tg and Cg sites. 

Nar I dodecamer: This oligonucleotide contains two intercalation sites which display 

enantioselective cleavage. As can be seen in Figure 2.4B, at both cytosines at the C3 site, 

C3 and C21, ~-Rh(phen)~phi3+ cleaves significantly more than the A-isomer. At the C p  

T15 intercalation site, cleavage by the A enantiorner is greater than that of A for Cg, but 

equivalent at T 15. A- and ~-Rh(phen)~phi3+ cleave at Cg and C1g to a similar extent, 

although it is a 5'-YR-3' step. This cleavage is less than that seen for the A-isomer at the 

two more highly enantioselective sites. 

CG oligonucleotide: There is one highly enantioselective cleavage site for A- 

Rh(phen)2phi3+ on this oligonucleotide, as shown in Figure 2.4C. At Cg, A cleaves more 

than A at this site by a factor of 6. The second strongest site for the A enantiomer, Tg, is 

cleaved almost equally by the A enantiomer. 

It should be also be noted that differences in total amounts of bases released for 

the A and A enantiomers, analyzed by IIPLC, agree with the cleavage data obtained by 

gel quantitation (data not shown). 

2.3.2. Asymmetry of Photocleavage 

In addition to cleavage position, the 5' asymmetry associated with cleavage also 

provides some information as to how these complexes are bound to DNA. Of the four 



Figure 2.4. Images of photocleavage of 5'- 3 2 ~  endlabelled oligonucleotides of differing 

sequences by the enantiomers of Rh(~hen)~phi3+. 

A. The Dickerson-Drew dodecamer. Lanes 1 and 2 are Maxam-Gilbert C+T and G+A 

reactions respectively. Lanes 3,4, and 5 contain the oligonucleotide (480pM 

nucleotides) irradiated for 1 min. at 3 13 nm in the presence of A, A, and racemic 

Rh(phen)2phi3+ respectively; lane 6 shows the oligonucleotide in the absence of metal 

complex but with irradiation, and lane 7 in the absence of metal complex and without 

irradiation. 

B. The Nar I dodecamer, showing cleavage on strand 1 (left) and strand 2 (right). Lanes 

1 and 8 as well as 2 and 9 are A+G and C-tT Maxam Gilbert reactions respectively. 

Lanes 3 and 10 show labelled oligonucleotide without irradiation or metal complex. 

Lanes 4 , 5  and 6 and lanes 11, 12, and 13 show the oligonucleotide irradiated for 4.5 min. 

in the presence of racemic, A, and A Rh(~hen)~phi3+, respectively. Lanes 7 and 14 show 

irradiation in the absence of metal complex. The fragments indicated by a and b 

correspond to the 3'-phosphate and 3'-phosphoglycaldehyde terminus respectively; note 

that b shows slower mobility than its corresponding 3'-phosphate. 

C The CG decamer. Lane 1 shows DNA in the absence of light and metal complex. 

Lanes 2 and 3 show Maxam-Gilbert G+A and C+T reactions, respectively. Lane 4 

contains the oligonucleotide after irradiation in the absence of metal, and lanes 5,6, and 7 

show cleavage by the A, A, and racemic complexes, respectively after irradiation for 5 

min. 

D. A schematic illustration summarizing sites of primary intercalation based upon 

cleavage data for A- and A- Rh(phen)2phi3+. 
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strongest cleavage sites for A-~h(phen)2phi3+, two, Cg-C 3 on the Dickerson-Drew 

dodecamer and Cg-Ti5 on the NarI dodecamer, show an appreciable asymmetry in the 

extent of cleavage at each side of the site, as shown in Table 2.1. F o r  the center of the 

self-complementary CG oligonucleotide, this asymmetry can not be determined.) In the 

case of the Dickerson dodecamer, Cg strikingly yields about 23 times as much cleavage 

as the corresponding C3, and for the NarI oligonucleotide, Cg is cleaved about 9 times as 

strongly as the corresponding T15. These two sites correspond to 5'-YYRN-3' steps, We 

ascribe this asymmetry to the canting of the molecule in the site to one strand3b. 

Not every 5'-YR-3' step shows appreciable asymmetry. A 5'-CA-3' step examined 

earlier3b, in the context of 5'-GCAT-3', does not show appreciable asymmetry for the 

racemic complex, and the central 5'-GCGC-3' of the Nar I dodecamer does not show 

asymmetry for the A, A, or racemic complexes. 

These observations indicate that flanking sequence may have an influence over 

the manner in which the complex binds to a site. That is, generally speaking, the 

complex binds preferentially at a 5'-YR-3' step which has a pyrimidine to the 5' side of 

that step. If only one side has a flanking pyrimidine, cleavage by the complex appears to 

be skewed toward that side. If the step is flanked on the 5' side of both bases by 

pyrimidines, there is not as much asymmetry in cleavage, but the overall cleavage is still 

high, whereas if the step is flanked on both sides by purines, the canting and cleavage 

tend to be lower. 

2.3.3. Correlation of Enantioselectivity with Major Groove Opening 

Both enantioselectivity and absolute cleavage by the A-isomer show correlations 

with differential propeller twisting. This correlation between differential propeller twist 

and cleavage by ~ - ~ h ( p h e n ) ~ p h i 3 +  is shown in Figure 2.5. Shown are plots of cleavage 

by ~ -~h (phen )~ph i3+  versus differential propeller twisting with and without contributions 

of roll. At positive values for xp, where the major groove is closed, the amount of A 



Table 2.1. Quantitation of Photoinduced Cleavage by ~h(phen)~phi% on Different Oligonucleotides~ 

Nar I 
- - -  

Dickerson-Drew sequence A A CG 

sequence A A 1 2 1 2 1 2 sequence A A 

C3 0.11 0.07 C3 022 1.11 0.3 1 0.19 0.15 A3 0.06 0.12 

04 0.12 0.08 04 C21 0.22 1.86 0.12 0.26 A4 0.15 0.25 

A5 0.05 0.06 05 C20 0.1 1 0.33 0.06 0.20 C5 2.05 0.32 

A6 0.05 0.07 C6 019 0.27 0.10 0.20 0.09 G6 0.22 0.17 

T7 0.22 0.14 67 C18 0.10 0.27 0.07 0.18 T7 0.23 0.44 

T8 0.3 1 0.32 C8 017 0.25 0.11 0.09 0.06 T8 0.68 0.56 

C9 2.54 0.25 C9 G16 2.12 0.32 0.40 0.21 

G10 0.61 0.23 A10 TI5 0.27 0.26 0.25 0.33 

aData are derived from gel analysis of the oligonucleotides photocleaved by ~ h ( p h e n ) ~ p h i ~ +  as shown in Figure 2.4. 

Phosphor-imagery was used to determine relative band intensities for each base and values were corrected for differences in 

loading and any slight damage due to light alone as described in the text. Each value shown represents the average percentage 

cleavage on the oligonucleotides. The uncertainty in these photocleavage values is estimated to be about &6% 
P 
\O 
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cleavage is low. However, when the major groove is open, values for cleavage by A- 

~ h ( p h e n ) ~ ~ h i ~ +  are substantially higher. These sites all correspond to 5'-YR-3' steps. 

An important exception is found in 5'-G~C&7-3' in the NarI dodecamer, which 

shows little cleavage. Although strongly propeller twisted in the crystal structure, this 

site appears to show anomolously low cleavage and enantioselectivity. It is interesting 

that in this segment of the oligonucleotide in the crystal, two helices are packed closely 

against one another. It is likely that this type of packing has a deforming effect in the 

crystal in this region of the helix. Thus, the strong differential propeller twist at this site 

in the crystal may not represent the structure in solution based upon the data presented 

here. Supportive evidence for this idea may be found in the crystallographic structures16 

for the oligonucleotide 5'-CCAACTTGG-3'. This sequence crystallized both with a 

monoclinic packing and a trigonal packing similar, though not identical to that found in 

the NarI crystal structure. Significant (ca. 6') differences in propeller twisting were 

found between the two packing forms. 

Parallel results are observed in plots of enantioselectivity versus differential 

propeller twist relative to A cleavage versus differential propeller twist (data not shown). 

Since ~ -~h (phen )~ph i3+  does not produce significantly strong sites, relative to A, the 

same correlation pertains. Although enantioselectivity is correlated with A cleavage, the 

site which shows the highest enantioselectivity (Cg of Dickerson-Drew) is not the same 

as the site which shows the highest A cleavage (Cg of the CG decamer). Both are CG 

steps, but the first is not completely symmetrical (considering flanks), while the latter is 

symmetrical. It is possible that the flanks may influence the structures in a way which 

may make them less accessible to the A enantiomer. Plots of enantioselectivity, however, 

contain higher uncertainty at weak cleavage sites (positive values of xp), since ratios 

between small values are required. 



Figure 2.5. Plots showing the correlation between the percentage cleavage by A- 

U ~ h e n ) ~ p h i S +  and propeller twisting corrected for roll angle (top, x*), and without 

inclusion of roll angle (bottom, xpnr). Data are shown for cleavage on the Dickerson- 

Drew dodecamer ( ), the NarI dodecamer (1: ), and the CG decamer (A). Cleavage 

was quantitated at each site as described in the text. The differential propeller twisting 

was determined based upon the crystallographic structural parameters9a~l0~ll. Errors for 

cleavage intensity are represented by the standard deviations between experiments. 
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2.3.4. Correlation of A and A Cleavage with Other Helical Parameters 

It might be expected that other parameters which describe the structure of a base 

step may show some correlation with cleavage by ~h(phen)~phi3+. Examples of 

commonly reported parameters include helical twist, rise, tilt and roll. A weak 

correlation was found between helical twist values and enantioselectivity. For two of the 

three oligonucleotides examined, there was a good correlation between the two values, 

consistent with the right-handed helicity of the duplex17. However, for the Dickerson- 

Drew dodecarner this correlation did not hold. There was also no significant correlation 

found between A cleavage, enantioselectivity, or A cleavage with any of the following: 

rise, tilt, groove width (phosphate-phosphate distances) or roll (in isolation). This lack of 

correlation may arise because none of these parameters contain a symmetry axis along the 

dyad, except the helical twist. 

2.3.5. Enantioseleetivity in Cleavage Photoproducts 

In addition to cleavage position and cleavage asymmetry, the cleavage product 

distribution observed as a function of sequence gives some insight into the interactions of 

these enantiomers with DNA. As described earlier3b, and represented in Scheme 3.1, 

oligonucleotide photocleavage through an 02-independent pathway yields 5'- and 3'- 

phosphate termini, whereas the 02-  dependent pathway produces 5'-phosphate and 3'- 

phosphoglycaldehyde ends. ?he termini may be differentiated using gel electrophoresis, 

as shown in Figure 2.4. Hence, information may also be obtained regarding the 

sequence-dependence in partitioning along these pathways. Since a close shape- 

complementarity between the complex and the base step would block oxygen access to 

the C3'-radical for subsequent reaction, a high concentration of oxygen-dependent 

photoproduct may reflect a poor fit of the metal complex into the site. 

The reaction pathway partitioning is indeed found to be sequence-dependent. In 

general, at a given site, A-~h(phen)~phi3+ produces a greater concentration of oxygen- 



Scheme 2.1. Summary of the different photoproducts obtained after partitioning along 

the 02-  independent and 0 2 -  dependent pathways for strand cleavage following C3'-H 

abstraction. The structures labelled a and b correspond to the marked photoproducts in 

Figure 2.4. 



'~0~~0 0 B C3'-H , 
H Abstraction 
&R3' 



56 

dependent photoproducts than does A-Rh(~hen)~phi3+, likely reflecting the poorer match 

of the left-handed isomer into the right-handed helix17. The presence of oxygen- 

dependent photoproducts also correlates with the asymmetry in cleavage on the duplex, 

suggesting that canting of the complex in the helix to one strand allows oxygen access to 

the other. 

Two illustrative examples from different oligonucleotides are shown in Table 2.2, 

and the products obtained are evident in Figure 2.4. These sites both show a high 

intensity of 3'-phosphoglycaldehyde product, but one site represents an example of high 

cleavage overall and the other of low cleavage. In both cases there is little or no 02-  

dependent photoproduct detected for one strand, and a significant amount of 

phosphoglycaldehyde for the complementary strand; for a given base step, the greater the 

intensity of cleavage, the lower the concentration of phosphoglycaldehyde. Additionally 

quantitative, sequence-dependent differences in reaction pathway partitioning are 

observed between enantiomers. In the 5'- T'fi16-3' - 5'-C@ 10-3' step from the NarI 

dodecamer, neither enantiomer shows a significant amount of phosphoglycaldehyde at 

Cg, which shows the greater amount of cleavage at this base step. However, on the 

complementary strand at Tl5, both enantiomers show some reaction via this oxygen- 

dependent pathway. In fact, a greater percent of the total cleavage by ~ - ~ h ( p h e n ) ~ ~ h i 3 +  

for this 5'-YR-3' step is by this oxygen-dependent pathway, as can be seen in Table 2.2. 

Also, at the 5'-G6T7-3' . 3'-A4C5-5' step from the CG decamer, cleavage at Aq occurs 

predominately by the 02-independent pathway for both enantiomers. However, both 

enantiomers show cleavage by the 02-dependent pathway at Gg. Indeed, as can be seen 

in Table 2.2, now a greater proportion of the total cleavage by ~-Rh(phen)~phi3+ occurs 

via the 02-dependent pathway at this base. Thus, while the 5'-RY-3' step does not prove 

to be a suitable binding site for either enantiomer, the fit at this site tends to be worse for 

A than for A. (This observation may be rationalized by steric clashes between the 2 ,9  

hydrogens of the phenanthroline and the functional groups on the purine bases in the 



Table 2.2. Quantitative Comparison of Products Obtained as a Result of Partitioning between 
Reaction Pathways a 

Oligomer Site Product Ab Ab productc A productC A 

Nar I dodecamer 5' Tl5 G 16 3' 5'-RO 3PO- 0.2 1 0.20 8 1 59 

5'-R0 3POCH2CHO 0.05 0.14 19 4 1 

3' A 10 Cg 5' 5'-RO 3PO- 2.08 0.38 9 8 95 

5'-R0 3POCH2CHO 0.04 0.02 2 5 

CG decamer 5' Gg T7 3' 5'-RO 3PO- 0.14 0.13 6 1 76 

5'-RO3POCH2CHO 0.09 0.04 39 24 

3' Cs A4 5' 5'-R03PO- 0.15 0.25 100 100 

5'-RO 3POCH2CHO 0 0 0 0 

a Data obtained in the same fashion as data from Table 2.1. Quantitation refers to the products formed at italicized 

bases. 

b Cleavage intensities shown represent the percentage cleavage on the fragment. 

C Values represent the percentage partitioning along either pathway, based upon the relative amount of product formed. 



Table 2.3. Summary of Sequence-Dependent Photoproducts Observed 
in Reaction with Rh(phen) zphik Enantiomers a. 

enantioselectivity 
overall in fonnation of 
intensity enantioselectivity 02-dependent 

sequence of cleavage in cleavage products 

SYYRN3' high A  >>A A > A  

5' RYRN 3' intermediate A  2 A  A > A  

5' N YYN 3' b and intermediate A - A  A > A  

5' NRRN 3' 

5' N RYN 3' low A - A  sequence-dependentc 

aComparisons refer to reaction at italicized bases. b ~ x c e ~ t  5'GYYN3'. CFor some 
sequences there is too little product for detection. 
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major groove.) Furthermore, the generally low cleavage at these sites is to be expected 

since they are closed in the major groove (vide supra). The relative amount of 

phosphoglycaldehyde photoproduct at a particular site can therefore serve as an indicator 

of the accessibility of dioxygen to that site and thus of the fit between the shape of the 

metal complex and the shape of that site. The sequence-dependence in photoproducts 

observed is summarized in Table 2.3 and may be generally considered in that context. 

2.4. Discussion 

2.4.1. Major Groove Intercalation 

The features which govern DNA recognition by Rh(phen)2phi3+ determine both 

its binding and cleavage characteristics. Strong sites of cleavage often display single base 

5'-asymmetry, consistent with binding from the major groovel8. In the case of 

Rh(phen)2phi3+, with asymmetric binding, one furthermore observes the production of 3'- 

phosphoglycaldehyde termini, a cleavage product consistent with reaction at the C3'- 

hydrogen atom in the major groove. The fact that the complex binds by intercalation 

from the major groove3by4 importantly differentiates Rh(~hen)~phi3+ from many natural 

products and chemical probes which bind in the minor groove 19. This contrast becomes 

evident in comparing probes on the Dickerson-Drew dodecarner. ~l-Rh(phen)~ph.i3+ 

cleaves mainly at Cg, which corresponds to binding at the 5'-C9G10-3' step. The A 

enantiomer binds and cleaves at the 5'-TgCg-3' and the 5'-CgG10-3' step. Each differs 

from minor-groove binding Cu(phen)2+, which cleaves at all positions of this 

oligonucleotide 19a, and the green bleomycin-cobalt (111) complex, which cleaves 

predominately at the C3 and C11 positionsl9b. They also differ in distribution of cleavage 

from minor groove binding DNaseI which cleaves strongly at T819c. 

Each step which is cleaved strongly by ~ -~h (phen )~ph i3+  is a 5'-NYRN-3' step. 

This step is thought to be favorable for classical intercalators20 because of the stability 

which may be gained by overlap with the intercalator. Although intercalation has been 
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demonstrated as the primary binding mode for this complex, the chiral discrimination at 

all sites, favoring the A- isomer, also shows that this intercalative overlap with the base 

pairs is not the sole factor governing site recognition. In other words, the disposition of 

the ancillary phenanthroline ligands about the metal center provides another structural 

element in distinguishing one site from another. The feature being discerned by means of 

steric repulsion on the helix is, likely, the angle of opening of the purines towards the 

major groove. 

2.4.2. Enantioselectivity in Rh(phen)2phia-DNA Interactions 

The following all give information about the differences in interaction between 

the enantiomers of this complex and a given site: total intensity of cleavage, cleavage 

asymmetry, and mechanistic partitioning of the photoproducts. As may be seen in Tables 

3.1 and 3.2 and summarized in Table 2.3, the greatest difference in total cleavage 

between the enantiomers is at 5'-YR-3' steps, in particular 5'-YMIR-3' steps. 

Enantioselectivity (A cleavage/ A cleavage) of up to a factor of 10 has been observed for 

these steps, particularly when flanked by a 5' pyrimidine. The A enantiomer also shows a 

greater degree of cleavage asymmetry at 5'-YR-3' steps than does the A enantiomer. This 

asymmetry is dependent on neighboring bases as well. If only one base of the base step 

possesses a 5' flanking pyrimidine, cleavage is weighted towards that side for both 

enantiomers, but the asymmetry is more dramatic for the A enantiomer. While 

asymmetric intercalation has also been demonstrated in crystal structures21 of some 

planar intercalators bound to 5'-CG-3' dinucleotide steps, this work shows that flanks may 

influence the local structure and recognition of 5'-YR-3' steps. Again, the disposition of 

the ancillary phenanthrolines is likely to enhance the discrimination. 

The enantiomers also show differences in how cleavage products are partitioned 

along the two pathways. The amount of 02-dependent photoproducts, along with 

asymmetry of cleavage, gives information as to the fit of the bound molecule in the site, 
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the shape-complementarity of the metal complex to the local structure of DNA. For 

example, as shown in Table 2.3, at the 5'-Y YRN-3' and 5'-R YRN-3' steps, it is the A 

enantiomer which yields a relatively small amount of phosphoglycaldehyde terminus, and 

which thus has the better fit for this site. The better fit of the A-isomer in most sites is 

evident, based upon this criterion, including 5'-GC-3' steps. At low sites of cleavage, 

where neither enantiomer likely fits well, both isomers may yield 02-dependent product; 

indeed, at the 5'-AC-3' step of the CG decarner, it is the A-isomer which yields more 3'- 

phosphoglycaldehyde. It should be noted that at some sites the total cleavage is so low 

that no 02-dependent photoproduct is detectable. These cases suggest the worst fit 

between both enantiomers and the site, with steric clashes between the ancillary ligands 

and the bases. 

2.4.3. Recognition Structure 

What then are the structural features of DNA which are being recognized by A- 

Rh(~hen)~phi3+? It may be said that this complex is recognizing groove width in a coarse 

fashion. Rh(~hen)~phi3+ specifically cleaves B-form DNA, or other nucleic acid 

structures where the major groove is open enough to allow binding. On the other hand, 

the rhodium complex does not cleave the double-helical regions of t R N ~ 2 2  because the 

narrow major groove precludes binding by the complex. Thus the first aspect of the 

"open major groove" is a groove possessing a width large enough to accommodate the 

complex. From comparisons with groove widths obtained from coordinates of the 

Dickerson-Drew dodecamer and the CG decamer, however, it does not appear that the 

complex is recognizing small variations in groove width within the range evident in the B 

conformation. There are two possible explanations for this. Crystal packing affects 

groove width values more than it does most other parameters. Differences dependent on 

packing have been observed for the B conformation 16 and the A conformation23. 

Therefore, small variations in groove widths in crystal structures may not be wholly 
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indicative of the solution structure. Alternatively, the binding characteristics of this 

molecule, an intercalator rather than a large groove binding molecule, do not lend 

themselves to subtle comparisons with variations in groove width. 

A related aspect is the inclination of the base pairs with respect to one another, the 

base pair tilt. While it does not appear that the complex is recognizing tilt in a strictly 

quantitative fashion, all of the strong cleavage sites for the A enantiomer in these 

oligonucleotides have a tilt angle which is less than or equal to zero. It also does not 

appear that tilt correlates with the asymmetry of the cleavage. 

Other parameters can define opening in the major groove. Although it had been 

suggested24 that sequence could dictate opening towards or away from the major groove 

through variations strictly in their roll angle, cleavage by neither enantiomer, nor 

enantioselectivity in cleavage by Rl1(~hen)~phi3+, correlate with the roll angle in 

isolation. There also does not appear to be a correlation between cleavage by either 

enantiomer and the sequence-dependent rise of a base step. As this rise is determined by 

the C1'-C1' distance in a step, it would be surprising to find this parameter to be sensitive 

to considerations of intercalator chirality. 

However, one parameter which might be expected to govern enantioselectivity in 

cleavage is the helical twist. Although there is a weak direct correlation between the two 

sets of values, this correlation holds only for the NarI dodecamer and the CG decamer; it 

does not hold for the Dickerson-Drew dodecamer. The explanation for this may lie in the 

high twist profile (HTP) and low twist profile ( L T P ) ~ ~  gleaned from crystal structure 

analysis. The HTP describes steps having a high twist, low rise and negative roll, 

whereas the LTP describes steps having a low twist, large rise, and positive roll. The 5'- 

YR-3' step has been shown, from a body of crystallographic structures25 and 

calculations26 to exhibit both types of behavior. Correlations made which factor in 

helical twist, roll, and rise are not straightforward. Thus, although helical twist is not 
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explicitly accounted for in the differential propeller twisting calculation, it may contribute 

in part to the resultant enantioselectivity in cleavage. 

What the A enantiomer locally appears to recognize is the rotation of the base 

pairs about their long axes, e.g., the angle between the purine planes caused by the 

propeller twisting of the base pairs, and as defined in Figure 2.3. FU1(phen)~ph.i3+ is 

therefore unique in recognizing an important element in DNA local structure. Both 

propeller twist angles and the roll angle contribute to this parameter, which also may be 

considered as a measure of the major groove opening of DNA. As Figure 2.5 reveals, 

there is a strong correlation between the intensity of cleavage by A -Rh(~hen)~phi3+ at a 

site with the openness in the major groove as a result of sequence-dependent base pair 

propeller twisting. The sign of this parameter shows opening (negative) or closing 

(positive) of the major groove, in the same convention as the roll angle. The extent of the 

opening may be approximated by the values of the parameter. Importantly, it is not the 

propeller twist itself which is recognized by the metal complex, but instead the change in 

propeller twist. Sites of substantially enantioselective cleavage are observed both where 

there is a 26' propeller at one base pair and 0' at the next (in the C3G4 base step of Narl) 

and where the angle is 13' at one base pair and 14' at the next (in the CgA10 base step of 

Rr,rI). Both geometries lead to sites which are open in the major groove. 

In order to test the contribution of the roll angle to this opening, xpnr, the 

differential propeller twisting without inclusion of the roll angle, was calculated. While 

the general agreement between enantioselectivity and differential propeller twisting still 

holds, it does not appear to correlate as well as when the roll angle is included. 

Particularly, there are two sites (C3 and C9 of the NarI dodecamer) which have the same 

xpnr, but quite different cleavage values. It should be noted that neither xp nor xpnr 

correlates with the corresponding roll angle alone. 

It is also interesting to compare these cleavage results to structural parameters 

obtained for these oligonucleotides in solution by NMR. Such a comparison may be 
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drawn in particular in the case of the Dickerson-Drew dodecamer where several 

laboratories have carried out relevant NMR experiments2%2c-d. In one case2c, NMR 

analysis revealed a more substantial kink at the C3G4 base step, the site of strongest 

cleavage by A-Rl~(phen)~phi%, than is evident in the crystal, indeed a structural kink 

similar to that found in the crystal with bound EcoRI27. Other analyses show general 

agreement between the structure in the crystal and in solution but emphasize that 

propeller twisting is among the inherently least well-determined parameters available by 

N M R ~ ~ .  In the case of the CG decamer, solution NMR analysis has also been performed 

and compared to the crystal structure28. Here while detailed structural parameters are not 

available, general agreement between the solution and crystal structure appears to be 

found. Hence, in both these cases correlations appear to be present between site-specific 

cleavage by the rhodium complex with solution as well as crystallographically 

determined oligonucleotide structure. 

2.4.4. Biological Relevance 

It has been demonstrated that ~ h ( ~ h e n ) ~ p h i %  recognizes a particular structural 

feature of DNA. Does this have any relevance to protein-nucleic acid recognition? 

Binding by the A enantiomer shows several similarities to that of sequence-specific 

proteins. Firstly, both bind primarily from the major groove and are therefore recognizing 

major groove structure. Secondarily, both bind through a hierarchy of noncovalent 

interactions. In the case of the metal complex, the primary driving force is intercalation, 

but the ancillary ligands modulate site recognition, mainly through steric considerations. 

In the case of DNA-binding proteins, often nonspecific electrostatic interactions provide a 

substantial driving force for binding to the nucleic acid. Flanking sequences can also 

affect binding specificity either directly or by altering the local shape of the site. For 

example, in this set of data, having a guanine to the 5' side strongly reduces the affinity of 
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the complex for a 5'-CG-3' step. Likewise, flanks29 can reduce1 increase protein binding 

affinity to particular sites. 

Another similarity rests in the ability of both the rhodium complex and some 

proteins to change the structure of DNA upon binding. Rh(phen)2phi3+ necessarily 

deforms every site to which it binds due to its intercalation. Proteins as well cause 

changes in the B-form structure upon binding. For example, in the co-crystal27 of EcoRI 

with its recognition sequence, the Dickerson-Drew dodecamer, the sequence 5' TCG3' 

shows a kink which increases the phosphate-phosphate distance between nucleotides Cg 

and G10, and of particular interest, the propeller twist of the C3 and G 10 steps. 

Specifically, C3 adopts an unusual angle. This structure is not observable in the DNA 

crystal lacking the protein, but as described above, a similar kink may be apparent in 

solution in the absence of proteinb and may influence binding both by the protein and 

Fth(phen)2phi3+. The co-crystal30 of the met repressor-operator complex shows that the 

central CG step exhibits a conformation altered from the B-form; changes in this step 

affect the binding affinity of the met repressor31. It is interesting that in this case and in 

that of EcoRI, Rh(phen)2phi3+ appears to be cleaving at sites whose structures are 

perturbed by protein binding. It is possible then that propeller twisting could be in part 

responsible for mediating post-binding alterations of DNA structure. 

More generally, there are similarities between the actual sequences recognized by 

Rh(~hen)~phi3+ and those recognized by proteins. One site which is cleaved very 

strongly by A-Rh(phen)2phi3+, which is not a 5'-Y YRN-3' step is the 5'-ACgGgT-3' of the 

CG oligonucleotide. This sequence appears to be particularly prevalent in transcription 

factor binding sites. These include, for example, the ATF promoter32. 5'-ACGT-3' is 

also part of the recognition sequence for the rnet repressor31. Another group of sites are 

the recognition sequences for the TFIIIA family of zinc fingers. A recent crystal 

structure of five-finger GLI with a 21-mer33 shows two fingers which are bound most 

closely in the opened major groove containing 5'-CCAC-3', a sequence also contained in 



the NarI dodecarner, and which is recognized by Rh(phen)2phi3+. The general 

correspondence of cleavage sites with protein recognition sites may reflect the 

importance of an open major groove for binding by a family of proteins34. A structure 

which is open in the major groove may serve as a landmark for the binding of proteins 

and small molecules alike. This correlation of sites recognized by Rh(phen)2phi3+ with 

protein binding is particularly striking in the case of 5s R N A ~ ~ .  

A related question is whether Rh(~hen)~phi3f is recognizing sequence-dependent 

structure or sequence-dependent deformability. The fact that correlations have been 

found between cleavage and structures which have been crystallized without metal 

complex present offers support to the notion that the structure which is present in the 

DNA before binding by the metal complex correlates well with the strength of the metal 

complex-DNA interaction after binding. The enantioselective discrimination at these 

sites also suggests structural recognition as a predominant signal. Indeed, the strong 

correlation found between cleavage at sites with a large differential propeller twist rather 

than, for example, at the ends of the oligonucleotide helix, irrespective of sequence, 

suggests that transient openings in the helix are insufficient for site-specific cleavage. 

Nonetheless, just as with DNA-protein binding, the recognition of sequence-dependent 

structure and of sequence-dependent deformability are difficult to unravel. Here, too, the 

deformability of a particular sequence toward a more opened propeller-twisted state may 

be one feature of site recognition. 

2.5, Conclusions 

Therefore, in direct comparisons of cleavage by Rl1(phen)~ph3+ with different, 

crystallographically characterized oligonucleotides, we have determined factors which 

govern sequence-selective recognition by Rh(~hen)~phi3+. Both binding and reaction at 

sites are governed by considerations of shape and symmetry. In particular, 

enantioselective cleavage favored by the A-isomer is governed locally by the opening of 
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the site in the major groove. The change in base pair propeller twisting of the site 

correlates most closely with recognition by A-~h(phen) 2phi3+. Hence, these results 

provide support for site recognition which depends upon DNA propeller twisting in 

solution. Therefore, these results indicate that Rh(phen)2phi3+ may be uniquely and 

powerfully applied as a chemical probe for sequence-dependent propeller twisting of 

DNA. 
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Chapter 3: 
Photocleavage by Rh(X) 2phi9 Complexes on a 

K-ras -Derived Oligonucleotide and Mutants 

Possessing Mispaired Bases: Sensitivity to Local 

Structural Deformations. 

3.1. Introduction 

The pairing of noncomplementary bases within a DNA duplex has important 

biological consequences. Such mispairing results from the dearnination of cytosine, 

DNA replication errors, and genetic recombination. Mismatches in DNA lead to 

transitions and transversions of DNA sequence in the daughter molecules upon DNA 

replication. This altered genetic material serves as a template for the formation of mutant 

proteins, potentially resulting in oncogenesis in eukaryotic organisms. Mechanisms of 

repair have evolved in order to reduce the frequency of DNA mismatches, and have been 

identified in both prokaryotes and eukaryotesl. How DNA structure and dynamics 

influence repair efficiency are areas which are as yet not well understood. 

In order to determine the fundamental basis for DNA repair, many detailed 

structural studies have been performed on short oligonucleotides containing one or more 

mispairs. However, these mismatched base pairs show a great deal of structural variation, 

depending upon a number of factors, including sequence context and the crystal or 

solution environment. For example, the GA mismatch adopts a range of conformations 

with respect to the rotation of each base about the glycosidic bond. For example, as 

determined by NMR, the GA mismatch adopts a G(anti)-A(anti) conformation at neutral 

pH; this is the same conformation which is found in correctly paired DNA. However, at 

lower pH in solution, the G(syn)-A(mti) structure is observed. Crystal structures have 

shown all three possibilities: G(mti)-A(unti), G(syn)-A(mti), and G(mti)-A(syn). It 

should be noted that the G(mti)-A(anti) structure has only been observed 



crystallographically for an oligonucleotide containing two adjacent GA mispairs2. This 

example, and others where two mismatches occur within 12 base pairs or less, are 

unlikely to have a high level of occurrence in biological systems. 

One characterized DNA structure that has biological relevance is that of the ras 

oncogene, which is often found in human cancer. This gene has been highly conserved 

through evolution, and encodes the protein p2 1. The ras gene contains a mutation hot 

spot in codon 12; if residue 12 of p21 is changed from a glycine to any other amino acid 

except proline, an activated protein results3. For example, an AG mismatch in position 

34 of the K-ras gene leads to a W T - >  TGT transversion, found in human colon cancer4. 

Therefore, only one mismatched base pair can have a deleterious effect. This particular 

mismatch is poorly repaired, for reasons which are as yet unknown. An oligonucleotide 

containing the region of the ras gene from position 29 to 39, with an AG mismatch at 

position 34, has been characterized by NMR spectroscopy5 and molecular dynamicsd. 

Another method of investigating such issues as mismatch-induced alterations in 

DNA structure, and how structural variations may effect recognition, entails the 

development and use of probes of nucleic acid solution structure. The transition metal 

complex ~ h ( ~ h e n ) ~ p h i 3 +  recognizes nucleic acid structural features through intercalative 

binding and shape-selection. The racemic complex has been applied towards an 

understanding of RNA tertiary structure, and the effects of mutations upon this tertiary 

structure'. Additionally, the enantiomers of this molecule have been utilized to examine 

the sequence-dependent structure of double helical D N A ~ .  Thus ~ h ( ~ h e n ) ~ p h i 3 +  is 

sensitive to such features of nucleic acid structure as stacking and disposition of the 

bases. It has also been demonstrated, with the closely related metal complexes 

~h(bpy)  2phi% and Rh(phi) 2bpy3+, that shape-selection may be further modulated by 

appending hydrophobic groups onto the ancillary ligands9. This chapter concerns the 

synthesis of the complex ~ h ( T M ~ ) ~ p h i 3 +  (TMP = 3,4,7,8-tetramethyl-phenanthroline), 



Figure 3.1. Structures of rhodium complexes utilized to probe DNA mismatches . 

~h(~hen)~ph i3+  (top) and RhpMP)2phi3+ (center) were used to probe the structure of 

oligonucleotides containing AG and GT mismatches. Rh(dmbpy)2phi3+ (bottom) was 

used as a comparison to these two molecules in photocleavage on a long DNA fragment. 





and its application to the study of DNA mismatches in solution. Metal complexes used in 

this chapter are shown in Figure 3.1. 

Three oligonucleotides corresponding to the K- ras gene were probed with 

Rh(~hen)~~hi3+ and Rh(TMP)2phi3+. These include a portion of the protooncogene, a 

mutant containing a AG mismatch, and another mutant containing a TG mismatch. For 

the purposes of this study, they will be referred to as K-rus CG, K-rus AG, and K-ras TG 

respectively. The sequences are as follows: 

3.2. Experimental 

3.2.1. Synthesis of Rl~(TMp)~phi 3+ 

Materials and Instrumentation. The starting materials for the synthesis of 

R h ( T I ~ l P ) ~ ~ h i 9  were commercially obtained as follows. RhC13 (42.5% Rh) was from 

Aesar Johnson Matthey, (Seabrook, NH); 3,4,7,8- 1,lO-tetramethyl phenanthroline 

(TMP), and 9,lO-diaminophenanthrene (DAP), and Sephadex resin were from Aldrich 

(Milwaukee, WI). Absorption spectra were recorded on a Cary 219 spectrophotometer, 

and NMR spectra were recorded on a GE-300 MHz spectrometer. 

Synthesis, Purification, and Characterization of [Rh(TMP)2phi]C13. This metal 

complex was synthesized using a different methodology than those described previously 

for ~ h ( X ) ~ ~ h i 3 +  compIexes, where X= an aromatic ligand. The method used here is 

closer to that described for the synthesis of [Rh(NH3)4phi]C13 10. Specifically, 0.39 

mmoles of RhC13 was dissolved in 3 mL water; this solution was degassed and put under 
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a nitrogen atmosphere. Next 0.39 mmoles DAP was added in a solid form. This solution 

was refluxed with a condenser at 100°C for 1 hour. The reaction was then cooled to room 

temperature, and 20 mL of degassed DMF was transferred with a nitrogen-flushed 

airtight syringe. The reaction was then heated under reflux to 100°C for 5 minutes, and 

cooled to room temperature again. The reaction flask was then placed in liquid nitrogen, 

until the solid was completely frozen. Solid TMP (0.78 mmoles) was next added to the 

frozen solution; the reaction was degassed. This reaction mixture was brought up to 

room temperature, and then heated to 120-125°C for 2.5 hours. After cooling the 

reaction to room temperature, 100 mL water and 220 mL ethanol were added. The 

solution was stirred in the dark for 2-3 days, to allow for the air oxidation from 

coordinated DAP to coordinated phi. The complex was subsequently purified by use of 

the cation exchange resin Sephadex CM C-25. A bright orange band is eluted at 0.5 M 

NaC1. Salt was removed by extraction first with ethanol and then methylene chloride. 

mhmP)2phi]C13 was characterized by NMR, uv-visible absorption, and mass 

spectrometry. As described previously for other Rh(X)2phi complexes, the NMR 

spectrum of this complex is sensitive to pH11. The addition of trifluoroacetic acid fumes 

sharpens the entire spectrum and improves the peak resolution considerably. The NMR 

and uv-visible spectra are shown in Figure 3.2. The TFA treated NMR in D20 showed 

the following shifts in ppm: 2.25 (s), 2.6 (s), 2.85 (s), 2.95 (s), 7.45 (s), 7.55 (t), 7.85 (t), 

8.2 (d), 8.3 (d), 8.5 (multiplet), 8.6 (s). UV visible absorption spectra in water show 

maxima at 282nm, 312nm, 336nm, and 377nm. FAB Mass Spec ion mass: 816, 

[Rh(TMP) 2phi+C1]+; 780, [ ~ ( T M P )  2phi2+-HJ +; 6 10, [Rh(TMP)2+C1]+ ; 575, 

[Rh(TMP)iJ+; 545, [Rh(TMP)(phi)]+; 339, [Rh(TMP)]+; 236, TMP. 

Resolution of ~ i - R h ( T M P ) ~ ~ h i 3 +  : The A-isomer of Rl~(T 'P)~phi?+  was resolved by 

cation exchange chromatography with a chiral eluent, as described 12. 



Figure 3.2. Characterization of [R~(TMP) 2phiZ"-]C13. (first panel) NMR spectrum of 

Rh('I3~lP)~~hiZ"- in D20. Enlargement of the aromatic region is shown below. (second 

panel) Uv-visible absorption spectrum of Rh(TI~lP)~phi3+ in H20. 
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3.2.2. Photocleavage Experiments 

Materials. Oligonucleotides were synthesized via the phosphoramidite methodl3, 

using 1.0 pM columns on an ABI 39 1 DNA-RNA synthesizer. A reversed- phase, C 18 

Dynamax column was used on a Waters HPLC for the purification of DNA. Labelling 

reactions were done with ~ 3 2 ~ - A T P  (NEN) and polynucleotide kinase. Labelled 

oligonucleotides were purified by Nensorb columns, and stored dry at 4OC. For each of 

the three oligonucleotides, equimolar concentrations of each strand were heated to 90°C 

and cooled over several hours to allow proper annealing to occur. Rh(phen)2phi3+ was 

synthesized as previously described 14. Enantiomers of this complex were kindly 

donated 15. Quantitation of metal complex and oligonucleotide concentrations was 

accomplished using a CARY 219 spectrometer. Rh(phen)2phi% concentration was based 

on ~(362) = 19,400 M-1 crn-1 at pH=7.0. The same extinction was used in calculating 

concentrations of ~h(TMP)~phi3+ and Rh(dmbpy) 2phi3+. Rh(dmbpy)2phi3+ and other 

&(X) 2phi3+ complexes have extinction coefficients which differ from R h ( ~ h e n ) ~ ~ h i %  

by less than 10% 11. Extinction coefficients were calculated for each oligonucleotide 

taking base composition into consideration. 

Photocleavage Reactions on 11 mer Oligonucleotides. Reactions contained 

480pM nucleotides, 50mM sodium cacodylate buffer, pH 7.0, and 25pM rhodium 

complex, and were irradiated at 313 nm with a l000W Hg-Xe lamp. Irradiation times 

were typically 2 minutes. After photocleavage, an aliquot of each reaction mixture was 

taken and dried in vacuo. These aliquots, along with Maxam-Gilbert sequencing 

reactions16 and controls were subsequently taken up in a NaOH- forrnamide dye, heated 

to 90°C for 3 minutes, chilled on ice for 1 minute, and loaded on a 20% polyacrylamide 

gel which was 8.3 M in urea . Gels were eluted about 4 hours at 1600V. Upon 

completion, gels were wrapped and exposed to a phosphorimaging plate for 12 hours. 

These plates were scanned on a Molecular Dynamics Phosphorimager. 



8 1 

Photocleavage Reactions on *EcoRI- PvdIfragment 180mer Fragment from 

pUC18: The conditions for the cleavage experiment were prepared as follows : 50mM 

sodium cacodylate buffer at pH 7.0,40pM bp calf thymus DNA, and lpM and 5pM 

R~(TMP) 2phi?+, ~ h ( d m b ~ ~ ) ~ ~ h i 3 +  or Rh(phen)2phi3+. Irradiations were at 3 13nm for 2 

minutes. Samples were twice precipitated with ethanol and 7.4 M ammonium acetate, 

rinsed with 80% ethanol and dried. Loading was the same as described above for the 

oligonucleotides. Samples were run on an 8% denaturing polyacrylamide gel. 

33. Results 

3.3.1. Photocleavage by Rh(phen) zphi*, Rh(T.MP) 2phiS, and Rh(phen)2phiS on 

a Long DNA Fragment. 

In order to characterize the recognition properties by R ~ ( T M P ) ~ P ~ ~ ~ + ,  cleavage on 

DNA fragments not containing mismatches was examined, and compared to the known 

recognition of DNA by Rh(phen) 2phih and Rh(dmbpy) 2phi3+ (dmbpy = 5,5'-dimethyl- 

bipyridyl). Table 3.1 shows a comparison between racemic F & ( ~ ~ ~ ) ~ p h i 3 + ,  

~ h ( d m b ~ ~ ) ~ ~ h i 3 + ,  and Rh(~hen)~phi3+. Tnterestingly, there seems to be a closer 

similarity between photocleavage by ~ h ( ~ h e n ) ~ p h i S  and FU~(dmbp~)~phiS than between 

~ h ( T M P ) ~ ~ h i h  and either of these complexes. Although there are not that many strong 

sites for ~ h ( ~ h e n ) ~ p h i ? +  on the fragment used, there are a few high affinity sites for 

R h ( ~ ~ ~ ) ~ ~ h i h .  These are characterized by either an A or a T to the 5' side of the 

cleavage site, in most cases. 

Notably, ~ h ( T k f P ) ~ ~ h i 3 +  is excluded from the site 5'-CCAG-3', which is cleaved 

strongly by l31(~hen)~~hi3+ and ~ h ( d m b ~ ~ ) ~ p h i h .  There are other 5'-CA-3' sites which 

are cleaved by ~ h ( T M ~ ) ~ ~ h i h ,  but in all cases they are flanked by either an A or T to the 

5' side. Van der Waals interactions between the methyl groups of the TMP ancillary 

ligand and the DNA thymine methyl groups may be stabilizing an otherwise less than 

favorable interaction at these 5'-AITCAN-3' sites. The same may also be said of reaction 
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Table 3.1. A Comparison of Cleavage Selectivity for Rh(TMP)2phi3+, 

Rh(dmbpy)zphi3+ and Rh(phen) 2phi3+ a 

site TMP TMP dmbpy dmbpy phen phen 

5' ->3' 5 pM 1 pM 5pM 1 pM 5pM 1 pM 

AGGA u + ++ + ++ + 
ACAG ++++ +++ +++ ++ +++ ++ 
ACAC ++ + +++ + +++ + 
TCAC ++ + +++ + +++ + 
ACAA ++ - + - + - 

AGCG +++ - - - - - 

TGTG ++ ++ + + - - 

TGTG +++ +++ + + - - 

TCCG +++ i - t - i  + - ++ + 
ACTC +++ ++ + ++ + + 
TGTG +++ +++ - + - - 

AGTG ++ ++++ + ++ - + 
CTGG +++ ++++ + +++ + +++ 
CCAG - - + + ++ ++ 

a Data from photocleavage performed as described in the experimental section. 
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by Rh(T'M~)~phi3+ at the 5'-RY-3' steps, which are not favored sites for reaction by 

~ h ( ~ h e n ) ~ ~ h i 3 + .  Stabilization of binding of Rh(~hi)> complexes by methyl-methyl 

interactions with DNA has also been previously observedga. 17. 

3.3.2. Photocleavage by R h ( ~ h e n ) ~ p h i ~  and Rh(TMP)2phi3+ on Oligonucleotides 

Containing a CG base pair, an AG Mismatch, and a TG Mismatch 

These photocleavage experiments utilized high oligonucleotide and high metal 

complex concentrations. For this reason, it appears that there is a small amount of 

nonspecific cleavage at every site in these three oligonucleotides by each of the 

complexes examined. This cleavage is clearly above the controls, as may be seen in the 

gels shown in Figure 3.3A-C. These weak cleavage sites will not be discussed unless 

there is a change in intensity of the site between different oligomers. Photocleavage 

results are summarized in Figure 3.3D. 

K-ras CG oligomer: As shown in the gel in Figure 3.3A, one strand of this 

correctly paired oligonucleotide is cleaved more strongly by several complexes than the 

other strand. Cleavage is strongest at C5 and C6. There are, however, differences in 

intensity of cleavage at these two positions by the different metal complexes examined. 

A-, A-, and racemic ~ h ( ~ h e n ) ~ p h i 3 +  each cleave these sites fairly evenly. However, 

racemic R h ( T M ~ ) ~ p h i h  cleaves more strongly at C5 and ~ - R h ( ~ ~ ~ ) ~ p h i 3 +  cleaves 

more strongly at C6. It appears likely then that it is A-Rh(TMP)2phi% cleaves C5 to a 

greater extent. 

A-Rh(~hen)~phih cleaves C3 on this same strand to a moderate extent. 

Additionally, TI6 is cleaved to a moderate extent by A-, A- and racemic ~h(phen)~phi3+. 

C15 is cleaved to a moderate extent by racemic Rh(TMP)2phi3+, but not by the A 

enantiomer of this complex. 

K-ras AG oligonucleotide: There are clear differences between the cleavage 

patterns on this oligonucleotide as compared with the K-ras CG oligomer. In the AG 



Figure 3.3. Images of gels showing photocleavage by R h ( ~ ) ~ ~ h i 3 +  complexes on a5'- 

end-labelled oligonucleotide and mutants containing mismatches. A. K-ras CG. B. K- 

ras AG. C. K-ras TG. Lanes 1 and 18, and 2 and 17 correspond to photocleavage by A- 

R~(TMP) 2phi?'+ and racemic R~(TMP) respectively. Lanes 3 and 16,4 and 15, 

and 5 and 14 correspond to photocleavage by racemic, A- and A-Rh(phe~~)~phi& 

respectively. Lanes 6 and 13 and 7 and 12 correspond to irradiation of DNA in the 

absence of metal complex and DNA in the absence of irradiation and metal complex, 

respectively. D. A histogram comparing photocleavage at each base by A- and A- 

~ h ( ~ h e n ) ~ ~ h i 3 + ,  and ~ - ~ h ( T M P ) ~ p h i 3 +  and racemic Rh(TMP) 2phi3+. 
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oligonucleotide, C6 is mutated to an A6. As may be observed in Figure 3.3B, the 

cleavage by each metal complex at this mutated base is weak. Cleavage at C5 has a slight 

enhancement of enantioselectivity. Cleavage on the other bases of this strand appears to 

remain the same as in K-ras CG. On the other strand of this oligonucleotide, G18, the 

guanine which is 3' to the mismatched guanine, is cleaved very strongly by A- 

~h(phen)~phi3+. The cleavage also appears to be highly enantioselective. Interestingly, 

in the correctly paired oligonucleotide, G18 is cleaved only weakly by A-Rh(~hen)~phi3+, 

or in fact, any of the other metal complexes. Therefore, A-Rh(~hen)~phi3+ is discerning a 

mismatch-induced structural change which specifically complements its right-handed 

chirality. 

For the correctly paired oligonucleotide, cleavage at G18 corresponds to 

intercalation between GI8 and T19, as Rh(phen)2phi3+ has been shown to cleave with a 

5' asyrnmetry18. 5'-GGTG-3' would be expected to be a particularly poor recognition site 

for ~-Rh(phen)~~hi3+,  and may be understood in terms of a structure which is closed in 

the major groove. The low level of recognition in the correctly paired duplex is 

completely consistent with previously observationslg. However, for the K-ras GA, it is 

not absolutely certain that cleavage at G18 corresponds to binding at the G18-GI9 base 

step, Another possibility would be that the cleavage at G18 is a result of intercalation 

between the 5'-G 17G 18-3' base step, and that the A6G17 mismatch (andfor intercalation 

at the base step containing the mismatch) is disrupting the structure of DNA to such an 

extent that a hydrogen atom is abstracted from the sugar belonging to the 3' base instead 

of the 5' base. The hydrogen atom abstracted could be the C3'H, as the photoproduct runs 

with the same electrophoretic mobility as the Maxam-Gilbert band, which is 

representative of a 3'-phosphate end. However, this mechanism would have to be 

examined further before any definitive conclusions could be drawn. 

Rh(TMP)2phi% also shows some interesting differences in cleavage on K- ras 

CG and K- ras AG. The moderate cleavage which is attributed to A - R ~ ( T M P ) ~ ~ ~ ~ ~ +  on 
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C15 in the correctly paired duplex, becomes a strong cleavage site in the oligonucleotide 

containing the AG mispair. Interestingly, C15 is two bases away from the mispair. 

Therefore, if ~ h ( T M ~ ) ~ ~ h i 3 +  is intercalating between C15 and T16, then A- 

~ h ( T . M P ) ~ ~ h i h  is sensing the effect of having a mismatched base pair as aflank. This 

result, and the strong cleavage by ~-Rh(phen)~~hi3+ at G18, show that the structural 

change caused by the AG mismatch extends at least one base pair in each direction. This 

observation correlates well with what has been observed by NMR for this and other 

oligonucleotides containing mismatches5~20. 

Another interesting observation is that both racemic and A-Rh(TMP) 2phi3+ 

appear to cleave more strongly at G17 when it is part of a AG mismatch than when it is 

correctly paired. Although this effect is modest, the cleavage by Rl1(TMP)~phi3+ at 

A6-GI7 is stronger than that by ~ h ( p h e n ) ~ ~ h i 3 + .  Additionally, the enantiomers of this 

complex show differences in the photoproducts observed. Cleavage by the racemic 

complex appears to have a band running between G17 and GI8 phosphates. This band is 

labelled with an arrow in Figure 3.3B. The A enantiomer of this complex shows no such 

band, but rather an enhanced cleavage band which migrates as a phosphate end. 

Therefore this photoproduct can be attributed to cleavage by the A-isomer. This band 

could likely correspond to the well-characterized 3'-phosphoglycaldehyde terminusR. It 

is not unexpected that there might be some differences in the photoproducts observed 

between the enantiomers of this complex. Differences in reactivity between enantiomers 

has been previously observed with Rh(phen)2phi3+ 8b. 

K- ras TG Oligonucleotide: The photocleavage on this oligonucleotide possesses 

some characteristics in common with both K-ras AG and K-ras CG, and is shown in 

Figure 3.3C. Like the other oligonucleotides, cleavage by most of the complexes at C5 of 

K-ras TG appears to be strong; therefore the cleavage at this position 5' to the mismatch 

remains generally unaffected by either base substitution. However, it does appear that the 

enantioselectivity in cleavage by Rh(phen)2phi3+ is enhanced at this site. Additionally, 
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for racemic R h ( ~ ~ ~ ) ~ p h i ~  and ~ -Rh(TMp)~~h i3+  the extent of cleavage appears to be 

almost as strong at T6 in the K-ras TG oligonucleotide as it is for the C6 in K- ras CG. In 

contrast, the cleavage by these complexes at A6 of the AG mismatch, was much 

diminished. 

The increased cleavage at certain positions on the other strand that resulted from 

the AG mismatch was also observed for the TG mismatch-containing oligonucleotide, but 

to a lesser extent. Specifically, enantioselective cleavage by A-Rh(~hen)~phi3+ was 

observed at G18, which is 3' to the mismatched base pair at a level which was 

intermediate to that observed for K-ras CG and K-ras AG. Additionally, the increase in 

cleavage at C15 by racemic (likely A-)Rh(TMP) 2phi3+ is observed, but again to a lesser 

extent than when the AG mismatch is present. Finally, increased cleavage by A- 

F & ( T M P ) ~ ~ ~ ~ ~ +  was observed at T6-G17, the mismatched base. The effect here, although 

subtle, is about the same as that observed for the A6-GI7 mismatch. 

3.4. Discussion 

3.4.1. ~ h ( X ) ~ p h i ~  Complexes Recognize DNA Structural Mutations 

The goal of these studies has been to examine the structure of DNA containing 

mismatched base pairs, rather than specifically targeting a particular mismatch. Clearly, 

the photocleavage by Rh(phen)2phi3+ and ~ h ( T ~ ~ ) ~ p h i h  is sensitive to the alterations 

in local DNA structure which result from insertion of a mismatched base pair into a 

double helical duplex. In general, the oligonucleotide containing the AG mismatch 

shows greater differences in cleavage as compared with K-ras CG than does the TG 

mismatch mutant. The complexes showing the greatest enhancements in photocleavage 

at a particular base in comparison to the correctly paired 1 lmer were ~ - R h ( ~ h e n ) ~ ~ h i 3 +  

and racemic ~ h ( ~ ~ ~ ) ~ ~ h i 3 + .  ~ - ~ h ( ~ h e n ) ~ ~ h i 3 +  shows a strong and enantioselective 

cleavage at the base 3' to the AG mismatch of K-ras AG. Racemic (likely A-) shows an 

enhancement in cleavage at C15, which is two bases 5' to the AG mismatch. These same 
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enhancements were also observed with K- ras TG, but to a lesser degree. Conversely, the 

loss of cleavage by each metal complex studied at the mismatched base pair was also 

greater for A6 of the AG mismatch than it was for T6 of the TG mismatch. It may be 

qualitatively concluded, then, that the overall structure of K-ras AG is more perturbed 

than is the overall structure of K-ras TG, and that the structural perturbations occur in 

both the 5' and 3' directions. 

How does ~ h ( ~ ~ P ) ~ p h i 3 +  recognize the presence of a mismatched base pair two 

bases away? It is entirely possible that the presence of the mismatches changes the 

positioning of T16, which is also to the 5' side of the mismatch. In this scenario, binding 

by R h ( ~ ~ P ) ~ p h i 3 +  would be facilitated by increased accessibility of the bases for 

stacking and/or increased interaction with the methyl group of T16. 

~ h ( ~ h e n ) ~ p h i 3 +  and R h ( ~ ~ P ) ~ ~ h i 3 +  exhibit patterns of cleavage similar to each 

other on the oligonucleotides examined, particularly K-ras CG, as illustrated in Figure 

3.3D. However. one difference between these complexes is that the latter cleaves the 

bases comprising the mismatches to a greater extent. Interestingly, NMR studies of K- 

ras AG5 demonstrate that both bases of the mismatch, A6 and G17, are displaced towards 

the minor groove. Perhaps, then, R h ( ~ ~ ~ ) ~ p h i 3 +  supplements a less than optimal 

stacking interaction with van der Waals interactions between its methyl groups and the 

DNA major groove. A similar explanation can be proffered in the case of the TG 

mismatch. Crystal structures21 and molecular dynamics studies22 show that the thymine 

of TG mismatches is displaced towards the major groove. This displacement should 

favor stacking by these complexes, and is also consistent with the greater intensity of 

cleavage on T6 of K-ras TG by both complexes as compared with A6 of K-ras AG. 

It should be noted that a crystal structure of a closely related sequence with an AG 

mismatch is available23. The sequence of this structure is 5'-CRCAAGCTGGCG-3', with 

the section in italics indicating the region in common with K-ras AG, and with the 

mismatch in bold. R is a guanine in the crystal structure and an adenine in K-ras. The 
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AG mismatch in this structure exhibits an A(syn)- G{anti) conformation, which differs 

Erom the A(anti)-G(anti) conformation elucidated by NMR for K-ras A G ~ .  The 

differences in mismatch conformation and flanking sequence make it difficult to make 

direct comparisons between photocleavage and crystallographic parameters, as was done 

in Chapter 2. However, some observations may be made. This crystal structure exhibits 

high propeller twisting in general. Interestingly, the guanine 3' to the mispaired guanine, 

which is equivalent to GI8 in K-ras, shows quite different values for propeller twisting 

(0" and -20") on the two sides of the asymmetrical crystal. Additionally, the roll angle of 

the 5'-GC-3' step is -3" on one side and -10" on the other side. Perhaps the strong 

cleavage by A-~h(~hen)~phi3+ at this base can be explained by the flexibility of this 

structure. The helical twist values at this site (35" and 38") are not, however, out of the 

ordinary, and do not suffice to explain the high enantioselectivity in cleavage at G18. 

As observed with the enantiomers of Rh(phen)2phi3+, the enantiomers of 

~ h ( T M P ) ~ ~ h i 3 +  also show differences in the photoproducts which are observed. Large 

differences in photocleavage between racemic Rh(TM.P)2phi3+ and A - R ~ ( T M P ) ~ P ~ ~ ~ +  

may be attributed to the A-isomer. It is particularly noteworthy that the largest difference 

between the enantiomers of this complex in the observed photoproducts occurs at G17 of 

the AG mismatch. As observed with Rh(~hen)~phi3+, the A-enantiomer produces 

relatively more of the 3'-phosphate end whereas the A enantiomer produces relatively 

less. Therefore, it may be inferred that the structure immediately surrounding the AG 

mismatch better complements the shape of the right-handed isomer of Rh(TMP)2phi3+. 

The enantioselective cleavage at neighboring GI8 by Rh(~hen)~~hi3+ also supports the 

right-handed helicity of the DNA structure in the vicinity of the mismatch. 

Although similar in structure, ~h(phen)~phi3+ and R h ( ~ ~ l ? ) ~ ~ h i 3 +  do display 

differences in recognition of properly matched DNA in the context of long DNA strands. 

On the fragment studied, R h ( ~ ~ ~ ) ~ p h i 3 +  shows a greater extent of cleavage than does 

~ h ( ~ h e n ) ~ ~ h i 3 +  at a number of sites, but a reduction at another site. These observations 
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indicate that having several methyl groups can increase affinity for sites not recognized 

by the parent complex; however, these same methyl groups also inhibit binding at other 

sites due to steric hindrance. A future avenue of investigation would involve examining 

photocleavage by Rl1(TMP)~phi3+ on mismatches in the context of a long strand of DNA. 

Under conditions of lower concentration, it is possible that Rh(TMP)2phi3+ could 

preferentially recognize a mismatch in a particular sequence context. 

3.4.2. Implications for DNA Repair 

Little is understood about the structural and dynamic basis for DNA mismatch 

repair. One area which has been explored has involved examining the thermodynamic 

stability of oligonucleotide duplexes containing various mismatches, in an attempt to 

make correlations between stability of structure and repair efficiency. This type of study 

was performed24 on oligonucleotides in a similar 5'-YXR-3' context as the K-ras 

oligonucleotides, where X is the mismatched base. It was demonstrated that, in broad 

terms, the higher the enthalpy of melting of a duplex containing a particular mismatch, 

the more efficiently the mismatch is repaired. Thus the overall trend for both stability 

and suitability as a repair substrate is Y .R > R-R > Y.Y. However, duplexes containing 

T - G  and A.G mispairs have nearly identical melting temperatures, and additionally have 

nearly identical enthalpy and entropy of melting, as derived from base stack theory. The 

stability of single base mismatches has also been examined in the context of long DNA 

strands (>300bp) by temperature gradient gel electrophoresis25. For mismatches present 

in long DNA, it was discovered that, in all nearest neighbor sequence contexts, the TG 

and the AG mispairs were amongst the most stable. Therefore, the thermodynamic 

investigations of long DNA and oligonucleotides are completely consistent with one 

another. However, it is also known that TG mispairs are well repaired, whereas AG 

mispairs are poorly repaired26. Thus thermodynamic considerations in isolation can not 
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account for the differential repair of the TG and AG mismatches. There is likely to be an 

important structural aspect to mismatch repair as well. 

GT mismatches and GA mismatches are not readily distinguished 

thermodynamically as both are structurally stable and can be incorporated within B form 

double helical DNA. It is interesting that the structural perturbations caused by 

mismatches in this context are often described as being slight. In the photocleavage 

studies described here, we see that seemingly small changes in structure can effect 

consequential diferences in recognition. Metal complex probes of nucleic acid structure 

have elucidated differences in local DNA structure and have revealed that the GT 

mismatch has a much less destabilizing influence overall on DNA local structure than 

does the GA mismatch examined in the identical sequence context and under identical 

conditions. One explanation for the poor repair of AG mismatches invokes poor 

recognition by repair enzymes of the hydrogen bonding functionalities of this mispair. 

The studies described here show that metal complexes which do not rely upon hydrogen 

bonding for recognition are clearly able to recognize the altered structure in the vicinity 

of the mismatched bases via a shape selective mechanism. Therefore there remain two 

possible explanations for the poor repair of the AG mismatch. One possibility is that the 

AG mismatch lacks hydrogen bonding functionalities in the positions necessary for 

recognition by repair enzymes. Another possibility is that the type of mismatch-induced 

structural changes detected by metal complex intercalators serves to decrease the affinity 

of the repair enzyme for the sequence in the vicinity of the mismatch. The application of 

metal complex probes with and without hydrogen bonding functionalities to the study of 

DNA mismatches could help in differentiating the two possibilities. 



References and Footnotes 

1. Modrich, P. Ann. Rev. Genet. 1991,25,229-253. 

2. Privk, G.G. ; Heinemann, U. ; Chandrasegaran, S.; Kan, L.-S.; Kopka, M.L. ; 

Dickerson, R.E. Science 1987,238,498-238. 

3. (a) de Vos, A.M.; Tong, L.; Milburn, M.V.; Matias, P.M.; Jancarik, J.; Noguchi, 

S.; Nishirnura, S.; Miura, K.; Ohtsuka, E.; Kim, S.-H. Science 1988,239,888- 

893. (b) Tong, L.; de Vos, A.M.; Milburn, M.V.; Kim, S.-H. J. Mol. Biol. 217, 

503-516, 

4. Nishimura, S.; Sekija, T. Biochem. J. 1987,243,313-327. 

5. (a) Carbonnaux, C; van der Marel, G.A.; van Boom, J.H.; Guschlbauer, W.; 

Fazakerley, G.V. Biochemistry 1991,30,5549-5458. (b) Boulard, Y.; Cognet, 

J.A.H.; Gabarro-Arpa, J.; Le Bret, M.; Carbonnaux, C. ; Fazakerley, G.V. J. Mol. 

Biol. 1995,246, 194-208. 

6. Cognet, J.A.H.; Boulard, Y.; Fazakerley, G.V. J. Mol. Biol. 1995,246,209-226. 

7. (a) Chow, C.S.; Behlen, L.S.; Uhlenbeck, 0.; Barton J.K. Biochemistry 1992,31, 

972-982. (b) Chow, C.S.; Hartmann, K.M.; Rawlings, S.L.; Huber, P.W.; Barton, 

J.K. Biochemistry 1992,31,3534-3542. 

8. (a) Pyle, A.M.; Morii, T.; Barton, J.K. J. Am. Chem Soc. 1990,112,9432-9434. 

(b) Campisi, D.; Morii, T.; Barton, J.K. Biochemistry 1994,33,4130-4139. 

9. (a) Sitlani, A.; Barton, J.K. Biochemistry 1994,33, 12100-12108. (b) Sitlani, A.; 

Dupureur, C.M.; Barton, J.K. J. Am. Chem. Soc. 1993,115,12589-12590. 

(c) Pyle, A.M., Ph.D. Thesis, Columbia University, New York, 1989. 

10. Krotz, A.H.; Kuo, L.Y.; Barton, J.K. Inorg. Chem. 1993,32,5963-5974. 

11. Sitlani, A., Ph.D. thesis, California Institute of Technology, Pasadena, 1993. 

12. David, S.D.; Barton, J.K. J. Am. Chem Soc. 1993,115, 2984-2985. 



Carruthers, M.H.; Barone, A.D.; Beaucage, S.L.; Dodds, D.R.; Fisher, E.F.; Mc 

Bride, L.J.; Matteucci, M.; Stabinsky, 2.; Tang, J.-Y. Methods Enzymol. 1987, 

154,287-313. 

Pyle, A.M.; Chiang, M.; Barton, J.K. Inorg. Chem. 1990,29,4487-4495. 

Enantiomers of Rh(~hen)~phi3+ used in these experiments were provided by Drs. 

Cynthia Dupureur and Kevin Kingsbury. Racemic Rh(drnbp~)~phi3+ was donated 

by Ayesha Sitlani. 

Maniatis, T.; Fritsch, E.F.; Sarnbrook, J. in Molecular Cloning; Cold Spring 

Harbor Laboratory Press: 1982 . 

Krotz, A.H.; Hudson, B.P.; Barton, J.K. J. Am. Chem. Soc. 1993,115,12577- 

12578. 

Sitlani, A.; Long, E.C.; Pyle, A.M.; Barton, J.K. J. Am. Chem Soc. 1992,114, 

2303-23 12. 

Chapter 2, this work. 

(a) Gao, X.; Patel, D.J. J. Am Chem. Soc. 1988,110,5 178-5 182. (b) Patel, D.J.; 

Kozolowski, S.A.; Ikura, S.; Itakura, K. Biochemistry 1984,23,3207-3217. 

Brown, T.; Kennard, 0.; Kneale, G.; Rabinovich, D. Nature 1985,315,604-606. 

Mitra, R.; Pettitt, B.M.; Ram6, G.L.; Blake, R.D. Nuc. Acids Res. 1993,21,6028- 

6037. 

Webster, G.; Sanderson, M.R.; Skelley, J.V.; Neidle, S.; Swann, P.F.; Li, B.F.; 

Tickle, I.J. Proc. Natl. Acad. Sci., USA 1990,87, 6693-6697. 

Werntges, H.; Steger, G.; Riesner, D.; Fritz, H.-J. Nuc. Acids Res. 1986,14,3773- 

3790. 

Ke, S.H.; Wartell, R.M. Nuc. Acids Res. 1993,21, 5137-5143. 



26. (a) Dohet, C.; Wagner, R.; Radman, M. Proc. Natl. Acad Sci,  USA 1985,82, 

503-505. (b) Krarner, B.; Kramer, W.; Fritz, H.-J. Cell 1984,38, 879-887. (c) Su, 

S.-S.; Lahue, R.S.; Au, K.G.; Modrich, P. J. Biol. Chem. 1988,263,6829-6835. 



Chapter 4: 

Shape-Selective Photocleavage of DNA Fragments 
by Rh(phen)zphiJ+ and Ru(TMP)32+ 

4.1. Introduction 

An interesting problem in DNA structure, and how this structure may influence 

recognition, involves examining the conformational variations which occur along 

biologically relevant sequences. Additionally, some unique conformational features are 

only detectable in DNA above a certain length. However, the length of DNA sequences 

with biological relevance may be outside the range which can be handled by some 

biophysical techniques. Therefore, in order to examine the structure of DNA in the context 

of long DNA strands, enzymatic and chemical probes are required. 

The Barton laboratory has developed transition metal complexes with useful 

properties as probes of nucleic acid solution structure. The two of the photoactive metal 

complexes which may be utilized in probing the structure of long DNA fragments are 

RU(TMP)~~+ and enantiomerically resolved ~ h ( ~ h e n ) ~ p h i ~ + .  The structures of these 

complexes are shown in Figure 4.1. Cleavage by RU(TMP)~~+ is a reporter of minor 

groove width, and cleaves preferentially at regions with an A form structure. On the other 

hand, ~ h ( ~ h e n ) ~ ~ h i ~ + ,  unlike most other chemical and enzymatic structural probes, is a 

probe of major groove structure. Specifically, ~h(phen)~phi3+ cleaves at sites which are 

opened in the major groove. The enantiomers of this complex additionally have distinct 

recognition properties which provide information concerning distinct local structural 

parameters in the major groove. Therefore ~h(phen)~phi3+ and RU(TMP)~~+ are 

complementary in the information they provide about DNA sequence-dependent structure. 

Thus these complexes have been exploited in mapping the structure of DNA sequences 

which contain protein binding sites, including the 5 s  FtNA genel. 

Two examples of DNA which may be biologically relevant are homopolymeric 



Figure 4.1. Structures of metal complexes used to examine DNA structure in the context 

of long fragments. (Top) The enantiomers of ~h(phen)~phi3+. (bottom) R U ( T M P ) ~ ~ ~ ~ ~ +  

and ~ u ( p h e n ) ~ ~ + .  
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stretches of guanines and adenines. Although long runs of guanines (>lo) are not typical 

of naturally occurring DNA, they are found approximately 11 times more often than would 

be predicted statistically2. Additionally, many binding sites for zinc frnger proteins are 

known to have one strand which is guanine-rich. The biological role for DNA containing 

A tracts is as yet uncertain, although it has been proposed to be important for the 

positioning of nucleosomes on DNA~.  Sequences containing An tracts in phase with the 

helical repeat of DNA have been found to have reduced electrophoretic mobility. This 

anomaly is due to DNA bending. One model of bent DNA is shown in Figure 4.2. One 

remarkable property about sequences containing A tracts is that even seemingly closely 

related sequences can show different macroscopic bending properties. The most striking 

examples are the (AAAAlTITCG)n and (TI3TAAAACG)n multimers, which were 

shown by electrophoretic mobility methods to have bent and straight structures 

respectively4. Although A tracts have been studied by a wide variety of biophysical and 

biochemical methods, the exact nature of their structure, and how they contribute to DNA 

bending is still a matter of some controversy5. 

In this chapter, both G-rich stretches and A-rich stretches in the context of long 

DNA strands are examined by ~h(phen)~ph i~+  enantiomers and RU(TMP)~~+. 

Specifically, one fragment of interest contains the sequence 5'-TATA(G)7TATA-3'. 

Photocleavage results by these complexes on this G stretch are consistent with a model for 

heteronomous DNA. Additionally, the (A4T4CG), and (T4A4 CG)n bent and nonbent 

multimers have been probed. Some structural features of these sequences will be 

discussed, and several models describing sequence-directed DNA bending will be 

considered. 

4.2. Experimental 

Materials. RU(TMP)~~+ and A- and ~ -~h(~hen)2ph i3+  were synthesized as 

described6. Restriction endonucleases HindIII and PvuII, terminal deoxynucleotidyl 



Figure 4.2. A model of a bent DNA structure. This model was derived from molecular 

mechanics. Figure from Reference 7. 
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transferase, and T4 polynucleotide kinase were from Boehringer Mannheim, competent 

cell line DH5a was purchased from BRL. a-32~-3'-dATP and Y-~~P-ATP were 

purchased from NEN. Oligonucleotides were synthesized on a Phannacia-LKB Gene 

Assembler, cyanoethyl amidites were from Pharmacia. Plasmid pUC18 derivatives 

containing (CGAAAA7TT)s or (CG'ITl''TAAAA)s were kindly provided by Prof. T. D. 

Tullius. 

Preparation of Labelled DNA fragments. A 18 base pair oligonucleotide insert, 5'- 

ATAT(C)7ATAT-3' and its complementary strand, and 5'-TATA(G)7TATA-3' were 

synthesized by standard automated methods, and purified by reverse phase C18 

chromatography. To clone the insert, the 18 base pair duplex was ligated in the presence of 

Sma I-cleaved vector p ~ ~ 1 8 . 8  E. coli (DH5a) was transformed with the ligation mixture 

and plated on ampicillin plates. The resulting plasmids bearing a single copy of the insert 

were isolated by a modification of standard Wine-lysis method. The nucleotides were 

numbered according to the parent plasmid pUC18, and the insert is positioned between the 

positions 436 and 437. Plasmid pJT18lC7 or IG7 DNA was digested with Hind 111, then 

3'-end-labelled with [ a - 3 2 ~ ] - 3 ' - d ~ ~ ~  by using terminal deoxytransferase according to the 

company procedure. A second enzymatic digest, with PVU 11, yielded a 3'-end-labelled 

fragment 246 bp in length, containing the 18 base pair insert. This restriction fragment was 

isolated by nondenaturing polyacrylamide gel electrophoresis, followed by an electric 

elution. The isolated fragment was ethanol precipitated, with a 0.3M final concentration of 

sodium acetate. Digestion of pJT18lC7 with Hind 111 and subsequent treatment with calf 

intestine phosphatase, Y - ~ ~ P - ~ A T P  and T4 polynucleotide kinase, then Pvu 11, yielded the 

5'-end-labelled 245-bp fragment. 5'- and 3'-end-32~-labelled fragments from the plasmid 

containing (CGAAAATI"IT)s or (CGTI"ITAAAA)5 insert were obtained as describe&. 

Photoreaction of 5'- and 3'-endlabelled DNA fragments with ~h(phen)~(~h i )J+.  

Samples for irradiation contained 32~-end-labelled fragment, 80 pM (nt) sonicated calf 

thymus DNA, and 25 mM sodium cacodylate buffer (pH 7.0). Samples prepared either 
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with or without 5 p.M metal complex in final concentration. Irradiation was accomplished 

with 1000 W Xe/Hg lamp equipped with a monochrometer, at 3 13 nrn for 40 seconds at 

ambient temperature. Subsequently, each reaction mixture was ethanol precipitated twice 

with 2.5 M ammonium acetate in final concentration, rinsed with 80% ethanol, and dried in 

vacuo. The resulting pellet was redissolved in 4 pL of 80% forrnamide/lO rnM NaOWl 

mM EDTA dye, heat denatured, chilled on ice, then loaded onto 8% denaturing 

polyacrylamide sequencing gel containing 8.3 M urea. Chemical sequencing markers10 

were coelectrophoresed in adjacent lanes to determine the position of the nicks generated by 

the metal complexes. Autoradiography of the gels was carried out on Kodak, X-Omat AR 

film, and autoradiograms were then scanned with an LKB 2202 Ultrascan laser 

densitometer, equipped with a GelScan XL software. 

Photoreaction of RU(TMP)~~+ and ~ u ( p h e n ) ~ ~ +  with 5'- and 3'- end labelled 

fragments. Fragments were endlabelled and isolated as described above. Samples 

contained final concentrations of 25mM sodium cacodylate buffer, 15 pM mthenium 

complex and lOOpM calf thymus DNA, for a nuc1eotide:meta.l ratio of 6: 1 in a total 

reaction volume of 20pL. Reactions and controls also contained 1.2 mM histidine, which 

is usually added to the reactions using RU(TMP)~~+. Histidine may serve as a solubilizing 

agent for this compound. Samples with and without ruthenium complex were irradiated 

by laser at 442nm, for 15 minutes. Ethanol precipitation was performed twice, as 

described above, and pellets rinsed with 80% ethanol, and dried. Subsequently the samples 

were treated with 1OOp.L of 1M piperidine, and heated to 90°C for 30 minutes, and 

lyophilized. In order to remove the piperidine before loading to the gel, samples were 

resuspended in 50p.L water and lyophilized twice more. Loading and autoradiography was 

the same as for the rhodium-reacted samples. Cleavage probabilities were determined 

from the results of the densitometric scan , comected for the differential base reactivity of 

singlet oxygen by subtraction of ~ u ( ~ h e n ) ~ ~ +  reactivity1 1. 
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One experimental difficulty involved spurious cleavage of DNA in the controls of 

the C7 and G7 plasmid experiments which were not exposed to metal complex or light. 

Four very dark bands appeared in this control, in the region of the insert, making it difficult 

to analyze the cleavage patterns in the reaction lanes. This happened only on the 3' end 

labelled strand with both plasmids, and more strongly when the run of C's was on the 3' 

side. It was finally concluded that it was either some endonucleolytic activity of the 

terminal deoxytransferase or a contaminant in it which was responsible for the DNA 

cleavagel2. 

4.3. Results and Discussion 

4.3.1. Cleavage on Restriction Fragments with C7aG7 Inserts 

The C7.G7 plasmid was probed with both ~h(phen)~phi3+ and RU('I'MP)~~+. An 

experiment utilizing racemic ~ h ( ~ h e n ) ~ ~ h i 3 +  at two different concentrations, and as a 

function of three different salt concentrations, is shown in Figure 4.3. For all lanes, it can 

be observed that Rh(~hen)~~hi3+ cleaves strongly on the C strand of the C7-G7insert, with 

the cleavage on the G7 strand very light by comparison. Additionally, at both metal 

complex concentrations (5m and 20ph4), it appears that salt lowers the overall intensity of 

the photocleavage. However, the relative intensities of cleavage at most sites stays the 

same. On the other hand, the site distribution of the C stretch does depend upon the 

concentration of Rh(phen)2phi3+ used. The cleavage in the C strand increases in intensity 

in the 5' to 3' direction for the lower concentration of metal complex, and in the 3' to 5' 

direction for the higher concentration of metal complex. This same concentration 

dependent cleavage pattern was also observed in the plasmid which had the insert oriented 

in the other direction. Perhaps the DNA conformation is somehow altered by the metal 

complex at high concentrations of ~h(~hen)~phi3+.  A plasmid with this insert was also 

examined by the enantiomers of ~h(~hen)~phi3+ (data not shown). The C stretch is 

cleaved well by both enantiomers of this complex. This low level of enantiomeric 



Figure 4.3. Autoradiogram showing cleavage by racemic Rh(phen)2phi3+ as a function of 

metal complex and salt concentrations, on 5'- and 3'-endlabelled fragments containing a 

C7.G7 insert. All samples were 25pM in sodium cacodylate buffer, pH=7.0. NaCl was 

added where noted. Lanes 1 and 20 and lanes 2 and 19 show DNA in the absence of metal 

and light and DNA irradiated in the absence of metal, respectively. Lanes 3 and 18 contain 

5pM Rh(phen)2phi3+; lanes 4 and 17 contain 20pM metal complex; lanes 5 and 16 contain 

5 pM metal complex and 1.25 mM NaC1; lanes 6 and 15 contain 20pM Rh(phen)2phi3+ 

and 1.25mM NaC1; lanes 7 and 14 contain 5 pM metal complex and 2.50mM NaC1; lanes 

8 and 13 contain 20pM ~h(phen)~ph.3+ and 2.5mM NaC1. Lanes 9 and 12 and lanes 10 

and 11 are Maxam Gilbert G+A and C+T reactions, respectively. 
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discrimination is consistent with results which have been reported earlier13, and is to be 

expected since these 5'-YY-3' steps do not have an axis of dyad symmetry. 

The C7G7 insert-containing fragrnent was also cleaved by RU(TIMP)~~+ and 

~u(~hen)32+. Since the reaction mechanism of both these metal compounds involves a 

singlet oxygen mediated attack at guanines, ~ u ( p h e n ) ~ ~ +  is used as a reaction control. As 

described in Chapter 1, sites at which there is relative more cleavage by ~u(TMl?)~2+, as 

compared with Ru(phen)32+, are likely to possess an A form structure. The differences 

between these complexes are shown in Figure 4.4. It can be seen that the cleavage for the 

C7 strand is higher for RU(TMP)~~+ than for Ru(phen)32+. However, in contrast to 

Rh(phen)2phi3+, RU(TMP)~~+ cleaves the stretch relatively evenly. On the G-rich strand 

the ~ u ( p h e n ) ~ ~ +  cut slightly more than the RU(TMP)~~+. 

4.3.2. Photocleavage On C7G7 Stretches Is Consistent with a Heteronomous 

DNA Structure 

It is interesting that for the homopolymeric stretch of the C7-G7 plasmid insert, the 

pyrimidine strand is strongly cleaved by ~h(~hen)~(phi)3+, and preferentially by 

RU(TMP)~~+ over ~ u ( ~ h e n ) ~ ~ + .  This combination of results is somewhat unexpected in 

that these metal complexes might appear to target different types of nucleic acid structures. 

~h(phen)~~hi3+,  which binds by intercalation in an open major groove, does not recognize 

the narrow and deep major groove of A form double helices14. On the other hand, 

RU(TMP)~~+ engages in a surface bound interaction in the minor groove, and as such can 

sense differences in groove width along the helix, favoring the wider A form. A structure 

that could be consistent with patterns of cleavage by both metal complexes is one in which 

the major groove is wide and the minor groove is also wide. One example of this type of 

DNA structure occurs when the two strands have different conformations. The term for 

this kind of structure is called heteronomous DNA, inferred from fiber diffraction studies 

of p l y  dA.poly dT 15, and other homopolymeric sequences. This structure is shown in 



Figure 4.4. Autoradiogram showing cleavage by racemic Ru(TMP)32+ and Ru(phen)32+ 

on 5'- and 3'-endlabelled fragments containing a C7-G7 insert. Lanes 1 and 10 and lanes 2 

and 9, are Maxarn-Gilbert G and C+T reactions respectively. Lanes 3 and 8 are samples 

irradiated with no metal complex. Lanes 4 and 7 were irradiated in the presence of 

RU(TMP)~~+. Lanes 5 and 6 were irradiated in the presence of ~u(~hen)32+.  Conditions 

for the experiment are as described in the text. 





Figure 4.5. A model for heteronomous DNA, derived from fiber diffraction studies. It 

may be observed that in this model of DNA stmcme, contrary to the canonical A and B 

forms of DNA conformation, both the major groove and the minor groove are wide. 

Figure is from Reference 15. 





Figure 4.5. 

In order for DNA base pairs to hydrogen bond correctly, the most strict constraint 

in double helical structure is that the phosphate-phosphate distances be within the range 

from 5.8-7.0 A. This constraint still allows for variation in structure between the strands, 

since the phosphate torsional angles may change considerably without causing undue strain 

on the backbone. Differences in phosphate torsional angles may be compensated for by 

displacement of the bases on one strand away from the helical axis. These different 

phosphate angles correspond to different sugar puckering as well. A large angle is 

consistent with a Cz-endo sugar conformation, whereas a smaller phosphate torsional 

angle is consistent with a C31- endo sugar conformation. The former is associated with B 

DNA and the latter is associated with A DNA. If these differing phosphate angles are 

consistently maintained for each strand, the result is that one strand appears to be 

structurally quite different from the other, without any disruption in the base pairing. In the 

model for heteronomous DNA, it is the pyrimidine strand which is being displaced from 

the helical axis, and has the B-like structure, whereas the purine strand has the A-like 

structure. 

The photocleavage by both RU(TMP)~~+ and Rh(~hen)~phi3+ at the C7 stretch in 

the context of long DNA argues for this type of model. The minor groove in this model is 

wide enough for the complex which cleaves at wide minor grooves. Additionally, if base 

stacking is present on the guanine-rich strand, then perhaps the stacking energy that would 

be gained by the intercalation of Rh(phen)2phi3+ would stabilize an interaction for 

~ h ( ~ h e n ) ~ ~ h i 3 +  near the pyrimidines, allowing cleavage to preferentially occur on the 

pyrimidine strand. The abstraction of the C3' hydrogen atom has been shown to be the 

mechanism of cleavage by Rh(phi)3+ complexesl6. It might be therefore be argued that 

the C31-endo sugar puckering present on the purine strand in such a structure could favor 

the abstraction of the C3' hydrogen of the purines. However, it is not absolutely certain that 

it is the purine strand which adopts the A form, as fiber diffraction does not distinguish 
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between purine and pyrimidine bases. Additionally, sugar puckering is one of the DNA 

structural features which is likely to be changed upon intercalation. Therefore the 

photocleavage observed here is still consistent with this heteronomous model. 

Cleavage by other probes of DNA structure has also been consistent with a 

heteronomous model for purine stretches. It is interesting that long G stretches, which do 

not alternate with Cs, have been shown to be resistant to cleavage by DNase 117. On the 

other hand, DNaseII, whose cleavage preferences are complementary to those of DNase I, 

cleaves very strongly on the G-rich strand of these stretches, and not at all on the C-rich 

strand. These preferences for DNaseII cleavage, although directly in opposition to those of 

the metal complexes exarnined here, may also be explained in terms of a heteronomous 

model of DNA structure17. In the heteronomous model, the phosphate-phosphate 

distances are at two extremes for the different strands; they are shorter for the purine strand 

than the pyrimidine strand. Therefore, if the structural feature that DNase 11 recognizes is 

the. conformation of the DNA sugar-phosphate backbone, it would be expected that one 

strand would be cleaved preferentially to the other, and, indeed even to DNA composed of 

mixed sequences. 

In summary, both ~h(phen)~ph i~+  and RU(TMP)~~+ have been shown to recognize 

the C-rich strand of a 0 - G 7  stretch. ~h(~hen)~phi3+ shows concentration-dependen t 

differences in site selection within the stretch, whereas RU(TMP)~~+ appears to cleave the 

stretch fairly evenly. Both A- and A- Rh(phen)2phi3+ show the same preference for the C- 

rich stretch as compared with other sites, and the level of enantioselectivity is low. Finally, 

the results obtained here are consistent with a heteronomous model of DNA, in which the 

structures of the two strands are substantially different in regard to phosphate conformation 

and base displacement, resulting in wide major and wide minor grooves. 
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4.3.3. Photocleavage by ~h(phen)~phiS+ on Fragments Containing A4T4 and T4A4- 

Tracts. 

Fragments with (AfiCG)n and (T4A4CG)n inserts were examined by the 

enantiomers of ~ h ( ~ h e n ) ~ ~ h i 3 + .  As described above, the former correspond to DNA 

which is macroscopically bent, and the latter correspond to sequences which are nonbent. 

Gels showing the cleavage by these enantiomers on 3'-endlabelled fragments are shown in 

Figure 4.6 and Figure 4.7. In all cases, the same results were also obtained on 5'- 

endlabelled DNA (results not shown). Generally speaking, it is clearly observed that the 

cleavage pattern for ~ h ( ~ h e n ) ~ ~ h i 3 +  is distinct for the two different types of DNA 

structures. For ~ - ~ h ( p h e n ) ~ p h i ~ + ,  on the 5'-A4T4CG-3' fragment, there is strong cleavage 

at the sequence 5'-TCGA-3'. There is considerable selectivity in cleavage over that of the A 

enantiorner at this site. The enantioselectivity in cleavage at this 5'-YYRR-3' step is 

completely consistent with cleavage by A-Rh(phen)2phi3+ on other sequences of this 

typelg. There is no strong cleavage within the A t r a c ~  however, not all positions of the A 

tract are cleaved to the same extent. These subtle differences in the cleavage of the A tract 

of this A4T4 sequence were also previously observed with racemic ~h(phen)~phi3+~9. 

Here it is observed that there is not a high level of enandoselection in either position or 

intensity of cleavage within the A tracts which determine the structure of bent DNA. This 

low level of enantioselectivity in cleavage has also been previously observed for 5'-YY-3' 

steps, which have no C2 dyad axis with which to discriminate the symmetry of the metal 

complexl3. 

The cleavage distribution on the fragment containing the (T4A4CG)n insert differs 

significantly. A gel showing the cleavage on the 3'-endlabelled fragment is also shown in 

Figure 4.7. Again, the same results were obtained on the 5'-endlabelled fragment (data not 

shown). It may be seen for this sequence, which is not bent-inducible, there is strong 

cleavage by A-Rh(phen)2phi3+ at the second and third T of the T4 tract. Moderate cleavage 

by this enantiomer is observed at the fourth T of the T4 tract and at 5'-ACGT-3'. For the 



Figure 4.6. An autoradiograrn showing cleavage by enantiomers of Rh(~hen)~phi3+ on a 

3'-endlabelled fragment containing (A4T4CG)n multirners. Lanes 1 and 2 show Maxarn- 

Gilbert G+A and C+T reactions respectively. Lane 3 shows fragment in the absence of 

irradiation and metal. Lanes 4,5, and 6 show photocleavage reactions by racemic, A- and 

A-Rh(phen)2phi3+, respectively. Lane 7 shows fragment irradiated in the absence of metal 

complex. 





Figure 4.7. An autoradiogram showing cleavage by enantiomers of Rh(phen)2phi3+ on a 

3'-endlabelled fragment containing (T4A4CG)n multimers. Lanes 1 and 2 show Maxam- 

Gilbert Gt-A and Ct-T reactions respectively. Lane 3 shows fragment in the absence of 

irradiation and metal. Lanes 4,5, and 6 show photocleavage reactions by racemic, A- and 

h-~h(phen)~phi3+, respectively. Lane 7 shows fragment irradiated in the absence of metal 

complex. 
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A-isomer of this complex, moderate cleavage is observed from the second T of the T4 tract 

to the third A of the Aq tract. Of these moderate sites, the cleavage is the strongest at the 

third T of the T tract. Therefore, the enantioselectivity in cleavage by ~-~h(phen)~phi3+ 

over the A-isomer is strongest at T2, and intermediate at T3 and at ~ ' - A c G T - ~ ' ~ O .  

Interestingly, it appears that the first three A's of the A tract may be cleaved preferentially 

by the A -isomer. Therefore the photocleavage on the bent and nonbent sequences differs 

in cleavage position and in the observed enantioselectivity at sites within the AT-rich tract. 

Interestingly, results obtained with RU(TMP)~~+ on the A4T4CG sequence show a 

lower extent of cleavage than that of the parent compound ~ u ( ~ h e n ) ~ ~ + .  The difference in 

cleavage between the two complexes exhibits a repeated, periodically changing pattern, 

with cleavage by RU(TIVP)~~+ being relatively the highest at the third A, and lowest at the 

third p1,z2. The pattern of exclusion of RU(TM.P)~~+ may be interpreted as a minor 

groove width which is compressed relative to that of B form DNA at this site. This 

photocleavage result corroborates studies performed with hydroxyl radical21, and with 

NMR studies23 which indicate a progressive narrowing of the minor groove of A tracts in 

the 5'-> 3' direction. However, this narrowing of the minor groove is also detected, to a 

smaller extent, by RU(T'.MP)~~+ for the T4A4CG sequence. The positioning is different for 

this sequence, with the cleavage being the highest at the first A and lowest at the fourth A. 

4.3.4. Models for Intrinsically Bent DNA Structure 

The detailed structure of bent DNA is still a subject of some controversy. One 

problem in the study of bent DNA has been that, although the bent DNA is composed of 

relatively small sequence elements, a macroscopic bend is only realized after these 

elements have been repeated many times. Therefore, crystallographic studies which focus 

on a small sequence element may not be truly reflective of the solution structure of bent 

DNA. On the other hand, NMR has not been useful in determining a detailed three- 
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dimensional global view of bent DNA, although some local structural details have been 

elucidated. 

Based upon evidence obtained by crystallographic, NMR, chemical probing, and 

gel electrophoresis methods, there have been a number of models which have been 

proposed for the structure of bent DNA. The first model is the junction mode124. In this 

model, the A tracts of DNA are thought to be in the A form. Therefore, bends are created 

at the junctions between these A tract regions and adjoining regions which have a normal B 

form DNA conformation. In the junction model, the A tract is considered as a whole. In 

the wedge model of bent DNA structure3~5, the bend is described in terms of a 

summation of the structures of dinucleotide steps of the A tract and adjoining regions of 

DNA. The structure of each step is described in terms of its roll or tilt wedge angles. In 

this model, bent DNA is described as having a smooth, curved structure, with the bend 

distributed over a number of base pairs. These models differ in that for the wedge model, 

each AA step is considered to be the same, whereas in the junction model, the structure of 

an AA step can vary depending on the surrounding sequence. It should be noted, however, 

that the wedge model and junction model are in fact similar26, in that they both attribute 

bending of the helical axis to changes in base pair inclination. 

Another model for bent DNA, derived from crystallographic studies of A tracts, is 

the non A tract bending mode127. In this model, the A tracts are highly propeller twisted, 

and have inclination angles which closely resemble that of B form DNA. Accordingly, the 

structure of these A tracts is not dependent upon their sequence context. As implied by the 

name of this model, the source of the macroscopically measured bend of DNA results 

from sequences which are outside the A tract. 

In yet another model, which may be termed the A tract bending model, the 

macroscopic bending of DNA is composed of A tracts which have a bent structure, and 

alternate with DNA which does not have a bent structure in phase with the helical repeat. 
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Therefore, the nonbent A tract bending model and the A tract bending model are at two 

logical extremes, and both differ from the junctionlwedge model. 

Our results are consistent with some of the observations made by crystallography, 

and with some aspects of the non A tract bending model. As defined by crystallography, 

all the bases in the A tracts are highly propeller twisted. This signifies that there is not a 

great degree of differential propeller twisting in the A tracts. This similarity in propeller 

twisting is consistent with 1) cleavage at sites in the A tract being distributed relatively 

evenly and 2) the small amount of enantiomeric discrimination observed in the A tract for 

the bent DNA sequence. Additionally, according to the non A tract bending model, the 5'- 

TA-3' step, and 5'-CG-3' step have a positive roll angle, which compresses the major 

groove, causing a local bend in the DNA. These bends are out of phase for the T4A4CG 

sequence but are in phase for the kT4CG sequence. It is interesting that the cleavage that 

we see with A-~h(phen)~phi3+ is only moderate at these sequences in comparison with 

strong cleavage at the 5'-IT-3' steps for the T4& sequence. Specifically, the 

enantioselectivity is smaller at the 5'-TTAA-3' and 5'-ACGT-3' steps than at the second and 

third thymines in the T4 tract. This behavior differs significantly from previously made 

observations about enantioselectivity. Perhaps the roll angle is closing down the major 

groove, inhibiting binding by the A enantiomer at this site. The A- enantiomer is not 

affected as much by this closing since it does not recognize preferentially the opening in the 

major groove defined by differential propeller twisting28. The aforementioned cleavage 

results are consistent with a non A tract model. However, the strong enantioselective 

cleavage at 5'-TCGA-3' indicates that the major groove is open by differential propeller 

twisting which, in this sequence context, ovemdes any compression of the major groove 

via the roll angle. 

There is no evidence from these photocleavage experiments that the angle of base 

pair inclination is changing dramatically between the A tract and non A tract regions for 

bent DNA, as described by the junction model. Although A - ~ h ( ~ h e n ) ~ ~ h i 3 +  does cleave 
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strongly at the 5'-TCGA-3' site of the bent DNA sequence, as mentioned above, this 

cleavage is strongly enantioselective. The strong enantioselectivity in cleavage is indicative 

of a site which has a large degree of differential propeller twisting. A large opening due to 

tilt would be expected to be recognized equally by both enantiomers, as tilt is not C2 

symmetric about the dyad axis. 

It should be mentioned that these metal complexes probes may perturb DNA 

structure after binding. In particular, intercalators have been shown to remove bends from 

D N A ~ ~ .  However, it has been determined for ~ - ~ h ( ~ h e n h p h i 3 +  that photocleavage 

correlates with structural features of DNA which have been determined by crystallography 

in the absence of metal complex18. This observation is corroborated by results 

summarized below, which indicate that these metal complex probes are able to detect 

structural features of bent DNA which are observable by use of other chemical probes and 

other techniques of examining DNA structure. 

In summq,  photocleavage by shape selective metal complexes on A4T4CG and 

T4kCG sequences is consistent with some previously observed local structural 

characteristics of bent DNA. Photocleavage by RU(TMP)~~+ and ~ u ( p h e n ) ~ ~ +  indicates a 

narrowing of the minor groove in these AT rich regions, as deduced from NMR and 

F~(EDTA)~- experiments. Additionally, photocleavage by the enantiomers of 

~ h ( ~ h e n ) ~ ~ h i 3 +  is consistent with an A tract which has a highly propeller twisted structure 

throughout. However, these results do not completely correlate with any one of the several 

models which attempt to describe the origin of the global bend of DNA. The reason for 

this lack of agreement is likely due to the fact that under differing conditions, different 

conformations may be adapted by the DNA. Additionally, the models tend to rely on the 

assumption that a particular sequence will have a certain structure regardless of the 

surrounding sequence. Here it is observed, with both major and minor groove structural 

probes, that the structure of different sequence elements does differ based upon its 



125 
sequence context. Thus models which ignore contextual effects are likely to oversimplify 

the complexity of DNA solution structure. 
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Chapter 5: 
Effects of M a )  2Xw Complexes on the Electrophoretic 
Mobility of DNA: Influence of Intercalating Ligand, 
Charge, and Chirality 

5.1. Introduction 

The study of DNA electrophoretic mobility provides much information regarding 

its conformation, both in isolation and in the presence of DNA-binding molecules. An 

important application of this technique has been to the study of DNA with a bent 

conformation. Bent DNA shows markedly reduced mobility compared with nonbent 

DNA with the identical base composition. As few other techniques provide evidence of 

DNA bending in solution, reduced electrophoretic mobility has become perhaps the 

primary criterion for establishing whether a particular DNA fragment has a bent 

conformation. 

Gel retardation is also commonly used to examine protein-DNA interactions. As 

proteins are usually large in molecular weight compared with the DNA fragments to 

which they are binding, and bind in a specific fashion, DNA-protein complexes have a 

migration which is distinct from that of free DNA. This fact has allowed the routine 

application of gel retardation to the determination of protein- DNA binding constantsl. 

Additionally, information concerning binding kinetics2, stoichiometries, and protein- 

induced conformational changes of D N A ~  may be obtained from examination of the 

electrophoretic mobility of DNA-protein complexes. Although attempts are in progress 

to quantitate such parameters as protein-induced helical twist changes4 from gel 

electrophoretic mobility, the technique is presently better applied towards an 

understanding of DNA bending and flexibility rather than the acquisition of detailed 

structural information. 
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In addition to its utility for measurements of protein-DNA interactions, the gel 

mobility shift assay has also found use in the study of small molecule-DNA interactions. 

Insight has been gained regarding DNA conformational changes produced by agents 

which bind covalently, e.g., cis-platin5 and psoralen6. Gel retardation has also been 

useful in examining noncovalently bound ligands. It was unanticipated that small 

molecules would be able to comigrate with DNA in a gel matrix; since they are usually 

positively charged, the expectation is that they would migrate in the opposite direction of 

the DNA. Additionally, small molecule-DNA exchange rates tend to be fast, especially 

in comparison with the time required to perform an electrophoresis experiment (hours). 

However, a number of noncovalently interacting small molecules have been found to 

comigrate with DNA in a gel matrix, including surface binding molecules such as 

distamycin7 and a number of intercalators* . 

In the Barton group, metallointercalators with many useful properties are used as 

probes of DNA structure. Their structures are shown in Figure 5.1. Ru(L)zdppz2+ 

complexes can serve as a molecular "light switch" for DNA, as they do not luminesce in 

aqueous solution but in the presence of DNA they glow brightly. R~(phen)~dppz2+ has 

been shown to intercalate from the major groove by NMR spectroscopy9. Rh(L)zphi3+ 

complexes, as described in previous chapters, intercalate into the major groove of DNA 

and effect strand scission upon ultraviolet irradiation by a nondiffusable mechanism. 

Several lines of evidence point to the fact that ~u(phen)~2+ also intercalates into DNA, 

though with much lower affinity than the dppz and phi complexes. Its luminescence 

lifetime increases in the presence of DNA, and inhibition by anionic quenchers such as 

F~(CN) 64- is reduced lo. 

This chapter concerns the application of gel retardation to the study of metal 

complex- DNA interactions. This technique has the advantage that it is not dependent 

upon photocleavage. Therefore complexes which cleave by different mechanisms, and 

even complexes which do not cleave DNA at all, may be directly compared. Here 



Figure 5.1. Structures of the intercalators used in gel electrophoretic mobility shift 

assays. From top: ~u(phen)  2dppz2+, ~ h ( b p y )  2dppz3+, ~ h ( ~ h e n ) ~ ~ h i 3 + ,  ethidium 

bromide, and Ru(phen) 32+. 



, R u"' 
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following specific issues are addressed. The importance of the intercalating ligand in the 

retardation of DNA will be explored using three complexes which have identical ancillary 

ligands, but differing metal centers and intercalators: Ru(phen) 2dppz2+, Rh(phen)2phi3+, 

and ~ u ( ~ h e n )  32+. The effect of metal complex chirality upon DNA conformational 

change will be assessed by use of the enantiomers of R~(phen)~dppz2+ and 

Rh(phen)2phi3+. The A- and A- enantiomers of a given complex are identical in every 

respect except for the disposition of the ligands around the metal center. Additionally, 

the influence of the charge of these metal complexes upon DNA mobility will be 

examined using Rh(bpy) 2dppz3+ and ~u (bp~)~dppz2+ ,  which have identical ligands, but 

differing metal centers and charges. Finally, the effect of the absolute concentrations of 

DNA and metal upon DNA retardation will be discussed. 

5.2. Experimental 

Materials. pUC18 plasmid DNA was purchased from Boehringer Mannheim. All 

enzymes utilized were from commercial sources. [a- 32P] d W s  were purchased from 

NEN-Dupont. Ethidium bromide was purchased from Sigma. ra~-Rh(phen)~phi3+ was 

synthesized as described previously 11. Other racemic and enantiomerically resolved 

metal complexes were donated by members of the Barton group12. 

Instrumentation. Concentrations of metal complexes and DNA were based on 

absorption spectra in 50mM sodium cacodylate buffer, pH 7.0; these were recorded on a 

Cary 219 (Varian) spectrophotometer. A Gibco BRL double-sided vertical gel 

electrophoresis apparatus was used to elute the gels. Gels were dried using a Bio-Rad gel 

dryer, and exposed to a phosphorimaging plate for approximately 16 hours. Plates were 

scanned using a Molecular Dynamics phosphorimager. (Autoradiograms were analyzed 

by use of a LKB 2202 Ultrascan Laser Densitometer). 

Gel Electrophoresis on DNA fragments. Approximately 60 pg of pUC 18 plasmid 

DNA was linearized with the restriction enzyme Hind 111. A fraction of this linearized 
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DNA was subsequently used for labelling, the remainder was stored at -20°C. Labelling 

was accomplished by reaction with one or more a-32~ dNTPs and the Klenow fragment 

of DNA polymerase I. Labelled and unlabelled DNA in parallel were then digested with 

ScaI and EcoRI simultaneously, producing labelled fragments 90 bp and 908 bp in length, 

and an unlabelled fragment of 1727 bp. 

Samples, unless otherwise indicated had final concentrations of lOmM Tris, 1mM 

EDTA pH 7.0, and 70pM bp DNA. Samples were typically incubated for approximately 

one hour at room temperature. Metal complex concentrations are as indicated; typical 

ranges are from 2pM to 58pM. Samples were suspended in 10X ficol dye and loaded at 

4°C at OV. Gels were run at 300V for 5 hours on a 5% polyacrylamide gel (29: 1 

mono:bis acrylamide ratio), in 0.25X TBE buffer (25mM Tris, 25mM borate, 0.5mM 

EDTA) unless otherwise indicated. Retardation data was quantified using ImageQuant 

software (phosphorimager), or Gel Scan XL (densitometer). 

Experimental variables. Numerous sets of experimental conditions were used in 

order to obtain optimal data. Attempts at visualization by ~u(phen)~dppz2+ 

luminescence from the sample were unsuccessful, likely due to the relatively small 

amount present in a band. Attempts at visualizing DNA in 5% polyacrylamide by 

ethidium bromide also proved difficult. The percentage of crosslinker in the 

polyacrylamide did not have much of an effect on the retardation observed. However, the 

29: 1 mono:bis acrylamide ratio appeared to give sharper bands than 5% acrylarnide with 

a 80: 1 ratio, which is sometimes used for gel retardation of DNA by proteins. The ionic 

strength of the running buffer appeared to be important, as gels run in the low ionic 

strength buffer (0.25X TBE) produced better quality data than those run in a high ionic 

strength buffer (1X TBE). This low ionic strength condition is commonly used for 

binding constant determinations with proteins. Excessive diffusion of bands occurred 

when a low voltage over a long time period, e.g. 70V for 18 hours, was used. The length 

of DNA fragment used affected the extent of retardation, as observed elsewheregc> 13. For 
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example, at DNA: bp ratios which produced a great extent of retardation for the 908mer, 

there was a smaller amount of retardation for a 406mer, and a trace of retardation for 

al20mer. It is not known with certainty what the origin of this effect is; it is perhaps the 

result of longer DNA fragments having a higher local concentration in bp in a band for 

the same number of DNA strands. 

5.3. Results 

5.3.1. Gel Mobility Shifts: by Racemic R~(phen)~dppz&, Rh(phen) 2phi*, and 

R~(phen)~&: Effect of Intercalating Ligand 

In order to examine the effect of intercalating ligand upon DNA electrophoretic 

mobility, the following series of racemic complexes was utilized: R u ( ~ h e n ) ~ d ~ ~ z 2 + ,  

Rh(phen)2phi3+, and Ru(phen) 32+. Ethidium bromide was also examined for 

comparison. It has been previously observed that ethidium bromide can alter DNA 

electrophoretic mobility8a8c. Under the standard conditions described above, 

R ~ ( ~ h e n ) ~ d ~ ~ z 2 + ,  Rh(phen)2phi3+, and ethidium bromide are able to retard DNA 

mobility whereas ~ u ( ~ h e n ) ~ 2 +  does not. Figure 5.2 shows a plot of gel mobility shifts by 

the three racemic complexes and ethidium bromide vs the log of the concentration of 

DNA binding ligand. As may be seen from this plot, the extent of retardation (RL= 

[mobility of unbound DNA fragment/mobility of DNA fragment in the presence of 

ligand]) increases with increasing metal complex concentration. Some of the mobility 

change is likely due to an effective lengthening of the DNA fragment by insertion of the 

intercalating ligand into the helix stack. At all concentrations, the trend of effect on DNA 

migration by the racemic complexes is as follows: Ru(phen)2dppz2+ > Rh(phen)*phi3+ > 

Et Br > Ru(phen) 32+. This trend correlates with the surface area of the intercalating 

ligand, i.e., the larger the area of the ligand which is accessible for stacking, the more 

efficiently the complex can stack. However, other factors such as charge and ancillary 

ligands are also involved, as described below. 



Figure 5.2. Plot showing comparison of the effect of different intercalators upon DNA 

electrophoretic mobility. RI_ is determined as described in the text. There is a direct 

correlation between the accessibility of the intercalating ligand and the observed extent of 

DNA retardation. 
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Although no detectable retardation of DNA by Ru(phen)32+ occurs under the 

standard conditions of this experiment, conditions which are more favorable for binding 

by this complex do decrease DNA mobility, which is shown in Figure 5.3. However, 

these conditions involve significantly higher concentrations of metal complex, and the 

observed effect is small. The small effect in DNA mobility by Ru(phen)32+ may be 

explained by its low affinity for DNA. 

5.3.2. Enantioselectivity in Metal Complex-Induced Electrophoretic Mobility 

Change 

In order to address the effect of metal complex chirality upon DNA retardation, 

the A and A enantiomers of Ru(phen) 2dppz2+ and Rh(phen) 2phi3+ were used to effect 

retardation on the 908mer DNA fragment. As mentioned in the previous section, the 

racemates of both complexes retard DNA mobility. A typical retardation gel is shown in 

Figure 5.4. This gel shows the effect of increasing concentrations of A-R~(phen)~dppz2+ 

on the mobility of this DNA fragment. It may be seen that the addition of this complex 

has a dramatic effect on the mobility of the DNA. A quantitative comparison between A- 

~u(phen)~dppz2+ and A - ~ u ( ~ h e n ) ~ d ~ ~ z 2 +  is shown in Figure 5.5(top). The plot in 

Figure 5.5(top) shows that for both these enantiomers there is a decrease in DNA 

mobility with increase in R~(phen)~dppzZ+ concentration. However, at all concentrations 

there is a greater effect for the A enantiomer than the A enantiomer, which is especially 

noticeable at higher Ru:DNA ratios. Thus two complexes which are identical except for 

their chirality show differences in their effect on DNA retardation. Enantioselectivity in 

retardation of DNA is also observed for Rh(~hen)~phi>, as shown in Figure 5.5(bottom). 

Once again, there is an increase in the extent of retardation observed with an increase in 

metal complex concentration for both isomers. It should be noted, however, that the 

mobility of the DNA in the presence of A-Rh(~hen)~phiS appears to be biphasic in 

nature. This characteristic is not shared by any of the other intercalators examined. 



Figure 5.3. An image of a gel showing the effect of Ru(phen) 32+ on the mobility of a 

908mer fragment. Samples were incubated at room temperature for 2 hours. This gel 

was run at 150V for 5 hours at 4°C. Lanes 1 and 7, DNA control at 70p.M bp; lane 2, 

2mM DNA bp and 2mM ~u(phen)~2+;  lane 3, DNA control at lmM bp; lane 4, 1mM 

DNA bp and 1mM Ru(~hen)32+; lane 5, 1mM DNA bp and 2mM Ru(~hen)32+; lane 5, 

1mM DNA bp and 2mM Ru(~hen)32+; lane 6,70p.M DNA bp and 2mM Ru(phen)32+. 

Lanes 2,4, and 5 show a small extent of retardation. The reduced mobility of this DNA 

fragment is clear in lane 6. 





Figure 5.4. An image of a representative gel showing reduction in the mobility of a 

908mer DNA fragment by A - ~ u ( ~ h e n ) ~ d p ~ z ~ + .  Lanes 1,9, 10, and 18 , DNA control; 

lanes 2-8 have ~-Ru(phen)~dp~z2+ concentrations (pM) of 2.2,2.8,4.5,6,7.5,9, and 

10.5 respectively; lanes 11-17 have ~-~u(phen)2dppz~+ concentrations of 10.5 

(repetition), 12, 13.5, 15, 16.8,23.3,36, and 53.8 respectively. 





Figure 5.5. Plots showing a comparison of the effect of enantioselectivity upon DNA 

retardation for ~ u ( ~ h e n ) ~ d ~ p z 2 +  and Rh(~hen)~phi3+. RL is determined as described in 

the text. (top panel) A plot showing the change in DNA mobility vs the log of the metal 

complex concentration for A- and h-~u(phen)~dppz2+. (bottom panel) A plot showing 

DNA retardation as a function of the log of Rh(~hen)~phi% concentrations for both 

enantiomers. Note the smaller scale of this plot. 
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Additionally, the enantioselectivity of retardation is opposite to that observed with 

~u(phen)~dppz2+; for Rh(~hen)~phi3f, it is the A -isomer which has the greater effect 

upon DNA mobility than the A isomer. It is unlikely that the origin of this difference 

results from differential intercalation by ~-Rh(phen)~phi3+ and A-Rh(phen)2phi3+, since 

photocleavage data are consistent with the A enantiomer showing preferential cleavage of 

DNA and photocleavage requires intercalation. As mentioned in Chapter 2, there are 

some sites which ~-Rh(phen)~phi3f cleaves to an equal or greater extent than A- 

Rh(~hen)~~hi3+,  but there are no sites at which A-Rh(phen)2phi3+ cleaves to an 

appreciably greater extent than ~-Rh(phen)~phi3+. NMR results also show preferential 

binding by the A isomer; the spectrum of A-Rh(phen)2phi3+ exhibits broader linewidths 

indicative of faster exchange and lessened specificity. Therefore this differential mobility 

may be explained by a) different conformational changes induced by intercalation by A- 

~h(phen)~phi3+ versus A-Rh(~hen)~phi3+, or b) a binding mode other than intercalation. 

The fact that the A > A trend is observed at all concentrations of Rh(phen)2phi3+ and not 

just the higher concentrations points to the former explanation. 

Therefore, it may be observed that although the primary effect on DNA mobility 

is due to the nature of the intercalator, the chirality of the metal complexes produces 

differential mobilities as well. 

5.3.3. The Effect of Metal Complex Charge upon DNA Retardation 

~u(phen)~dppz2+ and Rh(~hen)~phi3+ have different intercalating ligands, which 

lead to their differential effects upon DNA retardation as described above. However, 

they also differ in their metal center, and therefore their overall charge. It was not clear 

whether a more positively charged complex would retard the DNA to a greater extent due 

to charge neutralization; another possibility would be that the application of a voltage 

would more effectively separate the metal complex and DNA. In order to examine 

specifically the effects of charge on DNA mobility the racemic complexes 
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R h ( b ~ ~ ) ~ d ~ p z 3 +  and R~(bpy)~dppz~+ were compared. These complexes are identical 

except for their metal centers and their charges. Figure 5.6 shows differences in the 

retardation induced by Rh(bpy)2dppz3+ and R~(bpy)~dppz2+. There is not much 

difference in the extent of retardation of the 908mer fragment at low concentrations of 

metal complex (2 pM)- However, at the middle concentration range (6- 17 pM), 

Rh(bpy) 2dppz3+ reproducibly retards DNA to a greater extent than Ru(bpy) 2dppz2+. At 

the highest concentrations of metal complex examined (50-70 pM) strong, reproducible 

retardation by Rh(b~~)~dppz3+  is observed, whereas the retardation by R~(bpy)~dppz2+ is 

weaker and not as reproducible. These results are consistent with a contribution of 

charge neutralization by the metal complexes to the extent of retardation observed, i.e., 

with all else being equal, a greater extent of retardation is observed with the more 

positively charged metal complex. 

Another interesting observation from these results is that the ancillary ligands of 

these complexes also influences DNA mobility. As may be observed in Figures 5.2 and 

5.6, racemic ~u (~hen )~dppz2+  retards DNA mobility to a greater extent than racemic 

~ h ( b ~ ~ ) ~ d ~ p z 3 + .  The maximal RL for ~ u ( ~ h e n ) ~ d ~ ~ z 2 +  is 2.2 whereas the maximal RL 

for Rh(bpy)2dppz3+ is less than 1.4. If the extent of retardation were dominated by a 

charge effect, it might be expected that Rh(b~y)~dppz3+ would have a greater effect on 

DNA mobility than ~ u ( ~ h e n ) ~ d ~ ~ z 2 + .  Thus we see that the hydrophobicity of the 

ancillary ligands has a considerable influence upon the DNA retardation by these metal 

complexes, and not just the size of the intercalating ligand. Additionally, the 

hydrophobicity of the ancillary ligands appears to outweigh the effects of the charge of 

the metal complex. 



Figure 5.6. Plots depicting an examination of the effect of metal complex charge upon 

DNA retardation. Shown is a plot of the apparent length of DNA vs the metat complex 

concentration for ~h(bpy)~dppz3+ and ~u(bpy)~dppz*+. RL is determined as described in 

the text. Note the smaller scale for this plot as compared with that of Figure 5.4(top). 
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5.3.4. The Effect of Absolute Concentrations of DNA and Metal Complex upon 

DNA Mobility 

The importance of the absolute concentrations of DNA fragment and metal 

complexes on DNA retardation was also examined (data not shown). An experiment 

utilizing racemic Ru(~hen)~dppz2+ at the same DNA:metal complex ratios as the 

experiment in Figure 5.2, but lowering the absolute concentrations by a factor of 200 

eliminated retardation of the 908mer. When ratios of DNA bp: ra~-Ru(phen)~dppz2+ are 

held constant in the range from 1.3 to 3.0, a great extent of retardation occurs at 70pM bp, 

as described above. However, a reduction of DNA concentration by about a factor of 6 

severely hampers the retardation by this complex. At 2pM bp, only a trace of retardation 

is observed. Even a change by a factor of 2 in the absolute concentrations of A- 

~ u ( ~ h e n ) ~ d ~ ~ z 2 +  significantly reduced the extent of retardation observed, particularly at 

low DNA bp: metal complex ratios. Another illustration of the importance of the 

absolute concentration of DNA is that at a constant rac-~u(phen)~dppz2+ concentration 

of 37pM, the extent of retardation increases with increasing DNA concentration. Thus it 

has been demonstrated that the absolute concentrations of both DNA and metal complex 

in the gel matrix have a great influence upon the retardation of DNA. 

5.4. Discussion 

5.4.1. Comparison of Retardation by DNA-Binding Molecules 

All the metal complexes studied have been shown to have an effect on DNA 

mobility in some concentration range. However, the extent to which these metal 

complexes retard DNA mobility varies widely. The overall trend of the magnitude of the 

retardation is as follows: A - ~ u ( ~ h e n ) ~ d p p z ~ +  > ~-Ru(phen)2dppz2+ > ~-~h(phen )~ph i3+  

> rac-Rh(bpy) 2dppz3+ 2 ~-Rh(~hen)~phi3+ > ethidium bromide >> ~u(phen)~2+.  As can 

be seen from this trend, when the ancillary ligands are phenanthrolines, it is the nature of 

the intercalator which has the greatest effect upon DNA mobility. ~u(phen)~dppz2+, 



150 

which has the greatest propensity for base pair overlap, shows the largest effect. The phi 

ligand is also shown here to be an effective intercalator, as differences in DNA mobility 

are observed at the same concentrations used for R~(phen)~dppzZ+. R~(phen)~2+,  which 

is an intercalating and groove binding molecule, shows a much diminished effect, and 

only at significantly higher concentrations. Although the phi and phenanthroline ligands 

are comparable in area, in the context of the octahedral geometry of the complexes, the 

phenanthroline ligand is less accessible to stacking between the base pairs than the phi 

ligand. This shape also contributes to the low binding affinity of Ru(phen) 32+ for DNA, 

which is about 103 lower than that of ~h(phen)~phi3+.  It is this low binding affinity, and 

not the surface binding mode of R~(phen)~2+ which results in the small amount of 

retardation observed, since other groove binders with higher affinity for DNA, such as 

distamycin*c, show a significant effect upon DNA mobility. 

How does DNA retardation by these metal complexes compare to that observed 

for other DNA-binding small molecules under similar conditions? For the 908mer 

examined here the maxirnal amount of retardation (RL) by A-R~(phen)~dppzZ+ (2.6) is 

significantly greater than that by ethidium bromide (1.1). The maximum RL is also 

slightly greater than that measured on mixed sequence DNA for ditercalinium (2.4)8~, a 

bisintercalator with a +2 charge. Ethidium dimer, on the other hand, is capable of 

retarding mixed sequence DNA to a greater extent (RL=3.8)& than A-Ru(phen)2dppz2+ 

and all the previously mentioned compounds under similar conditions to those used in 

this work. The high charge of ethidium dimer (+4) would be expected to contribute to its 

efficacy in retarding DNA as compared with that of R ~ ( p h e n ) ~ d ~ ~ z Z +  and the other 

compounds. Additionally, although ethidium dimer was once thought to be a 

monointercalator14, it has been demonstrated by NMR that this DNA binding molecule is 

in exchange between monointercalating and bisintercalating modes 15. Therefore, the 

large extent of retardation by ethidium dimer in comparison to other compounds may be 

explained by its charge andlor the differing binding modes of these molecules. 
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Although charge appears to be important for retardation by other intercalators, 

~u (~hen )~dppz2+  retards DNA to a much greater extent than does Rh(phen)2phi3+, even 

though formally it is not as positively charged. There are two possible explanations for 

this effect. First, since the pKa of Rh(~hen)~phi3+ is approximately 6.216, the phi ligand 

is likely to be mostly deprotonated at pH 7.0, which leads to an overall net charge of +2 

for this complex at this pH, assuming the interaction with DNA does not change the pKa 

significantly. Secondly, it might be reasoned that since R~(phen)~dppz2+ has a greater 

overall binding constant to DNA, it is remaining associated with the DNA to a greater 

extent than is ~ h ( ~ h e n ) ~ ~ h i S +  in the gel matrix. This explanation, however, is 

questionable, as the K, of Rh(phen)2phi3+ is high enough that it should be almost 

completely bound in solution throughout the concentration range studied here. 

Additionally, greater differences are observed in extent of DNA retardation by 

Rh(~hen )~~h i3+  and R u ( ~ h e n ) ~ d ~ ~ z 2 +  in the higher concentration range than in the lower 

concentration range. This observation would also be consistent with Rh(phen)2~hi3+ 

being completely bound in the lower concentration range. 

5.4.2. Factors Influencing Retardation by M(L)2X* Complexes 

Sequence selectivity of these metallointercalators is one factor which could have 

an influence on their effect upon DNA mobility. The site selection of Rh(phen)2phi3+ 

has been well characterizedl7, as it photocleaves DNA. A-Rh(phen)2phi3+ shows a 

strong preference for 5'-YYR-3' and an intermediate extent of cleavage at pyrimidine 

stretches. ~-Rh(phen)~phis+ shows an equal extent of cleavage for the pyrimidine 

stretches, and no preference for the 5'-YR-3' steps. NMR also shows greater site 

specificity by ~-Rh(phen)~~hi3+ than by the A enantiomer I*. The sequence selectivity of 

R u ( ~ h e n ) ~ d ~ ~ z 2 +  has not been as well characterized. However, different types of 

experiments, including N M R ~ ~ ,  binding stoichiometries to DNA as measured by 

fluorescence20, and singlet oxygen cleavage experiments on correctly paired DNA21 all 
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suggest that both enantiomers of R~(phen)~dppzZ+ have a limited sequence selectivity. 

Binding by the dppz complexes in a more or less random manner may more effectively 

retard DNA mobility than binding by phi at specific sites. However, differences in 

sequence selectivity do not fully explain the observed difference in enantioselectivity of 

retardation by ~u(phen)~dppz~+.  

What, then, are the factors leading to the reduced mobility of DNA by these metal 

complexes? The hydrophobicity of these metal complexes appears to be an important 

factor in this regard. As mentioned above, the accessible hydrophobic area of the 

intercalating ligand available for n stacking with the DNA bases correlates with the 

observed trend of retardation by the complexes. Additionally, the hydrophobicity of the 

ancillary ligands also appears to have an effect upon retardation, since R~(phen)~dppzZ+ 

has a much greater effect upon DNA mobility than does either RI1(bpy)~dppz3+ or 

~ u ( b ~ ~ ) ~ d p p z 2 + .  Another parameter which shows a dependence upon metal complex 

hydrophobicity is exchange rate, as measured by NMR spectroscopy, that is, the more 

hydrophobic the complex, the slower the exchange rate. Therefore, the above-mentioned 

trends in DNA retardation by the metal complexes correlate with observed trends in their 

exchange rates. The enantioselectivity by R~(~hen)~dppz2+ also correlates with that of 

exchange. However although Rh(phen)2phi3+ shows a A > A  trend for DNA retardation, 

NMR shows it to be in faster exchange than the A-isomer. Some possible reasons for the 

observed enantioselectivity in DNA retardation by these complexes will be discussed 

below. 

Additionally, it is likely the retardation of DNA observed here is due in part to a 

reduction in charge density, resulting from the lengthening of the DNA molecule by 

insertion of the intercalating ligand accompanied by charge neutralization of the 

phosphate backbone. Indeed, these results show that the more positively charged 

Rh(bpy)2dppz3+ retards DNA mobility more reproducibly and to a greater extent in the 

6pM- 70pM concentration range than does Ru(bpyhdppz2+. However, there are a 
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number of findings which contradict charge as being the overriding contribution to the 

alteration in DNA mobility by these metal complexes. First, ra~-Ru(phen)~dppz2+ 

reduces DNA mobility to a significantly greater extent than does rac-~h(bpy)~dppz3+, 

which is in opposition to expectations based upon metal complex charge being the 

predominant component to the retardation. Secondly, there are notable differences 

between retardation by two enantiomers of the same complex, which would also not be 

predicted if the retardation is occurring mainly by way of charge neutralization. It has 

been noted from comparisons of DNA mobility in the presence of ethidium bromide(+l) 

and propidium iodide(+2) that charge neutralization plays a more significant role in the 

retardation of gel mobility than does the increased contour length of the DNA22- 

However, the conclusion that the lowering of charge density is the major contribution to 

DNA retardation was based on data from a different gel matrix than utilized here. 1% 

agarose possesses a pore size of 1000-3000 P\, considerably larger than the persistence 

length of DNA (500 A). In contrast the pore size of the 5% polyacrylamide used here is 

20-35 A. Therefore it is likely that the polyacrylamide matrix would be sensitive to 

another potential contribution to the observed retardation by these metal complexes, i.e., 

their deformation of DNA structure. 

Some types of DNA confonnational change that might be expected to influence 

DNA electrophoretic mobility are considerations such as stiffening or kinking. The 

stiffening of the DNA helix caused by intercalation may be quantified using such 

techniques as linear dichroism and viscometry. The orientation factor, S, which is 

derived from linear dichroism, shows a greater stiffening of DNA by A-R~(phen)~dppz2+ 

than the A-isomer23. However, it has recently been found that A- and A- 

~ u ( ~ h e n ) ~ d ~ ~ z 2 +  show essentially identical viscometric behaviorz*, which indicates an 

equal extent of stiffening of DNA by both enantiomers of R~(phen)~dppz2+. Therefore, 

stiffening in isolation is not likely to be the cause of the enantioselectivity in retardation 

(A > A) by ~u(phen)~dppz2+. However, stiffening, in combination with other structural 
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deformations such as kinking might explain differences in retardation by phi and dppz 

intercalators, and could possibly explain the trend of A > A for Rh(phen)2phi3+ 

Additionally, other conformational changes besides stiffening could explain the 

enantioselectivity for Ru(phen) 2dppz2+. 

Another conformational change that contributes to differences between the 

complexes in effecting DNA retardation is helical unwinding. Intercalation involves a 

separation of DNA base pairs by the insertion of the ligand with a concomitant 

unwinding of the DNA base step. Such changes in the DNA phosphate backbone 

geometry have also been observed by 31P NMR spectroscopy for these complexes19~24. 

The extent of unwinding of DNA can be measured using a topoisomerase assay. Some 

preliminary experiments with topo i somera~e~~ have shown that A-Ru(phen) 2dppz2+ 

unwinds DNA to a greater extent than does A-R~(phen)~dppzZ+ (25" vs 18" ). Such 

differences in the average extent of unwinding by the metal complexes could effect 

differences in the apparent length ~f DNA. 

It was unexpected that A-Rh(phen)2phi3+ would have a greater effect upon DNA 

mobility than ~ - R h ( ~ h e n ) ~ p h i 3 + .  Although not easy to explain, there have been some 

observations using other techniques which would be consistent with a A > A trend. A 

low affinity binding mode observed by equilibrium dialysis 16 on Rh(~hen)~phi3+, shows 

enantiomeric preference for the A-isomer. However, this low affinity binding mode is 

only observed at high concentrations of ~h(phen)~phiZf ,  and where [M[l bound stops 

increasing sharply. This binding preference by A-Rh(~hen)~phiZf is Likely to correspond 

to a surface binding interaction. By analogy to R~(phen)~Z+, a surface binding mode of 

~ - R h ( ~ h e n ) ~ ~ h i s f  would involve van der Wads interactions between two phenanthroline 

ligands and the minor groove of DNA. Therefore, the affinity of A-Rh(phen)2phi3+ for 

DNA through a surface bound interaction would be expected to be very weak (103). The 

lack of retardation by ~ u ( ~ h e n ) ~ 2 +  under the standard concentrations utilized here 

demonstrates that weak binding modes are incapable of producing a large effect upon 
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DNA mobility. Therefore, a surface bound mode for ~-Rh(phen)~phi3+ cannot explain 

the enantiomeric preference (A > A) observed in the standard concentration range utilized 

here (10-6-10-4~). Additionally, it is not obvious that A-~h(phen)~phi3+ would even 

have a greater effect upon DNA mobility in a surface bound mode than either enantiomer 

would in an intercalative mode. 

Therefore, the large effects upon DNA mobility are likely to be due to a higher 

affinity binding mode for A-Rh(~hen)~phi3+. There are a number of lines of evidence 

that are consistent with an intercalative binding mode for ~-Rh(~hen)~phi3+. First, both 

enantiomers of Rh(phen)2phi3+ show an equivalent amount of photocleavage at 

sequences such as 5'-YY-3' in the 106- 10-5M. concentration range; since photocleavage 

requires intercalation, ~ - R h ( ~ h e n ) ~ p h i >  is certain to be binding by intercalation at these 

sites. A second line of evidence involves the upfield chemical shift changes observed for 

the protons situated on intercalators upon binding to D N A ~ ~ .  Similar upfield chemical 

shift changes of phi ligand protons are measured for both enantiomers of this complex24, 

and there is direct NMR evidence of an intercalative binding mode for ~-Rh(~hen)~phi3+. 

Additionally, both enantiomers induce characteristic downfield chemical shift changes in 

DNA phosphorus resonances, as detected by 3 l ~  N M R ~ ~ .  This observation is also 

consistent with intercalation by A-Eth(phen)2phi3+. 

How may the A > A trend in DNA retardation be explained for Rh(phen)2phi3+? 

A number of experimental observations are consistent with DNA conformational 

destabilization by A-~h(phen)~phi3+. For example, this metal complex shows some 

interesting thermodynamic behavior with DNA. Intercalation by these metal complexes 

generally results in an increase of duplex melting temperature, as observed by NMR and 

UV absorption spectroscopy. This increase in Tm indicates the thermodynamic 

stabilization of the duplex. ~ - R h ( ~ h e n ) ~ ~ h i 3 +  shows significantly less stabilization of the 

duplex as detected by NMR and absorption spectro~cop~21~2~ than does the A-isomer. 

Additionally, a A-isomer of a ~h(phen)~~h i3+  analog, A- 1 - R h ( ~ G p ) ~ ~ h i S +  (MGP=4- 
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guanidylmethyl), induces a severe conformational change at a specific site of binding, 

which involves an unwinding of the DNA helix by approximately 7V26. These results, 

taken together, suggest some type of conformational destabilization of the DNA upon 

intercalative binding by h-~h@hen)~phi3+. It is interesting that viscometry experiments 

show that with increasing ~ - R u ( p h e n ) ~ ~ +  concentration, an initial decrease in DNA 

length is followed by a subsequent increase in DNA length27. These results, have also 

been interpreted in terms of a metal complex-induced kink in the DNA structure, and 

have some similarity to the biphasic nature of retardation by h-~h(phen)~phi3+ observed 

here2*. 

In conclusion, all the octahedral metal complexes studied here yield an effect on 

DNA electrophoretic mobility. The differing extents of retardation by these complexes 

may be explained by a combination of factors. The most important contribution appears 

to be the hydrophobicity of both intercalating and ancillary ligands, which also has an 

effect on the exchange rates of these complexes with DNA. With all other factors being 

equal, metal complex charge also has an influence upon the observed retardation of DNA 

mobility. Finally, differences between the enantiomers of a given complex are attributed 

to their differing effects upon DNA unwinding and other aspects of DNA conformation. 
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Chapter 6: 
Conclusions and Perspectives 

It has been more than a decade since the first high-resolution crystal structure of 

DNA in the B form has been solved. Previously, DNA had been considered to possess a 

regular polymeric structure. The range of local conformational heterogeneity observed 

within B DNA form was unanticipated, and attempts were made to define precisely how 

DNA sequence dictates its three-dimensional structure. However, as more structures were 

solved, early sets of proposed rules for DNA structure were not always found to be 

heeded. 

The work described herein has involved the application of transition metal 

complexes to the study of DNA conformational variation in solution. The group of 

complexes utilized here bind noncovalently to DNA by means of a shape-selective 

mechanism. These complexes also possess useful photochemical properties which instruct 

us about DNA conformation on many levels. For example, Ru(TMP)~~+ detects 

variations in minor groove width, and is a probe for the A conformation. In a 

complementary fashion, Rh(phi)3+ complexes bind in the major groove of DNA and 

therefore provide information about local major groove structure. The location of binding 

of ~h(phi)3+ complexes is in contradistinction to that of most other chemical and 

enzymatic DNA probes. Whereas most other probes tend to recognize structural features 

of the DNA backbone and minor groove, Rh(phi)3+ complexes are uniquely suited for 

examining the structure of the DNA major groove. Together with RU(TMP)~~+, 

~h(phen)~phi3+ can provide information about DNA groove width. 

Another distinguishing feature of complexes such as ~ h ( ~ h e n ) ~ ~ h i 3 +  is their 

intercalation into DNA. This mode of association between the intercalating ligand and the 

DNA base pairs is necessarily sensitive to considerations of DNA stacking and disposition 

of the DNA bases. These important components of DNA structure are not easily 

determined by other techniques such as NMR spectroscopy. Therefore, again, use of these 
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transition metal probes serves to complement the use of other methods in studying DNA 

solution structure. 

The intercalation of these metal complexes is modulated by their nonintercalating, 

or ancillary ligands. These ancillary ligands provide steric bulk which is an important 

means by which to discriminate among DNA sites. In this regard, ~-~h(phen)~phi3+ has 

been developed here into a probe of DNA sites which are opened in the major groove, in 

particular by the propeller twisting of successive DNA base pairs. 

Aside from being useful as probes of DNA structure, this class of transition metal 

complexes are also interesting as rudimentary models of DNA recognition by proteins. 

Like proteins, Rh(phen)2phi3+, for example, recognizes DNA major groove shape. 

However, unlike proteins, ~h(phen)~phi3+ lacks hydrogen bonding functionalities, and 

therefore is not sensitive to the precise positioning of the functionalities in the major groove 

of DNA. This metal complex shares binding sites in common with proteins and has also 

been used as a probe of protein binding regions of DNA. Interestingly, however, A- 

~h(~hen)~phi3+ recognizes a mismatch-induced structural perturbation which is apparently 

not well detected by repair enzymes. It will be interesting to learn whether binding by these 

metal complexes to other DNA sequences and other mismatches can provide insights into 

such issues as indirect readout and DNA repair. 


