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Abstract

We study the stability of the absolutely continuous spectrum of onedimensional
Schr�odinger operators

�Hu��x	 � �u���x	 � q�x	u�x	

with periodic potentials q�x	
 Speci�cally� it is proved that any perturbation of the
potential� V � L�� preserves the essential support �and multiplicity	 of the absolutely
continuous spectrum
 This is optimal in terms of Lp spaces and� for q � �� it answers
in the a�rmative a conjecture of Kiselev� Last and Simon


By adding constraints on the Fourier transform of V � it is possible to relax the
decay assumptions on V 
 It is proved that if V � L� and �V is uniformly locally
square integrable� then preservation of the a
c
 spectrum still holds
 If we assume
that q � �� still stronger results follow� if V � L� and �V �k	 is square integrable on
an interval �k�� k��� then the interval �k����� k

�
���� is contained in the essential support

of the absolutely continuous spectrum of the perturbed operator
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Chapter � Introduction

We wish to consider perturbations of onedimensional Schr�odinger operators with
bounded periodic potentials
 So given a bounded periodic function q�x	 on R we
de�ne

�H�u��x	 � �u���x	 � q�x	u�x	

as an operator acting in L��R	
 �More strictly� the domain of operator H� is the
Sobolev space H�� which is dense in L�
	 The assumption that q is bounded is made
purely to avoid distracting complications
 More generally� one may consider q which
are locally integrable
 We shall also have cause to discuss the discrete version of this
operator� namely

�h�u��n	 � u�n� �	 � u�n� �	 � q�n	u�n	

which acts in ���Z	
 For the most part though� we shall discuss the traditional �non
discretized	 Schr�odinger operator


The spectral theory of onedimensional Schr�odinger operators with periodic po
tentials is very well understood
 Ultimately this stems from the following fact� if L
denotes the period of q and � is a solution of

���� � q� � z�

for some z � C� then ��x	 � ��x� L	 is also a solution of this di�erential equation

By iterating this fact� we see that solutions are either steadily growing �as x�� or
��	 or are uniformly bounded
 The set of z for which there are bounded solutions
is a closed subset of R
 Indeed� it is the spectrum of H�� ��H�	
 It consists of closed
intervals �known as the spectral bands	 and is bounded from below but unbounded
above
 For any z in the interior of the spectrum� all solutions are bounded
 This does
not hold at the band edges ����


One of the core results of subordinacy theory is that bounded solutions corre
spond to absolutely continuous spectrum ����
 Employing this theorem in the current
instance tells us that the spectrum ��H�	 of H� is purely absolutely continuous with
multiplicity two
 The nature of the spectrum has been known for a very long time�
in particular from before the advent of subordinacy theory
 However� we choose to
present it in this way as it foreshadows some of the discussion to come


The question at the centre of this thesis is the following� what perturbations V may
be added to the potential without destroying the absolutely continuous spectrum� In
particular� what type of decay at in�nity is permissible
 At the moment this question
is rather imprecise� in particular� we have yet to explain in what sense we wish
the absolutely continuous spectrum to be preserved
 For the moment though� we
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introduce the following notation for the perturbed operator

�Hu��x	 � �u���x	 � q�x	u�x	 � V �x	u�x	�

Undoubtedly the oldest result on spectral stability is due to Weyl ���� Theorem
XIII
���� any relatively compact perturbation preserves the essential spectrum
 For
the operators we consider� this means that if V decays in some reasonable fashion�
for example�

Z n

n��

V �dx� � as n� ���

then �ess�H	 � �ess�H�	 � ��H�	
 This tells us that we need only focus on what
happens to the spectral type on ��H�	
 Any spectrum of H� lying outside ��H�	�
must consist of discrete eigenvalues
 In the discrete case� one merely needs V �n	� �
as n� �� to apply the Weyl Theorem


The next general result we wish to consider is the KatoRosenblum Theorem �more
accurately� a version of it due to Birman and Kuroda	
 As well as being interesting in
its own right� it suggests what type of spectral stability result we should try to prove

If V � L� then V is a relatively trace class perturbation of H�
 That is to say� for
each z � CnR� R�R� � �H�z	��� �H��z	�� is trace class
 The KatoRosenblum
Theorem then tells us that wave operators exist and are complete and hence that the
absolutely continuous parts of H and H� are unitarily equivalent


Here we have a very clear statement of what it means for the absolutely continuous
spectrum to be preserved�namely� if the absolutely continuous parts of the perturbed
and unperturbed operators are unitarily equivalent
 This is much stronger than the
statement �ac�H	 � �ac�H�	
 To better explain this� we introduce the following�

De�nition � Given a self�adjoint operator A on a Hilbert space H� an essential
support of the a�c� spectrum is any set �ac such that

i	 for every � � H the corresponding spectral measure 	 obeys 	ac�S��ac	 � 	ac�S	
for any Borel set S� and

ii	 	� � H such that d	
 
�ac
�E	dE�

This determines �ac uniquely up to sets of zero Lebesgue measure�

Remark In order to simplify the presentation� equations involving �ac should be in
terpreted as holding for some choice of essential support


The statement �the absolutely continuous parts of H and H� are unitarily equiv
alent� is logically equivalent to ��ac�H	 � �ac�H�	 and the spectral multiplicities are
equal on this set�
 It should be clear that �ac � �ac� indeed �ac is the smallest closed
set which contains �a realization of	 �ac
 However� in general �ac �� �ac� they may
di�er by any set with empty interior and positive Lebesgue measure
 In the case of
H� or h�� �ac � �ac


As with most recent work on this subject� we shall prefer to talk about equality
of the essential support of the absolutely continuous spectrum rather than unitary
equivalence of absolutely continuous parts
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For potentials with Coulombic decay� V �x	  ��x� the KatoRosenblum Theorem
is inapplicable
 The wave operators simply do not exist
 If we wish to consider
potentials with slower than L� decay� we must introduce modi�ed wave operators

The best known conditions for existence and completeness of wave operators ����
require decay restrictions on V� V � and V ��
 Alternatively� this monograph contains a
proof �Theorem ��
�
��	 that the absolutely continuous spectrum is preserved under
weaker assumptions on just V� V � by directly obtaining estimates on the resolvent
 In
the onedimensional case we are considering� however� these are all subsumed by the
following result of Weidmann ����
 If V is the sum of two terms� one integrable and
the other tending to zero at in�nity and of bounded variation� then �ac�H	 � �ac�H�	
with equal multiplicity
 Actually this theorem is due to Weidmann only in the case
that q � �
 For periodic background potentials� it is due to Stolz ����


Perhaps the earliest results in the opposite direction arose from Pearson studies
of sparse potentials ����
 Suppose W �x	 is continuous and of compact support and
that gn �� ��
 Pearson showed that if xn �� su�ciently quickly� then the operator
H with q � � and

V �x	 �
X

gnW �jxj � xn	

has purely singular continuous spectrum
 This tells us� for example� that if p � �
then there exists a V � Lp so that �ac�H	 � �
 More recently� Kiselev� Last and
Simon ���� treated sparse potentials for xn obeying xn�xn�� � � by showing that if
gn � �� then H has purely absolutely continuous spectrum on ����	� whilst if gn �� ��

then H has purely singular continuous spectrum on this interval
 Remling ���� also
gave related results


Whilst these results give a very strong indication of what decay properties are
insu�cient to prove the preservation of �ac� at least in an Lp sense� there is a still more
instructive result due to Kotani and Ushiroya �� �
 Once again we consider q � �

Given any bounded positive decreasing function a�x	 �� L��R�	� they construct a
probability space of choices for V � each obeying jV �x	j � a�jxj	 such that H �
H� � V has purely singular spectrum with probability one
 It is also shown that if
jV �x	j���jxj	� � L� then the spectrum on ����	 is purely absolutely continuous with
probability one
 Later we shall see that L� perturbations preserve the a
c
 spectrum

The KotaniUshiroya result implies that L� is the borderline in a very strong sense

For example� if ! is a nonnegative convex function with x��!�x	� � as x� � then
there is a V with

R
!
�jV �x	j�dx �� that gives rise to purely singular spectrum


In the discrete case� random decaying potentials were studied by Delyon� Simon
and Souillard ��� �� �"�
 Speci�cally� they studied potentials of the form V �n	 � anXn

where an decays as jnj � � and Xn are independent identically distributed random
variables for each n � Z
 Suppose� for simplicity� that the distribution of Xn is
compactly supported
 If an � �� � jnj	��� then the following are known to hold with
probability one�

i	 If  � ���� the spectrum is pure point with rapidly decaying eigenfunctions

ii	 If  � ���� then the spectrum is purely singular �continuous at low energies�

pure point at higher energies	 and
iii	 if  � ���� then Kotani has proved that the spectrum is purely absolutely
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continuous

Using this result as an input to a general method� Simon ���� has shown that if

p � � then for a dense G� of V � �p the operator u�n� �	� u�n� �	 � V �n	u�n	 has
purely singular continuous spectrum on ���� ��
 This set is the essential spectum of
the operator
 For traditional Schr�odinger operators it is shown that for a dense G� of
V � Lp�R	� p � �� the operator �u�� � V u has purely singular continuous spectrum
on ����	


The dichotomy between L� perturbations preserving a
c
 spectrum and nonL�

perturbations destroying it� at least for sparse and random perturbations� led to
the conjecture by Kiselev� Last and Simon ���� that if V is square integrable then
�ac�H	 � �ac�H�	� at least when q � �


Recent positive results began with Kiselev�s proof ���� that if jV �x	j � C�� �
jxj	������ then �ac�H	 � �ac�H�	
 This paper actually proves a much stronger result�
for almost every E � �ac�H�	 all solutions of ����� q��V � � E� are bounded and�
if q � �� have WKBtype asymptotics
 That this implies �ac�H	 � �ac�H�	 follows
from the subordinacy theory result mentioned earlier
 By stating that the solutions
have WKB asymptotics we mean that there are solutions

�� � exp
n
� ikx� i

�k

Z x

�

V �s	ds
o
� o��	

with k� � E
 Of course� any other solution of ���� � V � � E� can be written as a
linear combination of �� and ��


Later Kiselev ���� and Molchanov improved this to jV �x	j � C�� � jxj	������

Finally� ChristKiselev ��� and Remling ���� obtained the optimal result in this direc
tion� namely if jV �x	j � C�� � jxj	������ then for almost every energy E � ����	
all solutions are bounded and� if q � �� obey WKBtype asymptotics
 Consequently�
�ac�H	 � �ac�H�	
 �That this is optimal in terms of powerlaw decay follows from
the work of KotaniUshiroya mentioned earlier
	 By quoting these powerlaw theo
rems we have not quite presented their results in full generality
 For example they
are able to admit singularities� ��� jxj	�V �x	 � Lp for any � � p � �
 However� they
were not able to �nd a purely Lptype condition and o�ered this as a direction for
further study ���
 All these works also treat power decaying potentials for the discrete
Schr�odinger operator


Recently Christ and Kiselev extended their method to potentials V � Lp or V � �
Lp provided p � �
 See ���


For vanishing background potentials� q � �� Deift and Killip ��� were able to prove
if V � L� then �ac�H	 � �ac�H�	 and so con�rm the conjecture of Kiselev� Last and
Simon
 Later we shall present a proof of this result


The main ingredient of the DeiftKillip proof is one of the BuslaevFaddeev
Zakharov trace formulae which are perhaps best known for their role in the study
of the KdV equation ����
 Suppose V is of compact support� then we may consider
solutions to �u���x	 � V �x	u�x	 � k�u�x	 which agree with eikx to the right of the
support of the potential
 To the left of the support of the potential we can write
u�x	 � ap�k	e

ikx � bp�k	e
�ikx where ap� bp are analytic functions of the momentum
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k �� �
 The subscript p is to indicate that a� b are parameterized as functions of
momentum k� later we shall de�ne a function a which is parameterized by energy
z � k�


In the timedependent picture� e�ikx represent waves travelling to the right#left

Thus it is natural to term t�k	 � ��ap�k	 the transmission coe�cient and r�k	 �
bp�k	�ap�k	 the re$ection coe�cient
 The second of the BFK trace formulae is

Z
R

log jap�k	jk�dk � �
	

Z
V �x	�dx� ��

�

X
E���
n � ��
�	

where �En are the negative eigenvalues of the Schr�odinger operator with potential
V �x	
 We will derive this formula in Chapter �


All the main results of this thesis rest on the fact that preservation of absolutely
continuous spectrum follows from appropriate a priori bounds on japj� the reciprocal
of the transmission coe�cient
 This is made precise in Proposition �
�
 Because the
eigenvalue term� ���

�

P
E

���
n � is negative� ��
�	 gives an a priori bound on jap�k	j


This is then su�cient to prove that square summable perturbations preserve the
absolutely continuous spectrum when q � �


Using higherorder trace formulae it is possible to prove similar results with esti
mates on derivatives
 For example� if V � L� and V �� � L� then �ac�H	 � �ac�H�	 �
����	
 We will also prove this in Chapter �
 Though known to the authors at the
time� this theorem does not appear in ���
 The spectral consequences of the full family
of trace formulae have recently been studied systematically by Molchanov� Novitskii
and Vainberg ����


The trace formula method is e�ective only in the case q � �
 The natural analogue
of ��
�	 in the presence of a periodic background potential su�ers from the following
problem� the contribution from the eigenvalues lying in the spectral gaps is no longer
assuredly negative
 The greater part of this thesis is devoted to the presentation of a
di�erent� though intimately related� method which is able to treat general periodic q

Speci�cally we shall interpret a as a Fredholm determinant and then use regularized
determinants to study the integral of log jaj over bounded intervals in energy E � k��
the trace formula is for the integral over all energies


Although our main goal is to prove results for the wholeline operator H� this will
be e�ected by �rst proving results for halfline operators
 De�ne

�H�u��x	 � �u���x	 � q�x	u�x	 � V �x	u�x	 in L��R�	 with u��	 � �

that is� a Schr�odinger operator on the positive halfaxis with a Dirichlet boundary
condition at the origin
 The halfline version of the DeiftKillip results described
above is

Theorem � If q � � and either
i	 V � L� or
ii	 V � L� and V �� � L��

then �ac�H�	 � ����	�



 

In the next section� under the heading Proof that Theorems � Corollaries� we
will explain how one obtains wholeline results from theorems about the halfline
operators
 For example

Corollary � Suppose q � � and either
i	 V � L��R	� or
ii	 V � L��R	 and V �� � L��R	�

Then �ac�H	 � �ac�H�	� that is� ����	 and with equal spectral multiplicity two�

In the presence of a periodic background potential q we prove

Theorem � If q is periodic and V � L��R�	 then �ac�H�	 � �ac�H�	�

Corollary � Suppose q is periodic and V � L��R	� Then �ac�H	 � �ac�H�	 with
spectral multiplicity two�

Note that �ac�H�	 is also the essential support of absolutely continuous spectrum
for the unperturbed �V � �	 halfline operator
 Hence its appearance in the theorem

That this is the optimal Lp space follows from the work of KotaniUshiroya mentioned
earlier
 By adding a mild constraint� it is possible to obtain a result for V � L�


Theorem � Suppose that q is periodic� V � L��R�	 and its Fourier transform �V �
���L�	 �that is the distribution �V is uniformly locally L�	� Then �ac�H�	 � �ac�H�	�

Corollary � Suppose that q is periodic� V � L��R	 and �V � ���L�	� then �ac�H	 �
�ac�H�	 with spectral multiplicity two�

For means of later convenience we adopt the following norm on ���L�	

��f���
��
L��

� sup
n

Z ���L

����L

��f�x � ��n
L

����dx� ��
�	

where L denotes the period of q
 In the case of zero background� q � �� we are able
to obtain information which is local energy�

Theorem � Let I be an interval in ����	 and de�ne %I � fk � R � k��� � Ig�
Suppose q � �� V � L� and the distribution �V restricts to an L� function on the set
%I� Then I � �ac�H�	�

Corollary � Under the assumptions of the previous theorem� I � �ac�H	 with mul�
tiplicity two�

Remarks �
 In all the above theorems#corollaries� the theory of relatively trace class
perturbations states that one may add a further L� perturbation to the potential
without changing �ac�H	

�
 Our methods do permit us to obtain a version of Theorem � which is local in
energy� however� the criterion on V seems di�cult to check in general
 Speci�cally�
one needs to bound ��
��	 in L��I� dE	 to show that I � �ac�H	 as this would give
a replacement for ��
��	
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�
 Let &Hs denote the Sobolev space of functions with square integrable derivative of
order s
 For noninteger s� &Hs � ff � jkjs �f�k	 � L��dk	g
 Then from Corollary �� if
V � L� � &Hs for some s � R then �ac�H	 � ����	

�
 The method presented here extends readily to perturbations of the discrete
Schr�odinger operator h�
 One obtains the following analogues of the corollaries given
above
 If q�n	 is periodic and V � ���Z	 then �ac�h	 � �ac�h�	 with equal multiplic
ity �namely two	
 Suppose q � �� V � ��
 If �V ��	 �

P
V �n	ein� is square integrable

on an interval I then the interval %I � f� cos����	 � � � Ig is contained in �ac�h	

Moreover� the spectral multiplicity is equal to two on %I
 Notice that because �V is
uniformly locally L� i� V is ��� the analogues of Corollaries � and � coincide


Let us brie$y discuss the occurrence of k��� in Theorem �
 By the Weyl Theo
rem� we know that if V � L� then �ess�H	 � �ess�H�	
 Consequently� the only way
to obtain absence of absolutely continuous spectrum is to generate enough singular
spectrum to take its place
 Wigner and von Neumann discovered a potential with
asymptotics V �x	  sin�kx	�x which has a positive eigenvalue at E � k���
 The
physical explanation for this is that the separation of the bumps in the potential is
half the wavelength of a particle with energy k���
 In this way� they set up a coherent
re$ection which is su�cient to generate an eigenstate
 This gives rise to the heuristic
that singularities in �V at frequency k give rise to singular spectum at energy k���

If �V is square integrable on an interval I then� in some sense� it is regular at almost
every frequency in that interval


Naboko ��"� and Simon ���� have extended the Wignervon Neumann idea to
construct potentials with xV �x	 � � arbitrarily slowly which produce eigenvalues
at a dense set of E � ����	
 By the theorems presented earlier� these eigenvalues are
embedded in �ac�H	 � ����	
 In this context we should also mention that Remling
�� � has given bounds on the Hausdor� dimension of any possible embedded singular
continuous spectrum


We would like to present some sample applications of these theorems to sparse
potentials
 Given a C� function of compact support f � we wish to consider potentials
of the form

V �x	 �
X
n

anf
�
�n�x� n'�

�
� ��
�	

From the work of KiselevLast and Simon mentioned above� we know that if �n � �
then the Schr�odinger operator with potential V has purely absolutely continuous or
purely singular continuous spectrum on ����	 depending on whether an � �� or
an �� �� respectively
 As mentioned earlier� this shows that Theorem � is optimal

Notice also that it also has implications for part ii	 of Theorem �� the condition that
V �� � L� cannot be replaced by an Lp� p � � condition
 Indeed for any s � R� V � &Hs

i� an � ��

Let us now consider an � n��� �n � n	
 By direct calculation� it is easy to see

that V �x	 will be L� if
P

a�n�
��
n � �� that is� if � � � � �
 Because the potential

is so sparse� it is easy to estimate the &Hs norm of V 
 Speci�cally� given distinct
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summands Sn� Sm from ��
�	� the &Hs inner product of Sn and Sm is an extremely
rapidly decaying function of jn �mj
 In fact� for s � Z� Sn and Sm are orthogonal

As a result� V � &Hs i� �� ��� �s	� � �


If ��� �  � �� � �	�� and � � � then by choosing s su�ciently negative�
V � L� � &Hs and so� by Theorem �� the corresponding Schr�odinger operator has
absolutely continuous spectrum on ����	
 While if ��� �  � ��� �	�� and � � �
then by choosing s � � su�ciently large� V � L� � &Hs and the preservation of a
c

spectrum again follows from Theorem �


To produce an example of the applicability of Theorem �� we would like to consider
a slightly di�erent potential

V �x	 �
X
n

anf�x� n	 cos�nx	�

This is in L� i� an � ��
 Taking the Fourier transform gives

�V ��	 � �
�

X
n

an� �f�� � n	 � e�i
n �f�� � n	��

which is then uniformly locally square integrable
 This means that one may apply
Theorem � to see that for any periodic background potential q�x	� the addition of
this perturbation preserves the absolutely continuous spectrum


The text is arranged as follows� In the next chapter we present some background
material and show how the corollaries follow from their respective theorems
 Chap
ter � introduces the main object for study� a�z	� the reciprocal of the transmission
coe�cient� as the perturbation determinant and derives some of its basic properties

In particular� Proposition �
� shows how one may obtain spectral information from
estimates on a�z	
 In Chapter � we discuss the trace formulae and use them to prove
Theorem �
 To prove the other theorems� we use regularized determinants
 These are
introduced in Chapter � and some estimates are derived
 The �nal chapter combines
this material with some facts about harmonic functions to prove Theorems �(�
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Chapter � Background

In this chapter we introduce notation and some of the background material that we
shall be using
 Of course� proofs and more extensive discussions are left to the ref
erences
 The reader may �nd ��� and �"� of most use
 As a natural part of these
discussions we prove that each of the corollaries follows from its corresponding theo
rem


Let us begin with the unperturbed operator

�H�u��x	 � �u���x	 � q�x	u�x	 acting in L��R	�

where q is periodic and bounded
 The spectral theory of such operators is well
understood and is usually studied through the Bloch �or Floquet	 solutions
 For each
z � C� � fz � Im z � �g� these are the nonzero solutions of

�����x	 � q�x	��x	 � z��x	 ��
�	

for which there exists � � C n f�g such that

��x� L	 � ���x	�

Here L denotes the period of q
 When q is identically constant the period is ill
de�ned
 This case is excluded and will be treated in the next paragraph
 For each
z � C� � fz � Im z � �g there are only two possibilities for �� ���z	 with j��j � �
and ���z	 � �����z	
 It is possible to extend ���z	 continuously to R� in fact�
��H�	 � fE � R � j���E	j � �g
 Of course� �� � ���� still holds on R
 However�
at the discrete set of points where �� � ��� they are no longer distinct
 For this
reason� and others related to it� we wish to discard these points from consideration

So we de�ne

�� � fE � ��H�	 � �
��E	 �� ��g� ��
�	

Because the set of points excluded is discrete� this set forms an essential support
for the absolutely continuous spectrum of H�
 Moreover� by �xing the normalisation
��� ��� z	 � �� there are solutions ��� �x� z	 of ��
�	 which obey

��� �x� L� z	 � ���z	��� �x� z	

respectively and which depend analytically on z � C� � ��
 By the de�nitions of
��� if z � C� then ��� decay exponentially as x � �� respectively
 In particular�
they are square integrable near �� which will be important for de�ning the Weyl
mfunctions
 Notice however that for E � ��� the solutions do not decay at all� in
fact� they are almost periodic




��

The case where q is identically a constant reduces easily to q � �
 In this case�
�� � ����	 and ��� �x� z	 � exp��ixpz 	 where the branch of the square root is
chosen to make ��� decay in the appropriate directions


Before moving on� we wish to make three further remarks about ��� 
 Firstly�

��

� �x� E	 � ��� �x� E	 for all E � ��
 ��
�	

Secondly� it is possible to give an explicit formula for the Green function in terms of
��� 
 That is� the resolvent R��z	 � �H� � z	�� is an integral operator with kernel

G�x� x�� z	 �
��

� �x
�� z	��� �x

�� z	

W ���

� � �
�

� �
� ��
�	

where x� � maxfx� x�g and x� is the minimum
 In the denominator we have the
Wronskian of the two solutions� W �f� g��x	 � f�x	g��x	 � f ��x	g�x	� which does not
depend on x
 Lastly� in what follows the zdependence will often be left implicit�
��

� �x	 � ��

� �x� z	 and ��� �x	 � ��� �x� z	

As described in the introduction� our study of the perturbed operator

�Hu��x	 � �u���x	 � q�x	u�x	 � V �x	u�x	 acting in L��R	

will employ its relation to halfline operators� in particular� to

�H�u��x	 � �u���x	 � q�x	u�x	 � V �x	u�x	 in L��R�	 with u��	 � �


These are the halfline Schr�odinger operators with Dirichlet boundary conditions at
the origin which have the same potential as H


Proof that Theorems � Corollaries
 This is a wellknown application of the Kato
Rosenblum theorem on relatively trace class perturbations ����� The introduction
of a Dirichlet boundary condition at the origin reduces H to H� � H�
 As it is a
relatively trace class perturbation� the absolutely continuous parts of H and H��H�

are unitarily equivalent
 In our preferred nomenclature� �ac�H	 � �ac�H�	��ac�H�	
with multiplicity two on the set �ac�H�	 � �ac�H�	
 Whilst the theorems do not
mention H�� it is naturally equivalent to H� with the potential V ��x	
 In this way
each of the corollaries follows directly from its theorem


The method of Dirichlet decoupling used in this proof is very well known� for
example� it is used in the standard proof of Weyl�s law on the eigenvalue asymptotics
for vibrating membranes
 For a discussion of its use in scattering theory �in arbitrarily
many dimensions	 see � �


The reason for performing this reduction from the whole line to the halfline
is because the spectral properties of H� are directly accessible from the Weyl m
functions
 Although we might now dispense with discussing the wholeline operatorH
and concentrate just on H�� some of the special properties of the wholeline operator
will make our life easier




��

The Weyl mfunctions are the analytic functions m� and m� de�ned by

m��z	 � ��
� ���	

����	
for each z � C�
 ��
�	

Here �� are the unique �up to scalar multiples	 solutions of

�����x	 � q�x	��x	 � V �x	��x	 � z��x	

which are square integrable at �� respectively
 The functions �� are typically called
the Weyl solutions


Any such mfunction admits a unique representation as

m�z	 � A � �
�

Z
R

� � Ez

E � z
d	�E	 ��
 	

with A � R and d	 a �nite positive measure
 In many references this representation is
written with the measure d� � ���E�	d	 and the corresponding change to the kernel

The signi�cance of this representation is as follows� if d	� are the measures used to
represent m� in ��
 	 then H� are unitarily equivalent to the operator f�E	 �� Ef�E	
acting in L��R� d	�	 respectively
 Moreover� from the representation ��
 	� one may
infer that

�� � E�	d	�E	 � weaklim
���

Im�m�E � i�	�dE� ��
�	

For the unperturbed problem� V � �� the Weyl solutions are the Bloch solutions
and so extend analytically from C� to ��
 Since we chose the normalisation ��� ��	 �
�� the mfunctions for the unperturbed problem� m�

� � m
�
� also extend analytically to

��
 By ��
�	 we have the additional property that m�
� �E	 � �m�

� �E	 for all E � ��

For a general V � L� �or L�	 the Weyl solutions need not extend analytically�

or even continuously� to ��
 As in DeiftKillip� we shall circumvent this problem by
treating the true perturbation V as the limit of a sequence of potentials Vn which
are C� and of compact support
 A second simpli�cation is that we may assume that
V is supported on ����	
 This is possible because the theorems refer to H� which
only depends on V �x	 for x � �
 For such potentials the Weyl solutions behave very
nicely�

Lemma �� Suppose V � C� is supported on a compact subset of ����	� For each
z � C � �� there exist solutions �� of

�����x	 � q�x	��x	 � V �x	��x	 � z��x	 ��
�	

such that ����x	 � ��� ��x	 for su�ciently large x � �� In fact� ���x	 � ��� �x	 for
all x � �� Moreover� �� are analytic functions of z � C� � ���

Proof� This lemma amounts to little more than the existence theorem for linear
ordinary di�erential equations� though it is quite instructive to �rst apply variation
of parameters with respect to ��

� � �
�

� 




��

This lemma implies that m��z	 � m�
� �z	 and so is analytic on C� � ��
 It also

shows that m��z	 is meromorphic on C� � ��
 In fact� if m��z	 were to have a
pole inside �� this would force H� to have an eigenvalue
 This is impossible because
as x � � any nontrivial solution of the perturbed ODE is a nontrivial linear
combination of the Bloch solutions and so not L�
 Therefore� m��z	 are analytic on
�� and� by ��
 	� on C� also
 As a result we may take the weak limit ��
�	 explicitly
to �nd

�� � E�	d	��E	 � Im
�
m��E	

�
dE on ��
 ��
"	

This suggests that we need to bound Imm��z	 away from zero almost everywhere on
the spectrum of the unperturbed operator
 Actually� since this equation is only for
V � C� of compact support� it suggests that we should bound Im m�z	 uniformly
for a sequence of potentials converging to the true perturbation
 This intuition will
be made precise in Proposition �
�




��

Chapter � The Perturbation

Determinant

The last chapter closed by suggesting that we shall be able to prove the theorems
by bounding Imm�z	 from below
 The main result of this chapter� Proposition �
��
shows how this may be achieved by �rst obtaining a priori bounds on the function
a�z	
 We introduce the function a�z	 in terms of a Fredholm determinant�

Proposition �� Suppose V � C� is supported on a compact subset of ����	� For
each z � C�� the operator R��z	V is of trace class� so we may de�ne

a�z	 � det
�
� �R��z	V

�
� ��
�	

which may be written directly in terms of the Bloch and Jost solutions

a�z	 �
W ���� ���

W ���

� � �
�

� �
� ��
�	

This shows that a�z	 may be extended analytically to ���

Proof� Recall that R� is the resolvent of H�� that is� R��z	 � �H� � z	��
 For q � ��
that R��z	V is trace class follows immediately from a theorem of BirmanSolomjak
���� Theorem �
��
 This may be extended to q �� � by employing the resolvent formula

Section � of the above reference proves that the determinant exists and Proposition
�
� proves ��
�	 in the case that q � �
 This proof can easily be adapted to the
present cause


Naively ��
�	 only shows that a�z	 is meromorphic on ��
 However� the theory of
periodic Schr�odinger operators shows that W ���

� � �
�

� � is nonzero throughout C� �
��


When q � � we described another function ap in the introduction as the reciprocal
of the transmission coe�cient
 An explanation of their equivalence� up to parameter
ization� will be posponed until the next chapter where the trace formula �
� is proved

In order to relate a and the mfunctions we will need a further

Lemma �� Suppose V is of compact support� Then for each point E � ���

Imm��E	

Imm�
� �E	

�

�����
�

� ��	

����	

����
�

��
�	

and similarly for m�� m�
� � Moreover for such E� all four m�functions have positive

imaginary part�



��

Proof
 Because E is real� both ���x	 and ���x	 �its complex conjugate	 are solutions
to the perturbed ODE ��
�	
 From the invariance of Wronskians� it then follows that

��iIm�m�	j����	j� � �� ���	����	� ����	��
���	

� W
�
��� ��

�
��	

� W
�
��� ��

�
�x	 �x�

Similarly� for all x � R� ��iIm�m�	j��

� ��	j� � W
�
��

� � �
�

�

�
�x	 which is nonzero for

E � �� because �
�

� � ��� for such E and the Bloch solutions are linearly independent

Now for x su�ciently large ���x	 and ��

� �x	 agree
 This means that the Wronskians
must be equal� which proves ��
�	
 It also shows that Imm��E	 and Imm�

� �E	 are
nonzero
 That they are not negative is a consequence of the representation ��
 	


Evaluating the Wronskians of ��
�	 at the point x � �� we have

a�z	 �
����	�� ���	� ����	�� ���	

��

� ��	�
�

�
���	� ��

� ��	�
�

�
���	

�
����	����	

��

� ��	�
�

� ��	

m��z	 �m��z	

m�
� �z	 �m�

� �z	
�

However� because we only wish to prove theorems about H� we continue to assume
V is supported in ����	
 This means ����	 � ��

� ��	 and m��z	 � m�
� �z	 �refer to

Lemma �
�	
 Employing these identities�

a�z	 �
����	

��

� ��	

m��z	 �m�
� �z	

m�
� �z	 �m�

� �z	

for each z � C� � ��
 If we consider just E � ��� Lemma �
� permits us to write

��a�E	
��� � Imm�

� �E	

Imm��E	

����m
��E	 �m�

� �E	

m�
� �E	 �m�

� �E	

����
�

�
jm��E	 �m�

� �E	j�
� Imm��E	 Imm�

� �E	
� ��
�	

To obtain the second equality� we have used the fact that ��
�	 implies m�
� �E	 �

�m�
� �E	 for each E � ��

From the representation ��
 	 it follows that all mfunctions have nonnegative

imaginary parts
 From this and some simple manipulations of ��
�	 it follows that
ja�E	j� � � for all E � ��
 In fact� a�z	 does not have any zeros in C� either
 If
it did� ��
�	 would imply that ��� �� were linearly dependent and hence that the
perturbed ODE ��
�	 has an L� solution for this z
 This is impossible because H
is selfadjoint and so cannot have a nonreal eigenvalue
 Let us repeat our recent
deductions for future reference


Lemma �� Suppose V � C� is supported on a compact subset of ����	� The func�



��

tion a�z	 is analytic and non�zero on C� � ��� Consequently� log
��a�z	�� is harmonic

there� Moreover�

��a�E	
��� � jm��E	 �m�

� �E	j�
� Imm��E	 Imm�

� �E	
� � ��
�	

for all E � ���

We have bounded log ja�E	j from below
 But really� as the following proposition
suggests� we should bound it from above
 Since a�z	 is nonzero� log ja�z	j is harmonic

This will prove instrumental in obtaining the desired inequality


Proposition �� Let V � Lp�R�	 �for any � � p ��	 and extend it to a function
on R by V �x	 � � for x � �� Further� let Vn be a sequence of C� functions on R�
each supported on a compact subset of ����	� which converge to the true perturbation
V in Lp sense� To each such approximate perturbation� associate its own function
an�z	 � det�� � R��z	Vn�� Suppose I � �� is a compact interval and that there is a
bounded continuous function w � I � ����	 with support I such that

Z
I

log
��an�z	��w�E	dE � C ��
 	

holds uniformly in n� Then I is contained in the essential support of the absolutely
continuous spectrum of H�� in symbols I � �ac�H�	�

Proof� Let m�
n denote the Weyl mfunctions for Hn � H� � Vn and m� those for

the full perturbed problem H � H� � V 
 For consistency of notation we �x V� � �

Because Vn � V in Lp� m�

n �z	 � m��z	 uniformly on compact subsets of C�

From the representation ��
 	 it follows that d	�n � the measures occurring in the
representation of m�

n � converge weakly to d	�� the measures for m�
 From the fact
that Imm�

n �i	 � Imm��i	 one may also infer that the total mass of each d	�n is
uniformly bounded


From Lemma �
� we know that Imm�
n �E	 are positive for all n � �
 Consequently�

jm�
n �E	 �m�

� �E	j � Imm�
� �E	 and it follows� from ��
�	� that

��a�E	
��� � Imm�

� �E	

� Imm�
n �E	

for all E � ��


As we just remarked� Imm�
� �E	 is positive on �� and hence it is bounded below on

the compact set I
 As a result� there is a constant c � � so that

� log
��a�E	

�� � � log
�
Imm�

n �E	
�� c�

Integrating and applying ��
 	 it follows that there exists a constant C � such that

�
Z
I

log
�
Imm�

n �E	
�
w�E	 dE � C �� ��
�	

This suggests that Imm�
n �E	 cannot be too small
 But �rst we must exclude the

possibility that cancellations are occurring
 Let log��x	 � maxf�� log�x	g which



� 

obeys log��x	 � x
 Then

Z
I

log�
�
Imm�

n �E	
�
w�E	 dE �

Z
I

Imm�
n �E	w�E	 dE �

�

Z
I

w�E	d	�
n �E	�

Z
w�E	d	�

by using ��
"	 and the weak convergence of d	�n discussed at the beginning of this
proof
 This means that the integral of log��Imm�

n �E	� is uniformly bounded and
��
�	 reduces to Z

I

log�
�
Imm�

n �E	
�
w�E	 dE � C ��

uniformly in n
 Here we have used the notation log��x	 � maxf��� log�x	g
 Since
log� is convex� we may apply Jensen�s inequality and then ��
"	 to infer

C �� � w�K	 log�
�

�
w
K�

Z
K

Imm�
n �E	w�E	 dE

	

�
Z
K

w�E	 d	�
n �E	 � w�K	 exp


�C ���w�K	
�

for any compact K � I
 Here w�K	 �
R
K
w�E	 dE


Observe the following fact� if the measure d� �on R	 is the weak limit of d�n and
K is a compact set then ��K	 � lim�n�K	
 This is a simple consequence of the fact
that Borel measures on R are regular �c
f
 Lemma � of ���	
 Applying this fact with
d�n � w�E	 d	�

n �E	�

Z
K

w�E	 d	��E	 � w�K	 exp

�C ��w�K	

�
�

Since w is positive Lebesgue almost everywhere on I� and so on K� this proves that
the Lebesgue measure on I is absolutely continuous with respect to d	�
 That is� I
is a subset of the essential support of the absolutely continuous part of d	�
 This
completes the proof for� as we mentioned after introducing the representation ��
 	�
H� is unitarily equivalent to multiplication by E in L�

�
d	��E	

�





��

Chapter � Trace Formulae

This chapter is dedicated to the case q � � and presents joint work with P
 Deift ���

This permits some considerable simpli�cations� especially if we replace the former
spectral parameter z by k� with k � C
 For example� for each z � C�� the Weyl
solutions are given by ��� �x� z	 � exp�ikx	 where k is the square root of z which lies
in the upper halfplane
 With this parameterization� we obtain Weyl solutions which
are entire functions of k� as functions of z they have a branch cut
 In analogy with
Lemma �
� we have

Lemma �� If V is supported on a compact subset of ����	 then ���x	 are entire
functions of k and� for k �� �� we may write

���x	 � ap�k	e
ikx � bp�k	e

�ikx �x � � ��
�	

with ap and bp analytic functions of k � C n f�g�
Now we are ready to demonstrate the relation between ap�k	 and the function

a�z	 of the previous chapter
 Evaluating the Wronskians of ��
�	 at any point x � �
we have

a�z	 �
W �ape

ikx � bp�k	e
�ikx� e�ikx�

W �eikx� e�ikx�

� ap�k	

and so a�z	 � ap�k	 provided k is chosen to be the square root of z which lies in the
upper halfplane


In order to apply Proposition �
� we wish to obtain a bound on a weighted integral
of log ja�E	j over ����	 for potentials V � C�

c 
 The second of the BFZ trace formulae
��
�	 arises from the evaluation of

Z �

�

log
��a�E	

��pE dE

and is valid for potentials V with �� � jxj	V �x	 � L�
 As we do not need it in this
generality� we shall derive it for V � C�

c 

By taking complex conjugates in ��
�	� it follows that ap��k	 � ap�k	
 As a result

we can rewrite the above integral as

Z
R

log
�
ap�k	

�
k�dk�

We would like to evaluate this integral by closing the contour in the upper halfplane

While ap�k	 is analytic� log

�
ap�k	

�
fails to be at the zeros of ap�k	
 By ��
�	 we know



��

that ap does not have zeros for k � R
 Moreover� as discussed just before Lemma �
��
complex zeros can only occur if z � k� is an eigenvalue of ��
�	
 Therefore� the zeros
ap�k	 which lie in the upper halfplane occur at �nitely many purely imaginary points
i��� ���� i�m corresponding to the negative eigenvalues �E� � ���

� � �����Em � ���
m of

��
�	
 To remove the problem of its zeros� we divide ap�k	 by the Blaschke product

B�k	 �
mY
j��

k � i�j
k � i�j

�

Then the Cauchy Theorem says

Z R

�R

log
�
ap�k	�B�k	

�
k�dk � �

Z �

�

log
�
a�Rei�	�B�Rei�	

�
iR�e�i�d��

Because for k � R both B��k	 � B�k	 and jB�k	j � �� the lefthand integral is
unchanged by the introduction of B�k	
 So taking the limit R��

Z �

�

log
��a�E	

��pE dE � � lim
R��

Z �

�

log
�
ap�Re

i�	�B�Rei�	
�
iR�e�i�d�

� ���
�

mX
j��

E
���
j � lim

R��

Z �

�

log
�
ap�Re

i�	
�
iR�e�i�d�� ��
�	

To calculate the remaining integral� we need to determine the asymptotics of
log�a�k	� as k goes to in�nity in the upper halfplane
 If we write ���x	 � p�x	eikx�
then p�x	 obeys the integral equation

p�x	 � � � i
�k

Z �

x

�
�� e�ik
y�x�

�
V �y	p�y	dy� ��
�	

This equation is of Volterra type and so may be solved by iteration
 If Im k � � the
kernel is O���jkj	� so for x � � and Im k � � we have

p�x	 � � � i
�k

Z �

�

�
�� e�ik
y�x�

�
V �y	dy

� �
�k�

Z �

�

Z �

y

�
�� e�ik
y�x�

��
�� e�ik
z�y�

�
V �y	V �z	dzdy

� i
	k�

Z �

�

Z �

y

Z �

z

�
�� e�ik
y�x�

��
�� e�ik
z�y�

��
�� e�ik
u�z�

�
V �y	V �z	V �u	dudzdy

�O
�jkj����

Because x � �� ���x	 � ap�k	e
ikx � bp�k	e

�ikx and so p�x	 � ap�k	 � bp�k	e
��ikx


Therefore� to �nd ap� we just need to collect those terms in the above expansion



�"

without a leading factor of e��ikx�

ap�k	 �� � i
�k

Z
V �y	dy � �

	k�

ZZ �
�� e�ikjy�zj

�
V �y	V �z	dydz

�

Z �

�

Z �

y

Z �

z

�
�� e�ik
z�y�

��
�� e�ik
u�z�

�
V �y	V �z	V �u	dudzdy

�O�jkj��	�

The change in the term with two integrals arises from symmetrizing the integrand
then taking half of the integral over all space


Now we proceed to expand log�ap�k	� using log�� � �	 � � � ���� � ���� � O���	�
again this is for Imk � ��

log�ap�k	� �
i
�k

Z
V �y	dy � �

	k�

ZZ
e�ikjy�zjV �y	V �z	dydz

� i
�k�

Z
V �x	dx

ZZ
e�ikjy�zjV �y	V �z	dydz

� i
	k�

Z �

�

Z �

y

Z �

z

�
e�ik
u�y� � e�ik
z�y� � e�ik
u�z�

�
V �y	V �z	V �z	dydzdu

�O�jkj��	�

Notice that something remarkable has happened� the three terms of the form C
k�

� R
V
��

which occur� cancel
 To see this we have used the fact that

Z �

�

Z �

y

Z �

z

V �y	V �z	V �u	 dydzdu � �


ZZZ
V �y	V �z	V �u	 dydzdu�

We are now ready to perform the contour integral

lim
R��

Z �

�

log
�
ap�Re

i�	
�
iR�e�i�d��

Naive estimation shows that terms O�jkj��	 make no contribution as R � �
 The
term of order jkj��� i

�k

R
V � gives zero identically for allR
 The two termsO�jkj��	 also

give zero contribution in the limit R�� because both integrands are O
�

�
��R sin
��

�



�Notice that this would not be the case had the terms of the form C
k�

� R
V
��

not
cancelled
	 With these observations� ��
�	 reduces to

Z �

�

log
��a�E	

��pE dE � ���
�

mX
j��

E
���
j � lim

R��

i
	

Z �

�

ZZ
e��iRjy�zje

i�

V �y	V �z	Rei�dydzd��

To perform this last integral� it is better to use the Cauchy Theorem once more�this



��

time to replace the semicircular contour Rei�� � � ��� �� with a straight line�

Z �

�

log
��a�E	

��pE dE � ���
�

mX
j��

E
���
j � lim

R��

�
	

ZZ Z R

�R

e�ikjy�zjV �y	V �z	 dkdydz�

Performing the k integral �rst gives a factor sin��R�y � z	���y � z	
 As R�� this
factor converges distributionally to ���y � z	
 Since we have assumed that V is C�

and compactly supported� this leads to

Z �

�

log
��a�E	

��pE dE � ���
�

mX
j��

E
���
j � �

	

Z
V � ��
�	

which is the trace formula we set out to prove

Proceeding more systematically it is possible to derive the full family of trace

formulae
 See for example ���� for a proof of

Proposition �� If V is C� and of compact support then

Z �

�

log ja�E	jEn����dE �
���	n�
��n��

Z
��n���x	dx �

���	n��
�n � �

X
En����
m � ��
�	

where ���x	 � �� ���x	 � V �x	 and �n�� � ��n �
nX
���

���n�� � ��

Proof of Theorem �
 We begin by proving part i	
 Let Vn be a sequence of C�

functions of compact support which converge to the true perturbation V in L�
 Then
it follows from ��
�	 that

Z �

�

log
��an�E	

��pE dE � �
	

Z
V �
n � C

because the eigenvalue term is always negative� or zero
 But this provides the condi
tions of Proposition �
� and so proves that �ac � ����	


The proof of part ii	 is almost identical� but employs ��
�	 with n � �� ��
�	
corresponds to n � �
 More explicitly we have

Z �

�

log ja�E	jE���dE �� ��
�

X
E���
m � �

��

Z
�V ��	� � �V �V �� � �V � dx

� �
��

Z
�V ��	� � �V �V �� � �V � dx

� ��
��

��V ��
���
L�

� ���
��

��V ���
L�
�

where the last inequality follows from H�older and �XY � X� � Y �
 In this way� if
we choose a sequence of C� functions Vn each of compact support so that Vn � V
in both L� and &H�� then we have a uniform bound on

Z �

�

log jan�E	jE���dE�



��

This means that we may once again employ Proposition �
� to complete the proof




��

Chapter � Regularized Determinants

This chapter introduces regularized determinants and provides some estimates
 As
in the previous chapter� we are interested in a priori bounds and shall assume that V
is C� and of compact support


If one regards determinants as the product of the eigenvalues� regularized determi
nants are the analogue of the convergence factors used in the Weierstrass Factorisation
Theorem
 A thorough treatment of these functions may be found in ����
 We shall
need only the �rst two regularized determinants�

det��� � A	 � det�� � A	 expf�tr�A	g� ��
�	

det��� � A	 � det�� � A	 expf�tr�A	 � �
�
tr�A�	g� ��
�	

Whilst at �rst these are only de�ned for elements of trace class� A � I�� they may be
extended to the HilbertSchmidt class� I�� and I� � fA � tr�jAj�	 ��g respectively

The possibility of this extension is underlined by the estimates

��det��� � A	
�� � expfC�kAk��g� ��
�	��det��� � A	
�� � expfC�kAk��g� ��
�	

where C�� C� are universal constants and kAknn � tr�jAjn	 denotes the nth power of
the norm on In
 These estimates are proved in Section " of ����
 Our application of
these estimates is

Lemma �� There is a constant C depending only on q� so that the estimates

��R��E � i�	V
��
�
� C������� � �����	kV kL� ���R��E � i�	V

��
�
� C������� � �����	kV kL�

hold for all E � R and all � � �� And consequently� for a new constant C�

log
��det��� �R��E � i�	V

��� � C����� � ���	kV k�L��
log

��det��� �R��E � i�	V
��� � C������� � �����	kV k�L�

hold for this same set of E� ��

Proof� The �rst two estimates follow directly from Theorem B
"
� of ����
 More
explicitly� since jE � i�j�� is bounded by a constant multiple of ������� � �����	�� �
jEj	����� this theorem shows that there exists Cp with

��R��E � i�	V
��
p
� Cp�

������ � �����	
��V ��

Lp

for any p � �
 Employing these bounds in ��
�	 and ��
�	 gives the second pair of



��

estimates


Given the speci�city of the situation we are treating� these estimates are quite
crude
 However� they will prove ample for our purposes


For E � i� � C� we can also obtain lower bounds on log jdet�� �R�V 	j

Proposition �� Suppose V is C� and of compact support� Then there is a constant
C so that

log
��det��� �R��E � i�	V

��� � �C����� � ���	kV k�L�� ��
�	

log
��det��� �R��E � i�	V

��� � �C������� � �����	kV k�L� ��
 	

hold for all E � R and � � ��

Proof� Let us begin by calculating some derivatives
 Note that all resolvents appearing
in this proof are evaluated at the point E � i� � C�


d

d�
log

��det�� �R�V 	
�� � Re tr

�
i�� �R�V 	��R�R�V

�
� Re tr

�
iRR�V

�
��
�	

by the resolvent formula
 Also

d

d�
Re tr�R�V 	 � Re tr

�
iR�R�V

�
��
�	

d

d�
�
�
Re tr�R�VR�V 	 � Re tr

�
iR�VR�R�V

�
��
"	

By combining ��
�	 and ��
�	 we have

d

d�
log

��det��� �R�V 	
�� � Re tr

�
i�R� R�	R�V

�
� �Re tr�iR�VRR�V

�
� ��
��	

By employing the trace ideal version of H�older�s inequality� this implies

����dd� log
��det��� �R�V 	

������ � kR�V k�� kRk

Here k � k denotes the operator norm
 Of course� kRk � ���
 This and Lemma �
�
permit us to conclude

����dd� log
��det��� �R�V 	

��
���� � C ������ � ���	kV k�L� �



��

Continuing from ��
��	� one can show

d

d�
log

��det��� �R�V 	
�� � �Re tr�iR�VRR�V

�
�Re tr

�
iR�VR�R�V

�
� Re tr

�
iR�V �R� � R	R�V

�
� Re tr

�
iR�VR�VRR�V

�
����dd� log

��det��� �R�V 	
��
���� � kR�V k��kRk � C ��������� � �����	kV k�L�

by similar means

Since V is of compact support� it is easy to show that

lim
���

detn
�
� �R��E � i�	V

�
� � �E � R�

Hence the proposition follows from our derivative bounds and the Fundamental The
orem of Calculus


Our goal is to obtain ��
 	 so that we may apply Proposition �
�
 This requires
us to understand the behaviour of a�E	 for E � �� whilst thus far we have been esti
mating the regularized determinants for z � C�
 The signi�cance of these estimates
at nonreal z will become clearer in the next chapter
 For the moment� however�
we wish to relate a�E	 and the regularized determinants for E � ��
 We begin by
considering det�


Proposition �� Suppose V is C� and of compact support� Then the harmonic
function

f�z	 � log
��det��� �R��z	V

���
extends continuously from C� to ��� Moreover� f�E	 � log

��a�E	
�� for E � ���

Proof� To see why f�z	 is harmonic� just recall Lemma �
� and

f�z	 � log ja�z	j � Re tr
�
R��z	V

�

from the de�nition of det�
 Because V is integrable� we can write

Re tr
�
R��z	V

�
� Re

Z
G�x� x� z	V �x	dx ��
��	

and so extend the lefthand side continuously to ��
 By Lemma �
� this means that
f�z	 extends continuously to ��
 To complete the proof we need to show that ��
��	
vanishes for z � E � ��
 For such E� we can use ��
�	 and ��
�	 to write

Re

Z
G�x� x�E	V �x	dx � Re

Z j���x	j�
W
�
��� ��

�V �x	dx

which is zero because W
�
��� ��

�
is purely imaginary




��

The fact that the real part of the Green function vanishes inside the spectrum
is what permitted us to conclude that f�E	 � log ja�E	j
 This holds not only for
periodic q but on the absolutely continuous spectrum of any ergodic Schr�odinger
operator ���� ���
 It is possible to extend our results to prove that any interval
contained within the a
c
 spectrum of an operator with ergodic potential remains in
the a
c
 spectrum under an L� perturbation
 For these potentials� the results that
we obtained quite easily from the properties of the Bloch solutions must be obtained
more circuitously
 For example� the fact that the Weyl solutions extend analytically
from C� to �� must be obtained by �rst observing that the Green function may be
extended analytically by an application of the Schwarz re$ection principle


The equivalent of Proposition �
� for det� is more involved� especially if q �� �


Proposition �� Suppose V � C� and is of compact support� Then the harmonic
function

g�z	 � log
��det��� �R��z	V

���
extends continuously from C� to ��� Suppose q � � and I � �� � ����	 is a
compact interval� If we de�ne %I � fk � R � k��� � Ig then

Z
I

���g�E	� log ja�E	j
���dE � CI

�� �V ���
L�
�I�dk�

� ��
��	

The version for q �� � is slightly weaker	 for any compact interval I � ��Z
I

���g�E	� log ja�E	j
���dE � CI

�� �V ���
��
L��

� ��
��	

The de�nition of ���L�	 was given in ��
�	 of Chapter 
�

Proof� The result on continuous extension is essentially the same as the previous
proposition because

g�z	 � f�z	 � �
�
Re tr

�
R��z	VR��z	V

�
� f�z	 � �

�
Re

ZZ
G�x� y� z	�V �x	V �y	dx dy�

As f�E	 � log ja�E	j for all E � ��� we need only attend to the additional term

Given E � ��� we may employ ��
�	 and ��
�	 to write

g�E	� f�E	 � �Re

ZZ
x�y

��

� �x	
���

� �y	
�

W
�
��

� � �
�

�

�� V �x	V �y	dx dy�

However� the Wronskian is purely imaginary and taking the complex conjugate of



� 

��

� �x	
���

� �y	
� is equivalent to interchanging x� y
 So

g�E	� f�E	 �
�

W
�
��

� � �
�

�

��
ZZ

��

� �x	
���

� �y	
�V �x	V �y	dx dy

�
�

W
�
��

� � �
�

�

��
����
Z

��

� �x	
�V �x	dx

����
�

� ��
��	

Controlling this when q � � is the easiest because ��

� �x�E	 � exp�ikx	 where k� � E
and k � �
 In this case� therefore�

g�E	� f�E	 �
��
�k�

�� �V ��k	
���

and for each compact I � ����	 we have

Z ��g�E	� f�E	
��dE � CI

�� �V ���
L�
�I�

�

which proves ��
��	 because f�E	 � log ja�E	j

The proof for q �� � is more involved
 What we present now is actually just a

minor alteration of an argument from the )Proof of Theorem �
�* in ����
 Recall
from Chapter � that there is a unimodular complex number ���E	 associated to each
E � �� so that

��

� �x � L�E	 � ���E	��

� �x�E	� ��
��	

where L is the period of q
 Moreover� ���E	 �� �� so we may de�ne ��E	 �
arg����E		 � ���� �	
 It is well known that ��E	 is strictly monotonic on each
connected subset of ��
 Indeed� there exists �I � � so that j���E	j � �I for all
E in the compact set I
 From ��
��	 we see that for each E � ��� ��x�E	 �
exp��i��E	x�L���

� �x�E	 is Lperiodic �in x	 and hence so is ��x�E	�
 Because I is
compact the family f��x�E	� � E � Ig is uniformly continuously di�erentiable in x

That is to say�

sup
E�I

k���� E	kC� � CI ���

As a result� when we develop �� as a Fourier series

��x�E	� �
X
n

cn�E	e��inx�L

the sequence %cn � supE jcn�E	j is bounded in ��




��

Let us now apply what we have learned to the estimation of ��
��	�

Z
��

� �x	
�V �x	dx �

Z
��x�E	�e�i
E�x�LV �x	dx

�

Z X
n

cn�E	 exp


i
�
��n� ���E	

�
x�L

�
V �x	dx

�
X
n

cn�E	 �V
���n��
E�

L

�
�

By using the triangle inequality� then H�older�s inequality� this implies

����
Z

��

� �x	
�V �x	dx

����
L�
I�dE�

�
X
n

%cn
�� �V ���n��
E�

L

���
L�
I�dE�

�

Remember that j���E	j � �I for E � I
 So� if ��I	 � ���� ���� then by a change of
variables� Z

I

��V ���n��
E�
L

����dE �
Z ���L

�	�L

��V ���n
L

� y
�������I dy�

But ���� ��� � ���� �	 and so� by our choice of ���L�	 norm� it is immediate that

����
Z

��

� �x	
�V �x	dx

����
L�
I�dE�

� ���I k%cnk��kV k��
L���

Because W �� � this provides su�cient control on ��
��	 to prove ��
��	




��

Chapter � Proofs of Theorems ���

In Chapter � we showed that if V is of compact support� then the function

log
��a�z	�� � Re log



det

�
� �R��z	V

��

is harmonic on the set C� � ��
 Recall that �� is an essential support for the
absolutely continuous spectrum of H�
 Indeed� �� is just ��H�	 with a discrete set of
points removed


In Chapter � we introduced regularized determinants and de�ned

f�z	 � log
��det��� �R��z	V

���� � 
�	

g�z	 � log
��det��� �R��z	V

���� � 
�	

We further showed that these functions are also harmonic on C� � ��� obtained
estimates for z � C� and bounded f�E	� a�E	 and g�E	� a�E	 for E � ��


The current chapter is devoted to obtaining the estimate ��
 	 and so proving
Theorems �(�
 We will use the fact that f� g are harmonic to convert our bounds
for nonreal z to bounds for real z � ��
 For this reason we begin with some results
about harmonic functions


Given a closed interval I � ��� we de�ne a triangle over I as follows� If I �
�a� b�� de�ne c � �a � b	�� � i�b � a	��
 Then the points a� b� c form a rightangled
isosceles triangle with hypotenuse I
 The remaining two sides we denote by +
 Let
� � fx � iy � a � y � x � b � y� y � �g� that is� the solid triangle with boundary
+�I� and let z� � � be the centroid �centre of mass	 of�� z� � �a�b	��� i�b�a	� 

The choice of the centroid for z� is essentially arbitrary
 This construction is depicted
more clearly in Figure �
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Figure �� The de�nition of +� z�


Let Pz	�z	 denote the Poisson kernel for our triangle evaluated at the point z�

That is to say� for any function F � continuous and harmonic throughout the solid



�"

triangle ��

F �z�	 �

Z
��I

Pz	�z	F �z	jdzj�

Moreover� we have the following estimate on Pz	�z	


Lemma 	� There is a constant Cz	 such that

Pz	�z	 � Cz	Im�z	� �z � +� � 
�	

Proof� By scaling and translation� it su�ces to consider just one triangle and its
centroid� say one with a � �
 By conformal mapping it is easy to calculate the
Poisson kernel for the in�nite sector fz � � � arg�z	 � ���g with the chosen z�

Doing so� one obtains a bound of the form � 
�	 for this kernel
 The chosen triangle is
a subset of this sector and harmonic measure is monotone with respect to the domain

This means that � 
�	 holds for all z from the line ac
 For z on the other side� bc� the
same estimate holds by symmetry


The fact that we obtain a third power in � 
�	 is because the angles �cab and
�cba are ���
 With angles  one would obtain the power ���	� �


We have now accumulated enough lemmas and propositions to prove Theorems
�(�
 We begin with the

Proof of Theorem 

 Let V � L��R�	 and extend it to the whole of R by V �x	 � �
for x � �
 Next we choose a sequence of C� functions� Vn� each supported on a
compact subset of ����	 which converge to V in L� sense
 To each Vn we associate
functions

an�z	 � det
�
� �R��z	Vn

�

as in Proposition �
�� and

fn�z	 � log
��det��� �R��z	Vn

���
as in Proposition �
�


We shall prove the theorem by showing that any compact interval I � �� is also
contained in �ac�H	
 For in this way �� � �ac�H�	
 By Weyl�s Relative Compactness
Theorem� this implies that �� � �ac�H�	� as discussed in the introduction
 So let us
�x I and de�ne +� z� as was done earlier �c
f
 Fig
 �	


From the fact that the functions fn�z	 are harmonic �Proposition �
�	 and the
de�nition of the Poisson kernel� we know that

fn�z�	 �

Z
��I

Pz	�z	fn�z	 jdzj� � 
�	

As the sequence is Vn uniformly bounded in L�� Lemma �
� tells us that fn�z�	 is
bounded uniformly from above
 For the same reason� Propositions �
� and  
� com
bine to show that the integral over + is bounded uniformly from below
 Combining



��

these two deductions� it follows that

Z
I

Pz	�E	fn�E	 dE � C

uniformly in n
 But fn�E	 � log ja�E	j by Proposition �
�
 Therefore� we may apply
Proposition �
� with w�E	 � Pz	�E	 and so conclude that I � �ac�H�	
 As I was
chosen arbitrarily� this completes the proof


The proofs of Theorems � and � follow along the same lines
 However� for com
pleteness we include a brief sketch of each


Proof of Theorem �
 In this case we choose Vn so that Vn � V in L� sense and such
that �Vn are uniformly bounded in ���L�	
 Then� repeating the deductions of the
previous proof� but with Proposition �
� replacing Proposition �
�� we �nd

Z
I

Pz	�E	gn�E	 dE � C � 
�	

uniformly in n
 But now we may employ ��
��	 to infer that Proposition �
� holds
for any compact I � ��
 This completes the proof just as it did for Theorem �


Proof of Theorem �
 It makes no harm to assume that the interval I in the theorem
is compact� for any interval is a countable union of compact intervals
 Next we
choose Vn � V in L� such that

R
�I
j �V j�dk is bounded
 Lemma �
� may again be

used to estimate gn�z�	 from above while Proposition  
� and ��
 	 of Proposition �
�
combine to bound the integral over + from below
 This gives � 
�	 and then ��
 	
follows from ��
��	 of Proposition �
�
 With this input� we can apply Proposition �
�
and so complete the proof




��
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