Citation
Scheel, Janet D (2007) Rotating RayleighBenard convection. Dissertation (Ph.D.), California Institute of Technology. http://resolver.caltech.edu/CaltechETD:etd08252006154116
Abstract
Rotating RayleighBenard convection (rRBC) is studied as a paradigmatic example of pattern formation and spatiotemporal chaos. For large enough rotation rates, this system undergoes a supercritical bifurcation from the uniform state to a state known as domain chaos.
In domain chaos, domains of straight parallel rolls change their orientation and size discretely. This roll switching causes an overall counterclockwise precession of the pattern. An additional mechanism of precession, glideinduced precession, is introduced here, by deriving the rRBC amplitude equation to higher order. New terms due to the rotation cause rolls to precess whenever there is an amplitude gradient in the direction parallel to the rolls. Hence, dislocations which are stationary in a nonrotating system will glide in a rotating frame, causing the overall precession.
Theory that includes the Coriolis force but ignores the centrifugal force predicted scaling laws near the transition to domain chaos. However, experimenters found different scaling laws. The scaling laws are studied here by direct numerical simulations (DNS) for the exact parameters as experiments. When only the Coriolis force is included, the DNS scaling laws agree with theory. When the centrifugal force is also included, the DNS scaling laws agree better with experiment; hence the centrifugal force cannot be neglected from theory.
The coefficients of the amplitude equation for the Complex GinzburgLandau equation (CGLE) are found for DNS of traveling waves. They agree well with experimental results. The CGLE is chaotic for certain values of the coefficients. However, for the parameters in the DNS, those chaotic regimes were not realized.
Leading order Lyapunov exponents (LLE) and eigenvectors are computed for both rotating and nonrotating convection. For certain parameters, these systems are found to have positive LLEs; hence they are truly chaotic. For timedependent systems, the leading eigenvector is characterized by localized bursts of activity which are associated with dynamical events. The shorttime dynamics of the LLE is correlated with these dynamical events. However, contributions to the LLE are due to nonperiodic events only.
Lagrangian particle tracking methods are employed for rRBC. These systems exhibit chaotic advection in that initially localized particle trajectories explore the available phase space.
Item Type:  Thesis (Dissertation (Ph.D.)) 

Subject Keywords:  buoyancydriven flows; convection; Lyapunov exponents; nonlinear dynamics; pattern formation; rotating fluids; spatiotemporal chaos; weak turbulence 
Degree Grantor:  California Institute of Technology 
Division:  Physics, Mathematics and Astronomy 
Major Option:  Physics 
Thesis Availability:  Public (worldwide access) 
Research Advisor(s): 

Thesis Committee: 

Defense Date:  14 August 2006 
NonCaltech Author Email:  jscheel (AT) clunet.edu 
Record Number:  CaltechETD:etd08252006154116 
Persistent URL:  http://resolver.caltech.edu/CaltechETD:etd08252006154116 
Default Usage Policy:  No commercial reproduction, distribution, display or performance rights in this work are provided. 
ID Code:  3217 
Collection:  CaltechTHESIS 
Deposited By:  Imported from ETDdb 
Deposited On:  28 Aug 2006 
Last Modified:  26 Dec 2012 02:58 
Thesis Files

PDF (jscheel.pdf)
 Final Version
See Usage Policy. 8Mb 
Repository Staff Only: item control page