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ABSTRACT

In the first part of this work, the free and forced oscillations of a class of strongly
nonlinear, undamped, discrete oscillators, are studied. The free motions are ex-
amined by using the notion of “nonlinear normal mode,” originally introduced by
Rosenberg. Analytical methods for computing similar and nonsimilar normal modes
are presented, and the mode stability is analyzed. Normal mode bifurcations are
found to exist in these systems, increasing in complexity as the degree of nonlinear-

1ty increases.

A specific application is given with a two degree of freedom, hamiltonian oscillator
with cubic nonlinearity. The low energy motions are analyzed by means of Poincare’
maps and an approximate averaging technique. When the energy is increased,
chaotic motions are observed in the Poincare’ maps, resulting from the transverse
intersections of the stable and unstable manifolds of an unstable normal mode.
Moreover, the generation of subharmonic orbits resulting from the breakdown of

invariant INAM Tori is examined by using Subharmonic Melnikov analysis.

The similar and nonsimilar forced steady state motions are examined by considering
special (nonharmonic) periodic excitations. For the case of cubic nonlinearity, a
theorem on the necessary and sufficient conditions that a force should satisfy in

order to lead to an exact steady state is given.

In the second part of the work, techniques for identifying systems with closely

spaced modes and weak nonlinearities are developed. Modal interference in the



v -
Complex plane i1s modeled by expanding the Frequency Response Function of the
“perturbing mode” in Taylor series, and retaining only the two first terms. The
distorted Nyquist plots of systems with stiffness and/or damping nonlinearities are
analytically studied, by using the concept of “equivalent linearization.” Based on
the analytical results, refined identification algorithms are proposed, and their ap-

plicability is tested by analyzing theoretical and experimental data.
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PART I: NORMAL MODES IN STRONGLY NONLINEAR
SYSTEMS



1. INTRODUCTION

1.1. OVERVIEW

In linear vibration theory, the concepts of “normal mode” and “steady-state motion”
are implemented in the analysis of free and forced oscillations of discrete systems.
The classical theory of n-degree-of-freedom (DOF') linear oscillators is concerned
with the determination of the n modes (natural frequencies and eigenvectors); the
principle of linear superposition can then be used to express any free or forced
response as a superposition of individual modal responses. Moreover, it is well
known that harmonic excitations of discrete, linear systems, lead to exact steady-
state motions, in which all coordinates vary equiperiodically and pass through their

extreme values simultaneously.

In the case of discrete oscillators with nonlinear restoring forces, the principle of
superposition generally does not hold, and the aforementioned lincar methodology
cannot be applied. Therefore, there is a need for the development of special tech-
niques for analyzing the dynamic response of such systems. Two basic options exist

for studying nonlinear vibrations.

In the first approach, the nonlinearity is assumed to be “weak.” 1.e., small in mag-
nitude compared to the linear stiffness (or damping) elements of the structure.
Consequently, the nonlinear problem is viewed as a perturbation of a linear one.

This leads to an asymptotic series approximation of the response, where higher or-



der terms are often omitted (the series is truncated after several terms). Although
useful information concerning the free oscillations and the resonant forced motions
is contained in the truncated series, the assumption of “weak” nonlinearity limits
the applicability of this formulation, when “strongly” nonlinear systems are encoun-
tered. Such cases arise, for example, when one considers finite-amplitude vibrations
of structural components (beams, plates, shells); the nonlinear restoring forces are
then of comparable magnitude with the linear stiffness forces, and as a result the

perturbation analysis 1s not valid anymore.

In the second approach, that of “strong” nonlinearity, the exact solution of the dif-
ferential equations of motion of the system, is attempted. The precise dependence
of the nonlinear restoring forces upon the amplitude is taken into account and, gen-
erally, the resulting closed-form solution is mathematically involved. In such cases,
there is a need of introducing certain new concepts, with the goal of better under-
standing the physics of the nonlinear response. Two such concepts originating from
the lincar theory are these of the "nonlinear normal mode” and of the “nonlinear

exact steady-state.”

The notion of “nonlinear normal mode” was introduced by Rosenberg in order to
study the free oscillations of strongly nonlinear systems. In direct analogy to the
linear mode. the “nonlinear mode” is defined as a motion where all coordinates of
the systemn arc equiperiodic and reach their extreme values at the same instant of

time. Similarly. the concept of “nonlinear exact steady-state” was applied to the



study of forced motions. What Rosenberg found was that, as in the linear case,
nonlinear forced steady motions occur in the neighborhood of normal modes. Thus,
the existence and the number of normal mode solutions appear to influence to a

certain extent the dynamic behavior of discrete nonlinear oscillators.

1.2. OBJECTIVES - OUTLINE OF WORK

The general objective of this work is to apply the concepts of “normal mode” and
“exact steady state” to a class of strongly nonlinear discrete oscillators. This will
possibly lead to a better understanding of the dynamics of these systems and to a

more complete description of the nonlinear global response.

More specifically, it is of interest to know if all nonlinear modes are analytic contin-
uations of linear ones. In this work it is shown that the number of nonlinear normal
modes is not necessarily equal to the number of degrees of freedom of the oscillator.
This is the result of nonlinear mode bifurcations that increase in complexity as the
degree of stiffness nonlinearity increases. Thus, in the nonlincar case, additional

(bifurcating) modes may exist. that do not result as continuations of linear ones.

Another question concerns the representation of the nonlinear modes in the con-
figuration space. In linear normal mode oscillations, all coordinates of the system
are linearly related for all times. A unique feature of nonlinear free oscillations is
the existence (in some cases) of normal modes, in which the functional relations

between the coordinates are not linear (nonsimilar normal modes). Conditions for



existence of nonsimilar modes are derived and asymptotic techniques for computing
these motions are developed. Moreover, it is found that orbitally unstable free non-
linear oscillations are possible, that lead to unstable backbone curves in response

versus frequency diagrams.

The normal modes are very special periodic motions of the system and it is of
importance to investigate their effect on the global dynamics of the oscillators. In
this context. a challenging problem is to find how the bifurcations of normal modes
influence the global structure of the flow in the phase space of the system. In this
work. the global dynamics of the oscillators are studied by means of Poincare’
maps. It is demonstrated that normal mode bifurcations lead to large-scale chaotic
motions. In addition, “localized” chaotic trajectories and subharmonic orbits are
numerically detected in the vicinity of stable modes. A numerical study of the large-
scale chaotic motions is carried out by computing the stable and unstable manifolds
of an unstable mode, whereas the subharmonic motions are investigated by use of

subharmonic Melnikov-tvpe analysis.

The last part of the work is concerned with forced motions of strongly nonlinear sys-
tems. Conventional studies of the forced response of nonlinear systems are carried
under the assumption of harmonic excitation. In this work general periodic (but
not necessarily harmonic) excitations are applied, and methodologies for computing
the steady state responses are given. It is shown that forced resonant motions occur

in the neighborhoods of normal modes. This result further underlines the impor-



tant role that normal modes play in the nonlinear response. What is also found
is that the topological portrait of the resonance curves changes when a bifurcation
of normal modes takes place. A last topic that is addressed in this work concerns
the form that a periodic excitation must have in order to produce an exact non-
linear steady-state. This question is discussed for the case of systems with cubic
stiffness nonlinearity and a general theorem concerning the admissible waveforms

of the excitations is presented.



2. FREE OSCILLATIONS

2.1. CONCEPTS

For n degree-of-freedom (DOF) hamiltonian systems, there exist two basic theorems
by Liapounov and Weinstein, regarding the existence of periodic solutions passing

through the origin of their configuration space:

Theorem 1 ( Liapounov 1947)

For analytic Hamiltonians with n DOF whose linearized eigenfrequencies are not
integrably related, near ecach stable equilibrium there ezist n famalies of periodic
solutions filling up smooth 2-dimensional manifolds going through the equilibrium
point. For any fized enerqy, near each stable equilibrium one finds n periodic solu-

tions (normal modes).

This result was extended by Weinstein for the “resonance cases”: when the lin-

earized eigenfrequencies are dependent over Z (the set of integers).

Theorem 2 (Weinstein 1973)

For an n DOF analytic Hamiltonian near a stable equilibrium point, there are at
least n pertodic solutions for fized energy. Some of these solutions may not be

analytic continuations of linear normal modes.

In this work, methodologies for computing the normal modes predicted by the two

aforementioned theorems will be given. The following formal definitions are used.



Definition 1 (Rosenberg 1962, 1966)

A discrete autonomous n DOF system is oscillating in a normal mode, if it is

“vibrating in unison”:
1 ) The motions of all coordinates are periodic, of the same period.
2 ) All coordinates reach their extremum values at the same instant of time.

3)Forafixedr € [1,2,...,n], at any instant of time the coordinates of the system

must be related by functional equations of the form

x; = Tix.), 1=1.2,...,n. (2.1)

Xg X2 = C32 X3

X3 = C31 X1

Similar mode Nonsimilar mode

Figure 2.1. Modal lines of similar and nonsimilar modes

Hence, in a normal mode. the oscillations of all coordinates can be parametrized
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by any one coordinate. The trajectories in the configuration space corresponding
to the normal mode are termed “modal lines” and are expressed in a mathematical

form by equations (2.1).

Definition 2

If the modal lines corresponding to a nonlinear normal mode are straight, then the
mode is termed “similar.” In the general case where the modal lines are curved,

the normal mode is termed “nonsimilar.”

A schematic representation of similar and nonsimilar normal modes is presented at
figure 2.1. Note that in the linear case only similar modes exist and the functional
relations (2.1) are all linear; thus, nonsimilar modes are unique features of non-
linear oscillators. In what follows, similar and nonsimilar modes will be examined

separately.

2.2. SIMILAR NORMAL MODES

2.2.1. PREVIOUS WORK

In a series of papers, Rosenberg introduced the concept of “nonlinear normal mode”
(Rosenberg, 1960, 1961, 1962, 1964. 1966). In his work a variety of geometrical
and analytical methods were developed for analyzing normal mode trajectories in
the configuration space, and certain classes of strongly nonlinear oscillators were
investigated: systems with homogeneous nonlinearities, with symmetries, with “lin-

earized” and “nonlinearized” springs, etc. Theorems on the existence of similar nor-



~ 10 -

mal modes were derived and stability problems were addressed. In (Atkinson, 1961,
1963), similar normal modes were detected by imposing matching conditions for
the coeflicients of respective nonlinear terms of the differential equations of motion.
In (Cooke, 1966) and (Pak, 1968) the general problem of the existence of normal
modes in two DOF conservative systems was addressed. In (Greenberg, 1971), the
symmetries of the potential function were used to find subspaces of the configuration
space in which the trajectories of the system were confined, and consequently to
reduce the dimensions of these "modal subspaces”; a modal subspace of dimension
one was then a normal mode. In (Mishra, 1974), group representation theory was
used to investigate the existence of nonlinear normal modes of symimetric spring-
mass systems of finite DOF, and in (Yang, 1968) the geometrical symmetries of the
spatial configuration of certain mechanical systems were shown to reflect in sym-
metries of the potential function which were then utilized for the derivation of the
normal modes. In (Montaldi, 1989), Birkhoff normal forms and techniques from
singularity theory were applied for finding normal modes of systems with special
symmetries. Some additional methodologies for finding normal modes can be found

i (Rand, 1974), (Vito, 1972) and (Van Groesen, 1983).

The general problem of the stability of normal modes was discussed in the afore-
mentioned work by Roseuberg. In (Rosenberg, 1966), the mode stability 1s approx-
mmately analyzed by considering “equivalent” Mathieu equations. A similar ap-
proach 1s followed in (Month, 1977). In (Pecelli, 1980), the stability of the normal

modes of a planar oscillator with combined geometric and kinematic nonlineari-
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ties was examined by means of Lame' equations whose stability charts are readily
known. In (Rand, 1973), the stability of a normal mode was examined geometrically
by establishing a criterion of orbital stability in the configuration space. Analytical
methodologies for examining the stability of normal modes were also developed by
(Porter, 1962), and in (Auld, 1961), where the mode stability was related to certain

topological features of the equipotential curves in the configuration space.

An mteresting feature of the free oscillations of strongly nonlinear systems is the
fact that the normal modes may exceed the number of degrees-of-freedom (DOF).
This is in contrast to the linear case, where the number of normal modes is always
equal to the DOF of the system. In (Anand, 1972), an analysis of the free oscilla-
tions of a system with two DOF was given. One-term Fourier approximations for
the periodic motions were made. and it was found that, depending on the system’s
parameters, bifurcations of modes were possible. Also, Rosenberg (1961), noted
that for the same system with homogeneous springs, more than two modes may ex-
1st. In (Yen. 1974). a physical interpretation of the mode bifurcation was given by
considering which of the terms in the expression of the potential function dominate
for low and large amplitudes of motion. An analytic investigation of the stabil-
ity of bifurcated modes, based on “stability in the kinemato-statical sense.” was
carried out in (Pak, 1989). Finally, studies of bifurcations of normal modes were
performed by numerical techniques (Johnson. 1979), and by means of Poincare’

maps ( Month. 1980).



2.2.2. FORMULATION OF THE PROBLEM

Consider a n DOF, nonlinear, conservative system. The differential equations of

motion are expressed as follows:

i=-VV = f(z) (

o
V]
A

where z € R"™ is the displacement vector, f € R™ is the vector of (nonlinear)
stiffness forces, V . R"™ — R is the potential function of the system, and
() = d?/dt?; it is assumed that the potential function is positive definite and
symmetric with respect to the origin in the configuration space. These assumptions
guarantee the existence of a stable equilibrium point at z = 0 . The symmetry of
the potential function in the configuration space reflects the fact that the individual
stiffnesses of the system respond to an equal amount in compression or extension.
The smoothness of the potential function will not be of particular concern in this
work: 1t will be assumed that the potential function is as smooth as required by
the mathematical formulations.

The differential equations of motion can be written as follows:

S

Fo=flenoa) = > {7 an), i=1n (2.3)

s=1,3,...

and must be solved with initial conditions:

s0) =X, i0)=Vi, i=12, ..n. (2.4)

. 2(s) . . d
In the above equations. each of the terms ;7 contain monomials 41711..@‘%“

whose exponents d,, > 0 satisfy d; +dy +...+d, = s . The expressions in
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the right-hand-side of equations (2.3) can be regarded as Taylor expansions of the
restoring forces f; with respect to the variables z,, truncated to order S. Note that
the assumed symmetries of the potential function permit only even-order terms in

the quantities fi(s).

In order for the system to oscillate in a similar normal mode , the coordinates x;

must satisfy the following linear relations for all times:

T = Cir Ty, 1=1l,..m, 0 F 1T, C¢p=1 (

™

where ¢;, are (n — 1) unknown scalar quantities. In the above expressions, the
variable z, was used to parametrize the (straight) modal lines. Substituting the

conditions (2.5) into (2.3), n differential equations in z, result:

S
I, = Z [ fl-(s)(clr,...,cnr)/c,'r Jal, i=1,..,n, t#r
s=1,3,...
‘)
5 (2.6)
Uy = er)(Clra -~Cnr) U, L =1
$=1,3,...

with initial conditions z,.(0) = X, , z,.(0) = V.

It is evident, that the n equations (2.6) will give the same response for z,.(t), if and
only if all the coefficients of respective powers of z, are equal. Thus, a “balancing”

of coefficients must be made :

() 2 . . p
jig (Clpy ooy Cpp )/ Cir = f,(f’)((;lr,...,c,,r), i=1,..,n, 1% (2.7)
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These “balancing” equations constitute a system of [(S+1)/2] x(n—1) algebraic
equations with (n — 1) unknown quantities c¢;,; hence, the problem of similar
normal modes is overdetermined. Because of this, [(S —1)/2] X (n — 1) structural
parameters of the oscillators must be treated as unknowns and should be calculated

from the “balancing” equations together with the scalars c;,.

After determining the quantities c¢;, , the response z,(t) can be formally computed
by quadratures, by any one of equations (2.6). The remaining variables z,(¢) can
then be evaluated by means of the modal relations (2.5). Integrations by quadra-
tures of differential equations of the form (2.6) can be found in Appendix A. In
subsequent sections, applications of the outlined methodology will be given, by
considering a strongly nonlinear, two DOF oscillator. It must be stated, however,
that the outlined methodology is general and therefore can be formally applied to

discrete systems of arbitrary DOF.

2.2.3. SYSTEM WITH “1 TO 1” RESONANCE

As an application of the theory, a two DOF oscillator will be now examined. As-
sumning that the system consists of two unit masses connected by means of three

strongly nonlinear stiffnesses of the form,

S

felu) = Z frsu® . k=123

s=1,3,5,...
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the differential equations of motion for the oscillating masses are given by:

s S
Ty + Z frsx] + Z fas(zr —22)° =0

8=1,3,... 8=1,3,...

Throughout this work it will be assumed that f;; > 0, unless otherwise stated. This
by no means restricts the generality of the analysis since the same methodology can

be followed in cases where f;; < 0. If the additional symmetry condition is imposed:
filu) = fa(u) = fis=fas, s=13,...5 (2.9)

then the system is said to be on a “1 to 17 resonance, since its linearized eigenfre-
quencies are equal; a preliminary remark is that because of resonance this system

1s expected to have particularly “rich” dynamics.
The similar normal modes of the resonant system will now be calculated. To this
end one initially substitutes the modal condition

Ty = cay (2.10)
mto the equations of motion, to get:

S
Bt Y [t Bl e)a) =0

$=1,3,...

. ° C e (1=,
T+ Z [f1sC "*f‘zs"‘-'g“—};l?l:().

g=x1,3,...

(2.11)

Matching the coefficients of respective powers of a1, leads to the following set of

“balancing equations’:

((1 - (f‘qwl)fls - (C - 1)8<C + l)f'l‘i - 1~31 S (‘

N
[
SV
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It is clear that there are [(S + 1)]/2 balancing equations, with only one unknown,
c. For a similar normal mode to exist, one must find real values for ¢ that satisfy

all the balancing equations.

For s = 1, one obtains the linear balancing equation:

(c* = 1)fy1 =0. (2.13a)

Note that if fo; # 0, i.e., if the linear term of the coupling stiffness f, is not zero,

the only possible values of ¢ are :

c=+1 = Symmetric Normal Mode
(2.13b)
c=~—1 = Antisymmetric Normal Mode

Thus, if one seeks additional nonlinear modes that do not result as continuations

of the linear ones, one must require that:

fa1 = 0 (Condition for additional nonlinear modes) (2.14)

Assuming that condition (2.14) holds, the balancing equations corresponding to s =
3.5,..., 5, are subsequently examined. It can be verified by direct substitution that
¢ = +1 are solutions of all these equations; thus the resonant nonlinear oscillator
has the symmetric and antisymmetric modes, irrespective of the particular values of
its structural parameters. As far as additional modes are concerned, the following

two possibilities exist.

(a) Suppose that all stiffness terms in equations (2.12) are nonzero ( f;; # 0). Then,

e qe . . P ¢ ) . . K
by dividing each of equations (2.12) by (1 — ¢*), one obtains (these equations give



the additional modes):

(s—1)/2 f
>ty L2901 et =0, 5s=3,5..,85. (2.15)
= fls
p=1
Equations ( 2.15 ) are solved for ¢ for various values of the structural parameters
K, = fa, / f1s , and the results are presented in the diagrams of figure 2.2, for
s =1,3,5 and 7. In the same diagrams the ¢ = £1 modes are also included. Note
that, if fo; # 0, the linear balancing diagram restricts the values of ¢ to £1 and
then the only possible nonlinear modes are the symmetric and antisymmetric ones.

If, however, i = 0. additional modes are possible, provided that real values of ¢

can be found that satisfy all the remaining nonlinear balancing diagrams.
(b) Suppose now that there exists at least one s =1 > 1, such that
fiu=0 or fu=0 (2.16a,b)
Then the [ — th equation of the set (2.12) becomes:
(c—=D' e+ fau=0 or c(1="Hfir=0 (2.17a,b)
Clearly, the only real values of ¢ satisfying any of equations (2.17), are +1 ; hence,
if at least one f;; (¢.7 # 1) vanishes, no additional modes can exist.

Certain general properties of the real solutions of equations (2.15) (for the additional
normal modes) will now be discussed. Since (s—1) is an odd number and f;; > 0 (by
hypothesis). any real solution ¢ must be negative. Moreover, one can verify by direct
substitution that. if ¢is a real solution, then so is its reciprocal 1/c. Hence additional

nonlinear normal modes occur always in reciprocal pairs and bifurcate from the
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antisymmetric mode. The bifurcation value for I in the balancing diagram of the

s — th nonlinearity, can be analytically computed as:

f (s—1)/2
(Ko = (72 =13 (=071 /27" (2.18)
J1s bif p=1

As pointed out by (Anand 1972), this reciprocity of additional modes is the result
of the symmetry of the system (the “1 to 1”7 resonance) and in fact, two reciprocal

modes represent the same free oscillation.

As far as the stability of the nonlinear modes is concerned, the fact that the potential
energy of the system is not a quadratic form (because of nonlinearities) leads to the
conclusion that the normal mode solutions can never be Liapounov stable. Hence,
at most, the modes can be orbitally stable and as pointed out by Rosenberg (1966 ),
in general, their stability properties depend not only on the system parameters, but

also on the energy level of the oscillation.

Two specific oscillators will now be analyzed, in order to demonstrate the appli-
cation of the aforementioned theory. Both systems are in “1 to 17 resonance and

contaln nonlinearities of various orders.

SYSTEM WITH 3rd AND 5th ORDER NONLINFEARITIES

Assuming that the coupling stiffness f» does not contain any linear term (condition

for existence of bifurcating modes), the differential equations of motion of the system



are as follows:

P4+ a2t +a) + K - 29)> 4+ Ks(z) —x9)° =0
(2.19)
To 4+ a0 + 1‘23 + .13 + Ka(xg — ;1:1)3 + Ks(xq — :171)5 =0

The linear balancing equation is satisfied for any choice of K3, 5 and thus only
the nonlinear balancing equations are of importance:
(1 =c*)=—-K3(1—¢)P1+¢) (3rdorder)
(2.20)
ol —cYYy= —Ks5(1 —e)’(1+¢) ( 5th order )
In addition to the symmetric and antisymmetric modes, however, bifurcating modes
may also exist in this system. To find these modes, one requires that the structural
parameters V3 and L5, be related by K5 = 2 K7 (1 /2K3 — 1). By imposing
this condition, the 5-th order balancing equation is transformed to the 3-rd order
one and compatibility of the two balancing diagrams of the system is achieved. As

a result, the oscillator has effectively only one balancing diagram and the values of

¢ corresponding to the bifurcating modes can then be evaluated as follows:

—1,.—(—-1.—-~4)], Iy < 1/4 (2.21)

Thus, at ( Iy, s ) = ( 1/4, 1/8 ), two bifurcating modes exist. Their stability
will now be analyzed by the “linearized” methodology outlined in (Month, 1977).
First, new variables are introduced, along and perpendicular, to the mode under

examination:

{371}__ 1 —c =1 fu
Tof (142 |1 —c] | v

o
[§V]
V]
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In the new coordinates, the equations of motion become
54+ Avd + Asv® + Azvu® + Agvut + Arv?u®

+A8v3u2 + A2u3 + Agus =0
U+ u -+ A10u3 + Apu’ + SAquU + Aguv2 + 5Aqutv

A
~+——,)—3uv4 + Aru?v® + 246007 = 0

where the quantities 4; are listed in Appendix B. Equations (2.23) admit the fol-

lowing set of solutions:

u(t) =0
(2.24)
o(t) = 0™ (1)
where v*(t) is the solution of the differential equation:
b4v+ A0 + As® =0 (2.25)

.’L‘Q*
Uu

Figure 2.3. Coordinate axes for stability analysis

Under the assumption that the amplitude of v(t) is “small,” one can obtain the

following approximate solution by Lindsted’s method (Nayteh. 1979):

| 3, 5
0*(t) = deos( 1+ S48 + %A;)ﬁ“)f +O(5) (2.

o
o
[@>)
p—e



where the initial conditions ©v*(0) = /, v*(0) = 0 are assumed and O(e) denotes
order of magnitude. The stability of solutions (2.24) determines the stability of the
normal mode under consideration, and at this point small variations of the solutions
are introduced:

u(t) = 0+ &(1)

(2.27)
v(t) = v*(t) + n(t)

Substituting equations (2.27) into the equations of motion (2.23) and taking into
account the approximate solutions (2.24), one obtains two H:ll - type variational
equations in ¢ and 7. However, under fairly general conditions (Hayashi, 1985),
(Van der Pol, 1928), the stability question can be answered by considering only the
first two terms of the Hill equations. The resulting “equivalent” (Rosenberg, 1966)
Mathieu variational equations are as follows:

n'" 4 [6g + 261c0s27n =0

(2.28)
£ 4 [0y + 26, cos27)€ =0
where, ( ) = d* / dr? and
By =1+ A32ﬁ2 _ SA;ﬂ"" n 3,/115654 _ 5A§ﬁ4
50=1+3A252 +5A2ﬁ4
6, = AZBZ + AgSE“
5 = BA;ﬁz + 5A;,34
Note that since 69 = 1+ ¢, , both characteristic exponents of the 77 — variational

equation are zero. irrespective of values of the structural parameters of the system;

this is because small perturbations along the v - axis result in neutrally stable
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oscillations. Thus, the stability of the mode is determined completely by the ¢ -
variational equation (or equivalently, by introducing perturbations along the u -
axis which is perpendicular to the normal mode). The stability of the £ - Mathieu

equation can be determined by standard methods in the Stutt diagram.

In figure 2.4 the stability characteristics of the four modes of the system are pre-
sented for 3 = 0.9. To produce these diagrams, the values of the coefficients 8, and
¢, were computed for varying s, s and were subsequently superimposed in the
Stutt stability diagram of the Mathieu equation. It can be observed that a “Hamil-
tonian Pitchfork™ bifurcation (Guckenheimer. 1984) takes place: the antisymmetric
mode loses stability at the bifurcation point (K3 = 1/4, K5 = 1/8), whereas the
bifurcating modes are orbitally stable. Note that the symmetric mode lies on the
stability boundary 6, = 1+ 6;; therefore, its stability cannot be determined by this
linearized analysis (nonlinear effects should be taken into account). The reason for
this stability indeterminacy is discussed by (Month, 1979), (Hyams, 1984), and as
shown later. the use of Poincare’ maps gives an answer to this problem. A point
to note is that both bifurcating modes have the same stability characteristic: this
had to be expected since, as mentioned earlier. they correspond to the same free
oscillation of the “1 to 1”7 resonant system. Finally, it must be mentioned that for
this example, the stability results do not depend on the amplitude of motion. Thus,
even though the stability analysis is only approximate, the stability conclusions
hold for relatively large amplitudes of motion. In latter sections such “high energy”

motions will be examined by more refined techniques.
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1 Instability region
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Balance of cubic terms

Figure 2.4. ( a ) Stability characteristics of normal modes for a system with com-

bined cubic and quintic nonlinearities: arrows in the direction of decreasing L. I\'s.

( b ) Bifurcation diagrams.
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SYSTEM WITH 7th ORDER NONLINFEARITY

In this case, the equations of motion are of the form:

T, +x+ 1{ + Kq7(xy — ”T?)T =0
(2.29)
Po+ay+as + Ke(zg —21)" =0

19} | N W W

Instability :

0.5

0.75 1.0

RS
LN
o

I
¢}
o

)

Figure 2.5. (a) Stability characteristics of normal modes for a system with 7-th order

nonlinearity: arrows in the direction of decreasing 'z, (b) Bifurcation diagram.

The linear balancing equation is satisfied for all values of I; and therefore the
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modal parameter ¢ is computed from the 7-th order balancing equation:

(1= + K7(1—¢)(14+¢)=0 (2.30)
In addition to the ¢ = =41 modes, bifurcating modes may exist, given by the
relation:

1+ +e )Y+ K (1—=¢) =0 (2.31)

The stability of the modes is studied with the approximate methodology discussed
earlier and the results of the analysis are presented at figure 2.5. For I{7 > 0.0705
only the symmetric and antisymmetric modes exist. At Iz = 0.0707 two “Saddle-
Node” bifurcations take place and four additional modes are generated in two stable-
unstable pairs. At Iz = 3/64 the two additional unstable modes coincide with the
stable antisymmetric one in a Pitchfork bifurcation. and for Iz < 3/64, only four
modes exist. In this example (as in the previous one) the stability of the symmetric

mode cannot be determined by the linearized analysis.

2.2.4. SYSTEM “OFF - RESONANCE”

When the linearized eigenfrequencies of the nonlinear oscillator are not integrably
related (independent over Z), then the system is said to be “off-resonance.” Con-

sider again the two DOF oscillator and assume that the three nonlinear stiffnesses



are given by:

fl(u): Z frou’
o

falu) = Z 251 (2.32)
wS

falu) = Z Fro(1+ €’

The structural perturbations €, lead to a break of symmetry of the system and the “1
to 1” resonance (encountered in the previous examples) is eliminated. Throughout
this section a system that lacks the “1 to 17 resonance will be referred as “off

resonant.”

Cousidering the equations of motion, imposing the modal relation between z; and
T, and balancing coefficients in a way similar to the previous section, one obtains

the following modified balancing equations:

Frot full—e) = (1t efre™ — =L s=13,..5  (233)

The corresponding modified balancing diagrams appear in figure 2.6, for s = 1.3.5
and 7, with €1 = €3 = €5 = e = 0.05. Note that the quantities e, are not
restricted to be small and, therefore, this methodology 1s also valid for systems

with large perturbations off-resonance.

Note that, due to the lack of symmetry, the symmetric and antisymmetric modes
cannot be realized in this system and that the bifurcating modes do not appear
in reciprocal pairs. Similar modes can only occur if real values of ¢ can be found

that satisfy all the modified balancing diagrams. In what follows, two unsymmetric
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systems will be examined. In the first one, there is a single balancing diagram to
be satisfied, whereas in the second system two such diagrams exist. In each case,
the similar normal modes are computed and their approximate stability analysis is

carried out.

SYSTEM WITH A SINGLE BALANCING DIAGRAM

First, a nonlinear oscillator with 7-th order nonlinearity is examined. The differen-

tial equations of motion are as follows:

iz ey Ke(z —20)" =0
(2.34)
Fo+ a0 +exy + Kr(zg — )" =0

In terms of the previous notation, €4 = €3 =€ = 0,67 =1 —¢€. Sincee; = 0
and since the coupling stiffness does not contain any linear term, there is only one

balancing diagram (that of Tth order):

7

(c—1)

C

1+ L-(1—¢) =e® + It; (2.35)

The mode bifurcation diagram appears in figure 2.7, along with the results of the
approximate stability analysis. There can be two, four or six similar normal modes,
depending on the value of the parameter 'x. Comparing this bifurcation diagram
with that of figure 2.5, it can be stated that the break of symmetry results in the
destruction of the Pitchfork bifurcation observed in the resonant system (in its place
a Saddle-Node bifurcation exists). This had to be expected. since the Pitchfork
bifurcation is the result of the rotational symmetry of the resonant system and is

structurally unstable: it can be eliminated by small structural modifications (if the
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rotational symmetry is also destroyed). In the contrary, Saddle-Node bifurcations

are structurally stable and thus generic for this class of oscillators (Guckenheimer,

1984).
9 LS L S S W s K
1 Instability region 7 @ [}
o5L o1} @
a @
3 3 ) 1k > |
o _ — \] /
Q) Q @7
y7 4 ge
|
0 « Y : {
0.75 1.0 4 -10 -5 o .

Figure 2.7. (a) Stability characteristics of normal modes for an unsymmetric system
with 7-th order nonlinearity: arrows in the direction of decreasing ;. (b) Bifurca-
tion diagrams.

Summarizing, the stability analysis indicates that three Saddle-Node bifurcations
occur. The bifurcating modes appear in stable-unstable pairs, and at most, three

orbitally stable similar normal modes exist. Finally, note that the stability results do
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not depend on the amplitude of oscillation. As it will be demonstrated shortly, this
does not hold for an unsymmetric system that possesses more than one balancing

diagrams.

SYSTEM WITH TWQO BALANCING DIAGRAMS

In this example perturbations in the linear stiffnesses of the oscillator of the previ-
ous section will be introduced: in addition to the seventh order diagram, a linear
balancing diagram exists in this case. The equations of motion are assumed to be
of the form:

T+ ;L'I + Ky(ay —a9) + Ko(2y — ;z:g)7 =0
(2.36)
Ty + €xq + E:L'; + Iy(ag —ay) + Ky(2g — ;1‘1)7 =0
Introducing the modal relation w5 = cz; and matching coefficients, the following
balancing equations result:
cle—1)= I (1 —¢*) (Linear)

(2.37)
clec® — 1) = Ko(1 =21 —¢) (Tth order)

As mentioned earlier, a necessary condition for similar normal modes is that ¢
satisfies both equations (2.37). The stability of the resulting free oscillations is
then examined by the approximate methodology outlined in previous sections. Two
numerical examples are given. The first corresponds to € = 1.05 and to an amplitude
of oscillation # = 0.9 (J is the approximate amplitude of motion along the normal
mode - equation (2.206)); the results of the analysis are presented in figure 2.8a. In

the second example, the parameters are e = 1.2, # = 0.9 and the results are shown

in figure 2.8b. Note that for values of ¢ in the range ¢ € (—1, 0), it is necessary



—32

9 T T Vv v
1 Instability region
05
0

0.75 1.0

N
191' Instability region
—\— Y
) /Y

\/

Ve

10 U

Figure 2.8. Similar normal modes of an unsymmetric system with two balancing

diagrams: arrows in the direction of decreasing Ii+:
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that iy < 0. Hence, if Iy, L7 are restricted to positive values, then ¢ must also
be restricted to the range ¢ € (—oco, —1)U (0, 1). The stability characteristic of

mode 4 is not presented in the figures; it is well inside the stable region, indicating

orbital stability.

A note of caution should be made here, concerning the way that the results should
be interpreted. In previous examples, one can compute the number of modes corre-
sponding to any (fixed) value of the structural parameter I,. In this example this
is not possible, since the two balancing diagrams must be simultaneously satisfied;
thus, if the value of {7, say, is changed, so must be the value of Ii';. Hence, values
of ¢ in the plots, corresponding to the same value of 7, correspond to different
oscillators and as such, cannot be related. One possible way, however, to interpret

the results, is to move along the lines of the graphs by varying both K; and I{;.

It is evident that no Saddle-Node bifurcations occur in this case. Moreover, it is
observed that by varying the parameter € (which indicates the amount of asymmetry
of the system), the stability of the free oscillations is also altered. At points where
one of the modes becomes orbitally unstable, possible nonsimilar mode bifurcations
occur: this conjecture can be tested by implementing global numerical techniques

(Poincare’ maps), but in this work no such attempt will be made.

It can also be shown that the stability results depend on the amplitude of motion
A, in contrast to the system examined previously (which had, however, only one
balancing diagram). So. when more than one balancing diagrams exist, the stability

of the resulting modes depends on the amplitude of motion and on the degree of
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asymmetry of the system. On the contrary, when only one balancing diagram
exists, the stability results are independent of these parameters, and Saddle-Node
bifurcations replace the Pitchfork bifurcations observed in the resonant (symmetric)

system.

To verify the analytical predictions, the equations of motion (2.36) were numerically
integrated by a 4-th order Runge-Kutta algorithm. The existence of the theoret-
ically predicted similar modes was verified, and their stability was examined by
considering small perturbations in their initial conditions. The numerical values
of the parameters are those of figure 2.8a, and the time-histories corresponding to
three different initial conditions are shown in figure 2.9. It can be seen that free
oscillations corresponding to points in the Stutt diagram well inside the primary in-
stability region, are orbitally unstable: small perturbations in the initial conditions
result in large amplitude modulations and no periodic motion is possible. Modes
with stability characteristics outside the primary instability region were found to
be orbitally stable, since relatively large perturbations in their initial conditions re-
sulted in small amplitude modulations. For mode 5, which is just inside the primary
instability region. the instability was manifested by amplitude modulations of large

period.

Finally, 1t must be stated that in (Rosenberg, 1966), it was predicted that the sta-
bility of modes of “homogeneous” systems (systems with nonlinearities that are
proportional to the same power of the displacement), 1s independent of the am-

plitude. In this work, the same result was observed for systems that have a single
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( 2 ) Unstable mode (point A in fig. 2.8a): perturbation 2.6% in 1‘2(0)
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balancing diagram (but are not necessarily homogeneous). Thus, if an oscillator has
a single balancing diagram, the stability of its similar modes is independent of the
amplitude. In cases, however, with more than one diagram, the mode stability de-
pends on the amplitude (or equivalently on the energy of oscillation), and stability

analysis should be carried on a case by case basis.
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2.3. NONSIMILAR NORMAL MODES

2.3.1. PREVIOUS WORK

In previous sections, similar normal modes of free oscillations were examined. As
pointed out, the set of algebraic equations which is used to compute these motions
is overdetermined; as a result, similar modes can only be realized for real values of
the modal constants ¢;; that satisfy all the balancing diagrams of the system. If no
such real values of ¢;; exist, the periodic oscillations predicted by the Liapounov -
Weinstein theorems are nonsimilar normal modes, i.e., they are represented by

curved lines in the configuration space of the system.

A general discussion of nonsimilar normal modes can be fql_xnd in (Rosenberg, 1966);
based on geometrical arguments in the configuration space, properties of curved
modal lines are given and mathematical formulas for their computation are de-
rived. As pointed out in the same reference, nonsimilar normal modes decouple the
nonlinear equations of motion only for a certain level of energy. If a different level
of energy is chosen, then the modal line defining the mode should be modified ac-
cordingly. This is in contrast to straight modal lines (representing similar modes),

which are independent of the particular energy of oscillation.

Since the differential equations describing the curved modal lines in the configura-
tion space are singular at the maximum equipotential surface (Rosenberg, 1966),
it is necessary to develop asymptotic solutions that approximate the nonsimilar

mode close to the origin. Such asymptotic approximations can be found in (Rosen-
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berg, 1964), (Rand, 1971a,b) and (Manevich, 1972). A different methodology was
used in (Vito, 1972), where assuming low amplitudes, the nonsimilar modes were
approximated by harmonic functions; in the sequence, “backbone” curves (ampli-
tude of free oscillation versus frequency) corresponding to the nonsimilar modes of
a two DOF system were plotted. Finally, in (Atkinson, 1962,1965), the nonsimilar
modes of a class of strongly nonlinear, discrete oscillators were studied by certain
“nonlinear superposition techniques.” The nonsimilar free oscillation of the system
was expressed as a superposition of the similar normal modes of its “homogeneous”
subsystems. Although the numerical results approximated quite satisfactory the free
nonlinear response, no mathematical justification for this superposition method was

given.

The following sections are arranged as follows. First, a mathematical formulation
of the problem of nonsimilar free oscillations is presented. Then, the perturbation
methodology of (Manevich, 1972) is implemented for the study of the nonsimilar
modes of a strongly nonlinear oscillator. Although the asymptotic solutions pre-
sented in this work are new, the perturbation methodology is not. It is only included

here for the sake of completeness.

2.3.2. FORMULATION OF THE PROBLEM - ASYMPTOTIC SOLU-

TIONS

Consider an n - DOF, nonlinear, conservative system. The differential equations of
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motion are of the form
&= fi(zy,nxn), 1=1,.4n (2.38)

with initial conditions,
z;(0)=X,, 2(0)=0, 1=1,2,..,n (2.39)

The same analysis can be applied. however, for a different set of initial conditions.
A necessary condition for nonsimilar free oscillation is that the coordinates z; be
related by:

Tz, =3(z) , 1=1,.n, 1FT. (2.40)

The above functional relations must hold at every instant of time. Note that co-
ordinate x, was used to parametrize the nonsimilar motion and that the functions
z;(e) (which are in general nonlinear in z,), define a curve in the n - dimensional
configuration space of the oscillator (instead of a straight line as in the case of

similar normal modes).

Expressing the time derivatives in the equations of motion in terms of the functions
z;(e) and the coordinate x,, one finds that a nonsimilar normal mode can occur

only if the following (n — 1) functional equations are satisfied (Manevich, 1972):

n

P Nt R
2 /z~'\/"(;frl(:l?,‘),..‘.;i'”(;z?,,‘))} {1+ S (Lk } L

dzx, da?
k=1,k#r
. . dz; . .
+ fr(xi(zy), ..., Zalz,)) T = fi(@1(zr)s oy Tnlzy)) (2.40)
where, 1 = 1,2,...n ,i#r, I is the total (fixed) energy, and V 1is the

potential energy of the system.
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The above set of (n—1) functional equations must be solved for the (n—1) functions
z;(e) that determine the nonsimilar normal mode. Since no exact solutions exist
for this problem, it is necessary to develop asymptotic techniques for approximating

the modal lines in the configuration space.

Mazimum Equipotential Surface V =h

Ty

€T = éi(mﬁ

Singularities of'the functional equation

Figure 2.10. Curved Modal line corresponding to a Nonsimilar Normal mode.

Note that the functional equations (2.40) are singular at the maximum equipoten-
tial surface (defined by V' = h). This happens because the coefficients of the second
derivatives of the functions &; vanish at these points. These singularities at the
points of intersection of the modal lines with the surface V' = h (figure 2.10) further
complicate the solution of the problem. It can be shown, however, (Erdelyi, 1956),
that for differential equations with “regular singular points” (as in the present prob-
lem), asymptotic solutions can be constructed which are valid for intervals of the

independent parameter that are open and do not contain the singular points. Hence,
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it can be proved that an asymptotic solution exists for the nonsimilar mode, valid

in open intervals of the coordinate z, :
T € (a,b) | |al, b < X,. (2.41)

X, 1s the maximum value of z, and corresponds to the point of intersection of the
modal curve with the maximum equipotential surface (figure 2.10). To construct
the asymptotic solution, one must consider the following general properties of the

modal curves (Rosenberg, 1966).

( a ) Since the nonsimilar normal mode is a periodic motion passing through the

origin of the configuration space, it is necessary that:
0)=0, 1=12...,n,1#m. (2.42)

( b ) Because of the symmetry of the potential function with respect to the origin
of the configuration space, the functions ;(e) describing the nonsimilar mode must

be even functions of z,:
Ti(—x,)=—Ta,), 1=1,..,n , 1FT. (2.43)

( ¢ ) The nonsimilar normal mode must intersect orthogonally the maximum equipo-
tential surface in the configuration space. In mathematical terms, this requirement

is expressed by the following (n — 1) equations,
dx,

. ]A7 . “ - ~ -
Fr(@i (X7 ),  2n (X)) {i—d—} T Ji (@1(X5), o 2n (X)) (2.44)

which hold at the points of intersection of the modal lines with the maximum

equipotential surface. There are (n — 1) orthogonality relations, and they can be
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regarded as “boundary conditions” to the (n — 1) functional equations (2.40). It is
evident that any asymptotic solution to the problem must necessarily satisfy this

set of equations.

The perturbation methodology of Manevich and Mikhlin will now be presented. To
apply this analysis one assumes that the nonsimilar normal modes are located in the
neighborhood of similar ones. Thus, the nonsimilar modes will be considered to be
perturbations of similar free oscillations: an asymptotic series solution will be de-
veloped, in which the first order approximation is the similar normal mode. Equiva-
lently, one can consider structural perturbations of oscillators that have similar nor-
mal modes: the resulting new system does not have similar modes but its nonsimilar
solutions are “close” to the similar ones of the unperturbed system. A final remark
is that, this method mainly applies to the analysis of finite-amplitude oscillations
of strongly nonlinear systems, in contrast to existing perturbation methodologies
which require “weak” nonlinearities and/or small amplitudes of motion. In what

follows. the basic steps of the asymptotic method are outlined.

( a ) The asymptotic solution 1s of the form:

>0

Pixy) = Z;i-ﬁ.’”(;u,.> L i=1,..n,i#T (2.45)

k=0
. . (k) . , o L ‘
The functions &, () represent successive approximations to the solution, and the
zero-th order approximation (& = 0) is the solution corresponding to a simalar mode:

(0)

T, (ar ) = cip T

( b ) If the approximations of order 0,...,(k — 1) are known, the &k — th order
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approximation can be found by substituting equation (2.45) into the functional
equations (2.40) and the boundary conditions (2.44), and disregarding higher order
approximations (of order k+1,...). Thus, (n—1) “k —th order functional relations”

and (n—1) “k—th order boundary conditions” result that have as unknowns the (n—

1) functions ;ﬁgk)(o). Each of these functions is expressed in a series representation
as follows:
oo
(k) k) i
Tz, = Z agj)xi (2.46)
j=1,3,5,

t=1,2, .0, 1 F#E .

Note that only even terms are included in the series, because of the symmetries

of the modal line in the configuration space (see previous discussion). The real

(k)

scalars a, ;" are determined by substituting expressions (2.46) in the “k — ¢h order
functional relations” and the “k — th order boundary conditions,” and by matching
coefficients of respective powers of x,. The asymptotic solution converges in any
open interval @, € (a,b) € [—X,, X,], but not at the limiting values z, = £X,. A

rigorous mathematical proof of convergence can be found in (Manevich, 1972).

( ¢ ) The approximate asymptotic expressions for &;(z,) can be used for computing
the time response z,.(t) as follows. The coordinates z; in the equations of motion
(2.38) are expressed as functions of z, (this can be done only when the system
oscillates in a nonsimilar mode). In the sequence, the time response for a, 1s
obtained by integrating by quadratures any one of the resulting equations of motion.
The time responses of the remaining coordinates can then be conveniently obtained

by direct computation, using the (known) modal relations (2.40).
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( d ) The stability of the nonsimilar normal modes can be determined rather easily
by applying the stability theorem derived in (Rosenberg ,1966). According to this
theorem, if a nonsimilar mode results as a perturbation of a similar one, then its
stability is identical to that of the similar mode. Thus, the problem of the stability
of a nonsimilar mode is converted to an equivalent one involving a similar mode,

which can be solved with the techniques outlined in section 2.2.

2.3.3. APPLICATION OF THE METHOD

An application of the outlined asymptotic methodology will now be given with a
two DOF system with cubic nonlinearity. The analysis, however, 1s quite general
and can be used for computing nonsimilar modes of oscillators with many DOF and

arbitrary degree of stiffness nonlinearities.

At this point, consider a two DOF “resonant” oscillator with differential equations
of motion:
P4y + o]+ K(a —a) + K(a — z2)? =0
By + a1+ e)ay + K2 — o) + Ks(zg —2)” =0

and 1initial conditions z;(0) = Xy, 2,(0) = 0,2,(0) = Xy, 2,(0) = 0.

For € = 0. the oscillator has two similar modes of free oscillation (this can be easily
shown by considering the balancing diagrams of linear and cubic terms): a symmet-
ric mode corresponding to ¢ = 1 and an antisymmetric one for ¢ = —1. However,

for € # 0. no similar normal modes exist for this oscillator since no real values of

the modal constant ¢ can be found that satisfy simultancously the linear and cubic
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balancing diagrams ( figure 2.11 ). Thus, the structural perturbation of the system
(represented by the € term) eliminates the possibility of similar modes and the only
possible periodic free motions of the “perturbed system” can be nonsimilar modes.
However, for “small” values of the parameter ¢, it is reasonable to expect that these
nonsimilar modes will be “close” to the similar ones (of the unperturbed system),

and that the asymptotic analysis outlined in the previous sections can be applied.

i | _
i
i
0
E / € %
i
0.25 0.25 %/ /
Ta) ,
! [
! |
- } {
! i
| |
O ! I 1 i 0 I i i | | L
-1 0 1 C -1 1 C

Figure 2.11. Linear and cubic balancing diagrams of a system with nonsimilar

modes.

In seeking nonsimilar modes of free oscillation, one requires that the coordinates of

the system be related by an expression of the form:

vy = 3a(a1) (2.48)

Since this relation must hold for every value of time, the derivatives of the coordi-
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nates during a nonsimilar normal mode can be computed as follows:
.‘ e ’,\1, -' .o . ,:l/ /-' ‘2 ‘,\ l .
Ty = dody , To=Ty(dy)° + Tody (2.49)

where (o) = d/dz, and (o) = d/dt. Substituting for z2, £, and £, into the equations
of motion, one obtains the following set of differential equations that describe the
oscillation on the nonsimilar mode:

71 —+— Ty + H?? + I&’](IL’] - CLA72)3 + Ifg(.i?l — 52'2)3 = O
(2.50)

~

Fh(d1 )7+ 353, Fdr H (14 )5 + I (g —a1) + K3(32 —21)> =0
An expression for the velocity 1) can be obtained by integrating the first of the above
equations by quadratures (in the following expressions, X} denotes the amplitude

of coordinate 7).

Ty

(21)7 = -2 Y{&1+Kﬂ+€”—K@ﬁO+JQK~ix®fM5 (2.51)

Then, substituting (2.51) into the second of equations (2.50), and eliminating the
variable ;. one obtains the following functional equation for the (unknown) “modal

function”™ ro(e) :

. (% = X . (21 - X3} B . , -
s L= w4 S [ e = dal€))) - Kyl ) -
b . 4\.1
—?é){ ry + ;I,':l3 + I\’I Ty — .Z:QI{I -+ ]X-:;(il'] - 4232)3 }+
dig + (14 e)dy + Kidy — Koy + Ky(3y — ;171)3 =0 (2.52)

This functional equation is analogous to the general expression (2.40) that was de-

rived earlier for the general n DOF oscillator. Note that the coeflicient of the second
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derivative of Z, becomes zero at z; = +X,. As a result, the asymptotic approxi-
mation to the solution will be valid only in open intervals contained in [—X7;, X;].
To guarantee that the series solution intersects the maximum equipotential sur-
face at the points (21, @2) = (£X,,+ X,), one imposes the additional boundary

condition:
-—(IAJIQ(_X—I ){ }{1 + ‘Y? + [&’I‘X’] — (%Q(JX—l)I{I + ]{3(}{1 - ;,i?g(X] ))3 }+

Haa (K1) + (14 @a( X)) + K2 Xy) — KX + K3(82(X) = X1)° =0 (2.53)

This is equivalent to the boundary orthogonality condition (2.44) that was given in

the general formulation of the problem.

The asymptotic solution is written in the form:

Folzy) = 2 (z) + &8 (@) + . (2.54)

It will be assumed at this point that the first term of this series is much “larger” in
magnitude than the other terms. Specifically, the orders of magnitude of the terms

are assumed to be as follows:

S
>
N
—
Il
[
G
—~
=3
5
Z
—
Il
C
—
I
[C2EN
—
v\
[l
S
5>
[
—
=
e
i

= Oe) << 1. (2.55)

must be verified when the actual solution is computed.

The zero-th order solution corresponds to the similar modes of the “unperturbed

system” (resulting when € = 0). Thus, the first term of the series (2.54) has the
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form,
iéo)(arl) = ¢z (2.56)

where the modal constant ¢ is of O(1).

Substituting relation (2.54) into the functional equation (2.52), taking into account

the zero-th order solution, (2.56), and retaining terms only up to O(e), one obtains:

(zf — X7)
2

—2a " 14 Ki(1 = ¢)] + 1+ Ks(1 = ¢)’]

(7 = X})
4 b=

——Z; {14 I (1 =¢)]e; + 1+ IK3(1— c)g]:c% b+
+f N+ K(1 4 0)] + [BE3(1 = )% c + 3(1 + €)c? + 3K5(c — 1)%]2? }+

H{ (=D +[—c—cK3(1 =)’ + (1 + e)c® + Ks(c—1)°]a? } =0 (2.57)

O(1) terms
Considering only terms of O(1), the following equality results:
(¢ — )ay + [—c — el 3(1 - )+ Ka(c— 1)3}1'? =0 (2.58)

Since the above relation must hold for arbitrary values of 2, € [—X;,Xy], it is

necessary that the coefficients of all powers of x; be equal to zero :
=1 and —e—ch3(l1=—e)’ + 3+ Ki(e—1)° =0 (2.59)

The above relations can be easily identified as being the balancing equations for

similar normal modes of the “unperturbed” system (e = 0); they are satisfied if
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and only if ¢ = 1. Thus, there are only two similar modes in the “unperturbed”
oscillator (a symmetric and an antisymmetric one); for e # 0 they are perturbed,

giving rise to nonsimilar normal modes.

O(e) terms

1)

To compute the second term of the series, :?g , one has to consider the balance of

O(e) terms in equation (2.57):

Y .
R R e R

—a L4+ K1 = o)ley + [+ K3(1 - ¢)’Ja} }—
'“i'gl){ (14 15 (1+¢)] + [BR5(1 — ) e+ 3(1+e)c? +3K5(c — 1)2]33% -

tec’z? =0 (2.60)

o y . . - . (1
This is the “functional equation of first order” that must be satisfied by T,() ). In

addition to this equation, the following “boundary condition of first order” must be

considered (this is derived from (2.53) by considering only terms of O(e€)):

SO L+ (1= )X+ [T+ B(1 = e’ ]XP )+

a4 (14 )] + [BE5(1 = ¢) e+ 3(1 + e)e? + 3R3(c — 1)]XT 1+
+ec’ XP =0 (2.61)

(1)

The solution for r, ~ is now expressed in the form:

NE! ) (1) .3 (1) 5 p
;zu(2 ) — (1,.(_,1 Ty A g XY+ Aoy ]+ (2.62)
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When this series solution is substituted in the functional equation of first order

(2.60) and coeflicients of respective powers of z; are set equal to zero, the following

equations for the unknowns (1(21]-) result:

(1) (1)y, (1)

aéé) _ (T, = T3 )ay, — gl) gll)

67, X7 + 313" X1
1 1 1 1) 1) 1)y (1
A 13" P 9 + T - Tijagy
20TV X2 + 107" X4 20TV X2 + 1074V X

=" +rlValV (2.63)

Similar analytic expressions (albeit of increasing complexity) can be computed for
o - 1 . - . . .
the coetficients (ng) , 7 = 7, but these will not be presented in this work. The

quantities T,()l) depend on the value of ¢ (of the zero-th order approximation) and

the structural parameters of the oscillator:
T =14 K,(1-0¢)
TV =14 K31 —¢)°
T =14+ K1 (1 +¢) (2.64)

2

T = 3K5(1 — ¢)’c+ 3(1 + e)c® + 3L4(1 —¢)

| 4
T = ¢0?

3
, . (1 . . o ey -
To compute the quantity (1,21), one substitutes the series (2.62) into the boundary
condition of first order, taking simultaneously into account expressions (2.63). The
. S . 1) .
resulting formula for af_)l) 15

az) =



_T(l)}(‘z *—L(l)_XA(TU) +T(l).¥4)+5L(l)}(4(Tl(l) “}“Tz(l)‘Y%)
—(1+3rx2 5V xyr TV x + (1+ LV x2 4 LI XTI + 1V x2)

(2.65)

Thus, by making use of relations (2.63) and (2.65), one approximates the nonsimilar

normal mode as follows:

To(ay) = ((:+(zgll));ztl +(1(,3)1f + —}—(1(05)11 + O( ez, €°) (2.66)

Considering the analytical expressions (2.63-65), one can show that, indeed, all the
. 1 . - . - .
coefficients (L(Qj), J = 1,3,5 appearing in (2.66) are of O(e). Thus, the assumptions

of the outlined perturbation analysis are met.

Since (2.66) is a truncated form of the general expression (2.54), it only approxi-
mates the actual solution for small values of the structural parameter € and for small
values of the amplitude x;. However. one can extend the validity of the solution for
relatively large amplitudes by computing additional terms in (2.66), of higher order
in 27 (this can be achieved by computing additional constants (L(Qlj)). Note also that
since the coeflicients a, dopend on the amplitude X, the resulting expression for
the modal curve depends on the magnitude of oscillation (or equivalently on the
total energy ). This is in agreement with the prediction made by (Rosenberg, 1966)

concerning nonsimilar normal modes.

After determining the approximation to the modal curve, the time responses can

be computed by substituting (2.66) into the differential equations of motion (2.47).



In particular, the first of these equations takes the form:

i+ LV + LYt + Vel 4+ Ofer], ) =0 (2.67)

b

where
11(1) =1- aéll) + Ki(1 —¢)

3
Iél) =1- Kla%) + I3(1l—c— agll)) (2.68)

2
10 = —Kyald) - 3K5(1— e — af)) all)

The time response of the coordinate z; can be computed from (2.67) by quadratures:

t:t(;ztl)::t/ G(Xy,€&)dE (2.69a)
X4
where,
- 1
G(X1,¢) = 1 W o ‘ i 1/2
{LV(XE =€) 4 (X — &) + 5 (X} - €°) + O(ea], ?) }
(2.690)

The (+) or (—) signs are used alternatively so that a monotonic increase of the time
variable results. Note that in writing expressions (2.69), it was assumed that the
initial conditions of the system are x; (0) = X1, 21(0) = 0,22(0) = X5, 22(0) = 0.
For a different set of initial conditions, the limits of integration must be modified
accordingly. Once the relation @y = w;(¢) has been determined, the time response of
the coordinate a4 can be easily computed by use of the (nonlinear) modal relation

(2.66).

One can “invert” (2.69a) to obtain a functional relation of the form z; = (1).

However, this inversion may introduce difficulties of interpretation of the results,



since the associated expressions might not be (known) tabulated functions. A spe-
cial case where the results are in terms of tabulated functions is when one retains
only terms up to O(£*) in the denominator of expression (2.69). The response can

then be expressed in terms of elliptic functions, whose properties have been studied

in the literature (Byrd, 1954), (Abramowitch, 1970).

The frequency of free oscillation can be evaluated directly from (2.69a), by a suitable
choice of the limits of integration :

s

T G(x fe

(2.70)

From the above relation the so called “backbone curves” of the nonsimilar modes
can be evaluated. These are plots of the frequencies of oscillation w versus the
maximum amplitudes X, and are commonly used for describing the free oscillation

in the frequency domain.

For a numerical application of the aforementioned analysis. let Iy = 1.3 and I3 =
0.7. Fore = 0.5 and X| = 0.6, the asymptotic approximations of the two nonsimilar

modes of the svstem were found to be as follows:

Folay) = —1.03254322, — 0.016362627 + 0.00548762 + ...
(2.71)
To(ay) = 0.9404508z, + 0.1214908z7 + ...
The two nonsimilar modes result as perturbations of the symmetric and antisym-
metric similar modes of the oscillator with € = 0. Note that the high order terms

are small compared to the dominant linear ones, even for a relatively large value of

€ (in this example, € = 0.5).
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ASYMPTOTIC SOLUTIONS

1 T H
T2 i ’
0
- Mode ¢ = +1 .
g 0 1
Ty
1 T T
To [ 7
Mode c = -1 7
0 //
4 1 1
-1 0 1
(a) T

Figure 2.12. Modal curves of the two nonsimilar normal modes. (a ) Asymptotic

approximations.( b ) Numerical (exact) solutions.



NUMERICAL SOLUTIONS
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Figure 2.13. Backbone curves corresponding to nonsimilar normal modes.



To test the accuracy of the asymptotic solution, a numerical integration of the
equations of motion was carried out, using a 4-th order Runge-Kutta algorithm.
For X| = 0.6, the values of X, corresponding to the two nonsimilar modes were
numerically detected. This was achieved by observing the simulated oscillation in
the configuration plane of the system for different choices of X,: for a nonsimilar
mode, the oscillation was represented by a curve. For the nonsimilar mode close
to the symmetric, similar one, the numerical (exact) value for X, was found to
be 0.579, compared to the approximate asymptotic estimate of X, = 0.5905. For
the nonsimilar mode close to the antisymmetric, similar one, the corresponding
estimates are —0.6253 and —0.62263 respectively. The associated modal curves are
shown at figures 2.12. From these plots, a good agreement between the asymptotic
and the numerical results is observed, particularly when the amplitude of oscillation
is small. The asymptotic approximations can be improved if more terms are added

to the solutions (2.71).

As far as stability is concerned, the computed nonsimilar modes are orbitally sta-
ble since they result as perturbations of orbitally stable similar modes (the fact
that the “unperturbed” system has stable similar modes can be easily verified by

implementing the linearized stability analysis of section 2.2).

In figure 2.13. the “backbone” curves of the nonsimilar modes are presented for
various values of the parameter e. Note that the nonsimilar mode backbone curves
are very close to the ones corresponding to the similar modes ¢ = +1, even for

relatively large values of the perturbation e.
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2.4. STUDY OF THE GLOBAL DYNAMICS

2.4.1.POINCARE' MAPS

In previous sections, analytic methods for detecting nonlinear normal modes were
presented. As pointed out, for nonlinear systems the analytically detected periodic
motions are not always physically realizable, since they must also be stable in a

certain sense (orbitally or Liapounov).

Until now the linearized stability of the normal modes was considered. Although
this approximate analysis leads to important conclusions about the bifurcations of
normal modes, it cannot predict the stability of the symmetric mode in the “1-1
resonant” system. The reason for this limitation is examined in (Hyams, 1984),
where it is shown that, for low energies, this stability indeterminacy is caused by a
bifurcation of periodic motions (which are not nonlinear normal modes) from the

symmetric mode.

In this section, a more complete stability analysis will be presented. This i1s based
on Poincare’ maps, and enables the study of the global dynamics of the flow of
the dynamical system. Certain deficiencies of the approximate, linearized stability
analysis are resolved with this refined methodology, such as the determination of the
mode stability for large amplitudes and the stability indeterminacy of the symmetric
mode of the “1-1 resonant” oscillator. Application of Poincare’ maps to the study of
the dynamics of undamped, discrete oscillators can be found in (Month, 1979,1980).

In these references, analytic techniques for approximating the Poincare’ maps in
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low energies (such as Birkhoftf-Gustavson canonical transformations, Whittaker’s
adelphic integrals and Lie transforms), are given. By applying these techniques, one
can determine analytically the global flow of the dynamical system sufficiently close
to a normal mode, and thus obtain a more complete description of the mode stability.

This section starts by a brief description of the construction of the Poincare’ map.

The free oscillations of a two DOF oscillator are examined. The equations of motion

for this system are given by:

S S
frt ) hurit D fa(e — @) =0
8==1,3,...

s=1,3,...
, ’ (2.72)
S s
Ty — Z fos(zr —x2)” + Z fiszy = 0.
$=1,3,... 9==1,3,...

This is a hamiltonian system with a 4-dimensional phase space ( 2, &1, 22, 22 ).
By fixing the total energy of the system to a constant level, one restricts the flow of
this dynamical system to an 1soenergetic 3-dimensional manifold. This is achieved
by setting:

H(xy,21,29,22)=h (2.73)

where H (e} is the expression of the hamiltonian of the system (to be given later),
and & is the constant energy level. The hamiltonian H 1s a first integral of motion
for the system, and for autonomous oscillators it represents conservation of energy
during free oscillations. If an additional independent first integral of motion exists,
the two DOF system is said to be “integrable” and the isoenergetic manifold H = h
is fibered by invariant 2-dimensional tori ( Guckenheimer, 1984). This “integrability”

property is not generic in hamiltonian systems and in general, one does not expect
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the existence of a second integral of motion (in fact, the “integrable” cases are
of measure zero in the “space” of this class of nonlinear systems). It must be
noted, however, that for low energies even nonintegrable oscillators appear to have
an “approximate” second integral of motion. This is because for low amplitudes
their isoenergetic manifolds appear to be fibered by approximate invariant tori

which, as the energy increases, “break” giving rise to random-like chaotic motions

(Lichtenberg, 1983).

Poincare Section

Flow on the energy manifold

Figure 2.14. Construction of the Poincare’ map.

Now suppose that one intersects the 3-dimensional isoenergetic manifold defined by
(2.73), by a 2-dimensional cut-plane. If the intersection of the two manifolds 1s trans-
verse (Guckenheimer, 1986), the resulting cross-section ¥ is 2-dimensional, and the
flow of the dynamical system intersecting the cut-plane defines a “Poincare’ map.”

A schematic representation of a Poincare’ map is shown at figure 2.14, where the
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cut plane is chosen as:

T:{z; =0} (2.74)

and the Poincare’ section T is defined by:

Note that an additional restriction on the sign of the velocities of the intersecting
points was posed. This is because one requires the Poincare’ map to be orientation
preserving (Guckenheimer, 1984),(Wiggins, 1989) (in figure 2.14 this is done by
recording only points A4 and 4’, but not point B which corresponds to a negative
velocity at the point of intersection). Also note that transverse intersections of the

flow with the cut-plane will only occur if the following condition is satisfied:

(21,31,22,%2)0(1,0,0,0) #£ 0= 21 # 0 (Transversality Condition ) (2.76)

A free oscillation of the system corresponding to a normal mode is a periodic motion
and therefore pierces the cut-section only once. As a result, the Poincare' section,
¥, of a normal mode is a single point and the mode stability can be determined

by examining the Poincare’

sections of “near-by” trajectories (corresponding to
initial conditions that are very close to those of the normal mode). If the point
corresponding to the normal mode appears as a center. then orbital stability can be
concluded. In that case, the modes appear to be surrounded by closed curves that

result as intersections of invariant tori with the cut-section. On the contrary, if the

mode appears as a saddle point, then orbital instability 1s inferred.
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Before proceeding with numerical results, a note of caution i1s appropriate. The
outlined stability methodology is only valid for small values of energies h. This
is because, in general, the two DOF nonlinear oscillator will not possess a second
independent integral of motion and hence it will not be integrable. For such nonin-
tegrable two DOF systems, KAM (Kolmogorov - Arnold - Moser) theory predicts
that “rational” tori break, resulting in layers of ergodic motion, filling the phase
space between sufficiently “irrational” preserved tori (Lichtenberg, 1983). As the
energy increases, one typically expects all the tori to break, resulting in the filling
of the whole phase space of the system with ergodic motion. This topic will be

further investigated in subsequent sections.

At this point. a specific oscillator will be examined. Assuming cubic nonlinearity
and “1-1 resonance,” the equations of motion are as follows:

- . S 1 Kalx ) =0

Iy a2y + Ka(ay —22)” =

o " )3 g

Tog — Na(axy —a2)” +ag+25, =0
Note that the oscillator is strongly nonlinear and that /i’y characterizes the modulus

of the coupling stiffness. The hamiltonian of this system 1s given by:

1 1

H(zy, &1, 00,89) = =(2? + 23) + 4(:1:‘11 + 2y + I(ay — x9)*) + S(mf +a3) (2.78)

where &, and @, are equal in this case to the generalized momenta of the oscillator.
Restricting the flow to the isoenergetic manifold H = h, the Poincare’ map is

computed by requiring that a; = 0. This results in the following expression for 2, :

1 . 9 .9 -
&y = £[2h — _-_)—(1 + K3)xy — x5 — 5] (2.79)
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By construction the Poincare’ map will contain intersections (z2, 23 ) corresponding

to z; = 0 and 21 > 0. These points will fill the interior of a region with boundary

1 . .
corresponding to 27 = 0. The plan is to integrate numerically the differential

equations of motion of the system and to sample the values of (x4, 2, ) corresponding
to 1 = 0,21 > 0. The Poincare’ maps of the free oscillation of the system will be

constructed and the global picture of the dynamics of the oscillator will be obtained.

2.4.2. DYNAMICS FOR LOW ENERGIES

2.4.2.1. NUMERICAL SIMULATIONS

The oscillator described by the equations of motion (2.77) was examined in previous
sections and it was found that a bifurcation of similar normal modes exists. Consid-
ering the balancing diagram of cubic terms of figure 2.15, note that depending on
the value of Iz, two or four similar normal modes can be realized. Recall that al-
though the linearized stability analysis indicates that a pitchfork bifurcation occurs,
it cannot predict the stability of the in-phase (symmetric) mode that corresponds

to ¢ = +1.

The Poincare’ maps of free oscillation of the system are shown at figure 2.16. The
total energy of the system, h, was fixed to a small value h = 0.5, and two values
of the parameter I3 were considered: one above and one below the bifurcation
value of 3 = 1/4. The following remarks can be made as far as these plots are

concerned.
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Balance of cubic terms
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Figure 2.15. Balancing diagram of cubic terms.

Stable mode ————— Unstable mode - ————~—~

- The symmetric normal mode (the upper fixed point in both maps) 1s orbitally
stable. This is concluded from the fact that it appears as a center in the plots, sur-
rounded by closed curves which are intersections of invariant tori with the Poincare’
section. Thus, the problem of the stability of the symmetric mode which could not

be resolved by the linearized stability analysis, 1s answered by using these maps.

- A qualitative change of the global flow of the system occurs as the parameter
K3 is decreased below the value I3 = 1/4. For L3 > 1/4 the antisymmetric
mode (the lower fixed point in the Poincare plot) is orbitally stable. For Iy < 1/4
the mode becomes orbitally unstable (since it appears as a saddle point in the
plots), whereas the bifurcating modes are orbitally stable. Note the closed “loop”

starting and ending at the unstable mode (in fact, there are two such “loops,” but
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Figure 2.16. Poincare Maps of the system for a low level of energy ( h = 0.5 ).
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the second is difficult to observe since it is very close to the boundary curve of
the plot). This path is a “homoclinic orbit” and is formed by trajectories that
approach the saddle point after infinite positive and negative times (points on the
homoclinic orbit have the same past and future). The homoclinic orbit is formed
when the stable and unstable invariant manifolds of the unstable point, coalesce
(Guckenheimer, 1984),(Wiggins, 1989), and it represents the boundary between
trajectories that enclose only one of the bifurcating centers and those that enclose
both. The homoclinic orbits are recognized as a mechanism for generation of chaos
in hamiltonian systems, and it will be shown in latter sections that for this oscillator,

the observed homoclinic trajectories give rise to large-scale chaotic motions.

- As a last remark, note that the observed Poincare' plots correspond to a low value
of the energy h. In fact, these results can be deceiving, since they may lead to the
impression that the dynamics of the oscillator are “smooth” and totally predictable.
In fact, since the oscillator under investigation is not integrable, certain invariant
tori of the flow “break” according to the ILAM theorem, giving rise to random-like
chaotic motions. These complicated trajectories occur in “stochastic layers” which
have a very small measure for low energies and thus are not easily observable in
numerical simulations. In addition, transverse homoclinic intersections between the
stable and unstable manifolds occur in the smooth-looking homoclinic trajectories
that lead to large-scale chaotic motions. So, the dynamics of free oscillations of the
system are more complicated than what they appear in the low-energy Poincare’

plots. This will become evident in subsequent sections, where the energy of the
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oscillation will be increased.

In what follows, a two-timing perturbation analysis will be used to study the dy-
namics of the system for low energies, and to compute analytically the various

trajectories of free oscillation that are observed in the numerical simulations.

2.4.2.2. PERTURBATION ANALYSIS: AVERAGING

In this section an approximate perturbation analysis will be performed for the two-
DOF nonlinear oscillator. In order for the perturbation expansions to be justified, it
1s assumed that the nonlinear system “neighbors” a linear one so that the nonlinear
solution is regarded as a perturbation of a linear one. This is the case of an oscillator
with cubic, “weak” nonlinearities (of perturbation order), and equations of motion
of the form: ,

= 3 " . —

Ty +ay +ex] + ez(ay —29)” =0

(2.81)
. - 3 3
Tg —ell3(vy —xy)” +exy, a2 =0

where |e|] < 1, is a small parameter. At this point, the additional parameter u is

introduced. defined by the relation.

. 1
I\g :1*—/,1,

.
0o
o2}
o

Note that p is a measure of the distance of the value of Iy from the bifurcation
value of 1/4 (ju is assumed to be a nonnegative quantity). At g = 0 the pitchfork
bifurcation occurs, whereas for positive values of j, two bifurcating normal modes

exist.

The two-timing perturbation method will be implemented (for more information

about this method see (Nayfeh, 1979)). The following set of dependent coordinates
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are introduced

u=(x1+22)/2 , v=1(z; —x2)/2 (2.83a)

and “slow” and “fast” time variables are defined:
n=c¢e E=1t (2.83b)
Then, expressing the time derivatives of u and v by the chain-rule, one obtains:
U = ug + euy + O(?)  wp = uge + 2eug, + O(e?) (2.84)

Writing the equations of motion (2.81) in terms of the new variables v and v and
using expressions (2.84), the following approximate transformed equations of motion
result (correct to O(e?)):

uge + 2eug, = —Beuv? — eu® —u + 0(62>
(2.85)
vee + 2eve, = Sepv® — 3ev® — 3euv — v + O(€?)
In these equations the “shortened” notation for the derivatives was used, for ex-

2
&y = % Note that all variables other than e are assumed to be of

ample, ()¢

O(1).
The solutions of equations (2.85) are expressed in the series form:

’IL(E, 7]) = Z €nurl(§v '7)
n==0

|

(2.86)

hE

'U({,T]) == 671’7}11(5777)

Il
o

1

where u,,, v, are the n — th order approximations to the solution. These are com-
puted by substituting the series expressions for v and v into equations (2.85), and

matching coetlicients of respective powers of e.
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O(€%) terms

The zero-th order approximate solutions are given by the following set of differential

equations:
Upge +up =0
(2.87)
Voge + Vo = 0
The general solutions of these equations are of the form:
uo(€,m) = A(n)cosé + B(n)siné
(2.88)

vo(€,m) = Cln)cosé + D(y)siné

where the (unknown) quantities A, B,C and D are computed by eliminating the

“secular” terms of the equations of the next approximation (Nayfeh, 1979).
O(e!) terms

The equations of the first approximation are obtained by matching terms of order

; 2 3
Uige + Uy = —2ugey — Juguy — Uy
(2.89)
, ) . 9 8 3 3 3 3 2
Ulgg + U = —2Uggy + SV — SVg — SUGVo
Substituting the expressions for v and vy into the left-hand sides of equations (2.89)
and setting to zero the coefficients of cosé and siné ( since they represent resonant
excitations for the system (2.89) leading to unbounded solutions ), one obtains four
differential equations for the unknown quantities 4, B, C and D. This operation
was performed with the symbolic manipulation software package “MACSYMA” and
the expressions are too lengthy to be reported here. However, the results can be

significantly simplified if one uses a new set of polar coordinates, Ri(n), R2(n), and
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#(n), defined by:
A = Ricosb; B = Risiné,

C = Rscosbs D = Rysinf, (2.90)

6 =6, — 6,

In terms of these new variables, the equations that result from the elimination of

the secular terms of equations (2.85), are as follows:

IR 3 _
(dnl = §R1R552n2¢
WRy 3
dnz — _g-R{)stin&p' 2.01)
I¢ S T
% - ——’8"(RI + R3) + 3R} + é-(R:f — Ry)cos2¢

where the variable ¢ is modulo 7. Combining the first two equations of the above

set, one obtains:

dR, R, 2 2 2 ,
S R = 2.92
iR, 7 = Ri+ R, =p ( )

where p is a constant scalar quantity. Note that the quantity (R] + R3) is related to
the total energy of the motion; thus, expression (2.92) indicates that the total energy
of the system is conserved during free oscillation (as expected). Note, however, that
this form of the conservation law holds only for this level of approxiumation. since

all terms of order € or higher are neglected.

Equations (2.91) represent a dynamical system with a 3-dimensional phase space.
However, since the encrgy is fixed during free oscillation, the motion of the dy-
namical system is confined to a 2-dimensional isoenergetic manifold, represented
by the cylindrical surface of figure 2.17. In that figure, a schematic description of

the flow of the dynamical system is given. It has been assumed that ¢ > 0, so
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that the pitchfork bifurcation of modes has already occurred. The variable ¢ is
confined in the range [0,7), and the plot is symmetric with respect to the plane
¢ = n /2. Points that are symmetric with respect to that plane must be identified
since they represent the same motion of the dynamical system (this is due to the

applied mathematical transformations).

¢

T
R + Rj = p?
C A
Homoclinic orbit
/2
S0 ) ,,,,,, R,
5 B _p
Rs 4
Ry

Figure 2.17. Schematic representation of the flow on the isoenergetic manifold for

positive values of .

For example, points 4 and A’ represent the same (unstable) antisymmetric mode;
as a result the homoclinic orbit appears as an open loop in this plot (compare with
the Poincare’ maps of figure 2.16). Similarly, the two additional bifurcating modes
are represented by the fixed points B and €, and are centers, indicating orbital

stability.

The motion on the isoenergetic manifold can be better described if one introduces
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a second polar transformation according to the formulas:

Ry = p cosy
(2.93)

Ry = p sinyp

where p 1s the scalar constant of equation (2.92), and ¢ is a new polar variable.
Substituting expressions (2.93) into equations (2.91) and eliminating the constant
p, one obtains the following set of differential equations that describe the free oscil-

lation of the system on the isoenergetic manifold:

d 3p?

__(é — _.-1)—[8“(C()321/) — 1) | 2 + 2C032¢’C032¢]

dn 16

dvp 3p* (2.94)

—_—= sin2¢sin2y
dn 16 o

p = constant

Note that the above equations represent a dynamical system on a two-Torus, since
the variables ¢ and v are modulo . Thus, by applying subsequent transformations,
one finally relates the free oscillation of the two-DOF system with a flow of a vector

field on a two-Torus.

An interesting feature of equations (2.94) 1s that they can be integrated exactly.
Indeed, the integrating factor for this system of ordinary differential equations is
(Rand, 1990):

F(g,v) = sin2y (2.95)
and the first integral of motion is computed as:

. 1 ..
K(d. ) = ——sszv'L‘)QL/;cosEqb + cos2y (2.96)

The level curves of the integral (2.96) are plotted in figure 2.18 for = 0.05. Each

curve corresponds to a different value for the integral ', but all are on the same
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“energy level” p. Observe that the flow is symmetric with respect to the lines
¢ = 7/2 and ¢ = 7/2. The symmetric mode corresponds to (¢, ) = (7/2, 0)
and appears to be surrounded by closed curves. This is an analytic proof of the
orbital stability of the symmetric mode (recall that a numerical proof was obtained
with Poincare’ maps, where it was found that the symmetric mode was surrounded
by closed curves that result as intersections of invariant tori with the cut plane).
The two bifurcating modes are orbitally stable (since they appear as centers) and
correspond to the fixed points (¢, ¥) = (0, %cos“l(%ﬁ—%)) and (7, —é—coswl(ﬁﬁ{ﬁ))
respectively. Finally, the unstable antisymmetric normal mode is represented by
the fixed points (¢, 1) = ($cos™ (1 — 8u), %) and (m — -%—cos_l(l —8u), %)
Note that the homoclinic orbit I appears as an open curve; this paradox is due to
the applied polar transformations, and it is resolved if one identifies points that are
symmetric with respect to the line ¢ = 7 /2. Note that in section 2.1 similar normal
modes were investigated and it was found that for the “1-1 resonant” system, the
two bifurcating modes actually represent the same free oscillation. Exactly the same
conclusion can be made from the phase plane of figure 2.18, if one identifies points
symimetric with respect to line o = 7/2: the two bifurcating modes are actually the
same motion and in addition, the homoclinic orbit originates from and ends at the
unstable mode.

In figure 2.19, the phase plane of the oscillator for different values of u is shown

(only values of ¢ and ¢ between 0 and 7/2 are presented). Observe that at p =0

only the symmetric and antisvmmetric modes exist. As p is increased from zero,
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the homoclinic orbit increases in length. At the limit p = 1/4, the coupling stiffness
of the oscillator vanishes and the two-DOF system degenerates into two single DOF
disjoint oscillators. Note that as 4 — 1/4, the homoclinic orbit becomes more and

more “curved,” until it reaches a nonsmooth limit.

By using the analytic expression of the first integral of motion (eq. 2.96), it 1s
possible to find exact expressions for the time responses of the coordinates of the
oscillator. In the sequence, the time responses corresponding to a homoclinic motion
of the system will be computed. To obtain the value of K (¢, ) for the homoclinic
level curve, substitute in (2.96) the values of ¢ and ¥ corresponding to the anti-
symmetric mode (since the ievel curve corresponding to the homoclinic orbit passes

through that mode):

(&, ¥ )=( %cos‘l(’l —8u), — ) (Antisymmetric mode) (2.97)

02| 3

Then the first integral of motion takes the value:

K(g,vw)=(1—4p)(—=1)+pu=5u—1 (Homoclinic orbit) (2.98)

Using the computed value of IV, find the relation between ¢ and 3 for a motion on

the homoclinic orbit (this is achieved by solving for cos2¢ in expression (2.96)):

2 — 10+ 2(1 — 4p)cos2y + 2ucosdy

stn? 2

( Homoclinic Orbit) (2.99)

cos2¢ =

Using expression (2.99), one can eliminate the variable ¢ from the second of equa-

tions (2.94), to obtain the following differential equation for ¢
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Figure 2.19. Bifurcation to a homoclinic orbit as y increases



?Z—;; -7 16 sin?2y

dip 3p [(12p = 1) + (8 = 2)cos2p — (4p + 1)cos?2i] .

o[(3 = 12) + (2 — 8pt)cos2ih + (4p — 1)cos? 2] }1/? (2.100)

where the upper (—) and lower (+) signs are used for ¢ € [0, #/2) and [7/2, 7)

respectively. Introducing a new dependent variable, z given by,
T = cos2y (2.101)

the differential equation (2.100) can be written in the following simplified form :

Qldl?

‘ —77 = *dn (2.102)
{(A; + Byz — 2*)(3 + 2z — z?)}
where s
Q1 = 3p2(1 — 16u2)1/?
12u—1
‘41 -= '———""H
4+ 1
8=z
YT a4l

Equation (2.102) can be integrated formally by quadratures (although the process
is tedious!) as follows. Assume that at n = 0 (or equivalently at time ¢ = 0), the
system 1s at position (¢, ) = (7, %cos"l(%ﬁ:})), i.e., at point D of the phase plane

of figure 2.18. Then, arbitrary (positive or negative) values of 7 are obtained by

performing an integration of expression (2.102) with the following limits:

/’ @& lﬁ:i/Zh:ﬁ; (2.103)
el (A + B =B F28 -2 0

Fortunately, the associated integrals can be found in standard tables (Byrd, 1954),

so that the final result of the above integration can be analytically expressed in



terms of elementary functions as:

4(8p+ 1) 644 1/2 128

16/11/2 } —_
dp+1)(z+1)  (dp+1)z+1)2 (dp+D)(z+1)

(1 +4pu)t/2

{1-

_3R2p+4 4
Codp 1l dp+1

6?}-31]{;L(1—4l1v)]1/2p2 (2104)

Equation (2.104) gives the exact relation between the variables n and z (or equiv-
alently ¢ and ) for the motion on the homoclinic orbit. Certain remarks can be

made as far as the above expression is concerned.

- This algebraically complex expression represents a solution for the homoclinic
motion that is correct to (O(e?). Moreover, one can easily express the slow-time
variable n as a function of z (and thus ), by rearranging terms and taking the
logarithms of both sides of the equation. Note that n (the time variable) appears
as an exponent of an exponential function. This is typical in time responses of
homoclinic orbits, since as discussed earlier the homoclinic trajectory reaches the

same limit for positive or negative infinite times.
- The upper (—) sign corresponds to o € [0,7/2), and gives negative values for 7
that decrease as x increases. Moreover, as z approaches the limiting value = =

cos2y = —1 (corresponding to the antisvmmetric mode), one obtains:
¢ s 1 g 3 s
limey—..ynp=—-00 (¢€[0, 7/2))

This result confirms that the motion on the homoclinic orbit originates from the
antisymmetric normal mode (since it approaches this state of motion for negative

infinite times).
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- Similarly, the lower (+) sign is used when ¢ € [7/2,7), and results in positive

values of 1. One finds that n increases as z increases, reaching the limit,
limey—_yn=+c0 (¢pe[n/2, 7))

which implies that the motion reaches the antisymmetric mode for infinite positive

times.

- Solution (2.104) is an approximation to the homoclinic motion for low energies of
the system. When the level of energy is increased, the stable and unstable invariant
manifolds comprising the homoclinic orbit intersect transversally and Smale horse-
shoes are formed. leading to chaotic motions. Unfortunately, one cannot use the
exact solution of this section as a basis for a homoclinic Melnikov analysis (Guck-
enheimer, 1984), (Wiggins, 1989), since the resulting Melnikov functions become
exponentially small as € — 0. Although one cannot prove analytically the existence
of transverse homoclinic intersections, this can be proven numerically, by computing
the stable and unstable invariant manifolds of the unstable antisymmetric normal

mode.

2.4.3. DYNAMICS FOR HIGH ENERGIES

The results of previous sections corresponded to low levels of energies of oscillation,
and 1t was found (both numerically and analytically) that in such cases, the dynam-
ics could be completely analyzed and predicted. In this section, however, it will be

shown that. when the energy of oscillation is increased, complicated, random-like
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chaotic motions result that cannot be predicted by any standard method of anal-
ysis. In order to study such complicated motions, numerical techniques must be
implemented, and in fact, the Poincare’ map will be the basic tool in the following

investigations of the large amplitude motions of the system.

The differential equations of motion (2.77) were numerically integrated with a
fourth-order Runge-Kutta algorithm, and the dynamics were sampled with the
Poincare' section described in section 2.4.1. The coupling stiffness parameter Kj
was assigned the value 'y = 0.1 < 1/4 (corresponding to four normal modes of
free oscillation). The Poincare’ maps corresponding to levels of energy h = 50, 150
and 5 x 10° are presented at figure 2.20. In the same figure, the plot of figure
2.16(b) is reproduced for comparison purposes (that plot corresponds to a system
with [{3 = 0.1 and a lower level of energy h = 0.1). Observe the global changes

that occur in the Poincare’ plots as the energy is increased:

- There are certain regions in the maps where the orbits of the oscillator seem to
wander erratically. These regions, the so-called “seas of stochasticity” (Lichten-
berg, 1983), contain chaotic motions of the hamiltonian system, i.e., motions that
have extreme sensitivity on initial conditions. It must be stated that the chaotic
regions of the maps of figures 2.20 were generated by a single initial condition. In
cach of the maps, one can detect a large “sea of stochasticity” surrounding the
(unstable) antisymmetric and the two (stable) bifurcated normal modes. In that

region, large-scale chaotic motions occur.

- A careful examination of the plots indicates that there also exist some “islands
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in the stochastic sea”; these consist of stable and unstable subharmonic orbits that
are surrounded by small-scale chaotic motions. For example, in the Poincare’ map
of figure 2.20(d) a period-4 stable subharmonic orbit can be clearly seen, lying in
the vicinity of one of the bifurcated modes. There exist small-scale chaotic motions
in the neighborhood of this subharmonic orbit but these cannot be detected due to
the restricted, finite resolution of the plot. In later sections it will be shown that
both large and small-scale chaotic motions are generated by the same mechanism

(transverse homoclinic intersections of invariant manifolds).

- In figure 2.20(b), two closed curves appear to separate two subharmonic orbits of
periods 6 (the outer) and 5 (the inner). Thus, small-scale chaotic motions surround-
ing the two subharmonics are necessarily disconnected from each other, since they
cannot cross the aforementioned closed curves. It will be shown that this confine-
ment of chaotic motions is a unique feature of the 2-DOF hamiltonian oscillator and
1s not encountered in oscillators with more DOF (in systems with n-DOF, n > 3,
“Arnold diffusion” occurs). The closed curves are the intersections with the cut-
plane of “sufficiently irrational” KAM tori, whereas the subharmonic orbits result
from the breakdown of the “rational” ones. A definition of these terms and an

analytic proof of the existence of subharmonic orbits, are given in the next section.

- Note that the region of the phase space occupied by the “stochastic sea” increases
with increasing energy. However, even for large energies there exist regions in
the phase plane where the free oscillation of the system is regular. For example,

the symmetric mode is orbitally stable even for large energies and is surrounded
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by smooth closed curves that are intersections of tori with the cut section. So
an interesting observation for the oscillator under investigation is that although the
chaotic region expands with increasing energy, it remains confined to a certain region
close to the antisymmetric and bifurcating modes, but away from the symmetric

one.

In what follows, the large-scale chaotic motions (in the “stochastic sea”), and the

small-scale ones (close to the subharmonic orbits), are examined separately.

2.4.3.1. TRANSVERSE HOMOCLINIC INTERSECTIONS OF IN-

VARIANT MANIFOLDS

To study the chaotic motions that surround the antisymmetric and bifurcated
modes, it is necessary to compute the stable and unstable invariant manifolds of the
unstable mode. A rigorous definition of the notion of “invariant manifold” can be
found in (Wiggins. 1989). Basically, the aforementioned manifolds are the exten-
sions for the nonlinear case of the linear eigenspaces that are encountered in linear
theory. For 2-dimensional maps (as the Poincare’ maps under investigation), it
can be shown that “unstable hyperbolic fixed points” (such as the unstable anti-
symmetric mode in this case) have one-dimensional stable and unstable invariant
manifolds. Points on the stable (unstable) manifold approach the fixed point under

infinite forward (backward) iterations.

For low energies it was found that the two manifolds of the antisymmetric mode

approximately coincide to a homoclinic orbit. When the energy is increased, 1t will
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be shown that the stable and unstable manifolds intersect transversely infinitely
many times; this is the mechanism that generates the observed large-scale chaos in
the system. The manifolds are numerically computed by integrating the equations
of motion on the energy manifold, with initial conditions that are sufficiently close to
those of the antisymmetric mode. Forward iterations of points close to the unstable
mode give the unstable manifold, whereas backward iterations lead to the stable

one.

In figure 2.21(a), the unstable manifold of the antisymmetric mode is shown. Note
that it consists of discrete points since the dynamical system under investigation is
a map (and not a vector field). Observe that, under forward iterations of the map,
there are “violent windings” of the manifold as it approaches the unstable mode. It
can be proven that there exist an infinite number of these “windings”; as a result
the manifold accumulates on itself (“lambda-lemma” (Guckenheimer, 1984)) and
approaches the unstable mode after infinite forward iterations. A similar numeri-
cal simulation can be carried out for the stable manifold (one considers backward
iterations of an initial point close to the unstable mode), and the two manifolds are
superimposed on each other at figure 2.21(b). Clearly, transverse intersections of
the two manifolds can be detected (the so called “homoclinic tangles”). There is
an infinite number of these intersections (Guckenheimer, 1984) and these result in

an infinite number of “Smale horseshoes.”

The creation of one such “horseshoe” will be discussed by examining an enlarged

neighborhood of the unstable mode (figure 2.22). Consider the strip Uy of the phase
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plane, with boundaries on the stable and unstable manifolds, and observe how it
is mapped under forward iterations of the map. Under a single forward iteration,
the strip is mapped to U;. The second iteration transforms the strip to Us,, etc.
The n — th iterate of the strip (for some n), will be in the position U,, so that the
n — th iterate intersects the original strip transversely. This is a “Smale horseshoe”
mapping and it has interesting implications in the dynamics of the Poincare’ map.
In fact, using the Smale-Birkhoff homoclinic theorem (Wiggins, 1989), it can be

shown that for some iterate, the Poincare map contains:
- A countable infinity of periodic orbits

- An uncountable infinity of nonperiodic orbits

- A dense orbit

Thus, the dynamics of the map in the vicinity of the unstable mode have sensitive
dependence on initial conditions and are virtually unpredictable. Note that this

5

numerical demonstration of the existence of “homoclinic tangles” shows that tran-
sient chaos occurs in the map, but it does not unply the existence of a “strange
attractor.” Such attractors are only realizable in dissipative dynamical systems,
and thus cannot be found in the dynamics of this hamiltonian oscillator. No more

details will be provided about these chaotic motions at this point, since a complete

analysis of “horseshoe”maps can be found elsewhere (Wiggins, 1989).

An interesting observation is that this type of large-scale, global chaos, occurs only

if the antisymmetric mode is orbitally unstable, since only then do one-dimensional
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invariant manifolds exist. For values of the coupling stiffness parameter K3 greater
than 1/4, no such motions can occur, since then the antisymmetric mode is orbitally
stable and no bifurcating modes exist (however, as shown in the next section, small-

scale, local chaotic motions are encountered in that case).

In certain cases, homoclinic Melnikov functions can be used to analytically prove
the existence of the aforementioned transverse intersections. Unfortunately, one
cannot implement this kind of analysis in the present case, since the resulting Mel-
nikov functions become exponentially small as the nonlinearity decreases (this is
because, for low energies, the homoclinic orbit appears in the everaged hamiltonian
equations—for a discussion see (Guckenheimer, 1984)). However, subharmonic Mel-
nikov analysis will be successfully used to prove the existence of subharmonic orbits

in the Poincare’ map.

2.4.3.2. SUBHARMONIC ORBITS

An additional feature of the maps of figure 2.20 is the existence of subharmonic
periodic orbits. These orbits result from the breakdown of the invariant tori that
appear for low energies. In figure 2.23 two such orbits appear of periods 5 and 6. In
each of these plots. a pair of subharmonic orbits exist, the one being orbitally stable
(the points of the orbit appearing as centers), and the other orbitally unstable (the
orbit containing hyperbolic saddle points). The stable and unstable manifolds of
the unstable subharmonic points intersect with each other transversely in a manner

completely analogous to that described in the previous section, giving rise to small-
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scale chaotic trajectories (figure 2.23). These chaotic trajectories are of a local
nature since they occupy only a small neighborhood of the subharmonic orbit. In
that sense, they differ from the global, large-scale chaotic motions encountered in
previous sections (which result from the “homoclinic tangles” of the antisymmetric

mode).

The subharmonic orbits are generated from the “breakdown” of “irrational” tori
(Arnold, 1978a,b). However, according to the KAM (Kolmogorov-Arnold-Moser)
theorem (Arnold, 1964), for sufficiently small levels of energy there exist “suffi-
ciently irrational” tori that are preserved. As the energy of motion is increased, the
measure of these preserved tori diminishes to zero. The terms “rational” and “suf-
ficiently irrational,” refer to rational or irrational ratios of the frequencies of the
two angle-variables of the tori under investigation (the angle-variables, together
with the action ones, result from a canonical symplectic transformation of the
generalized coordinates and the generalized momenta of the hamiltonian system
(Persival, 1982)( Arnold. 1978a)). The preserved “irrational” tori confine the small-
scale chaotic motions into certain regions of the phase plane. This is because the
one-dimensional intersections of the tori with the Poincare’ section, partition the
2-dimensional Poincare’ map into disconnected regions. Thus, chaotic motions in-
side a preserved invariant torus cannot “escape” outside it. This is not the case for
hamiltonian systems of higher dimensions. where the small-scale chaotic trajectories

.

are 1 a continuous “web” and “Arnold diffusion” occurs (Arnold, 1964 ).

Summarizing, small-scale chaotic motions result from the destruction of the invari-
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ant tori of the hamiltonian system, and are local in nature. Moreover, they occur
irrespective of the pitchfork bifurcation of normal modes (at Iy = 1/4) since they
result from the breakdown of “rational” tori, which take place before and after the
bifurcation. On the contrary, the large-scale chaotic motions (encountered in the
previous section) resulted because of homoclinic intersections of the manifolds of
the unstable mode, and occurred only because the bifurcation of normal modes had
already taken place (i.e., only for K3 < 1/4). This is because for K3 > 1/4, the
antisymmetric mode was a (stable) center and it did not possess one-dimensional
invariant manifolds. Thus, a first physical implication of the pitchfork bifurcation
of normal modes is that they make the system “more chaotic,” since they give rise
to global. chaotic trajectories. A final remark is that as the energy of the system is
increased, all the invariant tori of the system “break” and the whole phase plane is

filled with chaotic motions.

In the next section, a Melnikov-type analysis is implemented to study the generation

of subharmonic orbits that result from the destruction of the “rational” tori.



- 93 -
2.4.4. STUDY OF THE SUBHARMONIC ORBITS OF THE “1-1 RES-

ONANT” OSCILLATOR

In this section, the perturbation methods developed by Holmes and Marsden
(Holmes, 1982a,b) will be implemented, to prove the existence of arbitrarily many
subharmonic orbits in the neighborhood of an orbit of the two-DOF, “1-1 reso-
nant,” hamiltonian oscillator with cubic nonlinearity. In (Holmes, 1982a.,b), a simi-
lar methodology was applied to prove the nonexistence of analytic second integrals
of motion of a certain type, and to study the way in which “resonant” tori break-up
between ILAM “irrational” preserved tori, for a pair of weakly coupled pendula. The
methodology of these references will be followed, and an analytic proof of the exis-
tence of the subharmonic orbits that were observed in the ( numerical ) Poincare’

plots will be given.

2.4.4.1. VEERMAN - HOLMES THEOREM

Throughout this analysis, the two-DOF oscillator that was examined in previous
sections will be considered. The system consists of two nonlinear, single DOF
(SDOF) oscillators, connected by means of a cubic nonlinear stiffness. In order to
apply the perturbation methodology of this section, it is necessary to assume that
the coupling stiffness is weakly nonlinear; however, no such assumption is needed
for the uncoupled, nonlinear, single DOF (SDOF) systems. Thus, the system under
investigation is slightly different than that examined in section 2.4.2.2., since in the

present case only one nonlinear stiffness depends on the small parameter e, and the
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differential equations of motion are of the form:
1+ 1 + x? + eNs(z — 932)3 =0
(2.105)
Fg —eKg(zy —x9)* + 23 + 29 =0

The parameter ¢ is of perturbation order, i.e., it is assumed that | e | < 1. Note

that when € = 0, the system degenerates into two (strongly) nonlinear oscillators.

The system (2.105) is hamiltonian, and from classical theory, its generalized coor-

dinates q;, ¢, and momenta p;, p,, are expressed as follows:

Q=21 5, P1 =2

(2.106)
g2 =Ty , p2 =T
The hamiltonian function of the oscillator can then be expressed as:
2 2 2 2 4 4 4
o Pty aite  at+a | (a—g)
Hpg=="F—+"5 +-] +te—F =
= H(p,q) = H(p,q) + eH'(p,q) (2.107)

where the notation of (Veerman, 1985,1986) was followed, in denoting by HO(B, q)
and H(p,q) the unperturbed and perturbed hamiltonians respectively, and by
H'(p,q) the perturbation term that contains the weak coupling stiffness. In the

previous expressions, p = (p1,p2) and ¢ = (¢1,¢2)-

Note that for e = 0, the oscillator is integrable (since as mentioned earlier, it
degenerates into two SDOF oscillators), and the addition of the term H( p.q) results
in a perturbation of the integrability. In what follows, it will be shown that this
perturbation results in the creation of arbitrarily many “perturbed” subharmonic

orbits that exist in the neighborhood of “unperturbed” periodic ones.
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The first step of the analysis is to consider the unperturbed integrable hamiltonian
system (corresponding to € = 0 in equations (2.105)). The unperturbed hamiltonian

1s expressed as follows:

H(p,q) = Fi(p1,01) + Fa(p2, ¢2) (2.108)

where the terms F}, F} are given by:

2 2 4
g .
Fi(Pini):%‘*‘%-}’jZl ,i=1,2 (2.109)

kS
e

NN
\

“SYSTEM 17 “SYSTEM 2~

Figure 2.24. Phase planes of the two unperturbed, SDOF systems.

Each of the unperturbed, SDOF oscillators (referred from here on as “systems 1 and
27), has a phase plane consisting of elliptic periodic orbits, which are level curves of
the individual SDOF hamiltonian functions F and Fy (i.e., they correspond to F; =

¢, where ¢ is an arbitrary constant). Consider the flow in the neighborhood of the
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elliptic periodic orbit p = (0, p2(t)), ¢ = (0, ¢2(?)), on the fixed energy surface H* =
h. Since the conditions (H1-H3) of reference (Veerman, 1985), are satisfied for the
system under consideration, it is possible to reduce the 2-dimensional hamiltonian

oscillator to the form (Holmes, 1982a.b),(Veerman, 1985):

5121_ oL’ oLt
dé, 3101 apl

; 50 or! (2.110)
api 2
= e b o 2 (D€
df> dq1 I (<)
where ’
ﬁo((jul)l;h) = F2_1<h - Fl((h»pl))
: Hl((h P1 92‘£(](Q1 Pl‘h))
[:1 ., 9 :/ — s 9 I 3 9 b
(qlapl, 2 Z’) Q(EO(QI,])l;h)) (2111)
dF3 (1)
Q) = ————
(I2) dl,

The quantities (I, 6,) are the action-angle variables of the unperturbed system 2,
and result from the original generalized variables (g;, p;) by means of a canonical
symplectic transformation of coordinates. Note that the expression for £° results
from the “symbolic inversion” of the quantity F,. For a rigorous derivation of

expressions (2.110-2.111), the reader is referred to (Holmes, 1982a.b).

The “reduced” system (2.110) is in the form of a periodically perturbed planar
oscillator. When ¢ = 0 the system is hamiltonian with hamiltonian function £,
and “time-like” variable 6,. For ¢ # 0, the hamiltonian system is perturbed by
“time-dependent” terms (this happens because the term £! has explicit periodic
dependence on the “time-like,” angle variable 6, which is modulo 27). Thus, one
can apply the Melnikov theory for subharmonic orbits (Guckenheimer, 1984) to

the study of the reduced system. In fact, considering the “reduced” phase space
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( q1,p1,02 ), one can find a countable infinity of “resonant” tori for the unperturbed
system (corresponding to € = 0 in equations (2.110)). These tori are direct products
of the periodic orbits of the two SDOF uncoupled oscillators (shown in figure 2.24).
In order for a torus to be “resonant,” it is necessary that the periods T} and T3 of
the SDOF “unperturbed” systems satisfy a relation of the following form:

T, = mis

(Resonance condition) (2.112qa)

n

27T+00

I
(ql (9)7])1(9)7 6 + 90)

\ <./’ 0+ 6o
//zﬁx
- e a=—-

A 6o
2 pi 1
4
(q1(0),p1(0))

Figure 2.25. Unperturbed motion on a resonant torus, in the reduced phase space

(m/n=23/1).

Equivalently, the resonance condition for the period of “system 1”7 can be expressed
in terms of the tume-like angle variable 65 of “system 2,7 as follows:

—  2mm "
Ty = (Resonance condition) (2.112b)
n
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In the above expressions, m and n are relatively prime positive integers. Relations
(2.112), combined with the fact that the total energy of the perturbed hamiltonian
system is preserved, define a unique unperturbed resonant two-torus for each pair

of integers (m,n).

Considering the unperturbed, reduced equations (2.110) (with € = 0), and assuming
that the resonance conditions (2.112) are satisfied, the motion on a “resonant” torus
corresponding to initial conditions ( ¢,(0),p1(0),6y ) and unperturbed energy level

Fi(q1,p1) = h; is denoted by:

(q1(8),p1(0),0 +8y) ( Unperturbed solution ) (2.113)

where 6 is a variable parametrizing the motion on the resonant torus. Referring to
figure 2.25, since the resonance condition (2.112b) is satisfied, point A corresponding
to 8 = y coincides with its image under the unperturbed flow at 8 = 6y, + 27 m,

point A"

When the “perturbed,” reduced flow is considered (e # 0 in (2.110)), the distance
between the initial point at 6y and its image at 8, + 27 m will not be zero, but to

the first order of accuracy it can be expressed as (Guckenheimer, 1984):

d(6y) = ew‘(lg;i;?o;h b, O(e?) (2.114)
where
. OF OF,
Xp(0)]] = (2= = =) (2.115)

dp1 Iq (q1(0),p1{(0))

is a normalization factor, and M( 8y, m,n, h ) is the subharmonic-Melnikov function



- 99 -

given by:

2rm
M(Bo,m,m. h) = / {EO7 £ }((11(92—90),171(92——90),92,’l)d92 (2'116)

0

or in terms of the time ¢,

T, mTy /2
M(to,m,n,h) =50 / {Fl’Hl}(fh(t)»l’l(t),CI2(t+to),P2U+to))dt <2'117)

Qﬂ. -ng/Q

In the above expressions, {e,e} is the Poisson bracket (Guckenheimer, 1984).

As the following theorem states, when the distance (2.114), between the image

points in the perturbed flow, vanishes, a subharmonic orbit results.

Theorem (Veerman, Holmes , 1985)

Fiz the total energy level of the system to h > 0. Assume that m,n are integers
relatively prime and choose ¢ sufficiently small. Then, if M(8y,m,n h) has j
simple zeros as a function of 8y in [0,27m/n) (or equivalently M(ty,m,n,h) as
a function of ty in [0,Ty)), the resonant torus gien by (q1,p1,02) = (q1(b2 —
80),p1(by —8y), 8) breaks into 2k = j/m distinct 2wm-periodic orbits and there are

no other 2xm-periodic orbits in its neighborhood.

As pointed out in (Veerman, 1985), this Melnikov-function technique proves the
existence of only a finite number of periodic orbits in the vicinity of an unperturbed
resonant torus. This is because as the integers m,n — oo , one must let ¢ — 0,

in order to guarantee that the term € M / || Xp|| dominates over the O(e?) terms.

Thus, one cannot prove the existence of infinitely many periodic orbits, and as a

result, one cannot rigorously prove the nonintegrability of the hamiltonian system.
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Note that if a homoclinic orbit existed in the unperturbed reduced system (2.110),
then by means of the Smale-Birkhoff homoclinic theorem, one would be able to prove
the existence of an infinity of transverse homoclinic intersections for the perturbed
system (homoclinic Melnikov-functions should be used in that case). As a result,
one would be able to prove that the perturbed hamiltonian system does not contain

any integrals of motion that are independent from the hamiltonian function.

2.4.4.2. SUBHARMONIC MELNIKOV ANALYSIS

The outlined theory will now be applied for the analysis of the oscillator under
consideration. The unperturbed response of the system will first be computed.

When € = 0, the equations of motion (2.105) uncouple:

. 3
1+ +2] =0
(2.118)
:7;'2 + T9 + .1'3 e O
These equations describe the free motions of “systems 1 and 2,” and correspond
to two uncoupled, SDOF oscillators. Integrating the equations by quadratures,
and taking into account expressions (2.106) for the generalized coordinates and

momenta, one obtains the following analytic solution for the time response of the

unperturbed system:

X?

qi = Xien([1 + X?]l/zf ki) k= m

=12 (2.119)

where the following set of initial conditions was assumed:

(0)=X,;, ¢@0)=0.,:=1,2 (2.120)
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In the above expressions, c¢n(e,e) is the elliptic cosine, and k; is the elliptic
modulus. Note that if one assumes a different set of initial conditions, a different

elliptic function results, but this does not affect the generality of the analysis.

Assuming that the energy of oscillation of “system ¢,” is h; (¢ = 1,2 ), its amplitude

of oscillation X; can be related to h; by:
X2 =140 +4r)Y* | hi>0 ,i=1,2 (2.121)

Combining expressions (2.119) and (2.121), one can express the oscillations of the

two unperturbed systems. in terms of their energies, as follows:

Gi(t) = (H'? - 1)1/2 en(HM % k)
12 (2.122)
L S
1 '27’[1«1/2 bl b

where the notation, H; = (1 4 4h;), was used. The generalized momenta of the
uncoupled system result by direct differentiation of expressions (2.122) with respect

to time:

1/2

pilt) = Gilt) = =HMUHM = 1) sn(HM U ki) dn(H ' k)
1= 1,2 (2.123)
where sn(e,e) dn(e,e) are elliptic functions (Byrd, 1954).

¢

The orbits represented by equations (2.122-123) are based on the initial points

(2:(0),p:(0)) = (X;.0), ¢« = 1.2, and describe the motion on a two-torus of the

unperturbed system. In order for this torus to be in “resonance of order m/n,” it is

necessary that the periods of oscillation of “systems 1 and 2” be integrably related:

nk (k)  mK (k)
Hll/‘i - H21/4

nT) = mTl, = (2.124)
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In writing (2.124), the actual expressions for the periods of oscillation of the motions
(2.119) were used. In this equation I (e) is the complete elliptic integral of the

first kind.

Equation (2.124) is the resonance condition for the oscillator. Taking into account
the fact that the total energy of the unperturbed motion is the sum of the energies of

“systems 1 and 2,7 i.e., that h = h; + h, the resonance condition (2.124) becomes:

—_ /2
i 1212 TGy
'71[\((—7—{—’———-—-——1—1——-} mi ()

12, 174 _ o172, /4 5 198
H11/4 - -7-{—11/4 (“'1“‘))

where
Hy=1+4h; |, H =1+4(h—hy) (2.126)

It will be shown that for fixed h,m and n, equation ( 2.125 ) gives a unique solution
for hy. This implies that the unperturbed oscillator has a dense set of resonant tori
in any neighborhood of the orbit ¢ = (0, ¢2(%)),p = (0,p2(%)) at every energy level
h (Veerman, 1985). Equation (2.125) can be regarded as a transcedental equation

in hy. To show uniqueness of solutions for h;, the monotonicity of the following

quantity is examined:

. 1/2
42 o) 11
D(u) = I( /(1 + 4u) , u€[0,h) (2.127)
21/2(1 +~Lu)l/4

By numerical computation (figure 2.26a) it can be shown that D(u) is a mono-
tonically decreasing function of w in the domain v € [0, k). Thus, the left-hand
side of equation (2.125) is monotonically decreasing, whereas the right-hand side is

monotonically increasing for iy € [0, h). Therefore, equation (2.125) is guaranteed
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to have a unique solution for hy, when the following inequalities are satisfied (see

figure 2.26b):

2
(144072 =1y

21/2(1 4 4h)'/*
1/2

mly )/ (1+ 4:]1)1/4 < nK(0)
(1 +4R)* = 1)

1+ 4% < mK(0)
R )/( ) (0

niy(

D(u)

K{0) —=1%

172 _4y\1/2

2V /2(144h)H/4
(1+4h)/*

i ((Qxan) 1) m)

2)/'1(1+4h)l/1

(1+ 4h)* \

nK(gg1+4h)‘“~1)‘“
2173 (144h)H0 T

(1+ 4h)'/* 0 hy=h hy
(b)

Figure 2.26. ( a ) Numerical plot of the quantity D(u). ( b ) Existence of a unique

solution for h in equation { 2.125 ).

The inequalities (2.128) pose certain restrictions on the values of m and n. For

example, for A = 1, the ratio m/n must be in the range,

0.72411 < m/n < 1.38100 (h=1)
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If the value of m/n is out of the aforementioned range, equation (2.125) does not

have a unique solution for h; in [0, &), and the perturbation analysis fails.

Hence, only resonant orbits satisfying inequalities (2.128) are guaranteed to have
a resonant torus for the fixed energy level h. It is the perturbations of these or-
bits that will be examined in the sequence. As mentioned earlier, the existence
of subharmonic orbits in the neighborhood of a resonant torus can be proven by
examining the subharmonic Melnikov-function (2.116-117):

T, [™T2/? 9F, OH' OF, OH*

M(tg,m,n, h) = — _
27 JomTy /2 91 Ip Ip1 I (qu(1),p1(t),q2(t+t0),pa(t+to))

dt =

T, ~mT /2 3
= T)”;'; —p1(t)(qu(t) — qa(t +to))" dt (2.129)
“ —mTs /2

where T, = K(ky)/H, 14 s the period of oscillation of the unperturbed motion of
“system 2” on the fixed energy level h, ¢;(t), p:(t) are the unperturbed oscillations
given by expressions (2.122-123), and F}, H' are the hamiltonian functions defined

by equations (2.107-109).

In order to prove the existence of subharmonic motions for the perturbed system,

1t 1s necessary that the equation,
M(tyg,m,n, h) =0, (2.130)

has a finite number of zeros. In order to show this, rewrite equation (2.129) in the

form:

T m Ty /2 ] . o
M(tg,m.nh) = = / [—pi(1)ai (1) + pr(t)as(t +10) + 3pi(t)gi (t)ga(t + to)—

=T —mTs/2
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=3p1(t)qu(t)qs (t + to)] dt (2.131)

Since ¢;(t) is given in terms of an elliptic cosine, cn(e,e), it is an even function of ¢
(Byrd, 1954). On the other hand, p;(¢) is an odd function of time, since it depends
on the product of the elliptic functions sn(e,e) and dn(e,e). Thus, the first term
of the integral (2.131) gives a zero contribution and one needs only to consider the

remaining three terms.

Note that the period of ¢o(t + tg) is T». Thus, by setting,

kT nkT .
ty = — = Lk positive integer (2.132)
2 2m
the following relation results:
I\TTQ k

@2t +to) = @2t + —=) = (=1) (1) (2.133)

Thus, by selecting ¢y according to equation (2.132), the quantity ¢»(t +1,) becomes
an even function of ¢, and since pi(t) is an odd function of ¢, it can be concluded

that all the terms of the integral (2.131) give zero contributions:

kT
Mty = —3—1,‘17’1,,77,,/7,) =0 ., k positive integer (2.134)

Hence, it was proven that, at 1y = kT, /2 the Melnikov-function has a zero. As far
as the number of these zeros is concerned, as pointed out by (Veerman, 1985), if one
computes kn/2m mod. 1, for m and n relatively prime. one finds precisely 2m such

zeros for ty (at kn mod. 2m =0,1,...,2m — 1), in the interval 0 < kn/2m < 1.

Summarizing, it was proved that M(ty,m,n, k) has 2m zeros for 0 < kn/2m < 1.

In order to satisfy completely the conditions of the Veerman-Holmes theorem, one



- 106 -
has to prove that these zeros are simple. This is the case, when the following

inequality holds:

dM(t /
JM( 0,m,n, 1)) 74 0 (2135)
(Zt() tosz2/2

(

Differentiating M(tg,m,n, h) with respect to ¢y, and taking into account the rela-

tions,

datrt), _qpdel

dtg to=kT; /2 dt

_ da(t)

( L,

(2.136)

one obtains the following expression for the derivative of the Melnikov-function:

./M, =k 2y = T —‘1 -
(to=kT2/2) = 5 T2 (=1) dt dt +
kdq(t) dg3(t)  3dgi(t) dgi(t)
-1 AL dt 2.137
D T Ty a a (2.137)
where (o)/ = d/dty. In order to compute the above relation, one expands the

expressions for ¢;(¢) and ¢,(t) in Fourier series, and evaluates the differentiations
appearing in (2.137), as follows (the Fourier expansions of the elliptic functions are

listed in Appendix C):

[ 20 . )
(lt(q‘(t)) = > A siny "t
d

r=={)
d 4 ") ()
et = 3T sing "t (2.138)
dt

r=0

d . ad (r) (r)
%(Qf(t)):;/—\i cos; "'t
=

where
(o T2 (e 1)
T (k) 14+ Q!
) 7221/27{[ o 11 :+1/2
ry’ = - . (2r + 1)[2k] 1+(. - ) ] e TrF1
L2 (k) 2H0(R:) "1+ Q:
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r221/2H,

K2(k)(HYP = 1)

(2r +1)°7% (2r + I)Q:_H/z

o _
A= 4I2(k;) ] 11—t

.2
(14 k-

1/

(r) _ (2r + 1)71'7‘{3/4
T TR (k)

(2.139)

and Q; = exp(—7 (1 —k;)/K(k;)), is the elliptic nome (Byrd, 1954). Substituting
these series expressions into equation (2.137), and taking into account orthogonality

conditions of the form,

mhaf2 (25 + 1)t
cos| cos| ] dt =
J—=mTy /2 Tl Tz
nTy . mly . . P, .
= ’Té,1(21+1)71,f1(21+1) = —“)—(),7(2j+1>‘,,1(2,+1) (6u v 18 Wronecker's function)

(2.140)
one obtains the following expression for the derivative of the Melnikov-function
(evaluated at its zeros):

O

(—=1)*mT, W), Oem 3EDE Gy o 14
M (to=k1r2) = T an ZO[ Ay T+ AT, "T’“Alj Ayl (2.141)
=

where the integers j, [ satisfy the relations:

n(274+1) = m(2l+1) = (254+1) = 2p+1)m . (204+1)=2p+1)n ., p=0,1,2,...

(2.142)
Finally, substituting into (2.141) the expressions for Agr), I‘ET‘) and Agr) (equations
(2.139)), and after some tedious but straightforward algebraic manipulations, one

obtains the following relation for M'(tg, m,n. h):

(—1 )k m 3 - - m* n?
“/\/1/ to,m,n, h) = —=—| =2567 }\/~ + 1024 7 —— e Ki—
(to.m.n, l) T? [ —2567" mnkly 7w mn( T2 TQZ) "
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{ (LKD) (1 kg Jmnds —

(1+kH)n?7imn

Ja—

2k ky 412 (ks)
(1+ kH)m*r?mn m3ndrt
_ : . - ; 2.143
4% (ky) +F 16Ix’z(k1)1x2(k2)j° b ( )
where
}C—-l-oo-? 1)isecl L / ( L = 2,4
i =7 Z:O(uu + 1) sech[mmr(p + —2—)}360 W[mnTy(p + 2)] , 1= 2,
u:
Ji = 1 i@ L+ 1) esch{rmr (p + l)]csch{wn'r (p + l)} 1 =2,4,6 (2.144)
2‘_4 L -3 1M 2 2\t 2 » ey Ty <
=0
and 1, = N(1 — &;)/K(k;) , ¢ = 1,2. Note that the above expression for the

derivative of the Melnikov function, evaluated at its zeros, is not identically zero.
Thus, the simplicity of its zeros is established and the conditions of the Veerman-
Holmes theorem are met. In fact, the series expressions for K; and J; converge
rapidly. Thus, one can obtain a fairly good approximation for these quantities by
retaining only their first term, corresponding to g = 0 (for an estimation of the

errors of such an approximation, see { Veerman, 1986)).

It can be verified that the outlined analysis fails as n,m — oco. In that case.

Ly nene M'(ty = RTy/2,m.n,h) =0 (2.145)

and the conclusion is that one cannot prove the existence of subharmonic orbits of
all resonant tori in any neighborhood of an elliptic orbit (this can only be proved

for finite values of m and n).

As a numerical example, consider the energy level i = 1, and a resonant torus

corresponding to m/n = 11/13. The value of the ratio m/n 1s within the range
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specified by inequalities (2.128); hence, equation (2.125) has a unique root for hy,
which was numerically computed as hy = 0.776. This gives a value for hy equal

’ a resonant torus

to he = h — hy = 0.224. At these energy levels of “systems 1,2
exists. There are 2m = 22 zeros of the Melnikov function, and their simplicity can
be examined by evaluating expression (2.143). Retaining only the first terms of the
series expressions in (2.144), the derivative of the Melnikov-function at its zeros was
numerically evaluated as M’ = —5.3 x 107% for k even, and —5.4 x 1078 for k odd.
Thus. the zeros of the Melnikov-function are simple, and from the Veerman-Holmes
theorem one concludes that at the energy level h = 1, a resonant torus breaks into

two distinct, 227-periodic orbits. The stability of such subharmonic orbits will be

examined 1n the next section.

2.4.4.3. PHASE PLANE REPRESENTATION OF SUBHARMONIC

ORBITS

The stability of the subharmonic orbits that result from the destruction of the
“rational” tori will be examined by studying their phase plane representation. To
achieve this, one introduces a canonical transformation of coordinates. Comnsider

the perturbed hamiltonian function:

4
G — ¢
H'(p,q) = Ho(p‘(i) + 5Hl(_f~ﬂ) = Fi(p,q1)+ Folpa,q2) + e—~——————-—~( 11— 42)

(2.146)

where the terms F, Fy are given by expressions (2.109). The following canonical

transformation of coordinates is considered:

(pr-q1) — (L1, 01) (2.147)
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where (I,6,) are the action-angle variables of the hamiltonian “system 1”(for a
definition of “systems 1,27 refer to previous sections and figure 2.24). The action

variable is defined as (Percival, 1982):

4 1/2

1 q; 1 q, 2
Ii(hy) = — prdqy = — 21/2(h1 4 f!_l_) dqy (2.148)
T Jgt T Jgt 2 4

i

e

where h; is the energy of motion of “system 1,” and qi‘k are its extreme values of
oscillation (figure 2.27). The numerical value of I; is equal to the area enclosed by

the free oscillation of the system in the phase plane.

% k
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Figure 2.27. Free oscillation of “system 17 : path of integration for evaluating I,.

Substituting the derived expressions for ¢, (t) and pi(¢) (equations (2.122-123)) in
(2.148), one obtains the action variable, Iy, as a function of the elliptic modulus of
the free oscillation ky:

4 2 1)+ KPR (k)] (2.149)

S
—
e
-
—_—
(8]
T
-
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where I{(e) and E(e) are the complete elliptic integrals of first and second kind re-
spectively, and k}* = 1 —k? is the complementary elliptic modulus. The elimination

of the energy h; from (2.148) was achieved by the relation:

Pt 4 g4 1 1
A A = 2
=gt = T 1] (2.150)

The angle variable 6, can be computed by expressions given in (Percival, 1982).
These computations, however, will not be carried out in this work, since they will

not be needed in what follows.

Consider now the reduced system of equations (2.110):

dq oL’ oLt
df, dp1 dp1 -
dp, aLe oct
db, — O Iq

(2.110)

+ O(€*)

Note that ¢, is a “time-like” variable, and that for ¢ = 0, the unperturbed system
is hamiltonian with hamiltonian function £°. Introducing the action-angle trans-
formation (2.147),

Iy = Lilpa) » pro= pi(4,61)

(2.151)
O = O0p,r) - ¢ = @l,6))

and substituting for ¢;, p; in the expressions for £? and £, one obtains the following
symbolic expressions:

L%, h) = L%0qi(1. 01 ), pi( 1, 61), h) = LT 0

LHqupr82) = L1000 pi( 1, 61),82) = L1(11,61,62)
Note that there 1s no explicit dependence of LY on 0y, since ( I, 6y ) are the action-

angle variables of “system 17 (Percival, 1982). The reduced set of equations (2.110)
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is now symbolically transformed into the new variables (Veerman, 1985):

E{I_l_ — 6021(11’91792) + 0(62)

db, 08 (2.153)
df, 51&1(1‘1»91’92) 2 |

g, ~ W) —e—pp +O(e)

where w({;) = dLA'O(Il)/alIl7 and the dependence of £° on the total energy h has
been omitted. Consider now an unperturbed orbit on the resonant torus with
nTy = miT,, by setting ¢ = 0 in (2.153), and integrating:

I =1,

(2.154)
b = —w(l)fy = ——0,

In the above expressions, I; denotes the fixed value of the action variable on the
unperturbed orbit. At this point, small perturbations of the following form are
introduced:

Il fr —j] + EI/QI(

n (2.155)
0 = ——85 + 61/2’1,[’
m

The quantities Ik’ and @ represent the perturbing terms. Note that the perturbations
are assumed to be of O(e'/?) (Veerman, 1985,1986): this is necessary for a correct

balancing of the terms in the perturbation analysis that follows.

Substituting the perturbations (2.155) into the reduced system (2.153), and after
some manipulations, one obtains the following set of differential equations that must

be satisfied by the quantities I\ and :

AN, 0L T, — 282 4 8y)  OLNT,, =282 4 4p.6y) \-
= /2 ’ m ’ m ’ T O »3/,2
o, 59, t+e oL U+ O
dip pdo(Ty) o OPLNT —22 4 8y)  dPw(T)) K 3)2
= —el/P T L1+ O (2.156
df, ‘ dn, 6[ or? dry 2 I+O(7) )
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Following the methodology outlined in (Veerman, 1985, 1986) and (Greenspan,
1983), one applies the averaging theorem for €!/? sufficiently small, in order to
remove the explicit dependence of (2.156) from the “fast-variable” 6,. The resulting

averaged equations are:

T 1/2 o
dn =< M( Qé ,m,n,h)

3—9; 27mn w(ly)

([l; 1/2 dw(.jl) FF
— = _ —
a6, ° an,

(2.157)

In the above averaged equations, the quantity M is the subharmonic Melnikov-
function encountered in the previous section (defined by equation (2.131)), with
the argument ¢, replaced by the new variable 1 /w(I;). Also note that the new
variables IV and ¢ were used in the averaged equations, in order to distinguish

them from expressions (2.156).

Under the Averaging theorem, the hyperbolic and elliptic fixed points of (2.157)
correspond to small periodic motions of the variations ' and ¥, and therefore to
subharmonics of order (m/n) for the reduced system (2.153). However, a necessary
and sufficient condition for the existence of such fixed points for equations (2.157) 1s
that the subharmonic Melnikov-function has simple zeros, and that w(I,) # 0 (note
that these requirements are in total agreement with those posed by the subharmonic

Melnikov analysis of the previous section).

The averaged system (2.157) is hamiltonian, with hamiltonian function given

by (Greenspan, 1983),

= 2 b M(—L— m.n, h)
=== i (lw(fl)f\‘_ w(ly) ’ . 2158
H(K @)= ¢ [ al, 5 -+ | Sy dn } (2.15 )
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For the specific two-DOF oscillator under consideration, the Melnikov function was
computed earlier, and the only unknown quantity in the averaged equations is the

derivative dw(I;)/dI;. To compute this quantity, one writes:

dw(—le)__ﬁ_( 2 )
dI, dly (L) (1, =1,)

(2.159)

The variable T is the period of oscillation of the unperturbed “system 17, and is

given by

4K(k ,
Ty (ky) = 2Kk 1)1/4 (2.160)
(1 + 4/1,1)

where I\'(e) is the complete elliptic integral of the first kind, and k; is the elliptic
modulus. The variable k| is the energy of “system 1,” and is related to ky by the

formula:

by =S — 1] (2.161)
(1 -2k

Combining expressions (2.160-161), one obtains T} as a function of the elliptic

modulus &y:

TH(k) = 1657 (k1 )(1 = 2k7) (2.162)

Equation (2.159) can now be rewritten as:

dw(1)) _ )27r dTy (ky )/dk} (2.163)
dI, TE(ky) dIy(ky)/dIS

Note that explicit expressions for I, and T, as functions of ky are given by ex-
yressions (2.149) and (2.162) respectively. Hence, one can explicitly evaluate the
1 I 3 3

right-hand side of equation (2.163):

(ZW(TI) _ “‘T{E(A )(1 — NLZ) (l‘ (1 - l‘ )](1 - 7]”2) (2.164)
dI, SIV3 (K )k (1 — k%)
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where E(e) is the complete elliptic integral of the second kind. Thus, the right-hand
sides of the averaged, hamiltonian equations ( 2.157 ) are explicitly known. In the
previous section it was proven that for an {m/n) resonant torus, the associated

Melnikov function has 2m simple zeros. Considering expression (2.161), note that:

o —

1-2k>0 for hy >0 , and limp,—co ki = (2.165)

For negative values of h; , one obtains values of &% less than 1/2. Moreover, from
simple properties of complete elliptic integrals (Byrd, 1954), it can be proven that

the following inequalities hold:
BE(k)(1=2k0) = K(k)(1 = A7) < E(ky)(1 = k]) = K(ky (1 = &) <

< [B(ky) — K(kD))(1 = k) <0 (2.166)

In deriving the aforementioned relations, use was made of the known inequality
E(k) — (k) < 0. Combining relations (2.165-166), one obtains the final basic

result:

dw(1;)
(Z[l

>0 (2.167)

Considering now the averaged equations (2.157), and taking into account the in-
equality (2.167), one can prove that for positive (negative) values of It', the variable
¥ is a decreasing (increasing) function of the “time-like” variable 6,:

dyp —

7 ) = — sgn (( [{) (2.168)

sgn |

From the aforementioned discussion. one can draw a schematic representation of

the phase plane of the averaged equations (2.157). From (2.168), the phase plane
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is rotating counterclockwise with increasing 6,, and its fixed points correspond to

the zeroes of the Melnikov-function M.

K

=

max

07

sl

Figure 2.28. Phase plane of the averaged equations (2.157).

Half of the fixed points are elliptic (and thus orbitally stable), whereas the remaining
ones are hyperbolic (orbitally unstable). The elliptic and hyperbolic points alternate
and the averaging theorem does not guarantee that the families of heteroclinic orbits
connecting the hyperbolic points are preserved as smooth manifolds. In fact, the
stable and unstable manifolds of the hyperbolic points intersect transversely, leading
to chaotic motions (that are confined between preserved “sufficiently irrational”
KAM-tor1). Unfortunately, one cannot analytically prove the existence of these
transverse intersections by a Melnikov-type analysis, since the resulting Melnikov-

functions become exponentially small as the perturbation parameter e tends to zero.
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Note that the elliptic points are surrounded by closed curves; these correspond to
the “islands” observed in the numerical Poincare’ plots. The maximum “island”
width can be estimated from expression (2.158) (that gives the first integral of
the averaged equations), by considering the level curves of H passing through the

hyperbolic fixed points (Veerman, 1985):

. 9 .t/;M(;(——'—}—),m,n,h)
K max — { W { mal ‘1'/)‘ € [0,27) ( / Sy d?] ) } } (2169)

To this order of approximation, only “primary islands” (Lichtenberg, 1983) are
observed. However, by introducing new canonical transformations and rescaling,

one could predict “secondary islands,”

within the “primary islands” of figure 2.28.
It must be stated, however, that this type of averaging-analysis cannot model the
ergodic motion (“sea of stochasticity”) observed in the numerical Poincare’ plots.
This is because the averaged equations will always be of hamiltonian form and, as
such, will always possess a first integral of motion. Thus, irrespective of the order of

approximation, all curves in the averaged phase planes correspond to a fixed value

of the first integral and no chaotic motions are possible.
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2.5. CONCLUDING REMARKS

The free oscillations of a class of strongly nonlinear, discrete, hamiltonian oscillators
were examined. These oscillators have a potential function that is symmetric with
respect to the origin of the configuration space, and they possess normal modes of
free oscillation, analogous to the ones observed in linear systems. The nonlinear
normal modes can be either similar or nonsimilar, depending on the linearity or not
of their modal curves in the configuration space. Similar normal modes can be con-
veniently studied by means of linear and nonlinear “balancing diagrams” and their
stability can be approximately determined by means of a linearized, Mathieu-type
analysis. It was found that, when a single balancing diagram exists, the stability
of the resulting similar normal modes is independent of the energy of oscillation.
This, however, is not the case for systems that possess more than one balancing

diagrams.

The “balancing equations” that determine the similar normal modes form an overde-
termined set of algebraic equations; as a result, similar normal modes can only exist
if the structural parameters of the system satisfy special conditions. In that sense,
it can be stated that similar normal modes are not generic in strongly nonlinear
oscillators. However, in cases of oscillators with internal resonances (i.e., with spe-
cial symmetries). similar normal modes can exist and, in fact, in certain cases they

represent the only possible form of free oscillations for the system.

Nonsimilar normal modes are described by sets of nonlinear functional equations

that are singular at the maximum equipotential surface of the oscillator. These



- 119 —
functional equations are complemented by boundary conditions that assure that the
modal lines intersect the maximum equipotential surface orthogonally. Asymptotic
approximations to the nonsimilar normal modes can be computed (valid in open
intervals of values of the displacements), provided that the nonsimilar modes in
question “neighbor” similar ones. In that case a perturbation scheme is developed
that leads to analytic, asymptotic expressions for the nonsimilar modes, valid for

small values of the displacements.

Not all nonlinear normal modes are analytic continuations of linear ones, because
bifurcations of normal modes are possible in nonlinear systems. As a result, the
total number of nonlinear modes may exceed the degrees of freedom (DOF') of
the oscillator (this is in direct contrast to what is observed in linear systems).
As the degree of nonlinearity of the system increases, the bifurcations of normal
modes become more complex and the number of additional normal modes increases.
For systems with cubic nonlinearity and “1-1 resonance,” the bifurcating modes
appear in reciprocal pairs, and a hamiltonian pitchfork bifurcation of modes exists.
When seventh order nonlinearity is considered, two saddle node and one pitchfork
bifurcation can be detected. When the symmetry of the oscillator is perturbed,
o is the bifurcation diagram of the normal modes. For oscillators with a single
“balancing diagram.” the nongeneric pitchfork bifurcations break into saddle-node

ones and the normal modes of the system do not appear anymore in reciprocal pairs.

The global dynamics of strongly nonlinear oscillators can be effectively studied by

means of Poincare’ maps. This numerical technique was implemented to the study
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of a strongly nonlinear oscillator with two-DOF. For low energies, the dynamics of
the system appear to be smooth and totaly predictable. In fact, it was shown that a
two-timing perturbation technique can analytically describe any possible low-energy
motion. A basic feature of the low energy map is the existence of a homoclinic
orbit. This trajectory occurs only after the bifurcation of normal modes has taken
place and results from the identification of the stable and unstable manifolds of
the unstable antisymmetric normal mode. It is the destruction of this orbit that

generates some of the chaotic motions observed in high-energy Poincare’ maps.

When the energy of oscillation is increased, a “sea of stochasticity” appears in
the maps, indicating the existence of random-like, highly unpredictable, chaotic
motions. These occur due to the nonintegrability of the hamiltonian system (i.e.,
the non-existence of a second analytic integral of motion, independent from the

energy ).

Large and small-scale chaotic motions are identified in the high-energy Poincare’
maps. The large-scale chaotic motions are a direct result of the pitchfork bifurcation
of normal modes: they appear after the bifurcation, when the antisymmetric mode
is orbitally unstable. and they result from the transverse intersections of the stable
and unstable manifolds of the antisymmetric mode (i.e., the destruction of the low-
energy homoclinic orbit of the antisymmetric mode). Local, small-scale chaotic
motions result from the breakdown of “rational invariant tori” of the system. They
appear close to subharmonic orbits of the oscillator and are confined in specific

regions of the map.
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Note that a necessary condition for large-scale chaos is the orbital instability of
the antisymmetric mode (since only then can large-scale transverse intersections
of invariant manifolds occur). Thus, the bifurcations of normal modes appear to
increase the complexity of the high-energy, free motions of the oscillator and in fact,
one can state that the system after the bifurcation of the normal modes becomes

“more chaotic.”

“rational invariant

The subharmonic orbits generated from the destruction of the
tori” of the oscillation were analytically examined by constructing suitable sub-
harmonic Melnikov functiogs. In principle, a similar Melnikov-type perturbation
analysis could be used to analytically prove the existence of transverse intersections
between the stable and unstable manifolds of the antisymmetric mode. However,
the resulting homoclinic Melnikov function becomes exponentially small as the per-

turbation parameter tends to zero, and this causes a failure of the perturbation

scheme.

As a final remark. it must be stated that although the specific numerical applications
of this work involve only systems with two-DOF, the outlined methodologies are
general, and therefore they can be applied to the study of the free oscillations of
hamiltonian oscillators with arbitrary DOF. Of course, as the number of DOF and
the degree of nonlinearity increase, the resulting algebraic expressions and numerical

computations are expected to become more complicated.
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3. EXACT STEADY STATE OSCILLATIONS

3.1. CONCEPTS - PREVIOUS WORK

In this section, the steady state motions of undamped, forced, discrete oscillators
will be examined. To achieve this, the notion of “exact steady state” will be used.
This concept was first introduced by Rosenberg, and was implemented in the study

of strongly nonlinear, discrete oscillators.

To demonstrate the concept of nonlinear “exact steady state motion,” consider first
the forced oscillation of a single-degree-of-freedom (SDOF) system. A preliminary

definition of a “cosine-like” function is appropriate at this point:

A function s(t) is said to be “cosine-like”, if:

- 8(1) 1s analytic in —co < t < 400

-s(0)=1, 3(0)=0

- 5(t) 1s a periodic function of t with least period T, and moreover s(T/4) = 0

- 8(t) = —s(T/2 = t) for every value of ¢, and s(t+¢€) < s(t)for0 <t <t+e<T/4

The differential equation of motion of a SDOF oscillator excited by a “cosine-like”

function Pg(t), with P > 0 a constant, is given by:

T+ f(z) = Pyg(t) (3.1)

The solution «(t) of (3.1) corresponding to initial conditions z(0) = X,2(0) = 0,

is said to be an “exact steady state” (Rosenberg, 1966) if and only if the quantity
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x(t)/ X is “cosine-like,” of the same period as g(t). Note that although both z(%)

and ¢(t) are “cosine-like,”

in the general nonlinear case their ratio is not necessarily
a constant (as in linear theory), but it typically depends on time. In (Rosen-
berg, 1966), it 1s proven that if g(¢) is “cosine-like,” then necessary conditions for

the existence of a steady state solution of ( 3.1 ) is that f(z) is an analytic, odd func-

tion of z, that increases monotonically as x increases, and satisfies the inequality,

zf(z) > 0.

The concept of “exact steady state” can be extended to multi-DOF oscillators by

introducing the following general definition.

DEFINITION ( Rosenberg, 1966 )

Consider the forced, n-DOF, nonlinear oscillator:

Z= f(z)+g(1t) (3.2)

where @ € R" is the displacement vector, f € R™ is the vector of (nonlinear)

stiffness forces, ¢(t) € R™ is a periodic forcing vector of least period T, and

()= d*/dt.

System ( 3.2 ) is said to be in an “exact steady state,” if and only if, it “vibrates in

unison” having as least period that of the forcing function.

Hence, at an “exact steady state” the system vibrates in a normal mode motion,
and the forced problem is transformed to an equivalent free oscillation one. Thus,
the analytic techniques developed in the previous section can be implemented to the

study of forced nonlinear motions. An interesting question concerns the effect that
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normal modes of free oscillations have on the exact steady motions. In classical
linear theory, any forced response can be expressed as a superposition of modal
responses. Moreover, linear steady state (resonant) motions always occur in the

neighborhood of classical normal modes.

In the nonlinear case the principle of superposition generally fails. However, as
shown by (Rosenberg, 1966), resonant motions in multi-DOF systems always occur
in the neighborhood of normal modes. This is demonstrated in (Yang, 1968), where
a complete forced steady state analysis is undertaken for a planar oscillator. In the
same reference, the stability of the steady state oscillations is approximately stud-
ied by means of Mathieu equations. The general problem of the existence of exact
steady state motions is addressed in (Kinney, 1965), where geometrical methods
in the configuration space are used. Since exact steady states always occur in the
neighborhood of modal lines, the question of existence of steady state forced oscil-
lations hinges entirely on that of existence of modal lines. In (Kinney, 1965,1966), a
multi-DOF system under periodic excitation is examined, and a geometrical method
is used to find the exact steady states. In a specific application, a “homogeneous”
two-DOF oscillator with & —th order nonlinearity is considered. Assuming the forc-

ing to be proportional to the k — th power of a “cam-function,” explicit analytical

expressions for the steady state solutions are derived. For k = 3 (i.e., for cubic non-
linearity), the “frequency response curves” (maximum response versus frequency of
oscillation) of the system are given. It is shown that there exist values of frequencies

for which as many as five steady states occur. However, an approximate stability
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analysis indicates that only three of these are orbitally stable.

In (Hsu, 1960), the exact steady state of an undamped Duffing oscillator is computed
by considering special elliptic function forcings. Hsu demonstrated that the known
approximate harmonic solutions derived by iteration-perturbation techniques can
be recovered from the exact steady state expressions if one expands the elliptic
response in terms of the elliptic modulus and allows the nonlinearities and/or the
displacements to become small. In (Harvey, 1958), “natural forcing functions” pro-
portional to the nonlinear restoring forces are considered and applied to the forced

Duffing problem.

It must be pointed out that a variety of perturbation techniques exist for analyzing
steady state motions of resonant oscillators (for example see (Nayfeh, 1979),(Bogoli-
ubov, 1961)). However, these techniques are only valid for cases of “weak nonlin-
earity,” i.e., for systems that neighbor linear ones. Under these conditions, the non-
linear response can be expressed in a series, whose first term is the “unperturbed”
linear oscillation. It is clear that these approximate solutions fail to describe the
dynamic response when systems with strong nonlinearities are encountered since in

such cases the linear solutions cannot be used as a basis for perturbation expansions.

An interesting approximate analysis of the forced motion of a two-DOF, weakly
nonlinear system subject to harmonic excitation appears in (Szemplinska, 1980).
[t is shown that the resonant response is close to the normal mode oscillation (in
agreement with Rosenberg’s prediction), and that jumps between resonant states

can occur. The approximate harmonic results were then verified by means of ana-
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log computations. The stability of nonlinear systems under periodic excitation
was approximately examined in (Hsu, 1964). The analysis is based upon a vari-
ational system of equations and it is shown how to obtain a single matrix whose
eigenvalues determine the stability or instability of the steady motion. Finally, a
variety of references address the problem of existence and stability of forced sub-

harmonic and superharmonic motions in weakly nonlinear, single-DOF oscillators

(Caughey, 1954), (Hsu, 1959), (Kronauer, 1966), (Levenson, 1967), (Musa, 1968).

In what follows, the steady state motions of a class of two-DOF oscillators with
strong nonlinearity are examined. The analysis is general, since it can be applied
to compute the forced response of systems with arbitrary DOF. However, this will
not be attempted here, since the new analytical techniques introduced herein can
be best demonstrated by examining relatively simple systems. In analogy to the
free oscillations of these systems, it will be demonstrated that both “similar” and
“nonsimilar exact steady states” can exist. Similar steady states can be realized only
for special forms of the forcing functions, whereas nonsimilar steady state motions
exist for an entire class of periodic forces. In the sequence, similar and nonsimilar

steady states are examined separately.
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3.2. SIMILAR STEADY STATE OSCILLATIONS

A “similar steady state motion” is a motion that corresponds to a straight line in
the configuration space of the system. Hence, in a similar steady state, the oscillator
vibrates as in a similar normal mode of free oscillation, and all coordinates oscillate
“in-unison” (note that in linear theory, the only possible steady states are similar

motions).

Comnsider a two-DOF oscillator of the general class defined in section 2. Suppose
that the system is excited by a periodic (but not necessarily harmonic) force p(t)
and that the unforced system is in “1-1 resonance” (i.e., its linearized eigenvalues
are equal). The differential equations describing the motion of the system are then

given by:
i1 4 fi(z) + fo(@r — 22) = p(2)
(3.3)
Eg + fi(ze) = folzr —22) =0

where f;(e), + = 1,2 represent the (nonlinear) stiffnesses. Equation (3.3) 1s solved

with the following set of initial conditions:

(3.4)
22(0) = Xy 22(0) =0

The analytic expressions that will be derived in the sequence correspond to the
specific set of initial conditions (3.4). For different initial conditions, the results

should be modified accordingly.

According to Rosenberg’s definition, the steady state motion of a multi-DOF system

under periodic forcing is a motion in which all coordinates vibrate “in-unison,” and
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the period of the response is identical to that of the force. The basic question

concerning the similar steady state problem is as follows:

Given a prescribed set of initral conditions (such as (8.4)), what s the form of the

ezcitation p(t) required for a similar steady motion?

A first step in answering this problem is to consider the linear case:

fitw)=ku , i

I
—t
1SV

(3.5)

Substituting (3.5) in the differential equations of motion, a classical, linear vibration
analysis leads to the following harmonic steady state solution (corresponding to
initial conditions (3.4)):

x1(t) = Xicoswt

zo(t) = cx1(1) (3.6)
. ‘ P
p(t) = p(z,(t)) = — = Pcoswt
X
and .
2 2 9,4 C
W = k()
P 2 2 7
— =k k(1 —c) =W (3.7)
X, -
Xy, =Xy

The steady state solution (3.6-3.7) is commonly studied by the frequency-response
curves (or resonance plots), and because of linearity all solutions are orbitally stable.
Note that at the steady state the forcing function is related to the displacement by a
functional relation p(e), which is linear in this case. Another feature of the solution

is that at the steady state, the two differential equations of motion decouple (as in
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case of a normal mode), and the two displacements x1,z2 are linearly related for

all times (similar oscillation).

From the aforementioned, it is evident that nonlinear similar steady state motions
exist only if the force p(t) is related to the steady state displacements by a certain

functional relation, and the coordinates are linearly related for all times:

p(t) = p(z1(t))
(3.8)
xa(t) = cxy(t)

The functional relation is generally nonlinear, and ¢ is a scalar constant. Hence, the
problem of finding similar steady states is transformed to the equivalent problem of
finding a functional p(e) and a modal constant ¢ that uncouple the forced equations
of motion. It will be shown that in order to achieve a similar steady state oscillation,
special forms of the functionals p(e) are required. On the contrary, nonsimilar
steady states occur for a whole class of forcing functions. This is in direct analogy
to what was observed with similar and nonsimilar normal modes of free oscillation:
similar modes were computed by an overdetermined set of algebraic “balancing
equations” and they occurred only for special values of the structural parameters of
the oscillator. Nonsimilar normal modes, however, were described by sets of singular
functional equations and they were typical for the class of nonlinear systems under

consideration.

A two-DOF nonlinear system with “1-1 resonance” is examined in the sequence.
As shown earlier. this system has always two similar modes of free oscillation (the
symmetric and antisymmetric ones), and depending on the linear term of the cou-

pling stiffness, additional (bifurcating) modes may occur. Thus, 1t is necessary to
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distinguish between two cases: oscillators with bifurcating normal modes (for ex-
ample, systems that possess a single “balancing diagram”™), and systems where no

bifurcation of modes can occur (i.e., cases where multiple balancing diagrams exist).

3.2.1. OSCILLATORS WITH BIFURCATING NORMAL MODES
3.2.1.1. ANALYSIS

Assuming that the coupling stiffness f(e) does not contain any linear term, and
considering general, k —th order nonlinearity (with £ odd), the differential equations

of motion take the form:

Fr+ foen + fieet + far(zn — 22)" = p(2)
(3.9)
Fo+ frive + frers + far(zz — ) =0
It will be assumed from hereon that the stiffness coefficients f;; are nonnegative
quantities (this is dictated from physical considerations). The same analysis, how-
ever, can be applied when this assumption does not hold. It was shown earlier that
the linear terms of system (3.9) are always “balanced,” and thus only one “balanc-
ing diagram” (that of nonlinear terms) exists. Also, depending on the value of the
ratio L'y = for/fis , a bifurcation of normal modes may exist, its precise form

depending on the degree of nonlinearity k.

Assuming a functional relation between force and steady state displacement of the

form.

) .:vi‘('t) (3.10a)
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and considering the “similar” modal relation z2(t) = ¢ xi(¢), the equations of

motion at the steady state, become:

. . P *
Iy + fuxy + ik + far(1 - C)k - ‘j{‘—’“) ]Té =0
1 . (3.100)
. . 1—c :
l’1+f11$1+[f1k0k —le.( ) ]xfz()

Both equations have z; as dependent variable and must be solved with initial con-
ditions given by (3.4), with X3 = ¢X,. Observe that the forced problem has been
converted to a free oscillation one, and steady state motions can exist, provided
that the coefficients of the respective powers of x; are equal. For this system, the
linear terms are identical for all values of ¢ (this is not the case in the following
section, where the coupling stiffness contains a linear term), and therefore, one must

balance the coefficients of the k — th powers of the displacement:

bk .
;;) = firc* ! “fu(l ), = pk (3.11)

Fir 4 far(1 = )% =

For a given initial amplitude X; and force amplitude P, one can compute the
modal constant ¢ from equation (3.11), the displacement () by integrating by
quadratures any one of equations (3.10b), and the quantity z.(¢) from the modal
relation wy = ¢ x; . General analytic integration formulas can be found in

Appendix A.

The frequency of the steady state oscillation can be determined by considering
the “complete” integrals of Appendix A, and for this particular application it is

expressed as follows :

) /2
w=w(X,.P) = e (3.12)
) j;;r/2 { 1+ likz\k]+1 vy (@) } (Z@



where
, 1 — cosFti(¢
ve(¢) = 2 ()
QXy, P) = fig 4 — xk=1
<31 J11 k+1* 1

Equation (3.12) relates the amplitude X; to the frequency of oscillation w, for a
fixed value of the forcing P. Thus, it represents the frequency response curves of

the oscillator, in analogy to the classical resonance curves of the linear theory.

Note that for P = 0 (no excitation), expression (3.12) gives the so-called “backbone
curves” of free oscillation. These curves represent the dependence of the amplitude
of free oscillation on the frequency of the motion, and they are as many as the
number of normal modes of the system. The corresponding free oscillation values of
¢ can be found from expression (3.11) by setting P = 0. This equation has always
the solutions ¢ = +1 (corresponding to the symmetric and antisymmetric modes),
and depending on the value of Iy = far / fix , additional (bifurcating) modes are
possible. The conclusion is that by varying the value of the structural parameter
I, one can change the number of backbone curves (normal modes) of the system
and thus invoke changes in the topological portrait of the response curves (3.12).

This fact will be demonstrated in the next section.

The necessary forcing p(t) for a steady state motion is given by expression (3.10b).
Moreover. this is the only form of forcing that leads to a similar steady state for the
system under investigation. This can be proved by considering alternative forms for
the excitation p(t): then one finds that there are no real values for ¢ that uncouple

the resulting steady state differential equations of motion.
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In (Kinney, 1965), a geometrical method in the configuration space was used to
study the steady state motion of a “homogeneous” system, i.e., a system with all
stiffnesses proportional to the same power of the displacement. The system was
excited by a cam-function (Rosenberg, 1963), and the response was expressed in
terms of a generalized frequency A. For a fixed value of the nonlinearity k, it can be
shown that the results obtained in the present work are identical to that reported
in (Kinney, 1965), provided that one relates the generalized frequency A and the

parameter py (of equation (3.11)) by the relation:
g = cFTIA?

However, the analysis presented in this work is slightly more general, in the sense
that one does not require “homogenuity” in the stiffnesses (in this work, the linear

parts of the stiffness fi(e), is nonzero, fi; # 0).

3.2.1.2. FREQUENCY RESPONSE CURVES

As an application of the aforementioned theory, consider the case & = 3 (cubic
nonlinearities). In this case. equation (3.11) becomes:

p? (1-— c)3

Fis 4 fas(1—¢)’ = (X1 ) = fizc? — fz:s‘“—"(‘_“‘— = U3 (3.14)

Equations (3.10b), combined with the set of initial conditions (3.4), lead to the
following expression for the displacement z,(¢) at the steady state:

- . ~941/2
ei(t) =Xy en ([fir + s X7] 7t k), g3 >0

o 212 1y X2 (3.15)
’L](t) == }{1 SN ([fll -+ /,L:;‘X—lz/?,} “t + I\’(kg) 5 ]fz) 5 0> “_“".1‘ > —1

J11
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where cn(e,e), sn(e,e) are elliptic functions (Byrd, 1956), i'(e) is the complete

elliptic integral of the first kind, and kq, ky are elliptic moduli given by:

k2 — :u3"¥;z

! 2( fua +N3Xf) (3.16)
k2 _ —'IUJJX%

5 =

2f11 + p3 X7

Note that in the above solutions, the possibility of unbounded motions (correspond-
ing to values of py such that ps X? / fi1 < —1) is excluded. This is because such
motions cannot be realized for the oscillator under consideration (this statement
will be mathematically proved later). The frequency-response curves at the steady

state are computed by setting k& = 3 in the general expressions (3.12-13):

o m(fi11 + N3X%)1/2 <0
YT T Ok (k) e (3.1
A+ 13 X3/2)"? 0> ps Xi N
2K (k2) 7 fi

where I\'(e) is the complete elliptic integral of the first kind, and the variable 3 is

computed from equations (3.14).

In figure 3.1, the root ¢ of equation (3.14) is schematically presented as a function
of the structural parameter Ny = fo3 / f13, for fixed values of P and X;. These
diagrams are the “forced balancing diagrams” of cubic terms and are analogous
to the diagrams used for studying the normal modes of free oscillation. Note that
since the coupling stiffness of the oscillator, fa(e) (see equations (3.3) and (3.9)),
does not contain any linear term, no linear diagram exists for the oscillator under
consideration (this is because the linear terms in equations (3.10b) balance for every

value of ¢).
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Figure 3.1a, corresponds to zero forcing, and thus gives the modes of free oscillation
of the system. Observe that at 3 = 1/4 , a pitchfork bifurcation occurs, and the
antisymmetric mode exchanges stability becoming orbitally unstable. This means
that depending on the ratio '3 of the coefficients of the cubic terms of the stiffnesses,
the system can have either two or four backbone curves (normal modes). In the

latter case, one of the backbone curves represents orbitally unstable motions.

Figure 3.1. Forced balancing diagrams of the system with cubic nonlinearities :

(a)P =0 (b)P/X >0 (c)P/X < O

When a forcing P # 0 is applied, figures 3.1b.,c result, and it can be seen that the
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pitchfork bifurcation is perturbed. In these diagrams, ¢ denotes the value of the
modal parameter for a steady state motion. For values of I3 greater than 1/4, one
obtains at most two values for ¢, whereas for 'y less than 1/4, four such values exist.
From these observations, one has a first indication that the topological portrait of

the response curves changes quantitatively as I3 is decreased below the bifurcation

value 3 = 1/4.

In figures 3.2 and 3.3, the frequency response curves (or resonance plots), are pre-
sented. Both diagrams correspond to the same value of the forcing amplitude
P = 0.5, and the same values of the structural parameters f1; = fi3 = 1. The
response curves of figure 3.2 correspond to '3 = 0.4 (where two normal modes
exist), whereas those of figure 3.3 to I3 = 0.15 (with four normal modes). To
construct these curves, assign values to the initial condition X; and compute ¢ and
(s from equations (3.14). Finally, evaluate the frequency of steady state motion

from formulas (3.17).

Note the difference in the topology of the two sets of response curves. In the set of
figure 3.2, there are two backbone curves (both orbitally stable), and at most five
steady state solutions exist for a particular value of the frequency w. In figure 3.3,
however, a bifurcation of normal modes has occurred, giving rise to four backbone
curves (of which one is orbitally unstable). Thus, the portrait of the response
curves is much more complicated than in the previous case, and for a fixed value
of the frequency, at most nine steady state solutions may occur. Therefore, 1t 1s

concluded that the bifurcation of normal modes effects drastically the steady state
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response of the oscillator. Note that since the oscillator under consideration is in
“1-1 resonance,” its dynamics are particularly “rich.” For an oscillator which is
“off-resonance” (i.e, with unequal linearized eigenvalues), one should expect less

complicated steady-state response curves.

As far as the displacements of the system are concerned, one has to consider three

distinct cases, depending on the value of the ratio of the frequency of oscillation w

1/2

over the square root of the linear term of spring fi(e), fi]

(@) Hardening Duf fing response

If u)/flll/2 > 1, then g3 > 0, and the displacement x;(#) is obtained from the first

of equations (3.15). The variable x4(t) is then computed from the modal relation

r9 = c¢ 21. The force necessary for the steady state is then :
P 3.
p() = () #1(t) (3.18)
X

(b)) Softenung Duffing response

If cu/flll/2 > 1, then —f;; / X? < p3 < 0, and one has to use the second of

equations (3.15) to compute z(t). Note that
[zfmmm_“f“/‘\»;z ks =1 = Zi?TLus__f“/X;z K(ky) = o0 (3.19)

Hence, it 1s concluded that

LT

LS 3.20
¢ (3.20)

17.,777,“)_,() M3 =

and as a result, no unbounded motions can be realized for the oscillator under
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consideration (since this can only happen for u3 < —f11 / X, which, in view of

relation (3.19), implies that the frequency of oscillation w is a negative quantity ).

( ¢ ) Harmonic response

. 1/2 . .
For the special case value of the frequency, w = fn/ , one obtains uz = 0, and in

that case the system responds harmonically:

zi(t) = Xy cos(fflﬂt) , 2o(t) = czq (1) (3.21)
c= [1+(fis/fas) ]’
(3.22)
Xy =P/(1+)fif
The necessary force for the harmonic steady state is then:
p(t) = chosg(flll/zt) (3.23)

Note that these harmonic solutions are exact (since no approximation concerning
the magnitude of the nonlinearity and the amplitude was made), but are only valid
for a particular value of the frequency w. Small perturbations of this value lead to

softening- or hardening-type motions.

3.2.1.3. STABILITY ANALYSIS

The stability of the identified steady state periodic solutions is now examined, by
introducing small perturbations in the exact steady state solutions (from this point,
the steady state displacements for a1, x2, given by equations (3.15), will be denoted

by 2 (t),and ,(t) respectively):

(3.24)
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Substituting (3.24) into the forced equations of motion (3.9), and retaining only

terms of first order in € and 7, one obtains:

€+ [fi1 + 3f1382 + 3fas(#1 — #9)°)€ — 3fas(&) — 2)° =0

(3.25)
i 4 [fin + 3f1383 + 3fs(d2 — 1) — 3fas(d2 — 21)*¢ =0
Taking into account that at the exact steady state the relation &, = ¢Z, holds,
equations (3.25) are written as:
E4 [fin + 3f1ad] +3f2a(1 = )*21]¢ = 3faa(1 — )20 = 0 .

i+ [fin + 3fiac?@} + 3fas(c — 1)* il — 3fas(c — 1)%32¢ =0
This is a set of coupled Hill equations that possess normal solutions (Kinney, 1965).
Moreover, since the equations are linear, all their solutions can be expressed as
linear combinations of the normal ones. Thus, the question of stability of £(¢) and
n(t) is reduced to the determination of the stability of the normal solutions of (3.26).

These solutions are computed by requiring that (Kinney, 1965),
n(t) = NE&(t) (3.27)

and substituting this relation into (3.26), the following expressions result :

n

£+ [fi1 + 3f152% 4+ 3f23(1 — 0)*22]€ — 3fas(1 — ¢)’

(3.28)

o
w
—
~
!
U
S’
(o3
-0
[——
Sy
!

£+ [f11 + 3fisc’ @] + 3fa:
These equations lead to identical solutions for £(t), provided that the coeflicients of

£(t) in both relations are equal. Imposing this condition, the following real values

for Iy result:

fia(1 =) 1

f13(1 =) | (3.20)
2fas(1 = ¢)?

]\'1‘2 = “‘“""—————'—‘7;‘:t{ 1“{“
2f23(1 —¢)”
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The normal solutions can then be computed from any one of equations (3.28), by

setting ¥ = I(;, 1t =1,2:
Ei+ [ fi1 +(3f1s +3fas(1 — ) = 3fas(1 — )’ K,)é2 )&, =0, i=1,2 (3.30)

Finally, the solutions of the variational equations (3.26) are expressed as linear

combinations of the normal solutions:

§(t) = &1(2) + &a(1)
(3.31)
n(t) = K& (t) + W2éa(1)
The stability of the variational equations (3.30) will be approximately examined by
linearizing the response of the system. In order to achieve this, one expands the

exact steady state solution ,(¢) in Fourier series and retains only the first harmonic

terms to obtain the following approximate expression:
Z1(t) = Xy coswt + O(k?) (3.32)

where k% is the square of the elliptic modulus, assumed to be of perturbation order.
Substituting (3.32) into (3.30) and introducing the new time variable 7 = w ¢, one

obtains the following approximate Mathien equation:

EN (0 +2Ccos2T)6, =0 |, 1

[
w0

(3.33)

. . . 3 il -y .
where £ is considered to be a function of 7 and (e)" = d*/dr?. The coefficients of

the Mathienw equation are given by

' -2 -2

5 = .fll */\i‘xl L: N 1&.,'}&1
I ; p N T = ;
oW 2w? 4w?
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Ai =31z + 3f23(1 — ©)® = 3fas(1 — ) KK,
and the quantities IV'; are computed from equation (3.29).

The stability analysis of equations (3.33) can be carried out by examining their
stability characteristics in the Stutt diagram, in an exactly analogous way with that
followed in section 2.2., where the linearized stability analysis of the normal modes

of the same system was carried out.

The results of the stability analysis are presented at figures 3.2 and 3.3. From the
diagrams of figure 3.2, observe that from a maximum of five steady state solutions,
only three are orbitally stable. In figure 3.3, from a maximum of nine steady states,
only four are orbitally stable. An interesting remark concerning the plots of figure
3.3 is that all steady state solutions neighboring the orbitally unstable backbone
curve (of the antisymmetric mode) are also orbitally unstable. This leads to the
conclusion that no stable steady motion can result in the vicinity of an orbitally
unstable free oscillation. Finally, note that since no damping is present in the

models, the phases of the steady states can only be 0 or 180 degrees.

Concluding the analysis of this section, it must be stated that response curves similar
to those of figure 3.2 were reported elsewhere (Kinney, 1965) for “homogeneous”
oscillators. However, in that reference, the stiffnesses did not contain any linear
terms ( f1; = 0) so that the backbone curves started from the origin of the frequency
response diagrams. Thus. no softening-type or harmonic responses were possible,

and the system had only hardening-type motions.
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3.2.2. OSCILLATORS WITH NO BIFURCATING NORMAL MODES

3.2.2.1. COMPUTATION OF SIMILAR STEADY STATE SOLUTIONS

The examination of the similar steady motions of this class of systems has to be
carried out on a case by case basis. To demonstrate the analysis, consider the “1-1
resonant” oscillator of the previous section, with differential equations of motion
given by (3.3). In this case, however, it is assumed that the coupling stiffness f;(e)
contains a linear term:

Aluw) = fiu+ fizu’®

(3.34)
f2(u) = faru + fozu®

In section 2, it was shown that the presence of the linear term, fo; u, restricts
the possible number of the normal modes of the system to two (the symmetric and
antisymmetric ones). Therefore, in this case it is necessary to consider a forcing
function p(t) related to the steady state displacement by a functional relation of the
form:

P P
1%):171(15) + (=52t (3.35)

p(t) = pla(t)) = (

It will be shown that the functional relation (3.35) is the only one capable of pro-
ducing a siumilar steady state oscillation. To prove this statement, the relation
ro = ¢ 1 (that corresponds to a similar motion) is substituted into the equations

of motion. Then, the following set of equations is obtained:

4wy [fin + fo(l—c) = “’1‘} + 2 [fis + fas(1 — c) — —5]=0

e ["f"ll( Lo
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where the usual set of initial conditions (3.4) is assumed, with X, = ¢X;. To
obtain a similar steady state oscillation, one requires that the coefficients in (3.36)

of respective powers of z; be equal:

P 1—c¢
fll+f21(1~c)'— Yll :_f21( - ()+f11 :)\2
‘ 3 (3.37)
fra+ faa(1 =)’ = ;33 = fisc® — f23g—-c—) = u?
1 ¢

One imposes the additional restrictions that the above quantities be positive in order

to investigate the “hardening-Duffing” response of the oscillator ( z?> > 0 ). How-
ever, a similar treatment can be followed for the examination of possible “softening-

Duffing” responses (in that case one requires that the terms in the second of equa-

tions (3.37) be equal to —pu?).

In figures 3.4a and 3.4b, the roots ¢ of equations (3.37) are presented as functions
of the ratios Iy = fo1/f11 and K3 = fy3/f13, respectively. For fixed values of the
forcings P, Ps, two such diagrams exist. The linear diagram represents solutions of
the first equation of the set (3.37) (balancing the linear stiffness terms of the system),
whereas the cubic diagram corresponds to the solutions of the second of equations
(3.37) (balancing the cubic stiffness terms). For unforced motions (P, = P = 0),
the values of ¢ satisfying both the linear and cubic diagrams are restricted to £1,
corresponding to the symmetric and antisymmetric modes of free oscillation. When
a forcing is applied. the balancing diagrams are perturbed, and it is necessary that
the steady values of ¢ satisfy both of them simultaneously.

Hence. in order for a steady state motion to exist, both balancing diagrams must

be perturbed, and this is only achieved with a forcing of the form (3.35). This 1s
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Figure 3.4. (a ) Forced ( P, # 0 ), and unforced ( P, = 0 ) linear balancing

diagrams.

(b)) Forced ( P3 # 0), and unforced ( P; = 0) cubic balancing diagrams.
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because the force should contain a linear term (that distorts the linear diagram) as
well as a cubic term in the displacement (that distorts the cubic diagram). It can
be concluded, therefore, that when a system has more than one balancing diagram
of free oscillation, the steady state excitation should be such as to perturb all these
diagrams simultaneously. Thus, the necessary force for an exact steady state should
be expressed in a series form, the number of terms depending in the number of the
balancing diagrams. Moreover, each term of the series should be proportional to a
power of the displacement that is equal to the nonlinearity of the balancing diagram

that it perturbs.

Taking into account expressions (3.37), the steady state response of the oscillator

1s computed as follows:
x(t) = Xien(qt, k) za(t) = cay (1) (3.38)

where
=N ptXE R =t X2 (3.39)

and

c= for /(11 + fo1 — A%

Pr/Xy = (fir = XN)(fir 4 2fo1 = A/ (fi1 + f21 = A7)

| (3.40)
1= (s fd = Fa(fin = A"V far(fin + for — A2

P:S/Xf = fi3 + fo3(1 — C)3 — /,42

Note that all variables in relations (3.40) are expressed in terms of the quantity A?,

and this 1s related to the frequency of steady state oscillation, w, by:

7q B TT[/\2 + /1,(/\)2AY%]1/2

: = - (3.41)
SN ((N)) I (k(N))

W ==
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where the usual notation for the complete elliptic integral of the first kind and the
elliptic modulus have been used. Expression (3.41) relates the amplitude of the
steady state oscillation, X', to the frequency w ; therefore, it represents the steady

state frequency response curves of the system. The force is computed by combining

equations (3.35) and (3.38):
p(t) = Pien(qt, k) + Psen®(qt, k) (3.42)

When no force is applied. i.e., when P; = P; = 0, equations (3.38-41) lead to
the free oscillation solution. As mentioned earlier, two such motions exist for the

oscillator under consideration:
c= +1, \* = fi1, ;Lz = f13 (Symmetric mode)

(3.43)
c= =1, N = fi1 + 2fy, ¥ = fiz + 8f23 (Antisymmetric mode)

Using these expressions for A% and u?, one can compute the “backbone” response
curves from equation (3.41). As long as the linear coefficient of the stiffness f;(e),
is nonzero, one obtains only two such curves, one corresponding to ¢ = +1, and the
other to ¢ = —1. Therefore, in contrast to what was found in the previous section,
the topological portrait of the frequency response curves does not change when a
structural parameter of the oscillator changes. This is a direct result of the fact
that no bifurcation of modes is possible for the system under consideration, and

thus. no additional “backbone” curves can exist.

Consider now the case where Py, Py # 0. Relations ( 3.40 ) indicate that if either
one of P; or P5 is taken as a constant, the other must be made dependent on the
frequency of oscillation. w. This leads to difficulties of interpretation of the sim-

ilar steady state solution, since one has to define an acceptable constant “forcing
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amplitude” for the excitation. To resolve this issue, one can use the perturbation
methodology of (Hsu, 1960) who studied the exact steady state of a single-degree-
of-freedom (SDOF') oscillator (this perturbation analysis is performed in the next
section). Note that although solution (3.38-41) is difficult to interpret physically,
nevertheless it is an exact similar steady state solution for the (strongly) nonlin-
ear problem. Moreover, it will be proved that, as the nonlinearities of the system
become small, the derived solution degenerates to the well known approximate har-
monic oscillation of the weakly nonlinear oscillator that are obtained by standard,

approximate techniques.

As a last remark, note that the forcing form (3.42) is the only one leading to a
similar steady state motion. If the excitation is taken to be merely proportional to
the steady displacement. and the similar condition is imposed, one finds a “pseudo-
steady state” oscillation, namely a periodic motion valid only for a particular value
of the frequency w (Vakakis, 1988). However, there exists an infinite set of periodic

excitations that lead to nonsimilar steady motions.

3.2.2.2. PERTURBATION ANALYSIS

The analysis of this section is similar to that carried in (Hsu, 1960), where the
forced motion of a strongly nonlinear SDOF oscillator is examined. In order to
justify the perturbation method, it is necessary that the nonlinearities and/or the

displacements of the system be small, so that the quantities f;3 X?, ¢ = 1,2, be of



perturbation order:

0 < fuXi <1 ,i=1,2 (3.44)
Since the coefficients of the linear terms of the stiffnesses are finite quantities (i.e.,
fir = O(1), ¢ = 1,2), assumptions (3.44) indicate that the elliptic modulus
squared, k%, is also of perturbation order (see expressions (3.39)). Thus, one can
consider a perturbation expansion of the elliptic functions with respect to their
modulus, and retain only terms of order up to k%. This is done in Appendix C;

substituting the associated Fourler expressions in equation (3.42), one obtains:
p(t) = Pilajcoswt + azcosdwt) + Ps(bycoswt + bycosdwt) + O(k*) (3.45)

where the coefficients of the Fourier series, a; and b;, can also be expanded in powers

of k2, as follows :

kil
=1 — 1.
“ 6
kz
az = — + ...
o (3.46)
, 3 3542 N
YTy e T
[ 1 . Gk? L
Yoo
T4 108

Eliminating the quantity A\? from the expressions of P; and P3 (equations (3.40)),

and rearranging terms, one obtains the following formulas for the forces:

P’ . . 2]{72(2
> :f13*1'~f23(1“(5);_( !

)

‘;‘ i (3.47)
Yl = (2k* = 1)¢* + fu + fa(l—¢)
A

Substituting for Py and Py in equations (3.45), one gets an expression for the force

acting to the system. correct to QO(k*):

p(t) = {A, X, + A3 XV Jeoswt 4+ {B1 X + B3 X Jeos3wt + O(k?) (3.48)
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where
A= [(2k2 - 1)(12 + fi1 + far(1 = ¢)]ay
L 2k%g?
As = [fis + fas(1 —¢)’ — —-—;&,—3—]61
Aq
By = [(2k* = 1)¢* + fui1 + far(1 = ¢)]as

2k%q*

2
“*1

B; = [fi3 + f23(1 — 6)3 -

Jb3

A similar expansion in terms of k% can be carried out for the response of the system

z1(t) (equation (3.38)):

(1) = a1 Xicoswt + az Xqcos3wt + ... = X |coswt + O(k*) (3.49)

From expression (3.49), it can be concluded that for k? sufficiently small, the system
response contains a dominant harmonic term of frequency w, and small additional

higher harmonic terms. Moreover, if one requires that

. ‘ X ) } ; 2k%q*
[(21»‘2 - 1)(12 + fur + far(1 — C)Pilal + [f13 + foz(l — C)3 - —Y—Qj—}‘bel =D
<31
9 B . . - . : 2]\72(2 -
(28° = 1)¢" + f11 + far(1 — ) Xvas + [fis + faz(1 — (5)} - “Y—zj}}isz =0
-1

(3.50)
then, correct to OQ(k?), the oscillator is excited with a harmonic force p(t) =
Py coswt, and responds harmonically with a frequency equal to that of the excita-
tion. In the aforementioned equations, Py is the constant magnitude of the harmonic
excitation. Thus, for weak nonlinearities and/or displacements, the similar steady
state solution (3.38-41) degenerates to an approximate harmonic one. To investi-
gate this approximate harmonic motion, it is necessary to eliminate the variables ¢

and ¢ from expressions (3.50). This is achieved as follows.



- 152 -
First, consider expression (3.41), and expand the complete elliptic integral K (k) in

terms of its modulus:
2

w? = m + O(k4) (3.51)

Then, use the first of equations (3.40) to express A? as a function of

1;") + (3.52)

2= "f21(

Substituting (3.52) and the third of equations (3.40) into (3.39), obtain the following

. . i
alternative expression for ¢°:

: 3

; . 1—c : - (1 —c »
T R I | R g (3.5

An elimination of the variable ¢* is now possible, by a combination of (3.51) and

(3.53):
h 1- . C(1=¢)
(1’*“3",@2:—.}(‘.)1( (:C,)+f11+[f3162"f32'(-'—-c—)~

-

1 X7 (3.54)

Equations (3.50) and (3.54) can now be regarded as a set of three equations with

three unknowns, namely, X, ¢ and k2. Trivial but lengthy algebraic manipulations
lead to a set of equations that describe the approximate harmonic steady state

solution of the “weakly nonlinear” system, correct to O(k*):

Tw? — f11 = for(1—¢)
9w? — fi1 — far(l = <)

. , 9 p . . : -5
fir+ far(l—c) —w” — ""‘X—O + [fiz + fas(1 — C)jpif{
Aq

} =0

c= for/(fi1 + for — wz)

s _ s+ fan(1 = o)) X7
9w? — [fi1 + far(1 = ¢)]

k (3.95)

For a fixed value of the forcing amplitude Py, one can eliminate ¢ from the first

two equations (3.55) and obtain the frequency response curves of the steady state
{ q 3 I 3
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oscillation. Note that the approximate steady state solution (3.55) is valid for all
frequencies, except those in the neighborhood of w = (fi1 + f21(1 —¢))/9. Close
to that frequency, the denominator of the last of equations (3.55) becomes a small
quantity, leading to large values for the elliptic modulus k*. Thus, the assumptions
of the perturbation analysis are violated, since &2 is not any more of perturbation
order. Also note that from the first of equations (3.55) one requires that (the
quantity ¢ is of O(1)):

9 P i
fir 4 (1= ¢) —w? — ﬁ = O(k?) (3.56)

The above equation represents the linear steady state solution. Therefore, it 1s con-
cluded that the approximate harmonic steady solution must be in the neighborhood

of the linear one.

In figure 3.5, the frequency response curves of the approximate steady state solutions
corresponding to f1; = 1. fo1 = 4, fi3 = 0.07, fo3 = 0.1 and Py = 0.05 are presented.
The stability question of this type of approximate steady state motions is addressed
elsewhere (Kinney, 1966). (Hsu, 1964), and it can be shown that two branches of

solutions are orbitally unstable.

Summarizing, it was demonstrated that the exact similar steady state solution
(3.38-41) (that is valid for strongly nonlinear systems), is a generalization of the
approximate harmonic steady state solution. since it degenerates to this later mo-
tion when the nonlinearities and/or the displacements become small. As pointed
by (Hsu, 1960), however, the exact steady state solution can also give rise to an

approximate subharmonic oscillation. To study this type of motion, one has to
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impose the following conditions, similar to (3.50):

3

) ) -')kZ 2 )
[(2k% = 1)¢* + f11 + fa (1 — ) Xiar + [fis + f2a(1l - C)B qu JX7b =0
2k* —1)¢* + f 21(1 = ¢)] X a: 1-— 3-—%2(‘72 X7by = P,
(2 )q° + fir + farl )| Xvaz + [fis + fasl c) Y ] 3 0

(3.57)
Under these restrictions, the weakly nonlinear system is excited by a harmonic
force and responds harmonically with a frequency equal to one third of that of the
excitation:
p(t) = Pycos3wt + O(k")

(3.58)
1y (t) = X, coswt + O(k?)

Clearly, this is the well known subharmonic phenomenon.

3.2.3. DISCUSSION

In section 3.2 the similar steady state motions of a class of “1-1 resonant” oscillators
were examined. Although only systems of two-DOF were investigated, the presented
methodology can be extended to systems of arbitrary DOF by considering each time
suttable forcing functions and introducing linear relations between the coordinates
of the system. One can then uncouple the equations of motions of the oscillator
by defining “forced balancing diagrams.” in a way similar to that presented in
this work. Since no assumptions concerning the amount of the nonlinearity were
made, the analytic expressions are valid for strongly nonlinear systems in contrast
to results of conventional, approximate methods that only hold for oscillators with

“weak nonlinearities.”

It was shown that the selection of the functional equation that relates the force with
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the displacement, is of paramount importance when the similar steady state motions
of strongly nonlinear discrete systems are studied. In this work this problem was
solved by choosing the excitation in such a way as to transform the forced motion to
an equivalent free oscillation. This was achieved by using a matching procedure to
uncouple the steady state equations of motion of the system. The resulting “forced
balancing diagrams” can then be used to find the appropriate values of the modal
constants ¢; the steady state oscillation can then be analytically expressed by an

integration by quadratures.

Two categories of strongly nonlinear oscillators were examined. The first category
consists of systems that possess additional modes of free oscillation. The force is
taken proportional to the displacement raised to a power equal to that of the nonlin-
earity. It was shown that for this type of oscillators, the topological portrait of the
frequency response curves may change, if a certain structural parameter changes.
This 1s a direct consequence of the bifurcation of normal modes of the free oscilla-
tion of the system: the variation of a certain structural parameter may introduce
additional (bifurcated) “backbone” curves, and these increase the complexity of the

steady state response diagrams.

The second category consists of systems that possess only two modes of free oscil-
lation. In this case. the functional equation relating the force and the displacement
contains linear and nonlinear terms. Since no bifurcation of normal modes is pos-
sible, the topology of the response curves remains unaltered for changes of the

structural parameters of the oscillator.
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Specific numerical applications of the theory were given for systems with cubic non-
linearities. For a system with a linear term in its coupling stiffness, fy(e), a difficulty
of interpretation of a constant “forcing amplitude,” was encountered. However,
perturbation analysis indicates that the exact steady state is a generalization of
the well-known approximate harmonic steady response of the corresponding weakly

nonlinear system excited by a harmonic force.

Finally, it must be stated that although only “1-1 resonant” systems were examined,
the same analysis can be applied to systems that are “off-resonance.” Since these
systems also possess normal modes (see section 2), their steady state motions can
be regarded as perturbations of their free oscillations. Accordingly, exact analytic
expressions can be obtained by imposing the conditions for similar motion and by

constructing “forced balancing diagrams.”
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3.3. NONSIMILAR STEADY STATE OSCILLATIONS

In the previous sections the similar steady state motions of strongly nonlinear forced
oscillators were examined by considering special periodic forcing functions, i.e.,
forces that were related by certain functional relations to the steady state displace-
ments. It was concluded that similar forced motions could only be realized for a very
restricted set of forces, and in that sense they resembled the similar normal modes

of free oscillation (since they too existed only for systems with special symmetries).

However, in nonlinear systems, nonsimilar steady state motions may exist. In a non-
similar steady motion, the system oscillates as in a nonsimilar normal mode, where
the functional relations between the coordinates are generally nonlinear. In what
follows, it will be shown that these nonsimilar forced motions exist for a whole class
of periodic excitations; in that sense, nonsimilar steady states are generic for the
oscillators under investigation, in contrast to the similar steady states that require
special foreing conditions (this is in analogy to the nonsimilar normal modes that

were shown to be generic for the class of nonlinear systems under consideration).

Two types of nonsimilar steady state motions are analyzed. In the first case, the
nonsimilar steady motion is caused by a force proportional to the steady state
displacement. Since the resulting forced oscillator cannot oscillate in a similar
motion, nonsunilar steady state oscillations are considered. In the second case, a
general periodic excitation is applied to the system, and a theorem on the necessary

and sufficient conditions that this force must satisfy in order to lead to a nonsimilar
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steady state motion is given. In both cases, an asymptotic methodology similar to

that applied for the problem of the nonsimilar modes is followed.

3.3.1. SPECIAL FORCING FUNCTIONS

3.3.1.1. ASYMPTOTIC ANALYSIS

Consider the two-DOF system of the previous section with equations of motion

given by relations (3.3):

iy 4 filzy) + foley — 22) = p(t)

(3.3)
Zy + fi(ze) — fo(zr —22) =0
where the stiffnesses f;(e) are given by:
filu) =u+
(3.59)
fg(u) = Kqju + ](3’&3
As usual, the usual set of initial conditions, 1s assumed :
;171<0) = }{1 11(0) =0
(3.60)

L)(O) = ‘Xg 19(0) =0

In section 3.2.2 it was shown that the unforced system possesses only two normal
modes of free oscillation, and that similar steady state motions exist if and only
if the forcing function p(t) is selected according to the functional relation (3.35).
Thus, it is of interest to investigate the possibility of existence of any additional
nonsimilar steady state motions when the applied force is general and does not

necessarily satisfy relation (3.35).
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To this end, consider a linear functional relation between the force and the steady

state displacement of the form:

w0 = (5

Jz(t) (3.61)
In writing (3.61), it was assumed that a steady state oscillation occurs where the
coordinate z4(t) oscillates with a maximum amplitude X;. Taking into account

the expressions for the stiffnesses and the force, the differential equations of motion

become: 5
Ty 4+ a(1+e)+ 417]3 + Ki(xy —x9) + K3(xy —29) =0
(3.62)
Fo+ag 428 + Ki(2g —21) + Ka(zg —21)° =0
where € = —P/X,. Regarding for the moment € as a fixed, structural parameter,

the steady state problem is converted to an equivalent free oscillation one. Note,
however, that this equivalence only holds at the steady state. For ¢ = 0 (unforced
motion), two similar normal modes exist, corresponding to ¢ = +1. For e # 0,
it can be easily shown that the equivalent problem cannot possess similar normal
modes (since there do not exist any real values for the modal constant ¢, that match
simultaneously the linear and cubic terms of equations (3.62)). Thus, no similar
steady state solutions exist for the forced problem, and it is necessary to search for

nonsimilar steady state motions.
The nonsimilar normal modes of the equivalent problem (3.62), are computed by
imposing a functional relation between the coordinates of the form:

Lo = Iiz(l'l) (363)

Using the methodology of section 2.3 (where nonsimilar normal modes were ana-

lyzed), it can be shown that the function &,(e) must satisfy the following functional
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equation:

il $§*‘X12 - :l?% __}({L AR ~ 3 A
BT ke K+ B 4 [ Ra(E - a6 - Kadal€))d6) -
Z X1

—gh{z (14 e)+ 2+ Kyzy — K189 + (2 — £2)3}+

+Tq + fg + K330 — Ky + I(g(i‘jg — 171)3 = (364)

where (o) = %%l This functional equation is singular at z; = X; (i.e., at the

maximum equipotential surface of the equivalent free system), but, as shown ear-
lier, the solution can be successfully approximated by an asymptotic series. There
15 a “boundary condition” -for the functional equation (3.64), resulting from the
requirement that the modal line of the nonsimilar normal mode of the equivalent

problem intersects orthogonally the maximum equipotential surface:
._;i'g(_f‘(l )’{‘Xl (1 -+ 6) + AYE + I\’IAX'I - ]X'ISEQ(}{l ) + I\fg(‘Xl - \7:'2(}(1 ))3}+‘

Fa(X ) 4 23X )+ K da(X)) — KO X + Ks(32( X)) — X1)* =0 (3.65)

Assuming that the quantity e is small (i.e., that the excitation is weak), one can find
an asymptotic approximation for the nonsimilar normal mode of the equivalent free
problem (3.64-65), using the perturbation technique outlined in section 2.3. Since
e depends on the applied forcing magnitude, the resulting nonsimilar mode corre-
sponds to a nonsimilar steady state oscillation. Summarizing, the nonsimilar steady
motion can be asymptotically approximated by transforming the forced problem (at
the steady state) to an equivalent free oscillation one that can be approximately

solved by applying the asymptotic methods outlined in previous sections.
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In what follows, the asymptotic solution for the nonsimilar steady state motion is
outlined. Details of the perturbation analysis have been omitted since it is analogous
to the one performed in section 2.3. The nonlinear modal line of the steady state

1s expressed as follows:
e+ (xy) + (3.66)

To(zy) = Ty

where the zero-th order approximation, 3:( )(o), 1s computed by considering the

balance of the O(1) terms in (3.64-65):

(0) € e 2. 1/2
Ty (xy)=cay , c=cg = SR + {1+ I )} (3.67)
where ¢ = —P/X;. The first order approximation z,ﬁ )( e) is then expressed in the

form:
M = e, ¢ ot 4 el 6 368

The coefficients aé]-) are computed by considering O(e) terms. Their analytic ex-

pressions are identical with formulas (2.63), obtained for the free oscillation problem

of section 2.3.3:

R Sl D SLF R VR SO S U S E A R SR 6O

5
—(1+3Lx2 45V xny Y L TV x2)y 41+ L2 L LW x4 My

l
(Y -1y

(1)
. = [
PerVx? poar W x o
) _ ~73" LYY + o) + 1 - T ey
M5 = D) (1 v o) -2 (1) 4 -
207V X2 4 10T X 20TV X2 + 10T X

=" + L{"al) (3.69)
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where, in this case,

P
Tl(l) = 1-—‘:“‘*}*[(1(1—(1)
X
T =1+ Ky(1 - ¢)®
T! =1+ Ki(1+¢) (3.70)
T = 3K (1 — )2 2 a1 02
= 315(1 —¢)’c+ 3¢” + 3N 5(1 —¢)

TV = —c = eKy(1 = ¢’ + & + Ky(c — 1)°

Summarizing, in the nonsimilar steady state the system oscillates as in a nonsimilar
normal mode; the motion in the configuration plane is a curved modal line given
by:

To(a1) = (c+ (’1,;11))1‘1 -+ (Lglg)l‘? + —i—aé]s);r‘;’ + O( ex], €) (3.71)
Depending on the value of ¢, two modal lines exist, the one corresponding to forced
steady motions occurring in the neighborhood of the symmetric (¢ = +1) mode, and
the other corresponding to forced oscillations in the vicinity of the antisymmetric
(¢ = —1) one. The time response, vy = z;(t), can be found by an integration by

quadratures of the first of equations (3.62), with @ given by relation (3.71):

f = t(.’IJ1> =
gUSY l
= i/ s 12 =
Jx, T L D o
[V = €2) + (X — ) + B(XV — €9) + Ofea], e2) )
= 4 G(Xy,8)d¢ (3.72)
X,
where .
1 =1-——aV 4+ Ki(1-¢)
X, ‘
3 -
L(;I) =1~ Klagg) + 3(1 — ¢ — cz,gll)) (3.73)

2
= —Kyah) = 3R5(1 — ¢ — a3)) aly
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and
i 1
G(X,P¢) = o 1/2
(1(x2 g2 +J_(_\4 4)+—Iﬁ3—-(X§—§6)+O(eIL€2) }
(3.74)

The frequency response curves corresponding to the nonsimilar steady state motion
are computed by expressing the frequency of the steady oscillation as a function of
the displacement amplitudes X; and X,. The details can be found in section 2.3.3,

and the derived analytical expression for the frequency is as follows:

™

=w(Xy,P) = (3.75)
_j\ ‘Ylv )df

The frequency response curves corresponding to the nonsimilar steady state mo-
tion were computed using the asymptotic solution (3.75). The results appear in
figure 3.6, for P = 0.1,I\; = 1.3 and K3 = 0.6. To check the accuracy of the
series solution. the equations of motion were numerically integrated with a fourth
order Runge-Kutta algorithm, and the exact initial conditions for the nonsimilar
steady states found. This was achieved by fixing each time the amplitude X, to its
theoretical, asymptotic value, and subsequently “tuning” the amplitude X, until a
modal line appeared in the configuration plane. In figure 3.6, the exact solutions
are superimposed to the asymptotic ones, and clearly, the agreement is satisfactory

for low values of the displacements.

Some of the steady state solution branches will be shown to be orbitally unstable.
However, since the steady state problem is converted to an equivalent free one,

it is possible to find numerically even the unstable steady states by computing
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the nonsimilar mode of the equivalent free problem. Since the equivalent problem
has two nonsimilar normal modes that result as perturbations of orbitally stable
similar ones, the “equivalent” nonsimilar modes are expected to be orbitally stable
and as such can be numerically detected. However, this does not imply that the
forced problem has only stable steady solutions, since its equivalence with the free
problem holds only at the steady state. To investigate the stability of the steady
state motion, one has to examine the effects that small perturbations have on the

forced response.

3.3.1.2. STABILITY CONSIDERATIONS

To examine the stability of the nonsimilar steady state solution (3.71-75), one in-

troduces small perturbations £(¢) and n(t) to the forced response, as follows:

ai(t) = a1(t) + (1)

(3.76)

zo(t) = To2(t) + n(t)
In the above equations, (t) and 2,(t) denote the exact nonsimilar steady state
motions. Substituting (3.76) into the equations of motion (3.3), taking into account
the chosen functional relation for the force (3.61), and noting that ,(t) and &2(t)
satisfy the steady state relations (3.62), one obtains the following set of variational
equations:

£+ 43226+ K6 =) +3K3(2) —F2) (E—1) =0

(3.77)
n+n+ 3:1“:37; + Ky (n— &) 4+ 305(20 — 2y )2(7] — &y =10

where terms of order higher than € or n were discarded. Equations (3.77) form a set

of coupled Hill-equations. Since the steady motion is nonsimilar, one cannot apply
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the approximate stability analysis that was used in section 3.2.1.3 for the similar
steady state motions. Hence, it is necessary to apply Floquet theory in order to
determine the stability of the variational equations. Details of the theory can be
found in standard books of differential equations (for example (Arnold, 1982)). In

this work only an outline will be presented.

The technique applies to linear vector fields of the form,

z = A(t)z (3.78)

where x is an n-vector and Alt) is a time-dependent, periodic system matrix, of
minimum period 7. It is numerical in essence, since it relies on the computation
of a certain “fundamental solution matrix” of the system. The components of this
matrix are the solutions of (3.78) corresponding to the following two separate sets
of initial conditions:

r

;lfk:?ik]' s k:l,...,l' ,j::l,...,f\r

:i’k =0

and
Thpo= 0k . k=1,...N ,J=1,..N
xp =0

where the quantity o;; is Kronecker’s-delta function. Evaluation of the “fundamen-
tal solution matrix” at t = T (the period of the time-varying system matrix A(?)),
leads to the “Flogquet matrix” of the system. A basic theorem of Floguet theory
states that. if all the eigenvalues of the “Floquet matrix” lie inside the unit circle,

then all the solutions of the vector field (3.78) are stable.



- 168 -
The variational equations (3.77) can be put in the form (3.78), by introducing new
variables v = £ and v = 7, and transforming the two second order differential
equations into a set of four, first order ones. Then Floguet theory can be applied
to the new set of equations. The steady state responses &;(t) and Z,(t) were nu-
merically evaluated by integrating equation (3.72) and by taking into account the
expression for the modal line (3.71). The “Floquet matrix” of equations (3.77) was
then computed and its eigenvalues found by a numerical technique. The results
appear in figure 3.7, were the eigenvalues of the “Floguet matrix” corresponding to
the nonsimilar steady state solutions of figure 3.6, are presented. At figure 3.7a,
the eigenvalues associated with a branch of steady solutions “neighboring” the sym-
metric mode, are shown (points 4, B and C correspond to respective points in the
frequency response plots of figure 3.6). Note that at point B, one of the eigenval-
ues leaves the unit circle, indicating orbital instability of the respective branch of

solutions.

Observe. however. that the remaining steady state solutions correspond to eigen-
-alues of unit modulus (since they lie on and not inside the unit circle). Hence, the
diagram of figure 3.7a cannot prove orbital stability for these branches and a direct
integration of the equations of motion is needed to determine their stability. To ex-
plain this. recall that at the nonsimilar steady state, the forced motion is equivalent
to a free oscillation, and as a result, at the steady motion the oscillator is virtu-
ally hamiltonian. Thus. the corresponding eigenvalues of the “Floquet matrix” at

the steady state must occur in reciprocal pairs, and moreover. the product of their
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moduli must be equal to unity (Arnold, 1982). Clearly, this requirement eliminates
the possibility of a pair of eigenvalues lying inside the unit circle; thus, one cannot
prove orbital stability for the remaining branches of solutions. A direct numeri-
cal integration of the equations of motion indicates that the solution branches in

question correspond to orbitally stable nonsimilar steady state motions.

In figure 3.7b, the eigenvalues corresponding to a branch of steady states occurring
in the vicinity of the antisymmetric mode are shown. Again, some of the solutions
are proven to be orbitally unstable. Moreover, it can be shown that all the other

steady motions presented in figure 3.6 are orbitally stable.

To check the aforementioned stability results, a direct numerical integration of the
equations of motion using a fourth order Runge-Kutta algorithm was carried out.
The stability of a particular steady state motion was evaluated by introducing
perturbations in the exact values of the initial conditions (necessary for the steady
state oscillations). At figure 3.8a, the effect of perturbing the exact initial conditions
of an orbitally stable mode are shown. The exact initial conditions for the steady

state motion are

(21(0).41(0). 22(0). #2(0) ) = ( 0.3.0,—0.338052,0 )

and the stability 1s examined by introducing a 5.3% perturbation in the initial condi-
tion for x4 (0). It can be seen that this only results in a slight amplitude modulation
of the response, whereas, overall, the waveform remains essentially unaffected. This
cannot be stated. however, for the perturbed response of figure 3.8b. This motion

corresponds to a 1.7% perturbation in z5(0) of an orbitally unstable steady state
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motion, with exact initial conditions:

(21(0),31(0), 22(0), &2(0)) = (—0.6,0, —0.636263,0)

Observe that, although the perturbation is small (it is almost five times lower than
that of the first case), it has drastic effects on the waveform of the response. A
large amplitude modulation results, and the waveform of the perturbed motion is

nowhere near that of the original steady state.

3.3.2. GENERAL PERIODIC FORCING FUNCTIONS

Until now, the similar and nonsimilar steady motions of the class of nonlinear
systems under investigation were examined by considering special forcing functions.
A basic feature, however, of nonlinear discrete systems is that, depending on the
form of the excitation. they may possess multiple steady state solutions (in contrast
to the linear case. where only steady harmonic oscillations can be realized). A basic

question therefore arises:

Suppose that a nonlinear oscillator of the general class of systems under investiga-
tion 1s acted upon by a periodic ezcitation. Under what conditions will this force

produce an exact steady state motion?

Two remarks are appropriate at this point. First, the required conditions must
depend on the degree of nonlinearity of the system. as well as on its structural
parameters. Second. a steady state motion for the class of undamped oscillators

under investigation can be materialized only for a specific set of initial conditions.
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This is because in undamped systems, initial transients do not decay with time (as
in systems with damping). As a result, one has to initiate the motion with specific
initial conditions in order to obtain a periodic, steady state response. Thus, there

exist two sub-problems resulting from the aforementioned general question:

- The first problem concerns the derivation of the necessary and sufficient conditions

that a periodic force must satisfy in order to lead to an exact steady state.

- Then, given such a periodic excitation, one has to compute the specific set of initial
conditions of the oscillator that lead to an elimination of the initial transients of

the response and give rise to a periodic steady state motion.

In the following sections a general methodology for addressing the above problems
is outlined. Then, an application of the theory is given for a two-DOF oscillator

with cubic nonlinearity.

3.3.2.1. ASYMPTOTIC ANALYSIS

Consider the general n-DOF nonlinear, undamped system, excited by n forces p;(t) :
o= filegan)Fepi(t), 1=1,...n (3.79)
subject to the set of initial conditions ,
0)=X;, (0)=0, +1=1.2,....n (3.80)

The forces p;(t) are assumed to be “weak” (since their amplitudes are proportional
to the small parameter €) and periodic with least common period T. The methodol-

ogy that will be followed is similar to the asymptotic technique presented 1n section
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2.3.3, where the problem of nonsimilar normal modes was addressed. Its basic fea-
tures can be found in (Mikhlin, 1974), but certain aspects of the analysis presented

in this work are completely new.

The nonconservative system (3.79) can be viewed as a perturbation of a conservative
one, corresponding to € = 0. In what follows, it is assumed that the unperturbed
system possesses normal modes of free oscillation, and that the steady state motions
of the perturbed system result as perturbations of the normal modes of the free
oscillator. Hence. one can develop an asymptotic approximation to the steady state
oscillation, where the leading term is the unperturbed normal mode motion. The

details of this approximate solution are outlined below.

Suppose that the system (3.79) oscillates in a steady state motion. Then, the
response x; = x1(t) 1s periodic with minimum period T (equal to that of the
excitation); therefore, at the steady state, one can express the time variable t as
a single-valued function of 2y, for ¢ in the interval [0,7/2). Symbolically one can
write:

t=tx;) . te€[0,T/2) (3.81)

Using (3.81), one can eliminate the variable ¢ from expression (3.79), and obtain
g p

the following equivalent autonomous system:

Ti= filey,oan) +epi(tlay) = filer, . xn) Fepi(ay), i=1,...n (3.82)

where p,(wy) = pi(t{xy)). Note that the equivalence between systems (3.79) and

(3.82) holds only at the steady state. The system (3.82) is autonomous and has
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a form similar to that of the systems examined in section 2.3.2. Thus, the forced
problem 1s converted to an equivalent free oscillation and the steady state motion
of the original system corresponds to a normal mode of the equivalent free system.
Thus, an asymptotic analysis similar to that of section 2.3.2 can be followed, with

only minor modifications.

The nonsimilar normal modes of the equivalent problem (3.82) are expressed in the

form:

ri=3ar) , t=1,.n, 1F (3.83)

In analogy to equation (2.40) of section 2.3.2, the nonlinear functions #;(e) satisfy

(n — 1) functional equations of the form:

5 —1
" dik 2 (],29}1‘
2 — V(z(x, :A'n Ly
20h — V(2 (@), .., Tolz ))} {1—}— <‘d:cr) } e
k=1,ks#r
o . o dz; o . -

+ [fr(*yl;l(:l"'r)-‘ '--vL'n(?L.r)) + Epr*(ﬁl"l(:l:r))}dl_ - fi(l‘l(l‘r)a ---HL'n(IT‘)) ~+ 6pi<$l(IT))
(3.84)
where, ¢+ = 1.2,...,n i % r, h is the total (fixed) energy, and 17 is the

yotential energy of the equivalent conservative system {3.82).
5 { 3

Complementing the aforementioned functional equations, there exist (n —1) bound-
ary orthogonality conditions that guarantee that the modal lines intersect orthog-
onally the maximum equipotential surface of the equivalent system:

dz;

d, }“:X -

r

FrlE )y (X)) + €Brli (X))

= fi (2 (), s 20 (X)) +epr(@ (X)) (3.89)
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A detailed asymptotic analysis will be carried out in the next section, where a forced
two-DOF oscillator with cubic nonlinearity is examined. The general steps of the

asymptotic solution are as follows.

First, one introduces the following series expressions for the functions &;(e) and

t(e) :

Sz, ) = (k)(l,.), t=1,..,n 1 F#T
‘;0 (3.86)
tlzy) = Zﬁkt(k)(l'l)
k=0

The functions ;i'gk)(o) and t'¥)(e) represent successive approximations to the steady
state motion, and the zero-th order terms (k = 0) correspond to the normal modes
of the unperturbed system (with e = 0). If the approximations of order 0, ..., (k —1)
are known, the & — th order approximations are found by substituting equations
(3.86) into the functional equations (3.84) and the boundary conditions (3.85), and
disregarding higher order approximations (of order k + 1,...). Then “k — th order

functional equations” and “kL — th order boundary conditions” result.

The b — th order approximation ;z",,'{lk) 1s 1tself expressed in a series representation:
o0
P, = Z al )l (3.87)
t=1,2,....n . ¢ #r. Note that only even terms are included in the series because
of the symmetries of the modal line in the configuration space. The real scalars
f‘&;) are determined by substituting the series (3.87) in the “Ak —th order functional

relations” and the "k —th order boundary conditions,” and matching coeflicients of

respective powers of x,.
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Moreover, successive approximations for the amplitude X, are obtained by requiring
that at each level of approximation the period of the steady state motion be equal
to T. The asymptotic solution converges in any open sub-interval of [-X,, X, ], but
not at the limiting values z, = £X,. A rigorous mathematical proof regarding the

convergence of the above asymptotic scheme can be found in (Manevich, 1972).

Summarizing, at each level of approximation the forced system is reduced to an
equivalent autonomous one and the steady state motion to an equivalent nonsimilar
normal mode. The equivalent normal mode can then be conveniently studied using
the asymptotic technique of section 2.3.2. Thus, one proves that to each normal
mode of the unperturbed system (resulting for € = 0) corresponds a steady state
motion and that the trajectory of the forced steady motion in the configuration

space 1s sumilar to that of a normal mode of an equivalent conservative system

(Mikhlin, 1974).

To demonstrate the outlined asymptotic analysis, a specific application is given.

3.3.2.2. SYSTEM WITH CUBIC NONLINEARITY: BASIC THEO-

REM

Consider the oscillator with cubic nonlinearity of section 3.3.1, acted by a weak
periodic excitation ep(t) ( |e] < 1), of period T

I+ ay ;z"f + Wyley —ay) + Is(ay — ;172)3 = ep(t)
(3.88)
Ty 4 29 + ;z,rfé + Ny(ao — )+ Ka(ay — 2y )3 =0

As usual. the set of initial conditions (3.60) is assumed. If no excitation exists
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(e = 0), the system has two similar normal modes, corresponding to modal constants
c¢=+1. When ¢ # 0, the normal modes are perturbed, and the conditions on the

forcing function for an exact steady state motion should be found.

If such a steady oscillation occurs, the responses of the system are periodic, (of
period T'); then, one can express the time variable t as a function of the displacement
xy, le., t = t(z;), where t is restricted in the range ¢t € [0,7/2). Thus, in principle
one can eliminate the time dependence in the expression of the forcing function,
and symbolically write p(z;) = p(t(zy)), t € [0,7/2). As a result, at the steady
state, the forced problem (3.88) is equivalent to an autonomous one, described by
the following set of equations:

I+ + -1‘:15 + KNy(x) —x2) + K3(x; — 1‘2)3 = ep(z1)

(3.89)

Fo 4y +ad + Ky(ag —ay) + Ky(zg —21)’ =0
for t+ € [0,7/2 ). As mentioned earlier, a nonsimilar normal mode of the
equivalent system (3.89), corresponds to a nonsimilar steady state motion for the
original forced problem (3.88). Consider now such a motion. with a modal line in
the configuration space given by vy = #5(x1). The function Z,(e) must then satisfy

the functional relation:

2t — X7 3 xd — X4
,:2(1 - 1)(1+A1)+(114 1)_

—

4%/[&M~h@f~h@m—@@Wﬂ-

Nyxy — 2oy + NWy(ay — 452)3 —ep(ay )+

l
+
+

3

.){.
+
+

Kl IAg - I\rl Ty + ]&’3(.’{‘2 - .1'1) = () (390)
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and the orthogonality boundary condition:

-2 (X { Xy + X‘f + I X — 3o (X)) I 4 KX — 29(X, ))3 —ep(Xy)}+

FE(X1) 4 2o(X1) 4+ Kda(X1) — K1 X, 4 Ka(82(X) = X1)° =0 (3.91)

where primes denote differentiation with respect to ;. Note that, in contrast to the
case of free oscillation, the amplitude of the response X; is an unknown quantity

and has to be evaluated by the asymptotic technique.

The modal line of the equivalent autonomous system is asymptotically approxi-

mated by

Fo(ar) = 2 (2y) + 2\ (21) + O(2) (3.92)

and the various orders of approximation are evaluated separately.

ZERQO —TH ORDER APPROXIMATION

The zero-th approximation ;i'((;))( e ) is found by substituting (3.92) into the functional

equations (3.90-91) and considering only terms of O(1). The resulting responses

correspond to the similar normal modes of the “unperturbed” system (with € = 0):

(0)

Ty () = cuyp , ¢ = %1 {3.93)
Moreover, the time response xy = () is given in terms of an elliptic function:
x1(t) = Xy en(qt, k) (3.94)

where

(12 = /\2 -+ /(,2AX'{20 N /\?2 e /zz_X'f()/qu
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and

N=1+LK(1-¢), p*=1+L;3(1— C)3

The quantity X, denotes the first order approximation to the amplitude of oscil-
lation X, and is a yet unknown quantity. To compute X;o, one has to impose
an additional condition, namely, that the oscillation (3.94) is of period T. This is
because, at the steady state, the forced oscillation is of the same period with that

of the excitation. Thus, one requires that:

27
S — 3.95

The only unknown parameter in (3.95) is Xyp, and this quantity is easily evaluated
by a numerical root-finding technique (in this work, the method of bisection was

used ).

The relations (3.93-95) give the zero-th order approximation to the steady state
oscillation that, as mentioned previously, coincides with the free motion of the

oscillator.

FIRST ORDER APPROXIMATION

A higher order approximation to the steady state motion can be obtained, if one

substitutes the asymptotic approximation (3.92) into the functional relations (3.90-

91), and considers only O(¢€) terms. Then, the following two functional equations
(1)

for z,, '(e), result:

A1) - ri - - 3 (Ql"lli _‘X—ii())
28 [ R (1 ) g 1 e

}_
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~(1) - - 37..3
—3y  { I+ K (1 =—o))ay + 1+ L3(1 — )|z} }+
+2 [T+ K (1 + )] +3¢%27 Y + polay) =0 (3.96)
and

X 1+ K1(1 = o)) X0 + [1+ Ks(1—¢)*]X3, 1+

+2 (X0 1+ K (1+0)] + 32X 2 } + po(Xpo) =0 (3.97)

The term py(e) that appears in the above equations represents the first order ap-
proximation to the function p(e) that results when the time t is expressed as a
function of z;. Hence, to compute py(e), one has to “invert” the functional relation
(3.94) and solve for t as a function of z1. This “inversion” is carried out as follows

(Byrd, 1954):

1/2

i 1 2
il =cn(qt.k) = t=ta)=~-F(sin™' [1 = (2,/X10)7]
Aq0 q

, k) (3.98)

where F'(e, ) is the complete elliptic integral of the first kind. Note that the above
relation only holds for t € [0,7/2) (or equivalently for ; monotonically decreasing
i [ X9, —XNio )) . since only then there exists a single-valued representation t =
t(xy). Taking into account (3.98), the function pg(xy) i1s found by eliminating the
time variable ¢ from the expression of the force p = p(t):

1 . . 2
Polay) =p( :jF( sin™ 1 = (21/X1)7]

2 (3.99)

Thus. an explicit, analytic expression is obtained for the function py(z;), which in
turn can be substituted into the functional equations (3.96-97)) to obtain the first

. . {1 . . .
order approximation ;zn(, )(;1:1). Note, however, that the above expression is very
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complicated and, thus, of no practical help for the analysis. In order to obtain a

more useful expression for pg(z;), one has to introduce a change of variables.

The “amplitude function,” am(e,e), is introduced at this point, defined as (Byrd,

1954):

en(u, k) =cosp = ¢ =am(u,k) (3.100)

Then, from equation (3.98), one can write:
en(qt, k) = cosp = ¢ = am(qt, k) (3.101)
or, solving for the variable :

t= l(I,m'l(gb,k) =t = ! F(¢,k) (3.102)
q q

where the relation am™'(e,e) = F(e,e) was used (Byrd, 1956), and F(e,e) is
the complete elliptic integral of the first kind. Thus, instead of expressing t as
a function of z; (equation (3.98)), one can write it as a function of the newly
mtroduced variable ¢. Then, climinating the time dependence from the forcing

function p = p(t), one obtains:

1
po(x1) = pol¢) = pl " F(o,k)) (3.103)

The quantity pg(¢) represents the first order approximation to the forcing function,
when the time variable t is evaluated according to the zero-th order solution. In
that sense, 1t is exactly analogous to expression (3.99), where the displacement z;

1s used as the independent variable.
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Note at this point that the displacement z; can be also expressed in terms of the
new variable ¢, as:

z1 = T1(¢) = Xypcosd (3.104)

Equations (3.103-104) provide a means for computing an alternative, simplified
expression for the required function po(z;). To achieve this, one has to expand
the expression (3.103) of py(¢) in a “generalized Fourier series” with respect to the

variable ¢ (Bejarano, 1988.1989), (Margallo, 1988).

Referring to equation (3.102) and taking into account certain properties of the
complete elliptic integral of the second kind, it can be shown that:

t €0, +7/2) < ¢ € [0, +7)

te [-T/2,0) = ¢ € [-m, 0)
Clearly, in each of the above time intervals, the representation t = t(z 1) has meaning
(i.e., is a single-valued function). Moreover, the above relations, coupled with the
assumption that the foreing function p(t¢) is periodic with period T, lead to the
conclusion that the function py(¢) is periodic in @, with a period equal to 2x. It

can be, therefore. expanded in “generalized Fourier series” as follows:

pol @) z A cosng + Z B, sinmao (3.105)

n==Q m=1

where the coefficients 4, and B,, are computed by the well-known Fourier series

formulas:
1
:10 = 3—7': ~ ])0 (ZG)
1 w
A, =— pol(@)cosne do (3.106)
1 T
By = — / po(@)sinmo do
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Consider now the first approximation for the displacement, iél)(xl), and express it

in the following series form:

:Z'(Ql)(:vl) = agll);ul + a%);c“z‘ + aé?w? + .. (3.107)

or transforming into the new variable ¢ :
#V(2y) = 20(¢) = alV X1pcoss + al) X3 cos® ¢ + al) X5 cos®d + ... (3.108)

Substituting now for 1 = Z1(¢),po(x1) = po(¢) and :frél)(:cl) = fté”(qﬁ) into the
functional equations of the first approximation (3.96-97), one obtains the following
set of equations containing only trigonometric terms of the variable ¢:

(1) y~ / (1) 43 3 (1) y-2 2 (U‘X?O 4
(—=6ayy Xigcosp — 20ay, Xigcos @) { T, ' Xiy(cos“¢p — 1)+ T, ——-2—-(603 é—1) I+

+(L—a(211) — 3a(2§)X1200032¢ — 5(1&15)]&’?0c034¢){ Tl(l)choscb + TQ(UXfOcosB(ﬁ +
+(\agll)chos¢ . a((u,;)Xfocos%ﬁ + ag,?Xfoco\@qﬁ){ T:.fl) + Til)XfOcoszqﬁ T+
o0 o0
+c Z A, cosng + Z Bpsinme } = 0 (3.109)

n=_ nm==1

and
D o (D2 = (1) g4 - 1) y- 1)
“H_“'Ezl) - '3“(23)‘X The 0“%5)}* 1)1 Tl( X0 + TQ( )‘Xi}o }+

JV(“‘(zll)Xlo + (Iv»(g;)X?o + ”"(3(15)‘\"15(>){ T:§“ + T;”Xfo }+e Z 4w =0 (3.110)

n==0

where terms of order O(2]) = O(cos’ ¢), or higher, were omitted, and

T =14+ K(1-¢)
TV =1+ Is(1 = ¢)®

(3.111)
TV =1+ K, (1+¢)

Til) = 3¢*
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An exact steady state motion can only occur, provided that one is able to evaluate
the coefficients a(z]j) in the above expressions, by suitably matching coefficients of

respective powers of cos¢ and sing. To do this, it is needed that the terms cos n ¢

and sin n ¢ be expanded in terms of powers of cos¢ and sing.

Considering the functional equations (3.109-110), the following general remarks can

be made as far as the generalized series of the forcing function is concerned:

1) For a steady state motion to occur, it is necessary that the coefficients of the

sine-terms of the generalized series of the force, be zero :
B, =0, m=1,2,3,.. (3.112a)

This is because, in the functional equation (3.109), terms containing powers of sing

. 1 ”» .
cannot be balanced for any values of the coefficients (1(2]-) . In fact, condition (3.112a)
can be shown to be equivalent to the statement that the steady state response of

the undamped oscillator is either in-phase or out-of-phase with the excitation.

In order to prove this, note that a basic assumption of the outlined steady state
analysis is that the initial conditions of the system are given by equations (3.60),
1.e., that they correspond to zero initial velocities for the coordinates z; and z.
Hence, the steady state oscillation of the system is expected to be an even function
of ¢, and since the system is undamped, the periodic excitation must be either in-
phase or out-of-phase, with the displacements. Thus, it is necessary that the forcing
function be an even function of ¢ in the interval of oscillation ¢ € [~T/2, T/2),

or equivalently, that py(¢) be an even function of ¢ in the interval ¢ € [—m, 7).
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This requirement, however, is equivalent to the statement that the Fourier series of

Po(¢) do not contain any sine-components.

Thus, in order to obtain an exact steady state oscillation, one must impose a first
major restriction on the class of periodic excitations, namely, that their generalized

Fourier series do not contain any sine-components.

2 ) A second restriction on the coefficients of the Fourier series (3.105) results from
the fact that there exist only odd powers of cos¢ in the functional equations (3.109-
110). Hence, in order to be able to balance the various terms of these equations, it

1s necessary that the Fourier series of py(¢) do not contain any even cosine-terms:
Ay =0, ) =0,1,2,.. (3.1125)

This condition is an immediate result of the fact that the nonlinearities of the
oscillator under consideration are of odd degrees, and thus, there exist no even
powers of coso to balance the odd cosine-terms of the generalized Fourier series of

the excitation.

3 ) In particular, for j = 0, equation (3.112b) states that the generalized Fourier

series of the excitation p(#) must not contain any constant term:

/W Po(6)dé = / p<§F<¢, k) dé =0 (3.112¢)

- -1

Equation (3.112¢) is the equivalent for the system with cubic nonlinearity, of the
analogous (trivial) condition satisfied by harmonic forces in linear steady state mo-

tions, namely that:

/2
/ plt)dt =0 ( Linear theory ) (3.113)
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In fact, one can easily show that when the coefficients of the nonlinear terms in the
equations of motion vanish, equation (3.112c) degenerates to the expression (3.113).

Note, however, that condition (3.113) does not imply (3.112¢).

Summarizing, it was found that in order for a steady state to exist (or equivalently,
in order for the functional equations to have solutions for the coefficients aglj) )
certain restrictions concerning the class of admissible periodic excitations must be
posed. These are necessary conditions for a steady state motion and are given by
equations (3.112a.b). In the sequence it will be shown that if these conditions are

) . . (1)
met, one can always compute numerical values for the coefficients . ;

, Or equiva-
lently one can always obtain an exact nonsimilar steady state oscillation. Thus the

aforementioned conditions will also be proven to be sufficient.

Assume at this point that conditions (3.112a,b,c) are satisfied. Then, a balancing
of respective powers of cose = x;/X;p in equation (3.109), leads to the following
values for the coefficients (L,(zl]-), 7 =3.5,..:

(1) (1), (1) (1) /5~
Ty =Ty ay, eSS/ X

(Lyq — =

ToerVxz 43V, 6TV paTiVxs

= L(ll)a(gll) + L;l)

() _
s =

(L on ! - - T T ey (eS8 X)) + LT -1y

20TV 2+ t0m X 2071V X2+ 10TV X3

=L{"al) + L (3.114)
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where TJ(I) .7 = 1,2,3,4 are given by expressions (3.111) and,

S = 4] =345+ 545 + ...

S =44y — 2045 + ... (3.115)

S = 1645 + ...
The terms A; appearing in the above sums are the coefficients of the cosine “gen-
eralized Fourier series” (equations (3.105-106)).
(1) .

The coefficient ay;’ is computed by substituting expressions (3.114) into the “bound-

ary orthogonality condition”(3.110):

al) =tV LY (3.116)
where
Lfs” = (3L(2”Xfo + 5L§”,X'fo‘)(Tf”Xm + T;)(I)Xfo)—
(L X3+ LY XY + TV X)) — oS+ 55+ 58
and

LY = X1+ LNy + VX + 1V N ) -

~Xi0(1+ 3L X + 5L X1 + TV X

Equations (3.114-116) provide asymptotic approximations for the coefficients of the
terms of the modal curve corresponding to the nonsimilar steady state motion.
Note, however. that the outlined asymptotic solution is only valid for sutliciently
small values of ¢ (i.e.. for weak periodic excitations) and for a sufficiently small

neighborhood of the origin of the configuration plane (since terms of O(2]) or higher
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were omitted). One can improve the validity of the solution for large amplitudes
by computing higher order coefficients aéj)) 7 = T1,9,.... At the steady state, the
system oscillates in a nonsimilar motion, described by a modal curve of the form:

to(xy) = (c+ Eagl))11 + ea(ng x4 eagls):L? + O( ez, €%) (3.117)

Since ¢ can take either the value +1, or —1, the system has two possible nonsimilar
steady state motions, each one occurring in the neighborhood of a similar normal
mode of the unforced (unperturbed) system. Moreover, the time responses of the
system can be evaluated by substituting the modal relation (3.117) into the first
of the equations of motion (3.89), and integrating by quadratures. Note, however,
that in order to do this, one must also substitute an appropriate expression for the
force p(z;). This is achieved, by considering the generalized Fourier series (3.105),
expanding the trigonometric terms cos n ¢ in powers of cosg, and eliminating
the resulting trigonometric terms by use of formula (3.104). Then the following

asymptotic approximation for the force results:

.3 o
eplay) = FS - 5(1 i +65é1) Ll) + Olex,.€7) (3.118)
AX.H) ‘XIO .X.i()

<. 1 . . . . .
and the quantities 5; ! are given in terms of the coefficients of the generalized

Fourier series, 4,,, by expressions (3.115).
The final expression for the time response of the coordinate zy, is given by:

t=1(x) =

1 7
“m{f ‘XI)()“E )JV“"“(*X?O ¢ )+”L”(Xi)() 56)“'”0(65’71»52)}

(3.119)
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where
I](l) =1- Eagll) + Ky (1 —¢)

1Y =1 - ekyald) + Ka(1—c— eal)’ (3.120)

Iél) = —ely aéll) —3IG(1l—c— eagll))Qéa%)
The (+) or (—) signs are used alternatively so that a monotone increase of the time
variable results. Note that, in writing expressions (2.69), it was assumed that the
mitial conditions of the system were x; (0) = Xq9,21(0) = 0,22(0) = Xgg,22(0) =
0. For a different set of initial conditions, the limits of integration should be modified
accordingly. Once the relation ©; = 2;(t) has been determined, the time response
of the coordinate z, can be easily computed by means of the (nonlinear) modal

relation (3.117).

An improved approximation for the amplitude of steady state oscillation, X5, can
be derived by imposing the additional requirement that the period of the steady

motion is equal to T (i.e., equal to the period of the excitation):

0 dé
_/ Z=T/4  (3121)
SN D, 9 a - _ ity -6 s
[N -2y B (X =) 4 (X0 — €9))

The root of the above equation. X, = X, represents an umproved approximation

to the amplitude of oscillation that replaces the zero-th order approximation Xy.

From the outlined analysis, it can be concluded that if conditions (3.112a,b) are met,
then a nonsimilar steady state oscillation results. Therefore, these conditions are
not only necessary, but also sufficient for a steady state motion. The stability of the
resulting nonsimilar steady oscillation can be examined by the Floguet methodology

outlined in previous sections.
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The results of this section can be summarized in the form of a theorem, as follows.
THEQREM

Consider a two-DOF oscillator with cubic nonlinearity, excited by a periodic exci-
tation p(t), and equations of motion given by (3.88). Prowided that the ezcitation
is sufficiently small, and that the initial conditions are given by equations (8.60),
a necessary and sufficient condition for an exact steady state motion 1s that the
“generalized Fourier series” of the excitation 1s of the form:

o

pol@) = ZAQJ'H cos(2) +1)¢
j=0

where

1 T - . “
dojar = —/ Bo(6)cos(2j + 1)6 do

[ - T

and the function py(e) 1s evaluated by the expression:
- 1
Po(0) = P(EF((JZA’))

In the above equations. F(e.e) is the incomplete elliptic integral of the first kind,
and the quantitics ¢ and k depend on the structural parameters of the oscillator and

the period of the external force.
Moreover, at the steady state the system generally oscillates as n a nonsimilar

normal mode.

What the above theorem states is that there exists a whole class of periodic functions

for the oscillator under consideration that lead to an exact steady state motion. In
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the next section some of these functions will be examined. Note that the theorem
can be easily extended to the case of n-DOF, undamped oscillators with cubic non-
linearity. In that case, one has to consider n functional equations and n boundary
orthogonality conditions in order to compute the modal line in the configuration
space; however, the analysis for the steady state motion 1s carried out in exactly

the same way with that followed in this section.

If the nonlinearity of the system is not cubic, but of a general even power, the
expression defining the quantity po(¢) should be modified accordingly. However,
the argument of the function in the right-hand side of the equation defining po(¢)
will generally be a complicated expression, and it might not even be possible to be

expressed in terms of tabulated functions.

Finally, a remark must be made as far as the unperturbed system, corresponding to
e = 0, is concerned. In this section 1t was assumed that the free system contained
two similar normal modes of free oscillation. The same methodology, however, can
be applied for oscillators that have nonsimilar normal modes. In such cases, one
finds asymptotic approximations for the nonsimilar normal modes, and subsequently
computes the nonsimilar steady state oscillations that result when these modes are
perturbed by weak periodic forcing functions. Then one can prove that in the
vicinity of each nonsimilar free motion, there exists an exact nonsimilar steady

state.
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3.3.2.3. NUMERICAL APPLICATIONS

In this section specific periodic forcing functions will be considered, and numerical
evaluations of some exact, nonsimilar steady state motions will be carried out. As
mentioned previously, a whole class of periodic forcing functions exist that produce
exact steady states of the oscillator with cubic nonlinearities described by equations
(3.88). These forces must satisfy the conditions of the theorem of the previous

section.

The first type of force to be considered is the harmonic cosine forcing function:
ep1(t) = €ePy coswt (3.122)

In the sequence it is shown that this type of force satisfies the requirements of the
theorem of the previous section, and thus, may lead to exact, nonsimilar steady
state motions. The zero-th order approximation for the amplitude X is evaluated
by numerically solving equation (3.95). Substituting the expressions for ¢ and k,

this equation takes the form:

— g 3142 o 1/2
A DK =]+ [+ K1 = o)')XE -
o 20 [+ Ks(1—-0)*] X2, /2 12

[+ (=) +[1+ Ka(1—0)*| X2, )

In the above expression, () is the complete elliptic integral of the first kind.
Setting [Ny = 1.3, 'y = 0.7 and ¢ = %1, one can compute the amplitude Xy, as a
function of the frequency of the external force, w. The solutions of equation (3.123)

are presented in graphical form at figure 3.9. The presented curves correspond
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to free oscillations in either the similar (¢ = +1) or the nonsimilar normal mode
(¢ = —1), and therefore they are the “backbone curves” of the unperturbed, free

system.

X10

w (rad/sec)

Figure 3.9. “Backbone curves” of the unperturbed oscillator ( e =0 ).
The free response of the oscillator is then given by:
x(t) = Xigen(qt, k), z2(t) = £ x(t) (3.124)

To compute the asymptotic approximation of the steady state, one has to evalu-
ate the “generalized Fourier coefficients” of the forcing function. The first order

representation of the forcing function, po(¢), 1s given n this case by:

wF(o, k)

pol@) = P cos ( Y ) (3.125)
{[1 —+ I\.’l(l - C)} + {1 -+ [(3(1 - C) ].X']ZO}

Using this representation, the “generalized Fourler coefficients” of the excitation are

computed by numerically integrating expressions (3.106). A typical set of Fourier
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coefficients is presented below. These values correspond to eP; = 0.1, and two

different values for the parameters w and c.

Setl : c=+1, w=125

A4y = +0.101498, 43 = —0.001543, A5 = +0.000046, ...

Set2 : c=-1, w=2.15

A4y = 40.100921, A3 = —0.000938, A5 = +0.000017, ...

Moreover, numerical integration shows that all even cosine-, and all sine-Fourier
coefficients are zero. Thus, by the theorem of the previous section, the cosine forcing
function can lead to an exact steady state motion. An asymptotic approximation
to this motion can be subsequently computed by means of the analytical formulas

(3.114-116) derived in the previous section.

The exact steady state motions corresponding to the aforementioned sets of Fourier
coefficients were computed. The first set corresponds to w = 1.25 and ¢ = +1.
From the plot of figure 3.9, the corresponding value of Xy was found to be Xy =
0.8726866. This value corresponds to a free oscillation of the unforced oscillator 1n
the ¢ = +1 similar normal mode. Thus, the zero-th order approximation for the
amplitude X'y is Xy = Xy = 0.8726866 (i.e., identical to the amplitude of xy). After

. - . 1 1 1
evaluating the coefficients of the modal line, “‘(21)» a"(zzx) and aés)

, an improved estimate
for the amplitude of oscillation X was obtained by means of equation (3.121). The

improved estimate was computed as X; = X;; = 0.9300499. The amplitude of
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oscillation of coordinate x5 was then evaluated by means of the nonlinear modal
relation ( 3.117 ), with z; = X;,;. The resulting improved estimate for the amplitude
Xo was found to be Xy = Xy = 0.9012262. Summarizing, the first order asymptotic
analysis leads to improved estimates for the amplitudes of oscillation X; and X,.
This is schematically presented in the following notation, where the subscripts (;0)

and (71), J = 1,2 refer to initial and improved estimates, respectively:

(X0, Xo0) = (0.872686,0.872686) — (.X;1,-X21) = (0.930049, 0.901222)

(3.126)

The second set of Fourier coefficients corresponds to w = 2.15 and ¢ = —1. A
similar asymptotic analysis was carried out, and the improved results are presented

below.

(X0, X00) = (0.456623. —0.456623) — ( X1y, Xa1) = (0.464247. —0.406311)

To check the validity of the analytic results, a direct numerical integration of
the forced equations of motion was carried out, with initial conditions z;(0) =
N, 21(0) = 0.22(0) = Xyp,22(0) = 0. The results are presented in figures 3.10
and 3.11. In these graphs. the representation of the forced motion in the configu-

ration plane. as well as the time signals of the response a, and the excitation, are

shown. Note that these numerical solutions confirm the existence of exact steady
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Figure 3.10. Nonsimilar steady state oscillation in the neighborhood of the similar
normal mode ¢ = +1, corresponding to K; = 1.3, K3 = 0.7, and w = 1.25. Forcing

function given by (3.122): ( a ) Modal curve ( b ) Time signals.
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Figure 3.11. Nonsimilar steady state oscillation in the neighborhood of the similar
normal mode ¢ = —1, corresponding to 'y = 1.3, I3 = 0.7, and w = 2.15. Forcing

function given by (3.122): ( a ) Modal curve ( b ) Time signals.
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state motions corresponding to the analytically predicted initial conditions. More-

over, these motions can be theoretically and numerically proven to be orbitally

stable.

A variety of nonsimilar steady state solutions was analytically computed and nu-
merically verified. In general, the asymptotic approximations were found to be
satisfactory as long as they remained in the neighborhood of the normal modes
of the unperturbed system. The majority of these steady states were found to be

orbitally stable, but two branches of orbitally unstable solutions were also identified.

The second periodic forcing function considered is given by:

P.
pa(t) = = tan™" {

2acoswt
2

Tt } (3.128)
This complicated periodic function can be shown to satisfy the requirements of the
theorem of the previous section, and it can therefore produce exact steady state
motions. The structural parameters of the oscillator were [y = 1.3 and K3 = 0.7,
the forcing amplitude was chosen to be e, = 0.15, and the parameter « appearing
m (3.128) was given the value o = 0.5. The results of the asymptotic analysis
for two selected values of w are presented below, and the numerical integrations of

the forced equations of motion (based on the analytically derived estimates for the

mitial conditions), are shown in figures 3.12 and 3.13.

Setl @ w=1.25 ¢=+1

(X1, Xop) = (0.872686,0.872686) — (X1;, Xo1) = (0.915668,0.894198)

(3.129)
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Figure 3.12. Nonsimilar steady state oscillation in the neighborhood of the similar

normal mode ¢ = +1, corresponding to i} = 1.3, 3 = 0.7, and w = 1.25. Forcing

function given by ( 3.128 ): ( a ) Modal curve ( b ) Time signals.
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(X10, Xo0) = (0.456623, —0.456623) — (X1, Xo1) = (0.462823, —0.486446)
(3.130)
Both of the resulting steady state motions are orbitally stable. Again, the numerical
integrations confirm the existence of exact steady state motions corresponding to

the theoretically predicted values of initial conditions.

Although only two forms of periodic excitations were considered in this section,
it 1s evident that one can find an infinity of such forcing functions satisfying the
conditions of the basic theorem of the previous section, and thus producing exact
steady state motions of the oscillator under consideration. In fact, one can construct
such functions by requiring that their “generalized Fourier series” contain only even
cosine-terms. Then. one could use the asymptotic methodology presented in the

previous section to compute the resulting steady state oscillation.

3.3.3. DISCUSSION

In the previous section, exact, nonsimilar. steady state oscillations were examined.
It was shown that during these motions, the system oscillates as in a nonsimilar
normal mode of free oscillation: as a result, it was established that the forced oscil-
lator at the steady state is equivalent to an unforced free system, whose parameters,

however, are modified according to the specific form of the forcing function.

Initially, the forcing function was taken to be proportional to the steady state

displacement. Then, the nonsimilar normal modes of the resulting equivalent free
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oscillator were analyzed by the asymptotic technique of section 2.3. These normal
modes were then shown to correspond to nonsimilar steady state motions of the
forced system. The stability of the steady oscillations was examined by Floguet
theory, i.e., by numerically integrating the equations of motion and computing the

eigenvalues of the corresponding “Floquet matrix.”

The validity of the asymptotic analytical solutions was found to be limited to the
neighborhoods of the normal modes of the unforced oscillator. This is because the
modal curves representing the exact steady state in the configuration plane were
expressed in a series whose dominant terms corresponded to the free oscillations
of the unforced systems. Moreover, the asymptotic analysis was carried out only
up to the first order of approximation; therefore, it was only justified when the
steady state solution is at “distance €’ from the unperturbed response (the normal
modes). Also, the outlined analytical expressions were valid for small amplitudes,
since terms of order 2], or higher, were omitted. However, one could extend the
validity of the approximate solutions, even to large amplitudes. by computing ad-

ditional coefficients of the asymptotic series.

For systems with cubic nonlinearities and general periodic excitations, i.e., not given
as functions of the steady state amplitudes, one has to introduce expansions of the
forcing functions in “generalized Fourier series” with respect to a parameter ¢.
This parameter is related to the solution of the zero-th approximation, i.e., the free
oscillation of the system and, in fact, is an elliptic “amplitude” function. It was

shown that in doing so. one obtains convenient representations for the forces that
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can be subsequently used in corresponding functional equations for computing the
nonsimilar steady state motions. Using this methodology, a general theorem was
stated on the necessary and sufficient conditions that a periodic force must satisfy
in order to produce a steady state motion of the oscillator with cubic nonlinearity.
As a result of this theorem, the general class of periodic functions that can produce
steady state motions in systems with cubic nonlinearity was identified. Moreover,

the theorem can be extended to systems with arbitrary degrees of nonlinearity, and

with many DOF.

The theorem is valid only for weak excitations and assumes that the unforced (un-
perturbed) system has nonlinear normal modes. This is because for large forcing
amplitudes, one has to take into account higher order terms that were omitted in
the presented analysis. Again, the resulting asymptotic expressions are valid only
in the neighborhoods of the unperturbed normal modes since the steady state solu-
tions are assumed to result as perturbations of the free oscillations of the unforced

system.

The accuracy of the theoretical results was tested by numerically integrating the
equations of motion of the system. The asymptotically computed sets of initial
conditions were used for the numerical integrations, and the existence of the the-
oretically predicted steady motions was verified: corresponding to each prescribed
set of initial conditions, a modal curve in the configuration plane existed, indicating

the presence of an exact steady state oscillation.
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3.4. CONCLUDING REMARKS

The exact steady state motions of the class of strongly nonlinear, discrete, un-
damped oscillators under investigation were examined. During these motions the
systems oscillate as in a nonlinear normal mode, and the coordinates are linearly
or nonlinearly related for all times. It was shown that exact steady state oscil-
lations always occur in the neighborhoods of the normal modes of the unforced
systems. Thus. although the principle of linear superposition does not hold for this
class of nonlinear oscillators, the existence and the number of normal modes greatly

influences the forced responses.

Similar steady state oscillations can only be achieved for special periodic excita-
tions that can be expressed as functions of the steady state displacements. Since
no damping exists, during such motions, the responses are either in phase or out of
phase with the excitation, and in addition, they are linearly related for all times.
It was shown that explicit analytic expressions describing the steady state motion
can be derived. Moreover. these analytical formulas are valid for strong nonlin-
earities and/or large amplitudes of oscillation. The stability of the responses was

approximately studied by a hinearized technique.

It was found that for a system in “1-1 resonance,” with cubic nonlinearities and
bifurcating normal modes of free oscillation, the topology of the steady state fre-
quency response curves changes when a bifurcation of normal modes of the unforced
system takes place. At most eight steady states were identified for a given value

of the frequency of excitation. Of this total number, only five where found to be
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orbitaly stable, and which one was ultimately realized depended on the selection of
initial conditions. Note that if a small amount of damping is added to the system,
then one should expect certain “jump-phenomena’” between the various steady state
motions. Also of interest would be to investigate in that case the domain of attrac-
tion of each one of the stable steady oscillations. This can be certainly achieved
for low energies of motion, but when the amplitude is increased one expects to find

chaotic motions and possibly fractal boundaries between the domains of attraction.

For systems in “1-1 resonance” and no additional modes of free oscillation, at most
three steady state motions could be realized for any fixed value of the frequency of
external excitation. Exact solutions for the frequency response curves were derived,
but a difficulty of interpretation of the results was encountered since it was not
possible to directly define a convenient amplitude for the exciting force. However, a
perturbation analysis indicates that the exact steady state motions of these systems
degenerate to well known approximate harmonic steady states found by standard

techniques for weakly nonlinear systems.

Although the analytical expressions for the similar steady states hold for strongly
nonlinear systems and large amplitudes of oscillation, their validity is restricted
from the fact that they can only be realized for special forms of the excitation.
To overcome this limitation, nonsimilar steady state motions were considered, 1i.e.,
oscillations represented in the configuration space of the system by curves (and not
necessarely straight lines). It was shown that there exists a general class of periodic

excitations that can produce such exact nonsimilar motions. This class consists
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of forcing functions with “generalized Fourier series” that contain only even cosine
terms. Moreover, the way in which these “generalized series” are defined depends

on the degree of nonlinearity of the system:.

In this work, a detailed analysis of a two-DOF system with cubic nonlinearity was
carried out, and it was shown that close to each of the normal modes of the unforced
oscillator, a pair of exact nonsimilar steady state responses exists. To prove this,
the forced problem was transformed to an equivalent unforced one; in the sequence,
the asymptotic analysis of section 2.3.3 was implemented to find the nonsimilar
normal modes of the transformed system. These oscillations were then shown to
correspond to nonsimilar steady states of the original forced problem. In general,
1t can be stated that nonsimilar steady state oscillations are generic for the class of
oscillators under investigation, in the sense that they can be realized for a general

class of periodic excitations, and not just for special forms of the forcing functions.

Finally, a general conclusion from this work is that the concept of “nonlinear nor-
mal mode” can be successfully used for studying the forced response of nonlinear
discrete oscillators. This surprising result comes from the fact that steady state mo-
tions result as perturbations of normal modes, provided that the system 1s ezcited
by a switable “admaissible” periodic forcing function. Although harmonic functions
may be included in the general class of admissible excitations, 1t is evident that
there is a need to consider alternative forms of forces when the forced behavior of
strongly nonlinear oscillators is examined. This conclusion outlines a limitation of

conventional methods, since they consider only harmonic excitations and assume
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only predominantly harmonic responses. In this work no such assumptions were
made, since the general nonsimilar steady state responses were expressed in asymp-
totic series whose dominant terms consisted of normal mode motions. Hence, for
weak excitations, and close to the corresponding normal modes, the steady solu-
tions derived in this section are expected to be more accurate than those obtained

by conventional methodologies.
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PART II: MODAL IDENTIFICATION: ANALYSIS OF IN-
TERFERING MODES AND EXAMINATION OF THE EF-
FECTS OF WEAK NONLINEARITIES
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4. INTRODUCTION

4.1. OVERVIEW

In Part I of this work, the finite amplitude oscillations of a class of strongly nonlin-
ear, undamped, discrete systems, were examined. The effects of the nonlinearities
in the dynamic behavior were investigated, and an insight into some of the compli-
cated chaotic responses was gained. However, a majority of practical engineering
structures i1s designed to operate in small amplitudes of motion. In such cases the
nonlinear effects are small compared to the dominant linear terms and, consequently,
the structural dynamic behavior may be considered as linear, or at most, as weakly
nonlinear. A variety of approximate analytical techniques can then be applied to

study the vibrational response.

A major concern regarding practical mechanical structures is to reliably i1dentify
their dynamic characteristics, 1.e., their natural frequencies and modes of vibra-
tion. This 1s needed in order to control the vibrations of structural components;
this 1s achieved by avoiding the excitation of the structural modes by external peri-
odic forces that may lead to resonance phenomena and thus to possible mechanical
failure. Such vibration studies are incorporated in the design of mechanical compo-

nents, and involve both numerical and experimental procedures.
In the numerical part of the analysis, the structure is usually modelled by a finite-
element, or a finite difference model, and its dynamic properties are extracted by

extensive computer simulations. The analytical models involve a certain amount
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b

of approximations and simplifications (as all models of real structures do!); hence,
the numerical analysis needs to be verified by some experimental procedure. This
is performed by means of experimental modal testing, i.e., a test were a structure is
excited by a controlled excitation, with simultaneous data acquisition. Extraction of
the structural modal parameters is then carried out by performing a modal analysis

of the measured response.

Thus, modal analysis, or modal identification, is a collection of techniques for deter-
mining the modal properties of practical structures based on the assumption that
the dynamic structural response can be expressed as a linear superposition of the
responses of individual modes. Hence, an essential assumption of modal analysis
concerns the linearity of the structure, since only then the principle of modal su-
perposition can be applied. The basic objectives of modal analysis can be outlined

as follows:

- Validation and refinement of Finite-element structural models, and/or perfor-
mance of correlation studies between numerical and experimental data in order to

identify possible causes of disrepancies between predicted and measured data sets.

- Construction of mathematical models of the structure for subsequent use in Sub-
structure synthesis analyses, or in analytical studies of the effects of possible struc-

tural modifications (design optimization of the structure).

- Construction of modal models of the structure in certain frequency ranges in order

to develop robust structural control algorithms for vibration of shock isolation.
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A wide range of modal analysis methods can be found in the literature: methods
in the frequency or in the time domain, deterministic or stochastic, with single or
multiple inputs and outputs, etc. A basic problem (and limitation) inherent in the
majority of modal analysis techniques,is their inaccurate performance when struc-
tures with interfering (or closely spaced) modes, or systems with certain amounts

of stiffness or damping nonlinearities, are encountered.

Conventional identification techniques are highly effective on systems whose modes
are well spaced. There are, however, limitations on the applicability of these meth-
ods to systems with interfering modes, i.e., modes with very closely spaced natural
frequencies and large differences in their dampings and participation factors (modal
constants). In these cases, the results of modal analysis using conventional methods
are generally inaccurate. More importantly, when heavy mode interference occurs,
the number of “peaks” observed in the measured Frequency Response Functions
(FRF'), may not necessarily correspond to the actual number of modes in the exam-
ined frequency range. Hence. certain modes of the structure might be overlooked by
a conventional modal analysis routine. This results in incomplete characterization of
the dynamic performance of the structure, and subsequently, in serious mismatches
between the theoretical predictions of the eigenproperties of the structure (derived
for example by a finite element program) and the experimentally extracted ones.

Problems with interfering modes arise often in engineering practice. This is observed
in systems with symmetries in their spatial distribution or in repetitive structures

with light damping. As mentioned in (Pappa, 1990), finite element simulations of a
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large space structure, such as the Space Station “Freedom,” indicate large “clusters”
of closely spaced modes (namely 366 modes under 1 Hz and 3000-4000 modes below
20 Hz). As pointed out in the same reference, if the identification results are to be
used for creating reliable models of such structures, they must describe accurately
the experimental dynamic response: if the extracted modal parameters are in error,
or if the number of identified modes is much smaller than the actual number of
modes 1n the frequency range of interest, an incomplete description of the dynamics
result. Thus, there is a need for developing techniques that can reliably analyze
interfering modes, i.e., modes whose FRF is distorted by the presence of nearby

modes.

An additional problem encountered in practical engineering structures is that of the
presence of nonlinearities. These can be material (stiffnesses or damping) nonlin-
earitles, or they can result from the geometry of the structural components. An
additional cause for nonlinear behavior can be the presence of friction between two
contacting mechanical components, the occurence of impacts between several struc-
tural members during operation. or the attachments (boundary conditions) of the

structure with the ground or with some other structure.

For example. in cases where dry friction occurs, or clearances exist between cer-
tain structural components, the structural response is a nonlinear function of the
excitation. Then. the basic assumption of linearity is violated, nonlinear distor-
tions exist in the measured FRF and conventional modal identification algorithms

fail to accurately predict the modal parameters of the system. Therefore, an addi-
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tional challenge in modal analysis is to analyze the distortions in the FRF caused
by nonlinear effects, to detect the type of nonlinearities present in the system and
to possibly quantify (measure) their amount. This would enable the analyst not
only to identify the linear modal properties with improved accuracy, but also to
find the possible sources of the nonlinearities. This in turn could lead to possible
design modifications of the structure, with subsequent elimination of the nonlinear

distortions.

4.2. OBJECTIVES - OUTLINE OF WORK

The general aim of this part of the work is to develop refined algorithms for iden-
tifying closely spaced (interfering) modes, and to analytically study the distortions
in the frequency response plots caused by stiffness or damping structural nonlin-
earities. The modal analysis will be performed in the frequency domain, assuming

that the structure is excited by a single harmonic force.

Initially, the Nyquist plot of a system with two closely spaced modes, will be con-
sidered. Restricting the frequency close to the natural frequency of one of the
modes (the “perturbed mode”), the interaction of the “perturbing mode” will be
approximated by expanding its FRF in a Taylor series with respect to the frequency
variable, and retaining only the first two terms. Geometrical arguments will then
be used to construct an identification algorithm that takes into account distortions

in the Nyquist plot due to mode interference.

In the sequence, vibrating modes with weak nonlinearities will be considered. The
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first order effects of the nonlinearities on the steady state response will be computed,
by means of an “equivalent linearization” technique, and the resulting nonlinear
distortions in the FRF will be detected and quantified. The general objective will
be to construct an approximate algorithm that leads to accurate estimates for the

modal parameters and the perturbing weak nonlinear effects.

The applicability of the outlined techniques will be tested with theoretically gener-
ated and experimental data, and the limitations of the proposed methodologies will

be discussed.
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5. MODAL ANALYSIS OF INTERFERING MODES

5.1. PREVIOUS WORK

A comprehensive presentation of some of the existing algorithms for modal iden-
tification can be found in (Ewins, 1984) and in the general review article by
(Rades, 1985). Also, a very interesting and detailed discussion about some of the
most popular modal analysis methods is given in the thesis by N.Maia (Maia, 1988).

Generally, modal analysis algorithms can be classified in certain major categories.

Depending on the domain where the identification is carried out, modal analysis
techniques can be characterised as time-domain, or as frequency-domain methods.
As pointed out in (Maia, 1988), generally, time-domain algorithms tend to provide
best results when a large frequency range or a large number of modes exist in the
data, whereas frequency-domain methods give best results for restricted frequency
ranges and limited number of modes. Depending on the number of modes that a
modal analysis algorithm can analyze, there is an additional classification between
single - degree - of - freedom (SDOF) and multi - degree - of - freedom (MDOF)
methods. Note, however, that this classification holds for frequency-domain meth-

ods only, since all time-domain methods are MDOF ones.

Furthermore, modal analysis algorithms that can be applied to only one frequency
response function (FRF) at a time are characterised as single - input - single -
output (SISO ) methods, whereas those that can simultaneously analyze many FRF

are classified as multiple - input - multiple - output (MIMO ) methods. Other meth-
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ods assume a single excitation of the structure, but analyze measurements from
different points. These are referred to as single - input - multiple - output (SIMO)
methods. Considering the type of model that a modal analysis algorithm assumes
for the structure, one can further distinguish between indirect and direct methods.
If the structure is simulated by a modal model, i.e., if the unknowns are the modal
parameters of the system, the algorithm is characterised as indirect. Otherwise,
if a spatial model is assumed, i.c., if one seeks to directly determine the system
matrices, the modal analysis 1s direct (Maia, 1988). A last classification has to do
with the deterministic or stochastic nature of the model that the algorithm uses to
simulate a practical system. Hence, modal analysis methods can be categorized as
deterministic or stochastic. The advantage of the stochastic methods is that they
can effectively take into account the “pollution” of the measured experimental data
by noise, whereas in the deterministic methods this is difficult to achieve. However,
a disadvantage of the stochastic methods is that they are generally more computa-
tionally involved and, furthermore, their algorithms are generally more difficult to

physically interpret.

Examples of indirect, time-domain methods are the “Complex Exponential Method”
(Brown. 1979), (Spitznogle, 1970), where the impulse response functions obtained
from inverse Fourier transforms of the FRF are analyzed; and the “Ibrahim Time
Domain Method™ (Ibrahim, 1973, 1976), (Pappa, 1981), where the free decay time
responses of the system are curve fitted, and a “Double Least Squares procedure”

1s used to obtain estimates for the modal parameters. A representative of time
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domain, direct methods is the “Autoregressive Moving Average Method (ARMA)”
(Gersch, 1979, 1982), where the system to be identified is modelled by a linear
ordinary differential equation, which in turn is discretized to a difference equation
by sampling the time response in equal time intervals. The difference equation is
then fitted to the measured data by numerically minimizing a suitably defined error

function.

There exists a variety of indirect, SDOF, frequency domain methods. In the “Peak
Amplitude Method” (Pendered, 1963), the natural frequencies of the system are
identified as the frequencies corresponding to the “peaks” of the FRF. The remain-
ing modal parameters are then found by considering the slopes of the “peaks” and
their relative magnitudes. In (Pendered, 1965), the natural frequencies are identified
as corresponding to the points where the real part of the FRF vanishes. In the now
classical paper of Kennendy and Pancu (Kennendy, 1947), it is shown that close to
the natural frequencies, the Nyquist plots of systems with hysteretic damping are
almost circular. Thus, circles can be fitted to the resonance regions of the measured
FRF. The natural frequencies are then identified as the points of maximum fre-
quency separation of the Nyquist points, whereas the modal dampings and modal
constants are computed by considering the “half power points” and the diameters of
the circle fits. Extensions of this method for systems with viscous damping can be
found in (Klosterman, 1971). In (Marples, 1973), an analytic formula for calculating
the hysteretic modal damping is given. In (Vakakis, 1985) and (Ewins, 1989), the

result of Marples is extended. and analytical expressions for deriving not only the
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modal damping, but also the natural frequency from the circle fit, are presented.
In (Dobson, 1987), complex modes are considered and the dynamic stiffness FRF
(inverse of the receptance) is anaiyzed by a refinement process that minimizes errors

due to unaccounted, out-of-range modes.

A list and a discussion of various indirect, MDOF methods can be found in
(Ewins, 1984) and (Maia, 1988). Some typical references of this class of meth-
ods are (Gaukroger, 1973) where a simultaneous least-squares fit of the Nyquist
plot of several modes is attempted, and (Ewins, 1982), (Maia, 1989), where lightly
damped structures are considered, and mathematical models with real modes are

fitted to the measured FRF.

A restriction concerning the majority of the aforementioned modal analysis methods
1s their inaccurate performance when “interfering” modes are analyzed, i.e., modes
whose measured FRF 1s perturbed by the presence of near-by modes. This is the case
when closely spaced modes in the frequency domain (i.e., whith natural frequencies
very close to each other) are considered. Also. modal interference can result between
moderately spaced modes that have, however, large differences in the values of their
modal dampings and/or modal constants. A discussion about indicators and criteria
for modal interference in the FRF, can be found in (Marples, 1973), (Vakakis, 1985),
(Traill-Nash. 1967). Unfortunately, not much work has been done regarding the
problem of modal interference, and thus, only a few modal analysis techniques exist

dealing with systems containing closely spaced modes.

In (Montalvao e Silva, 1986), regions of the Nyquist plots of interfering modes where
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the SDOF identification algorithms yield relatively accurate results are defined. A
“mode interference criterion” is then introduced and applied iteratively to correct
the initial poor estimates of the modal parameters. The main feature of the method-
ology is that it can lead to estimations of the “rigid body rotations” of the modal
circles caused by modal interaction and, hence, to better estimates for the phases
of the modes. However, the technique requires interaction from the part of analyst
and its success essentially depends on his/her experience, since there are certain
constants that are assigned empirical numerical values. In (Maia, 1988), the real
and imaginary parts of the inverse of the receptance FRF are examined. It is shown
that complex modes that are practically indistinguishable in the Nyquist plots can
be reliably recognized when their inverse receptance plots are considered. There-
fore, it is concluded, that an accurate indicator for detecting closely spaced modes
is the examination of alternative representations of the measured data, other than

the classical Nyquist plots.

An interesting iterative algorithm using a circle-fit SDOF method 1s outlined in
(Robb, 1988), where the FRF of closely spaced motions is considered. After identi-
fying the first of the two modes, the (generally inaccurate) modal estimates are used
to regenerate a SDOF frequency response, which in turn 1s subtracted from the (to-
tal) measured FRF. Then, the second mode is expected to dominate the remaining
FRF, and it can be identified with improved accuracy by means of a SDOF modal
analysis technique. The iterations can be continued by subtracting each time the

identified mode and modal analyzing the remaining response. A criterion to stop



the iterative procedure was that the difference of two consecutive iterations be less
than a prescribed small amount. A more detailed presentation of this algorithm
will be given later, since it will be used in association with some refined, proposed

modal analysis methods.

In (Dobson, 1987), the theoretical FRF' of two closely spaced modes is analyzed by
a different iterative technique. No “circle-fitting” is involved, since the technique
is based upon difference equations. The dynamic stiffness FRF (inverse of recep-
tance) is analyzed by a repetitive, refinement process that minimizes errors due
to unaccounted out-of-range modes and noise. This is achieved by modifying the
SDOF expressions of the receptance by adding certain residual effects represent-
ing out-of-range modes. A different approach is used in (Dossing, 1986), where a
deconvolution of the measured FRF is used, leading to a “mode spectrum” where
each line represents a damped natural frequency of the structure. Application of
this method shows that it can lead to separation of closely spaced modes, especially
when the interference is caused by differences in the modal constants (participation
factors). Finally, in (Lee, 1990), a time-domain method based on a “suboptimum
maximum likelihood” discrete estimation scheme is applied to the problem of closely
spaced modes. This “stochastic” methodology is computationally involved, takes
into account noise in the measured data, and utilizes special forms of Autoregressive
Moving-Average with exogeneous inputs (ARMAX) models. Theoretical, heavily
interfering modes were analyzed and as shown, the method leads to very accurate

modal estimates even for noisy data.
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In what follows, the Nyquist plot of a system with two closely spaced modes, is
considered. Restricting the frequency close to the natural frequency of one of the
modes (the “perturbed mode”), the interaction of the “perturbing mode” is ap-
proximated by expanding its FRF in a Taylor series with respect to the frequency
variable, and retaining only the first two terms. Geometrical arguments are then
used that lead to an identification algorithm that takes into account distortions
in the Nyquist plot due to mode interference. According to the aforementioned
classification of modal analysis methods, this algorithm is in the frequency-domain,
indirect, SISO, and deterministic. Moreover, it can be considered as an extension
for the case of closely Spaced modes of the conventional SDOF technique described
in (Ewins, 1989). Hence, a synopsis of this SDOF method is appropriate at this
point in order to demonstrate its poor performance when interfering modes are

considered.

5.2. LIMITATIONS OF A CONVENTIONAL SDOF METHOD

In this section, a brief presentation of a conventional SDOF modal analysis method
will be given. Although the method gives accurate modal estimates when well sep-
arated modes are considered, its performance is inaccurate when interfering modes
are encountered. This limitation is inherent to the general class of conventional
algorithms. and this stresses the importance of developing refined modal analy-
sis methods that take into account modal interference. The SDOF methodology

presented in this section will be implemented later in the applications section, in
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assoclation with a refined, new identification algorithm.

Consider an N-mode system with light hysteretic damping. One does not lose in
generality by this assumption, since it can be shown that for low values of damping
the hysteretic and viscous models give almost identical performances. The FRF of

the system can then be expressed as follows:

N

| oAk A
ajp(w) =) o? — " = = +rBji

2w anw? w?—w? 4 nw? (5.1)

s=1

(w? close to w?)
where ajip(w) 1s the receptance FRF, defined as the ratio of the steady state dis-
placement at coordinate j divided by a harmonic force acting at coordinate k. The
quantity w is the frequency of steady state vibration in (rad/sec); w, is the s-th
natural frequency; n, 1s the loss factor of the s-th mode; ;A4 1s the complex modal
constant of the s-th mode; and ¢ = /—1. The effect of the (N-1) remaining modes
on mode 7 1s denoted by the term . Bjr. For well separated modes, 1t can be assumed

that this is a constant complex quantity (Ewins, 1984).

The plot of equation (5.1) in the complex plane with w as the varying parameter
1s shown m figure 5.1a. It can be seen that in the region where w >~ w,, the
receptance plot is a circle displaced from the origin by the complex constant By
(Ewins, 1984). Considering three points A, B and C corresponding to frequencies
squared w?,w? — dw?, and w¥ + dw? respectively, one defines the quantity A as

follows (see figure 5.1a for a definition of the angles):

1 1
_ (5.2
tan( ———“\:)6) tan(%d’) )

A
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As shown in (Ewins, 1989), the value of A does not depend on the frequency incre-

ment dw?, but only on the frequency wy4 of the center point A:

92 2
A= Z(1-2ay (5.3)
Mr Wi

Thus, for each triad of points, the quantity A can be regarded as a function of the
frequency of the center point, and it can be plotted in a diagram versus frequency
(figure 5.1b, “A - plot”). This plot is a straight line passing through zero at the

natural frequency of the system. with a slope equal to tany = 2/n,w?.
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Figure 5.1. A-Plot method for modal analysis: (a) Nyquist plot of the FRF of an

isolated mode.(b) A-Plot of a theoretically generated mode.



The A - plot is constructed by circle-fitting FRF points in the resonance region of a
mode and by measuring the angles formed by lines connecting points on the modal
circle. The modal parameters can then be conveniently estimated by considering
the zero-crossing of the graph and its slope. Note that circle fitting is not a simple
process (Brandon, 1983), and careful consideration should be given to it since it
affects essentially the success of modal analysis. In this work, the circle-fitting
algorithm outlined in (Moltalvao e Silva, 1988) was used, and the optimum circle
fit was obtained by minimizing a certain scalar error by means of a least-squares
procedure (this error is denoted by ey in that reference). In figure 5.2, the A-plot
constructed from experimentally measured data from the blade of a turbine engine
1s presented. The predicted linear pattern can be clearly detected, and the modal

parameters can be accurately extracted by a least squares straight line fit.

Both theoretical and experimental data were analyzed by this method in (Ewins,
1989). In the same reference, a discussion of the advantages and limitations of the
methodology is carried out. and its performance is compared with that of other
circle-fitting interpolation algorithms. The method is found to work accurately for
well-spaced FRF points in the Nyquist plot, but it is affected by noise when the
central angles between subsequent points are small (as in cases of heavily damped
modes). In such cases, the quantity A results by differencing large quantities and
1s sensitive to experimental errors. In addition, when closely spaced modes are con-
sidered relation ( 5.1 ) does not apply since mode interference cannot be accurately

approximated by a single complex constant , B, and the modal estimates derived
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Figure 5.2. Modal analysis of an experimental FRF : ( a ) Circle fit in the resonance

region.( b ) A-Plot.
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by the A - plot method are not satisfactory any more.

This is clearly shown in figure 5.3, where the A - plots of two theoretically-generated,
interfering modes are displayed. For comparison, the straight lines corresponding
to the 1solated modes are also shown. Note that the modal interference distorts the
theoretically predicted straight lines by displacing and curving them. The estimates
for the natural frequency and the modal damping are, therefore, inaccurate and

modal analysis based on this methodology is no longer satisfactory.

From the aforementioned discussion, it is clear that a refined algorithm should
be developed for investigating closely spaced modes; one that takes into account

distortions of the A - plots such as those observed in figure 5.3.

5.3. ANALYSIS OF MODAL INTERFERENCE

Consider again the N-DOF system with hysteretic damping, and assume that there
exists a pair of closely spaced modes r and m. Close to the natural frequency of

one of these modes, mode r say, the receptance takes the form

N
tir(w) = E s =
IR - 2 a2 g o2
s=1 Vs T T ]
~ rAji mAjk
= > S 5 > ) +rm B]k
Wi — Wt Wiy Wiy — W W i,
(w ~w, ) (5.4)

where .., B 15 the effect that the (N — 2) remaining modes have on the resonance

region of the +'* mode (constant complex). Since the frequency w is restricted in
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where |e] < 1 is a small quantity and as before, O(e) denotes order of magnitude.

A measure of the difference between the natural frequencies of the interfering modes

1s given by the quantity D, defined as

2

Although D is a small quantity (since the modes are closely spaced), it will be
assumed that the frequency w 1s chosen close enough to w,, so that D has a much
greater magnitude than e. Thus, if the modes are very closely spaced, one should

restrict the range of the frequency to a very small neighborhood of the r** natural

frequency.

The FRF of the “perturbed” mode will be now approximated by the first two terms
of 1ts Taylor expansion with respect to the frequency. This will lead to a simplified
model of mode interference which will be used subsequently for the construction of
a modal analysis algorithm. To this end, expand the FRF of the m'* mode in a
Taylor series about zero with respect to the frequency variable (1 — i’—}), and retain

only the first two terms:

mfyijk .
W%n — w? + Iu),zn Tm
o lnfljlc/‘«k«':r2 (1 - i::%)ill~4jk/bdz N O[(l wz 2 ]
1.7]171 + D<1 + i‘/],71) { «1:77"1 + D(’l + inyn) ]2 u}}’l

((w? > w?) (5.7)
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Substitute now equation (5.7) into (5.4), to obtain the following approximate ex-

pression for the receptance of the system in the neighborhood of the r* natural

frequency:
5
T44jk . u}2 g ; g w2 )
ap & — L +rm Cije(l = =) +rm Bjx + O[ (1 = —) ]
J w2 — w? 4+ iwin, ’ w? ! wy

where ., Cj and ., Bj; are complex constants (i.e. they do not depend on the

frequency) given by

2
'm/'ijk/wr

N + D(1 + inm)

450 fw? -
Ly r
rmC'jk - 5 rmBjk =rm Bjk +

[0 + D(1 + inm)

(5.9)

Note from the above expression that there exists an O(e) frequency-dependent cor-
rection given by the second term of equation (5.8) ; this causes the distortion of
the relative spacing of the FRF points in the Nyquist plot. Note that when modes
m and r are well separated, the quantity D is large. In that case, the frequency-
dependent term becomes negligible (since 1t contains D squared in the denominator)

and equation (5.8) reduces to the form (5.1), that 1s the case of an isolated mode.

A geometrical interpretation of the derived analytical results will now be given
(this formulation will be used in later sections). In figure 5.4a, the two modal

circles corresponding to the two interfering modes are drawn. It was assumed that

2

wi < w? (this does not restrict, however, the generality of the analysis). Mode r
will be denoted as the “perturbed” mode while mode m will be the “perturbing”

one. Referring to figure 5.4a. it is clear that the receptance FRE of the system can
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be represented by the vectorial summation

ajr = O + 0Ky + OKj (W* ~ w?) (5.10)

T

where OI{3 is a frequency-independent vector representing the interference of the
remaining (N — 2) modes (in equation ( 5.4 ) this quantity is represented by the
complex constant ,, Bjx). Since the frequency is restricted to be close to the reso-
nance of the »'* mode, large variations in the amplitude and phase are anticipated
for the vector OLv;, in contrast to vector Ol that has a relatively small variation.
Thus, to the first order of accuracy, for w? ~ w?, the vector OIY, can be assumed

to vary along the tangent of the m?t!

"“modal circle at w? = w?* (figure 5.4b). This,
however, is equivalent with taking the Taylor expansion of the FRF of the m-mode
about w? = w? and retaining only the two first terms (equation (5.7)). The approx-

imate combined response of the system (valid in the resonance region of the r-th

mode), can then be expressed as follows:

ajr 2O + OKg, + NOKy, + O3 + O(e*)  (w? ~w?) (5.11)

where OIVy, is the response of mode m at w? = w? (a frequency-independent quan-
tity) and AONL,, is a frequency-dependent vector with a constant direction (fixed
by the phase of the complex quantity ., Cjk, eq.(5.9)). This is the direction of the
tangent on mode m, at frequency w?. Note that equation (5.11) is equivalent to
the analytical formula (5.8) and, in fact, it is the geometrical representation of that
eXPression.

th

Referring now to figure 5.5, consider three points A, B, and C on the »'" modal

: . - . 2 2 2 2 v :
circle, corresponding to frequencies squared w?*, w? —dw?, and w? 4 dw? respectively.
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Figure 5.4. Geometry of modal interference : ( a ) Exact representation ( b ) First
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This triad of points is distorted due to the interfering effects of the remaining (N-1)

modes, as follows.

e First, the triad is distorted to the position Ay B;C. This distortion results from
the rigid translation of the modal circle by the vector OK,,+OKj3. This interference
does not affect the relative spacing of the points in the triad, and so the ideal SDOF

distribution of points on the r-th modal circle is preserved.

im

Figure 5.5. Distortion of a triad of points (B C A) caused by interference from a

closely spaced mode ( first order of approximation, equation (5.8)).

e A secondary distortion is caused by the distorting effects of mode m. This is
a frequency-dependent interference. and is represented by the vectors AOK,, of
figure 5.4b. Since these vectors have a constant direction, it can be stated that,

correct to O(€), points A, B, and C are distorted in the same direction by vectors
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(see figure 5.5):

e
ArAy = C]k(l - 7)
o 5.12
o dw? . . dw? ( )
B1By = 4147 +rm Cjk-w—ga CiCy = A1Ay —rm Cjk’&?;

Clearly, this secondary frequency-dependent interference modifies the ideal SDOF
frequency distribution of the modal circle since the relative position of the points

in the triad is altered.

From the aforementioned discussion, it 1s evident that a closely spaced “polluting”
mode introduces alterations in the relative spacing of points in the Nyquist plot of
the perturbed mode. In what follows, the geometric arguments in the complex plane
will be used to develop a refined identification algorithm that takes into account

frequency - dependent distortions due to modal interference.

5.4. IDENTIFICATION ALGORITHM FOR INTERFERING MODES

Consider again the distorted Nyquist plot of the “polluted” mode (figure 5.6). The
distorted FRF points are denoted by double-primes in what follows, and it 1s exactly
these points that are measured during a modal analysis experiment. Referring

th modal circle, the relation

to the triad of points B"A"C" on the “perturbed” r
between the lengths A”B" and A"C" of the distorted plot and the corresponding
“unperturbed” ones AB and AC, will now be examined. Since one is only interested
1 the relative displacements of points B and C" with respect to the center point

of the triad 4", one translates the triad (BAC) by the constant vector A4" so that

point 4 coincides with point A" of the distorted plot. By using simple geometrical
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relations, it can be stated that (see figure 5.6 for a definition of the various segments

and angles):

o Re

Unperturbed Modal Circle

Figure 5.6. Distorted Nyquist plot. Frequencies of points: B,B" — w? —
2

dw?. A A" = W O 0" — W+ dw?, D.D" — W+ 2dw?, E.E" —

wz + 3([(")2~ F~ F” ——p u)z + 4(](,02

(AB)? = (A"B")? = (A"B")? 4+ a? —2(A"B")acosd
(5.13)
(ACY? = (A"C")? = (A"C")? +a* = 2(A"C"zcost
where v = |B'B"| = |C'C"| = |,,,Cjildw?/w?, and 6 = ¢ + ¢ — 180°. The

quantities (A" B"), (A"C") and ¢, are directly measurable from the Nyquist plot of

the FRF, and the lengths (AB), (AC) can be expressed as functions of the modal
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parameters of the r'* mode since 4, B, C belong to the “unperturbed” r'* modal

circle (see Appendix D for the actual expressions).

Dividing the first of equations (5.13) by the second and using the equations derived
in the Appendix D for lengths (AB) and (AC), one obtains the following relation

for the distorted triad (B""A"C") :

bl - d 2 X 1 2 I i
1+(y+—(—y—l*)) (4+585) +wz~—2(—ﬁ-,~,-—g—,-,-)wcos<f> (5.140)
} _ \ATC ( AT 14q

1 4 w? + 2wcos( ¢ + ¢1)

2

1+ (y + 2l

y

where

y=npelfdw?, 2= (wE-wh)/de?, w=2z/(A"C")

r

The following remarks can be made, as far as relation (5.14a) is concerned. First,
this expression characterizes the frequency distribution of a single triad of points
corresponding to frequencies squared w? — dw?,w?,w?* + dw?. There are four un-
known variables in this equation, namely z, related to the natural frequency w?; y ,
related to the modal damping 7n,; and w and ¢, related to the frequency-depended
interference of the perturbing mode. All the other variables can either be measured
directly from the Nyquist plot (lengths (A" B") and (A"C")), or are fixed by the
frequencies of the points of the particular triad (quantities w?, dw?). Note that the
variables appearing in equation (9.14a) are all normalized, so that their values are
of comparable orders of magnitude (this is important for the numerical evaluation

of the unknowns).

Considering subsequent triads (A"C"D"), (C"D"E") and (D"E"F") (see figure
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5.6), one obtains three additional equations :

2

1+(J+__1)7_2_—_‘:’_)_) 1+w2—|—2wc03(¢’>+q’)1)
T (o oD (5.14b)
1 -+ (y -+ —(;:;l;ll:> el ) + U] - A//CN )wCOb @ + ¢1 + d)Z)
1+(1 + —2)(z-3) )2 "D 2 9 5 o' p
Yy y . (m) +U) —_,(WT)U7COS(¢+¢1 +¢2)
2 " "
1+(J+~i)l(z—‘> [2//(Fju> +w2 +2(%)wcos(¢+¢l +¢2+¢3)
(5.14¢)
1+(y+-———}-)(—~——4') . (%) ’)I‘u) + <A"C” LUCOS(¢+@I+¢2+¢3)
2 ATTE AT I A .
1+ (y+ ————‘—‘1}—*:-3-) (E5m ) + w? = 2575 yweos(¢ + ¢ + ¢2 + 63 + ¢4)
(5.14d)

Thus, a set of four nonlinear equations with four unknowns is obtained. The four
variables can be found by numerically solving these equations. Unfortunately, there
1s not a single numerical methodology that solves unconditionally simultaneous non-
linear equations (Press, 1988): the convergence of existing methodologies depends
on the complexity of the problem under investigation and on the choice of initial esti-
mates for the unknowns. In this work, the steepest-descent minimization algorithm
was used for finding the solutions (software package EUREKA). Its convergence
proved to be very good for modes with moderate interference, particularly when
good initial estimates for the modal parameters were provided (the final errors of
the minimization scheme was of the order of 107%). From the authors’s experience,

good initial estimates for solving this set of equations are

wy =0, 09 =0. yo=o%/dw®,  zo=(DF — w?)/dw? (5.15)
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where @, and 7}, are estimates of the natural frequency and the modal damping
derived by implementing an approximate SDOF Identification algorithm. It must
be pointed out, however, that when heavy mode interference is present, the conver-
gence of the numerical solution is poor. This had to be expected, since as discussed
earlier, the proposed identification algorithm does not accurately model the distor-
tions of the Nyquist plots in such cases. An additional note of caution must be
made with regard to the choice of initial estimates. If these values are not selected
appropriately (i.e., if they are far from the exact solutions), the numerical algorithm
does not converge. This is a general feature of numerical minimization techniques

and, in fact, inadequate initialization is one of the main problems of this class of

methodologies (Press, 1988).

Summarizing, the outlined method examines the frequency spacing of six points in
the resonance region of a coupled mode and leads to a single estimate for the natural
frequency, the modal damping, and the modal interference. The method takes iuto
account O(¢) frequency-dependent distortions caused by a nearby mode, where € 1s
a measure the size of the neighborhood around the natural frequency of the mode
in which the analyzed FRF points lie. Thus, application of this methodology is

limited to the neighborhood of the natural frequency of the examined mode.

A basic assumption of the method is that the receptance can be represented by
the approximate formula (5.8), and that terms of order ¢* or higher are negligible.
Although this assumption holds for cases of modes with comparable dampings and

modal constants, it is violated when heavy interference exists ~for example when the
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frequency response of an overdamped mode is much smaller than that of a closely
spaced, lightly damped one (such a case is examined in the Applications part of
this work). For such cases, the resonance response of the overdamped mode does
not dominate over the interfering effects of the perturbing mode and there is a need
to take into account higher order terms in expansion (5.7). A more complicated
expression replaces equation (5.8), and the geometrical picture of modal interference
is altered. In cases of heavy interference, the proposed algorithm does not lead to
accurate results; but, as shown in the next section, it can be used to obtain good

initial estimates for initializing a convergent iteration scheme.

Ending this section, the basic steps of the proposed identification algorithm are

outlined.

Consider six points in the resonance region corresponding to frequencies squared

w? =w? +(i—1)dw?, i =0,...,5 (note that w? is the frequency of the second point).

Compute the lengths of the segments connecting the points and the angles that are
being formed by these segments (angles ¢y, ¢, ¢3 and ¢4 of figure 5.6).

Solve the set of nonlinear algebraic equations (5.14) for y, z,w, and ¢. To this end
the “steepest-descent” optimization algorithm can be used. Good initial guesses for
the unknowns are given by relations (5.15). The modal parameters of the mode are

then given by:

w*;‘), = zdw? + W7, Ny = ;(/(Zu)'z/(:dw2 4 wgt) (5.16)

Circle-fit the triad of points containing the natural frequency estimate and compute
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the modulus of modal constant of the mode as

e 4kl =r Djrwin, (5.17)

where ;. D;i is the diameter of the circle-fit. A note of caution is appropriate at
this point. When “heavy interference” exists, the modal circle will be significantly
distorted, so that the measured estimate of the modal diameter from the circle-fit
will be erroneous. Thus, the computed value for the modal constant is accurate only
in cases where moderate interference occurs. This conclusion is in accordance with
the remarks made earlier, concerning the limitations of the proposed methodology

with regard to modes with heavy interference.

Compute the phase of the mode directly from the circle-fit, given by the angle
between the diameter passing through the natural frequency estimate and the real

axis.

5.5. APPLICATIONS OF THE PROPOSED METHOD

The validity of the proposed technique was tested by analyzing both theoretically
generated and experimental data. Generally, it was found that, provided that the
assumptions of the theory are met, the method works satisfactorily and leads to
modal estimates of improved accuracy. However, when “heavy” modal interference
occurs, the proposed method gives inaccurate estimates and there is a need to use

it iteratively in order to obtain the correct values for the modal parameters.



- 242 -

5.5.1. MODAL ANALYSIS OF THEORETICALLY GENERATED FRF

A variety of theoretically generated data of closely spaced modes were analyzed by
the proposed algorithm. It was found that in general, the extracted modal estimates
were of improved accuracy compared with those derived by standard SDOF circle-

fitting routines.

Figure 5.7. Central angles for determining the estimate for the modal damping.

For comparison purposes, modal estimates derived by means of two conventional
SDOF algorithms will also be computed. The first is the A-plot method outlined
m section 5.2 and the second is an algorithm based on an interpolation technique.
Details for this interpolation methodology can be found in (Ewins, 1984, 1989) and
its main features are now presented. After circle-fitting the FRF Nyquist plot. the

natural frequency estimate is computed by finding the point of the modal circle
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where the FRF points are most widely spaced. Mathematically, this is equivalent

to solving the following equation:

d dw?

o W) o =0 (5.18)

where w, is the natural frequency, and 6 represents a central angle on the modal
circle. Equation (5.18) is solved by an interpolation algorithm, and once the natural
frequency estimate has been obtained, the modal damping is computed by the

following formula:

(wi —wi)
w?[tan(b, / )+ tan(6,/2)]

N, = {5.19)

The angles ¢, and 6, correspond to two (arbitrary) FRF points on the modal circle,

each on a different side of the point corresponding to w, (see figure 5.7).

DATA SET 1

The theoretical modal parameters for the first set of interfering modes can be found
in table 5.1 (this is the set of closely spaced modes whose A-Plots are shown at
section 5.2).  The two modes have the same amount of damping and identical
magnitudes of modal constants; modal interference is caused by the close spacing of
their natural frequencies. The frequency ranges analyzed are 49.8 - 50.2 Hz for the
lower mode (8 data points) and 50.2 - 50.6 Hz for the higher one (8 data points).

The extracted modal parameter values are listed in table 5.1.
A general conclusion is that a single application of the proposed algorithm improves
the accuracy of the extracted modal parameters, especially those of the natural fre-

quencies and the modal constants. The differences observed between the extracted
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phases and their theoretical values are not caused by an inaccuracy of the method,
but rather by a rigid body rotation of the closely spaced mode as a whole, caused
by the presence of the nearby mode (see (Marples, 1973) and (Montalvao e Silva,
1986) for a discussion of this phenomenon). This can be seen in figure 5.8, where the
theoretical and the predicted positions of the natural frequencies for both modes are
shown. It is clear that the phase angles corresponding to the theoretical positions
of the natural frequencies are shifted with respect to their nominal values ( found
in table 5.1 ). In the next application it will be shown that by using an iterative

procedure one can improve the estimates for the phase angles.

Re Re

e

(a) (b)

Nominal ( theoretical ) value
Estimate with the proposed technique
““““““ Estimate with the A-method

Figure 5.8. Natural frequency estimates for the modes of Data Set 1.

To test the robustness of the method, the theoretically generated data was “pol-
luted” with random “noise” with a maximum peak of 10% of the nominal values,

applied uniformly on the frequency range of interest. It was found that the method
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still can be applied, although with a reduced accuracy on the modal estimates

(5-10% ).

DATA SET 2

The second set of theoretical data consists of a pair of “heavily” interfering modes.

The theoretical values of the modal parameters are as follows:

Nat. freq.: 87.0 Hz Nat. freq.: 87.5 Hz

Modal damp.: 0.05 Modal damp.: 0.01
Modulus Mod. Const.: 1.0 Modulus Mod. Const.: 1.0
Phase: 45 deg Phase: -70 deg

The relative frequency separation in this data set is of the order of 0.6%, i.e., smaller
than that of the previous data set (where the frequency separation was of the order
0.8%). Moreover, in this case there is a considerable difference in the two modal

dampings. so that the lightly damped mode completely dominates the FRF.

This can be scen in the combined frequency response of figure 5.9a, where there
appears to be only one “peak.” Careful examination of the A - plot of the FRF
(figure 5.9b) over the same frequency range indicates the presence of a lower over-
damped mode since the A - plot is found to be curved at lower frequencies ( ideally

it should be a straight line).

Although the algorithm can be successfully applied for finding the modal parameters
of the (lightly damped) higher mode, it cannot be implemented in the analysis of the

(overdamped) lower one, since its resonance response is much smaller in magnitude
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Figure 5.9. Heavy modal interference, Data Set 2 : (a ) Combined FRF ( b ) A-plot

of the response.
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than the residual effects of the higher mode in the same frequency range. Thus,
the approximate expression (5.8) cannot accurately approximate the FRF in the
resonant region of the lower mode, and higher order terms must be taken into
account. An iterative method will thus be implemented. This is similar to that
described in (Robb, 1988), with the essential difference, however, that in the present
work the iterations are initalized by the proposed, refined technique. Thus, at step
1, the proposed algorithm is used to initialize the iterations and in subsequent steps,

the SDOF A - plot method is applied to the analysis of the corresponding FRF.

Step 1. Estimates were computed for the modal parameters of the higher (dominant
mode) by means of the algorithm outlined in the previous section. The results of
the modal analysis are listed in the first line of table 5.2: they are very close to the

nominal values of the mode.

Step 2. The identified mode was subtracted from the total response and the re-
maining FRF was analyzed by the A-plot methodology. The results are presented
in figure 5.10a., were it is observed that the residual effects of the higher mode still
dominate the FRF in higher frequencies (this can be concluded from the fact that
the A - plot is not a straight line in this frequency range). However, in the lower
frequencies a linear pattern can be identified which eventually disappears as the
region dominated by the residual effects of the higher mode is approached. This
curve can be straight-line fitted and extrapolated linearly to give estimates of the
natural frequency and the modal damping (see Section 5.2). The estimates for the

modal constant and the phase are derived by circle-fitting the FRF in the frequency
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Coupled FRF -1

Step 2

-8 1.
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Figure 5.10. Modal analysis with the iterative technique, Data Set 2. A-plots

( a ) after subtracting the higher mode ( b ) after subtracting the lower mode.

----------- A-plots of the isolated (unperturbed) modes.
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range corresponding to the linear pattern of the A - plot (i.e., in this case, in the
lower frequencies). The numerical estimates of the modal parameters are listed
at table 5.2. Note that the extracted modal estimates are close to their nominal

(theoretical) values.

Note that a zero-crossing of the A - plot can be detected in the higher frequencies of
figure 5.10a. This should not be used for estimating the natural frequency since no
clear linear pattern can be identified in that frequency range (circle-fitting the FRF
in that frequency range leads to erroneous estimates for the modal parameters). In
fact, the frequency corresponding to A = 0 is where maximum spacing of frequency
points in the Nyquist plot occurs. Thus, the mazimum frequency spacing criterion
15 not correct for detecting the natural frequency in this case, and conventional
SDOF methods utilizing this criterion for finding the natural frequency will lead
to inaccurate results for the lower mode. In contrast, implementation of the A -
plot formulation leads to the detection of the “optimum” frequency range for modal

analysis, by 1dentifying where linear patterns appear in the plot.

Step 3. The identified lower mode (from step 2) is subtracted from the total response
and the remaining FRF is analyzed in a way similar to step 2. In figure 5.10b the
A - plot of the remaining FRF is shown and it can be seen that it is closer to the

1deal theoretical straight line than that of step 1.
The iteration scheme is continued by repeating the procedures outlined in steps 2

and 3. The results are presented in table 5.2, and the A-plots corresponding to the

various iterations at figure 5.10. Alternatively, one could plot the Nyquist plots of



the receptances after the removal of the perturbing modes. However, the A-plots
were preferred at this stage, in order to demonstrate that indeed linear patterns
exist in such plots and also in order to identify the “optimum” regions of the FRF
for circle-fitting. In figure 5.10a note that as the iterations proceed, the A - plots
converge to the theoretical straight line of the higher mode. In figure 5.10b observe
that the residual effects of the higher mode continue to distort the A - plots of the
lower one; however, the linear patterns in lower frequencies become more and more

apparent as the iteration steps increase.

DATA SET 3

The iterative method was applied to various examples of heavily interfering modes
and the iterations were always found to converge to the nominal values of the modes.
A case where the natural frequency separation of the modes is extremely small (less
than 0.2 %), is now examined. The nominal values of the two closely spaced modes

are as follows:

Nat. freq.: 55.0 Hz Nat. freq.: 55.1 Hz

Modal damp.: 0.06 Modal damp.: 0.02
Modulus Mod. Const.: 0.8 Modulus Mod. Const.: 1.0
Phase: 60 deg Phase: 40 deg

As many as 11 iterations were required for convergence. The combined FRF for this
system is shown in figure 5.11, where there appears to be only one “peak.” However,

careful examination of the A-plot of the FRF over the frequency range indicates the
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presence of a highly damped mode since the A-plot is found to be curved at lower
frequencies. Although the Improved-SDOF algorithm can be successfully applied
for finding the modal parameters of the more lightly damped mode, it cannot be
used in the analysis of the highly damped one (its resonance response is much
smaller in magnitude than the residual effects of the dominant mode in the same

frequency range).

T T

sooe0s . Combined response .
BOE -
#5054 Mode 1

Mode 2

Modulus of Receptance
%
2

i
&1 1550 26000 28500 T3

w? (rad/sec)?

Figure 5.11. Theoretical FRF of Data Set 3.

The iterative algorithm is thus iinplemented. This proved to be a very challenging
set of data. The iterations are given in table 5.3, and are graphically presented in

figure 5.12.

Potential difficulties in the application of the iterative technique may arise in cases

where the initial estimates for the modes are not very accurate (the convergence
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Figure 5.12. Modal analysis with the iterative technique, Data Set 3. A-plots

(a ) after subtracting the higher mode ( b ) after subtracting the lower mode.

——————— - A-plots of the isolated (unperturbed) modes.
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Table 5.3.Modal Analysis of Data Set 3.

Mode 2 Mode 1

Step | Nat.Freq. Modal Magn.Modal Phase Nat.Freq. Modal Magn.Modal Phase

( Hz ) Damping Const. ( deg ) ( Hz ) Damping Const. ( deg

1 55.1043 0.0204 1.1862 39.70
2 54,4314  0.0599 0.4201 68.44

3 55.0910 0.0199 1.0784 43.39
4 54.8776  0.0621  0.6658 53.98

5 55.0935 0.0200 1.0465 41.59
6 54.8250 0.0596 (.6872 59.20

7 55.0941 0.0200 1.0244 42.42
3 54,9465 0.0602 0.7535 56.19

9 55.0960 0.0200 1.0138 41,52
10 54.9958 0.0605 0.7824 58.06

11 55.0987 0.0200 1.0054 40,46

Table 5.4. Results of Modal Analysis of the Experimental FRF.

Mode Modal Parameter SHOF Met?ggii32§ SDOF MDOF
Nat.Freq. ( Hz ) 51.5039 51.5028 51.5017

Modal Damping (10 ")| 7.1909 6.5521 7.0001

' Magn. Modal Const. 0.1888 0.1720 0.1874
Phase ( deg ) +169.48 +174.69 +180.00
Nat.Freq. ( Hz ) 52.6833 52.6841 52.6825

Modal Damping 7.6362 6.7556 7.5634

2 Magn.Modal Const. 0.3110 0.2752 0.2982
Phase ( deg ) +177.97 +170.89 +180.00
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of the steps may be considerably delayed). However, in such “demanding” cases,
the linear patterns of the A-plots can help considerably the analyst in selecting
“optimum” regions of the Nyquist plot for circle-fitting. This leads to an accelerated

convergence of the iterations.

5.5.2. MODAL ANALYSIS OF AN EXPERIMENTAL FRF

The FRF of a practical structure is now analyzed in order to demonstrate the
applicability of the proposed method with experimental data. The FRF consists of
two interfering modes of a truss-structure with a frequency separation of the order
of about 1.7% with respect to their natural frequencies. Although moderate levels
of interaction are anticipated in this problem, it will be shown that the proposed
technique leads to more accurate results than those obtained by means of the SDOF
A-plot method. Thus, although the interfering effects between the two modes are

not large, they will still be shown to affect the quality of the modal analysis.

For comparison purposes. the modal estimates resulting from the application of a
MDOF identification technique will also be considered. This later methodology is
parametric and minimizes the error between the curve-fit of a six-parameter theo-
retical model and the experimental data (the modes are assumed to be classically
damped for simplicity). The minimization is carried out numerically and consists
of a combination of the “pseudo-inverse” and the “steepest-descent” methodolo-
gies. More details about this algorithm can be found in (Caughey, 1990), and in

(McVerry, 1979, 1983), where it was originally derived. For convenience, from now
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on, the A-plot method will be referred as “SDOF.” the proposed refined technique

as “improved SDOF,” and the numerical MDOF method as “MDOF.”

The modal analysis results of the experimental FRF with the three aforementioned
methods are shown in table 5.4. For this example, the numerical solution of equa-
tions (5.14) was achieved with an accuracy of 1072, and with no convergence com-

plications.

In figure 5.13 the experimental and regenerated FRF plots are presented. From
figure 5.13a it is seen that the regenerated curves based on the improved SDOF
and the MDOF methods accurately describe the experimental response in the two
resonance regions. In contrast, there exists a clear discrepancy between predicted
and experimental points in the antiresonance region. This may be attributed to the
fact that close to the antiresonance region, the magnitude of the FRF is very small.
Thus, points in that region do not influence the modal analysis as much as FRF
points with relatively large response, 1.e., close to resonance. For the same reason,
one expects the effects of external noise to be maximal in the antiresonance regions
and minimal in the resonance ones. Another possible reason for the discrepancy
in the antiresonance region may be residual effects of unaccounted higher modes,
namely quasi-static responses of modes that lie outside the considered frequency

range.

In the graphs of figure 5.13b, the A-plots are presented. An additional curve is
graj 8 ! I
plotted corresponding to SDOF modal analysis results. Note that the improved

SDOF and the MDOF methods agree qualitatively and quantitatively quite well
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Figure 5.13. Modal analysis of the experimental FRF: ( a ) Measured and regen-

erated FRF ( b ) measured and regenerated A-plots.
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with the experimental data over a wide frequency range. This cannot be stated
for the SDOF method. Also observe that all regenerated curves approximate the
experimental data very closely in the two resonance regions (denoted by arrows).
Outside the resonance regions, the experimental data appear to be heavily polluted

by noise, so agreement with the regenerated plots is nowhere nearly as good.

A general conclusion is that the SDOF methodology results in relatively inaccurate
modal results in this example. Although the SDOF algorithm accurately curve-fits
the resonance regions. its A-plot differs from those of other, more refined method-
ologies. This results from the fact that, in the SDOF method, modal interference
(although small in this example) is not taken into account. A final note must be
made concerning the agreement between the proposed method and the MDOF one.
It seems that the approximate methodology outlined in this work captures the basic
features of modal interference, since its results are in agreement with those obtained
by the more exact MDOF technique. Moreover, the suggested method avoids the

complicated numerical optimization schemes used in the MDOF approach.

5.6. DISCUSSION

Conventional SDOF modal analysis methods model the modal interference with a
constant complex term that is added in the single mode FRF (eq. (5.1)). In this
work this approximation is relaxed by Taylor expanding the FRF of the “perturb-
ing” mode and retaining only the first two terms. The first term of the Taylor

expansion is a complex constant which only causes rigid-body displacements of the



modal circle of the “perturbed” mode (SDOF approximation). The second term,
however, i1s frequency dependent, thereby introducing distortions in the relative

frequency spacing of points in the resonance region of the “perturbed” mode.

A geometrical representation of the distorted Nyquist plot was constructed, and
based on this, an identification algorithm which takes into account first order fre-
quency distortions caused by modal interference was developed. This algorithm is
simple to apply, since it considers only angles and lengths measured directly from
the experimental FRF plot. A possible complication may arise in the numerical
solution of the set of algebraic equations (5.14), but as stated previously, good ini-
tial estimates for the unknown variables improve the convergence of the numerical

solutions.

The proposed methodology can be applied in cases where the response of a mode in
its resonant region is greater than the interfering terms of polluting closely spaced
modes — wherever the approximate formula (5.8) holds. This is the case of closely
spaced modes with comparable dampings and magnitudes of modal constants. In
such cases. the proposed methodology is expected to give more accurate results com-
pared to existing SDOF techniques, since it takes into account first order frequency-
dependent distortions in the Nyquist plots (conventional SDOF do not consider such
perturbations). An additional feature of the method is that it can approximately
quantify the amounts of the frequency-dependent modal interference by computing
the quantities w and ¢ in equations (5.14) (as previously explained, these variables

represent the moduli and phases of the frequency-dependent interfering effects of
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nearby modes). Thus, the analyst can determine the amount of interaction be-
tween two modes and test the validity of the SDOF assumption for approximating

the FRF in the frequency range of interest.

The algorithm cannot be applied in cases of “heavy interference,” i.e., closely spaced
modes with large differentials in their modal dampings and modal constants. In
such cases, the resonance modal response of the “perturbed” mode is orders of
magnitude smaller than the distorting effects of nearby modes; thus, one needs to
include higher order terms i eq. (5.8) in order to accurately model the modal
interference. Even in such cases, however, the proposed algorithm can be used with
the A - plot SDOF method in an iterative scheme which leads to very accurate
estimates for the modal parameters. This iteration technique is not new (examples
of its application with other modal analysis algorithms can be found in (Robb, 1988)
for example). However, a new feature presented in this work is the potential of
identifying “optimum” regions in the remaining FRFE that are most effective for
modal analysis. This can be achieved by detecting and line-fitting linear patterns

i the A-plots of the remaining FRF.

A similar analysis with the one presented in this work can be performed when
more than two closely spaced modes exist in the range of interest. Again, one
of the modes can be designated as the “perturbed” one, whereas the remaining
modes are “perturbing.” The FRF of the perturbing modes can then be treated
as in this work, leading to a more involved identification algorithm. When “heavy

modal nterference” occurs. then one could use the iteration scheme to separate
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the individual modes. This can be achieved as in this work, with the additional
complication, however, that more than two linear patterns in the A-plots should be

considered.

The applicability of the method was tested with theoretical and experimental data.
[t was found that provided the theoretical assumptions are satisfied, the algorithm
can lead to modal estimates of improved accuracy. The robustness of the analy-
sis was tested by perturbing the theoretically generated data with random noise.
Finally, a demonstration on the modal analysis of “heavily” interfering modes was
given, where the proposed method was used in an iterative scheme with a SDOF

algorithm.
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6. EFFECTS OF WEAK NONLINEARITIES ON MODAL
ANALYSIS

6.1. PREVIOUS WORK

A basic assumption of standard modal analysis techniques is that of linearity. Al-
though the majority of engineering structures behaves almost linearly for low ampli-
tudes of motion, there are cases where this does not hold. For example, in cases of
nonlinear boundary conditions. of dry friction between sliding surfaces, of impacts.
or of material nonlinearity, the nonlinear effects can be evident even for low ener-
gies of motion. In such cases, the frequency response functions (FRF) are distorted
and modal analysis using conventional methods does not lead to accurate modal

estimates.

The identification of nonlinear systems consists of various stages. Initially, one
examines the FRF of the system 1n order to detect nonlinear distortions. Once the
existence of nonlinear effects is established, one identifies the type and the spatial
distribution of the nonlinearity, i.e., if it is of stiffness- or of damping-type, and if
1t 1s local or distributed in the system. The next step consists of the quantification
of the nonlinearity. This stage is more demanding and includes many topics. The
most basic problem is that of developing an accurate mathematical modelling of the
nonlinear behavior. Note that the resulting model depends not only on the specific
type of the excitation used for the modal test, but also on the frequency range of

mterest and on the amplitudes of the response. Having defined the range of validity
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of the model, one has to compute its parameters by analyzing the experimental
response. At a final step, the regenerated, theoretical FRF (based on the identified
model) is compared with the measured response of the tested structure in order to

determine the accuracy of the identification.

A general survey of existing nonlinear identification methods can be found in
(Billings, 1980) and (Natke, 1982, 1987), where a brief synopsis of the various ap-
proaches 1s given. A detailed discussion about the existing excitation techniques
for nonlinear identification is presented in (He, 1987). There are various types of
external excitation for modal testing: harmonic, random, transient, periodic, etc.
Depending on the specific aims of modal analysis, different forcing types should
be implemented. Harmonic excitation is regarded as the best technique for iden-
tification of structural nonlinearities (He, 1987), (Natke, 1987). This is due to the
fact that with harmonic excitation one can accurately control the level of the in-
put force and can effectively investigate the nonlinear distortions of the FRF in
the resonance regions for different levels of the response. Moreover, one can detect
additional subharmonic or superharmonic responses that are a clear manifestation
of nonlinear behavior. The limitation of harmonic excitation is that it is relatively
slow compared with other excitation types. Random forcing is faster and results
in the excitation of the structure with random levels of forces and phases at each
frequency. However, the response at each frequency (obtained by a frequency an-
alyzer), is the average of the responses due to all the random input forces. Thus,

the resulting FRF does not contain any nonlinear distortions and resembles that of
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a linear system. Therefore, random excitation is not suitable for identifying non-
linearities in structural components. However, it can be effectively used when one
wants to find a linearized model that has similar vibrational characteristics with
the actual structure over the frequency range of interest. Similar arguments can be
made with regard to transient excitation. With transient testing, there are difficul-
ties in controlling the forcing input at each frequency, as well as, the frequency range
of the test. Thus, transient testing has basic limitations when applied for nonlinear
identification. Also certain coherence problems may exist close to anti-resonances
(He, 1987), (Cawley, 1986). In this work only harmonic excitations are considered
since, as mentioned they are the most suitable forcing functions for exposing the

nonlinear distortions of frequency response functions.

There exist various methods for analyzing and identifying the nonlinear FRF. As
far as the computation of approximate nonlinear FRF is concerned, there exist
the classical methods of “equivalent linearization” (Caughey, 1963), (Iwan, 1973),
and “slowly varying parameters” (Nayfeh, 1979). The basic assumption of these
methods is that the nonlinearities of the system are weak, so that under harmonic
excitation. the nonlinear response i1s approximately harmonic. The FRE computed
by these techniques contain nonlinear distortions, and the equivalent, linearized nat-
ural frequencies depend on the amplitude of the motion. A more detailed discussion

of the “equivalent linearization” technique will be given in the next section.

A class of current nonlinear identification methods is based on the Hilbert trans-

form (Simon, 1984), (Tomlinson, 1987). This transform is a means of computing
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the imaginary part of a complex frequency response function from the real part
(and vice versa), provided that the system under consideration is linear and causal.
When nonlinear systems are considered, their impulse time responses are still causal,
but their inverse Fourier transforms (used for computing the FRF) are not (Si-
mon, 1984). Thus, the Hilbert transform of the real part of a nonlinear FRF is not
identical to its imaginary part, and nonlinear distortions occur. This result can be

used not only for detecting, but also for quantifying nonlinearities from the plots of

the FRF.

An additional category of techniques is based on the work of Masri and Caughey
(Masri, 1979, 1982a.b). These methods can be used for parametric or nonparametric
modal analysis, and they are based on a model of a SDOF nonlinear oscillator with a
general nonlinear restoring force. As a first step, the applied force and the resulting
acceleration are measured at discrete time intervals. Based on these measurements,
the (nonlinear) restoring force of the system is estimated at each time step directly
from the equation of motion, and its (3-dimensional) plot versus amplitude and
velocity constructed. The resulting 2-dimensional surface of the restoring force is
mterpolated into a grid and is subsequently curve-fitted by a set of Chebyshev
polyvnomials. The result 1s an analytic representation of the restoring force as a
function of the displacement and the velocity. An extension of this method can be
found in (Worden, 1989), where it is shown that the method can also be used for

detecting the spatial location of the nonlinearity in the structural model.

In (Rades, 1983). the nonlinear distortions of the Nvquist plots of FRF are studied
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by means of equivalent linearization techniques. Both stiffness and damping non-
linearities are considered, and the modal parameters of the system are computed
by considering two Nyquist plots corresponding to two different levels of external
excitation and by measuring the frequencies of certain, suitably selected, Nyquist
points. In (Haymon, 1978), the approximate “backbone curve” of the FRF is con-
structed, by measuring the “peak” amplitudes of the response for different levels of
forcing. From that curve, the amount of stiffness nonlinearity can be estimated. An
interesting method for detecting and measuring nonlinearities of SDOF systems,
1s presented in (Mertens, 1989). This method considers the plots of the inverse of
the frequency response fl,ln(;tiOIlS, and 1t studies the dependence of the equivalent
stiffnesses and dampings of the system, on the displacements and velocities respec-
tively. Hence, diagrams of equivalent stiffnesses and dampings versus displacements
and velocities are constructed and subsequently used for the derivation of accurate
estimates of the types and amounts of the nonlinearities present in the system. It
must be pointed out. however. that the performance of this technique depends on

the accuracy of the estimate of the mass of the SDOF model.

In (Tomlinson, 1979), a structure with a localized Coulomb (dry friction) damper,
15 considered. Instead of analyzing the (distorted) Nyquist plot of the FRF, the in-
phase and quadrature components of the power dissipated during the steady state
oscillation is examined. An identification technique is subsequently derived that
leads not only to the quantification, but also to the detection of the location of

the nonlinearity. The effects of single and multiple clearance-type nonlinearities on



- 268 -
the dynamic response are examined in (Tomlinson, 1984). Both symmetrical and
asymmetrical clearance characteristics are considered, and their distorting effects on
the corresponding FRF are studied both analytically (using equivalent linearization
techniques), and numerically (with digital simulations). However, no identification
algorithms are given, this being attributed to the complexity of the problem. A
similar analysis was performed in (Comparin, 1989), where the method of harmonic
balance was used to compute the primary resonance of an impact pair. A study of
the topology of the FRF of this system 1s carried out and a comparison with the
FRF of a system with clearance nonlinearities is made. (Natsiavas, 1990) examines
“trilinear” oscillators (with motion limiting constraints), and provides some exam-
ples of Nyquist plots constructed from the computation of the exact steady state

nonlinear response. Finally, a brief discussion on the application of ARMA models

for analyzing nonlinear structures can be found in (Hunter, 1990).

Recently, multidimensional Fourter transforms of Volterra and Wiener kernels of
nonlinear svstems were applied to the problem of nonlinear system identification
(Gifford, 1989a.b), (Frachenbourg, 1989). These represent higher order FRF for the
nonlinear syvstem and contain information about the nonlinear behavior that can-
not be obtained by conventional (first order) FRF. In the aforementioned references,
nonlinear multi-DOF parametric models were curve-fitted to measured Volterra ker-
nel transforms, with encouraging results. This method appears to be the extension
for the nonlinear case of the conventional curve-fitting procedure that is commonly

applied to (first order) linear FRF. In addition, the calculation of higher order FRF
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permits the mathematical modelling of the transfer of energy between various fre-
quencies that takes place in systems with nonlinearities. A limitation of this method
is that it cannot be applied to systems with discontinuous stiffnesses (such as clear-
ances), and dampings (such as friction), since such systems do not have a Volterra
series representation. An additional drawback is the computational effort required

for computing high order kernels, and the requirements for large data memories, in

order to store the computed results.

In this work, the method of equivalent linearization will be implemented to the study
of the nonlinear distortions of the Nyquist plots of weakly nonlinear systems. In
linear systems with hysteretic damping, it can be shown that the Nyquist plots in the
resonance regions are almost circular, and moreover, that an estimate for the natural
frequency can be obtained by computing the point of the Nyquist plot corresponding
to maximum frequency separation. It will be shown that this method cannot always
be applied when nonlinearity is present, since in that case, the Nyquist plots of
the approximate harmonic FRF are distorted from the circular, theoretical form.
Hence, a primary objective of this work is to analyze and quantify the distorted,
weakly nonlinear Nyquist plots, and in the sequence, to derive methods for accurate

identification of the nonlinearity, and the linear modal structural parameters.

There are only a few references in the literature that investigate the nonlinear
distortions in the Nyquist plots. In (White, 1971), a system with cubic stiffness
nonlinearity is considered. and it is found that the maximum frequency separation

in the Nyquist plot does not occur at the linear natural frequency of the system.
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In that paper, analytic expressions for the frequency corresponding to maximum
frequency separation are derived and the response of a practical nonlinear structure
1s examined. In (Tomlinson, 1980), a similar analytical study is performed for a
system with dry friction, and it is found that although this type of nonlinearity sig-
nificantly distorts the Nyquist plot, the maximum frequency separation criterion is
still valid for estimating the natural frequency. In what follows, a system with gen-
eral stiffness and/or damping nonlinearity is examined, and analytical expressions
for the frequency of maximum frequency separation of the distorted Nyquist plot
are derived. These results are then compared with those of the two aforementioned

references.

6.2. THE METHOD OF EQUIVALENT LINEARIZATION

Since the notions of “equivalent stiffness” and “equivalent damping” will be used in
the following analysis, a brief discussion on the method of equivalent linearization
will now be given. This is an approximate method for computing the main harmonic
component of the steady state response of a weakly nonlinear system, excited by a

harmonic excitation.
Consider a SDOF nonlinear system, with the following equation of motion:
P b+ wie +ef(x,2) = ePet! (6.1)

where b and w, are the linear viscous damping and natural frequency respectively,
and ef(x,2) represents the small nonlinear element of the restoring force. As

usual, € 1s a small parameter (of perturbation order), satisfving |e| < 1. Observe,
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that in (6.1) both the applied force and the nonlinear component of the restoring

force are considered to be of perturbation order.

Consider now the alternative system:
T+ bz + w;“)l + beg® + wzqa: +&(z,2) = ePe'! (6.2)

This results from (6.1), by replacing the nonlinear component of the restoring force,

by two linear terms in the displacement and the velocity, and an additional error

2

term, given by the quantity &(x,&). The quantities Weg

and b., are termed the
equivalent stiffness and damping respectively. The aim of the method of equivalent

linearization is to compute these equivalent quantities in such a wav. as to minimize
I 1 Y,

(in a certain sense) the error £. From (6.1-2), this error can be computed as :

E(x,&) = ef(2,8) — Wiy — begit (6.3)

Assume that the steady state motion of the oscillator is approximately harmonic

(of the same period with that of the harmonic excitation),
o(t) = Xel = 4e'¢e! ( Steady state motion ) (6.4)

The quantity X is the complex amplitude of the steady state motion, A is its
magnitude and ¢ its phase. The error £ will be minimized in mean square, by

considering the following quantity, defined at the steady state of the system:

1 b
< Ea @) >, = / { fle,2)— wgq;zf — beg }2dt (6.5)

Jo
where T' = 27 /w is the period of the harmonic excitation (and of the approximate

steady state response). The minimization of (6.5) is carried out with respect to the
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two unknown quantities w7, and by, and provides a means for their determination:

. . T .

< 51(:1:;:1:) > 0 = wgq _ fo wt;f(:c,:c)(lt (6.6)
Owe, Jo xidt

I< E¥a,2) > —0 = by = .]0 :l?t;j(l‘,l‘)dt 6.7)
Obe fo z2dt

where in the above expressions z is evaluated at the steady state. Considering the
real part of ( 6.4 ), one obtains ¢ = A cosf, where A = |X|, and § = wt + ¢.
Substituting for 2 in ( 6.6-7 ), and changing the variables of integration, one finds
the following final expressions for the equivalent quantities:

5 € [0'”r cost f( Acosb, —wAsing ) db

“a TA

(6.8)
b - ejo —sinf f{ Acost, —wAsinb ) db
‘T TwA

Note that both equivalent quantities are of O(¢), and that they depend on the
amplitude of oscillation A and the frequency of the exciting force, w. The amplitude
of the approximate harmonic steady state motion, 4, is determined by considering
the linearized system that results when the (minimized) error £ is omitted from
equation (6.2):

T+ b+ wf;l,' + beg + wgq;L‘-% = ePet (6.9)

Fixing 4 and w, the system (6.9) becomes linear, and the approximate steady state

response can be evaluated by the following formula:

1

oA [ (W2l =) +ifwlby +0)] ) (6.10)

From equation (6.10), the magnitude 4 and the phase ¢ of the response can be

numerically evaluated. Moreover, assuming the level of the force to be constant, and
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assigning different values to the frequency w, the approximate FRF of the oscillator
can be evaluated. Note that since the system is nonlinear, an examination of the
stability of the approximate steady state is also needed. However, this problem can

be solved by standard techniques (Nayfeh, 1979), and will not be considered here.

Assuming that the damping of the system is light (this holds in the majority of
practical applications), one can replace the equivalent viscous damping b.,, by an
equivalent, hysteretic loss factor 7.,. It can be proven that no loss of generality
results by doing so, since for light damping the differences between the viscous and
hysteretic damping models are negligible. However, it must be pointed out that
the model of hysteretic damping 1s only valid at the steady state, since the tran-
sient motion of a hysteretically damped system violates the assumption of causality

(Crandall, 1970). The overall equivalent hysteretic loss factor of the system is de-

fined by,

wW(b+bey)
oWl twl)

and the approximate harmonic oscillation of the system 1s described by the following

equation (correct to Ofe)):

B (Wl wl )1+ ineg)a = ePet™! (6.11b)

Sumimarizing, in the method of equivalent linearization, the weakly nonlinear system
) l )

(6.1) is replaced by an equivalent linearized system (6.9). This is achieved by
replacing the nonlinear component of the restoring force, by equivalent linearized

stiffness and damping terms. These quantities are derived by minimizing a certain
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error function, they only hold at the approximate steady state, and they depend on

the amplitude of motion and the frequency of the external harmonic excitation.

6.3. SYSTEM WITH DAMPING NONLINEARITY

6.3.1. ANALYSIS

Consider a harmonically excited, N-DOF discrete oscillator with weakly nonlinear

damping elements. The equations of motion are as follows:

i+ I g+ F(4) = Q™ (6.12)

N

|

where M, I\’ are the constant mass and stiffness system matrices, and F is a ma-
trix containing the linear and nonlinear damping elements. The vectors ¢ and @
represent the coordinates of the system and the amplitudes of the exciting forces
respectively. Transforming into the modal coordinates of the undamped, linear
oscillator, one obtains:

m itk it f(2) = Pet! (6.13)

where,

¢ =2z

and @ is the matrix containing the linear eigenvectors of the undamped system.
In the new coordinates, the matrices m and & are diagonal, but _71 need not be.
However. assuming that the natural frequencies of the undamped system are well
separated. that the linear damping matrix satisfies the conditions for classical nor-

mal modes (Caughey,1963), and that the nonlinear damping elements are of per-
ghey , L
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turbation order, one can approximately neglect the off-diagonal terms of the matrix

f, and obtain N uncoupled equations of the form:

miZ; + ke + fi(z) = Pt 4 = 1,.. N (6.14)

Note that in writing (6.14) it was assumed that the nonlinear function f; depends
only on the variable ;. The approximate equations (6.14) describe the motion of
the system on a normal mode, and they are identical in form to (6.1) that describes
the motion of a nonlinear SDOF oscillator. Assuming that the nonlinearities and
the exciting forces are small. the method of equivalent linearization can be applied,
and (6.14) is replaced by a linearized equation. It can be shown that in the absence

of nonlinear stiffness elements, the equivalent stiffness of the system is zero:
2
wey =0 (6.15)

Hence, the equivalent, linearized system of equation ( 6.14 ) takes the form:

) P
. 2y . )
B+ will 4 inieg ), = —e™! (6.16)
my
where.
LWbieq
Nieqg = —5— (6.17)
“air
and
2 . . .
—sin fi( —wA;sinb ) db ,
bicq - ./O - : (618)
g Tw Ay
In the above equations. w? = k;/m;, and 4; is the amplitude of the approximate
steady state, computed by (from now on, the subscript 7 is omitted):
P/m . . o
/ =w? -+ mfneq (6.19)

Aeto
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The phase ¢ between the displacement and the force is computed by the relation:

2
Wileq
2

179}
L'/""I'

tang = — (6.20)

__w2
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Figure 6.1. Inverse of the receptance of a system with nonlinear damping.

The complex quantity (6.19) has the form of the inverse of the receptance of a
SDOF system. and its schematic plot for varying w is presented in figure 6.1. When
linear damping exists. the plot is a straight line that intersects orthogonally the

imaginary axis. at w? = w?. When the damping is nonlinear. the line is curved,
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but it still intersects the imaginary axis at w? = w? (this is due to the fact that
at this frequency the real part of (6.19) vanishes). Consider now three points C, 4
and B of the plot, corresponding to frequencies squared, w? — dw?, w? and w? + dw?
respectively. Referring to figure 6.1, the angles ¢c4 and ¢4p connecting these

points can be evaluated by the expressions:

2 2 /
; —1, W <44(U),U) —1,%WrTle (A(u)ﬁu)
bca = tan (- yye(fz ——) — tan"H (== /qu —)
Wi —u u? =w? ~dw? wp —u u?=w? (6 21)
2 ‘ 2 ; )
‘ _owin.(A(u), u 1 Wineg(Alu), u
bap = tan (DI ALy oy el 20,1,
Wi U w2 =w? Wy — U u?=w?+dw?

In equations (6.21), the explicit dependence of 7., on the amplitude of motion,
A(w), and the frequency w, are emphasized. Using some elementary algebraic and

trigonometric formulas, the angles can be expressed as follows:

‘ wiw? —w?) 77é(,_) — wi(w? — w? + dw?) 7722)
tangc 4 = - ) ‘ = (0
(W2 — w? + dw?)w? — W) + Wt Neg Neg (6.22)
, wiw? — w? — dw?) 772?,) —w(w? —w?) néj) '
tang ap = - OENES
(Wi —w? = dw?)(w? = w?) + Wi Neq’ Neq
where the following notation was adopted:
'z)f,;) - {7764(’1(“‘)*“)}u?:w-—dw?
7;22} = {Neg(Alw), )} o s (6.23)
II‘E;‘) — {776(1([&(1[),1L)}1L2:w2+(1w2

The receptance of the modal response is found by inverting the quantity (6.19) in
the complex plane, and its plot is shown in figure 6.2. A property of the complex
inversion 1s that an angle formed by lines connecting the origin with two points in

the original plane is preserved in the inverted plane. Thus, the points C’, A" and B’
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of the inverted (receptance) plot, corresponding to frequencies squared, w? — dw?, w?
and w? + dw?, are connected by the same angles ¢4 and ¢ 4p, that connect the

respective points C, A and B in the inverse receptance plot (figure 6.1).

w? 4+ dw?

Figure 6.2. Receptance plot of a system with nonlinear damping.
Define at this point the quantity A, as follows:

1 1 :
A = / N : (6.24)
tanoc 4 tang 4 p ‘ ’

[t will be shown that this quantity is the extension for the nonlinear case of the
respective quantity defined for linear systems in section 5.2. To show this, con-
sider the two circles passing through the origin of the complex plane and the points
(B'. A") and (A', C") respectively (figure 6.3). The central angles of the circles pass-
ing through these points are equal to one-half the angles ¢ 45 and ¢¢ 4 respectively.

Thus, the quantity defined by (6.24) is analogous to the quantity A defined in sec-
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tion 5.2 for linear systems (in that section, A was expressed in terms of the halves
of the central angles connecting points of the circle fit of the measured data); hence,
by using (6.24) one extends the A-Plot formulation developed for linear systems to

the nonlinear case.

Im

Figure 6.3. Circle-fitting for evaluation of the quantity A.

Note that in the linear case there exists a single circle passing through the origin
and all the points of the Nyquist plot. In the nonlinear case, the Nyquist plot is
distorted and no single circle-fit exists. Thus. in order to compute the nonlinear A-
Plot. one must consider the circles passing through each couple of FRF points and
the origin of the complex plane. However, for weak nonlinearities, the distortions of
the Nyquist plots are small, and one can approximately circle-fit subsequent triads
of frequency points: in doing so. one assumes that the two circles of figure 6.3 are

nearly coincident. and that they can be approximately replaced by a circle passing
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through the three FRF points. Then, the central angles of the approximate circle

fit can be used for evaluating the A-quantity.

As a final comment regarding expression ( 6.24 ), note that the frequency where
A = 0, corresponds to the point of maximum frequency separation of the points of
the Nyquist plot. This can be concluded from the fact that, at that frequency, the
two central angles of the circle-fit become equal, and the derivative of the arc of the

Nyquist plot with respect to the frequency is zero.

In section 5.2, it was shown that the linear A-quantity is a function only of the
frequency of the center point of the triad (point A’ in this case. However, when
nonlinearity exists, this is not necessarely true. To find the expression for A one
has to substitute in (6.24) the analytical expressions for the angles, given by rela-
tions (6.22). Since the resulting formulas become very complicated, a perturbation
analysis will be applied at this point. Assuming that the increment of the frequency
squared. dw?, is small compared to the square of the linear natural frequency w?,

one can expand the equivalent loss factor in Taylor series about a frequency wy, as

follows:
o 5 2
) PN Y 5, dw” i, oy, dw?
Negl Alwy + dw™) wg + dw™) = ‘7)({q(‘“&(w0> WO> 4+ (WO)(ZZ—) + 97" (wg ) — Y+
dw? *
+O[ (=) ] (6.25)

The expansion coefficients appearing in ( 6.25 ) are computed as follows :

9 Ol(q 5 070(1
77'<w>~{5@—,j7——} e )/w )

2
“o
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~// ; 1 o2 MNeq : e 24
<'&/()):' { { OA2 }wg{a(wz/wz)}wg { I} { ( 2/ ) }
0 1eq 0*1Neq 0A

+{ (6.26)

Ow 2/w2)2} {2 OAO( Q/Vuz)} {a(wQ/w%)}wg J
In deriving these expressions, it was assumed that 7., depends explicitly on the
amplitude A and the frequency w, although there are cases where one of these

variables is absent.

In addition, it is assumed that the frequency w is very close to the linear natural
frequency w, (this is the same with restricting the analysis to the resonance region
of the mode). and that the equivalent loss factor 7n.,, along with all of its partial

derivatives, are small quantities. These requirements are summarized as follows:

2 2

001 - 25) = 0 ) = O(ny) = OGT) = O = ¢ (6.27)

Moreover, the amplitude 4 and the ratio (w”/w?) are assumed to be of O(1).

Substituting now the expressions for the angles ¢.4p and ¢¢,4 in the expression
for the A-quantity, equation (6.24), and taking into account the Taylor expansions

(6.25), one obtains the following simplified expression for A :

2 e 2wt W
Neq r Neg p

. .. . {0 . s .. .
where for a definition of I]LI), see equations (6.23). In deriving the above expression,
terms of O(e?), or higher. were omitted. The following remarks are made, as far as

the analytic expression (6.28) is concerned.

. . . . , . ) -
e For damping nonlinearity, the quantity A depends explicitly on dw?. The first

term of the expression is of O(1), and corresponds to the unperturbed linear plot.
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Indeed, this term is identical to expression (5.3) of section 5.2, where a system
with linear hysteretic damping was examined. Hence, the damping nonlinearity
introduces O(e) distortions in the A-plot (these are the second and third terms of

equation (6.28)).

o Of interest is to compute the frequency w,,, corresponding to A = 0. By the
construction of the A-quantity, wy,,s corresponds to the frequency of maximum
frequency separation in the Nyquist plot. Setting the right-hand side of equation

(6.28) equal to zero, one obtains the following analytic relation:

5= (Al ) @) 1(wh) + O (6.29)

2

This is a transcedental equation in w2, .

However, by considering the orders of
its terms, it can be concluded that w,s = w, + O(e?). Hence, an interesting
analytical result is that weak damping nonlinearity essentially leaves unaffected the
point of maximum frequency separation in the Nyquist plot of the receptance. This
confirms the result that Tomlinson derived for a SDOF with dry friction (Tomlin-
son. 1980). Although the Nyquist plot of the receptance is distorted, the frequency
where maximum frequency separation occurs is essentially the same with that of

the linear case.

e The slope of the A-plot at the point of maximum frequency separation is deter-

mined by differentiating (6.28) with respect to the frequency variable (w? /w?), and

subsequently evaluating the resulting cxpression at w = wy,, ~ w, :
IA 2 on' ,
{ = — A — —2{——} +O() (6.30)
Ow?fwi)”, Neq(Alw?), w?) Ow?/w?) o2
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The first term is identical to the corresponding expression for a linear system (see
section 5.2), whereas the additional term represents the perturbation due to the

nonlinear damping.

The aforementioned results are derived by considering a single mode of the system
(see figures 6.1 and 6.2). The obvious question is what happens when residual terms
of nearby modes are also included. To answer this question, recall from section 5,
that for well separated modes, and sufficiently close to the resonance region, the
effects of out-of-range modes can be approximately modelled by a constant complex
term that causes a rigid-body displacement of the resonance region. Therefore, for
well separated modes, the relative spacing of the frequency points in the Nyquist plot
remains unaffected. Since the A-quantity is evaluated by considering subsequent
triads of Nyquist points, its value depends only on the relative spacing of the points
in the resonance region and, therefore, is not affected by the residual effects of the
out-of-range modes. However, when modes are closely spaced, the relative spacing
of the Nvquist points is altered. and the aforementioned formulation cannot be

applied.

6.3.2. NUMERICAL APPLICATION: DRY (COULOMB) FRICTION

As an application. a mode with weak dry friction was examined. The nonlinear

restoring force is of the form,

(i) = F sgn(#) (6.31)
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and the equation of motion is given by:

. 2 - F . P twit |
T t+wir+ bz + —sgn(z) = —e (6.32)
m m

Note that in addition to dry friction, a linear viscous damping term is assumed.
In the above equation, m represents the modal mass. The overall equivalent loss

factor is computed from equations ( 6.8 ) and (6.11), as follows:

%(y 4
wer | AR (6.33)

Wy T4

Neq = Neg( A, w) =

where 4 is the amplitude of the steady state motion, and R = F/mP, is the ratio of
the friction force to the applied external excitation. In ( 6.33 ). the “critical viscous
damping ratio,” (., was used. related to b by the formula, ¢, = b / 2 w,. Note
that the equivalent loss factor ( 6.33 ) has only meaning in the resonance region of

the mode ( w =~ w, ), and only for small values of the friction force F.

The exact steady state solution of (6.32) was obtained in (Den Hartog, 1931) and
(Yeh. 1966). and based on the results of these references. the Nyquist plots of the
receptance were constructed for different values of the ratio . The plots corre-
sponding to w, = 27, and {, = 0.008 are presented in figure 6.4a. In deriving
the receptances it was assumed that the steady states are continuous motions with
no “stops” due to friction (for cases where this does not hold. see (Yeh, 1966)).
In figure G.4b. the associated A-Plots of the receptances are shown. These were
constructed by circle-fitting subsequent triads of Nyquist points. and subsequently
evaluating the corresponding central angles. Clearly, the theoretical prediction that

the A-Plot vanishes at the linear natural frequency is verified. In fact, all the A-
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Figure 6.4. ( a ) Receptance plots for a system with dry friction, for different values

of the parameter R ( b ) Resulting A-Plots.
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plots vanish approximately at w = w, however, as the friction force is increased, the

slopes of the A-Plots at the zero-crossing also decrease.

Of considerable interest is the “inverse” problem. Namely, regarding the Nyquist
plots of figure 6.4a, as being measured from an experiment, to be able to identify the
nonlinearity and the modal parameters by considering the A-Plots. To answer that
problem, the following parametric technique for modal identification is proposed.

In a later section a more general version of this technique will be presented.

The linear natural frequency is identified as the frequency where the plots become
zero. The analytical approximation for the value of the slope of the A-Plot at the
point of zero-crossing is given by equation (6.30). For dry friction this expression

becomes:

A 2R -
_oa o 6.34
G, T e e ! (34

where w,,y =~ w,. The slope 1s measured directly from the A-Plot, and the
amplitude A(w,,,) of the motion is measured from a Bode plot of the receptance.
Hence, by considering two A-Plots, corresponding to different values of the force
amplitude. one can solve for the two unknown quantities R and Cr, and i1dentify the

friction force and the linear viscous damping ratio of the mode.

The results of the application of the aforementioned technique to a theoretically

generated receptance with dry friction arve summarized below.
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Theoretical data Ident: fied data

Nat. freq.: 11.0000 Hz Nat. freq.: 10.9909 Hz
Viscous ratio : 0.02500 Modal damp.: 0.02449
Friction force : 15.0000 Nt Friction force : 13.5743 Nt

It can be seen that the identified parameters are close to their theoretical values.
Based on these results, the regenerated receptance plots of figure 6.5 were con-

structed; for comparison purposes, the exact solutions are also shown.

20l Regenerated FRF
=
S
‘= sh
<
]
=
£ 1ol
<
bt
=
251 St EX&C‘C FRF
-30 ) ! 0 ! | I 1
-10 [0) 10 4400 4600 4800 5000 5200
D] v
Re w* (rad/sec)?

(a) (b)

Figure 6.5. Theoretical and regenerated plots of the Magnification (P/Aw?), for a

mode with dry friction ( a ) Nyquist plot ( b ) Bode plot.

Sumrmarizing, 1t was established that the numerical simulations confirm the analyt-
1cal predictions. The A-Plots of systems with weak damping nonlinearities vanish
at a frequency that is approximately equal to the linear natural frequency of the

mode. The slopes of the A-Plots at the zero-crossings were analytically expressed
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as functions of the modal parameters and the nonlinearity and were subsequently

used for modal identification.

6.4. SYSTEM WITH STIFFNESS NONLINEARITY
6.4.1. ANALYSIS

When a mode contains stiffness nonlinearities, one can follow a similar methodology
in order to study the nonlinear distortions of the receptance plots. Assuming that
the steady state motion of the mode is described by a differential equation of the
form.

mi + Wi (1 +1in)x + f(z) = Pe'*!, (6.35)
the inverse of the approximate receptance is given by:

P/m 2 2 2,002
Toe = W +wy, —w (6.36)

In the above equations, f(2) is the nonlinear stiffness, 1 is the linear (constant)

. . 9 . . “ e .
hysteretic loss factor and we, 1s the overall equivalent stiffness. given by:

1 “/(')IM(:().SH f( Acost ) db (6.37)

“4 mm A

Generally, the equivalent stiffness is a function of the amplitude of steady state
oscillation, A.
As 1 section 6.3, one can construct the plot of the inverse of the receptance in

the complex plane, using the frequency as the independent parameter. This plot is

presented 1 figure 6.6, and is a straight line, intersecting orthogonally the imaginary
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axis (compare this plot with that of figure 6.1, corresponding to nonlinear damping).
The Nyquist plot of the receptance, resulting from the inversion of this line, is a
circle. Thus, the linearized theory predicts a circular form for the receptance, i.e.,
identical in form with that of a linear mode with hysteretic damping. Again, three

. . . . 3 ’ .
points corresponding to frequencies w? + dw? and w? are considered, and the

corresponding angles, ¢c4 and ¢ 4p, are computed.

Re
c w? — dw?
A 2
¢ -
AB ™ Bl 0?4 gu?
Im
0 w? = wgq

Figure 6.6. Inverse of the receptance of a system with nonlinear stiffness.

The quantity A is subsequently computed according to formula ( 6.24 ), and the
result 1s stmplified by use of perturbation analysis. In this case, it is assumed that
the equivalent stiffness is of much smaller magnitude than that of the linear natural

frequency:

et e (6.38)
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and additionally that:

—)=0(¢) (6.39)

The corresponding expressions are too lengthy to be reproduced here, and only
the main analytical results will be presented. It can be shown that the frequency
of maximum frequency separation in the Nyquist plot (corresponding to the point

where A = 0), is given by the following analytical formula:

u)z {u‘z } 2{0‘)2 } — {LUQ } - {( ,2 }
ms €07 W, 4w, €90 Wy, +dw? 47w, —dw? 2
e 1 - m s m ‘,A ‘ : . O '
,,1.{ . 72 2, ,z/ ,'%772 + (6 ) (6 4())

. . . D] .
In this expression. the increment of frequency squared, dw?, can be assigned an

arbitrary value, provided that the requirement (6.39) is satisfied.

So, in contrast to the case of damping nonlinearity, when nonlinear stiffness exists,
the frequency of maximum frequency separation is shifted by O(e) terms. Note
that the first two terms in the above expression give the approximate frequency of
free oscillation of the nonlinear system (backbone curve). This is not, however, the
frequency of maximum separation in the Nyquist plot, since there exists a third term
(of comparable magnitude with the second) in equation (6.40). This term describes
the unevenness of the distribution of we, about the linear natural frequency w,, and
as shown in the next section, it is also a measure of the asymmetry of the Bode plot

of the receptance.

Equation (6.40) is the only analytical result of practical use. The expressions for the
A-function and its slope at zero-crossing are lengthy and complicated, and cannot

be easily mmplemented in modal identification procedures.



- 291 -
6.4.2. NUMERICAL APPLICATION: CUBIC STIFFNESS NONLIN-

EARITY

To demonstrate the analysis, consider the case of cubic stiffness nonlinearity. The

equation of motion (6.35) becomes:
mi +wiz + aw’e® 4+ 2w,d = Pe™! (6.41)

where the parameter a is a measure of the nonlinearity and is assumed to be a small
quantity. In this example, the damping is assumed to be viscous, but this does not
complicate the analysis, since as mentioned earlier, for lightly damped systems, the
viscous and hysteretic damping models are equivalent. The equivalent stiffness of

the system is given by the well known formula,
Wi (4)=aw’4?, (6.42)

and depends only on the amplitude of the steady motion. Accordingly, the lincarized

equivalent system becomes:

) , .. P
ma + (wy +we, )T + 2(w,a = —ett (6.43)

m

The magnitudes of the approximate receptances are then computed by the following

equation,

W24 W2t w2 s

L S eq 42 &

P/m {{wf wf} Q'W';)} ( '
and their phases are given by:

’) g e Y I
tang = — f’“’/”") (6.45)
(Wi, /e?) = (w?/w])
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The Bode plots of the receptances are presented in figure 6.7a, for different values
of the forcing levels. These plots correspond to w, = 27, a = 0.025 and ¢, = 0.015,
and it can be seen that as the external forces increase, the asymmetries of the
diagrams become more and more profound. Also shown in the same figure is the
“backbone curve,” corresponding to approximate, free oscillatory motions. It is
assumed that the levels of excitation are small enough, so that there are no “jumps”

in the receptance plots.

In figure 6.7b the A-Plots of the receptances are shown. Comparing these plots
with those of figure 6.4b (corresponding to dry friction), it is concluded that the
distortions in the receptances due to stiffness nonlinearities are fundamentally dif-
ferent than those resulting due to damping nonlinearities. In the present case, the
frequency where the A-plot vanishes (and thus, the frequency of maximum fre-
quency separation in the Nyquist plot) increases as the level of the excitation force
ncreases. In fact, this is in agreement with the theoretical result (6.40) that pre-
dicts that, for modes with nonlinear stiffness, the frequency of zero-crossing is in
O(e) distance from the linear natural frequency. Note that the frequencies corre-
sponding to the backbone curve of the free system are not the frequencies where the
A-Plot vanishes. This confirms the theoretical prediction that there exist distorting
terms 1 the expression of wy,, caused by the asymmetry of the Bode plot of the

receptance.

In the sequence it will be shown how the analytic expression giving the frequency

of maximum frequency separation (equation (6.40)) can be used for identifying the
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Figure 6.7. ( a ) Bode plots for a system with cubic stiffness nonlinearity, for

different levels of external excitation ( b ) Resulting A-Plots.
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stiffness nonlinearity. To achieve this, the nonlinearity will be assumed to be of the
general form:

J@) 2 (6.46)

m
where the unknown parameters a and n will be identified by analyzing the recep-
tance plots. Assuming that n is a real exponent, the equivalent stiffness is computed

from (6.37) as follows:

20w A T((n +2)/2)
7r1/~ I'((n+3)/2)

Wi (4) =

€

(6.47)

where I'(e) is the Gamma function. Substituting this expression in ( 6.40 ), one
obtains the following expression for the frequency of maximum frequency separation

of the Nyquist plot of the receptance:

Wy —w? = T(m) A" ()T o gmmi 2 ) g gty
(2dw /w(2¢,)7)
_‘411,——1<W,‘,2ns +(]W’2> } (648)

where T (n) depends only on the exponent of the nonlinearity and it is given by:

20w? T((n +2)/2)
/2 T((n + 3)/2)

T(n)= (6.49)

The 1dentification procedure is as follows:

Step 1 @ Identify the linear natural frequency and damping by considering the re-
ceptance plot corresponding to the lowest level of external excitation (see figure
6.7). Since the nonlinear stiffness is proportional to a power of the response, for low

levels of excitation the nonlinear distortions are expected to be minimal. Hence,
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the corresponding A-Plot is almost a straight line, and a SDOF identification can

be approximately carried out.

Step 2: Consider in the sequence two additional receptance plots. In each case,
identify the frequency w,,, corresponding to the maximum frequency separation
of the Nyquist plot (this can be achieved by identifying the frequency of zero-
crossing of the corresponding A-Plot). Then, compute the amplitudes of steady
state oscillations corresponding to frequencies squared, w?  and w?,, + dw?. This
can be carried out in the Bode plot of the receptance, by defining an arbitrary, but

small, quantity dw?. This calculation is graphically presented in figure 6.8.
{ : g

Magnitude A

i I ¥
o0 7855 3850 3855 wWho—5 x5 Tioo
2 2
w” (rad/sec)’

Figure 6.8. Calculation of the amplitudes of the receptance for modal identification.

Step 3: Use equation (6.48) and the computed quantities from the two receptance
plots to construct a system of two nonlinear equations with two unknowns, namely,
T(n), and n. Once these quantities are numerically determined, the amount of

nonlinearty, «, 1s found by use of equation (6.49).
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This technique was applied to the identification of the receptance plots of figure 6.7.
Considering the receptance plot corresponding to the lowest excitation level (curve
1), the linear modal parameters were estimated (by making use of the linear SDOF
methodology of section 5.2) as w? = 3953.8 (rad/sec)® and ¢r = 0.01545. These
estimates are very close to their theoretical values. Subsequently, curves 2 and 3
were used for estimating the order and the amount of the stiffness nonlinearity. The
identified values are n = 1.01841 and o = 0.02337. Thus, the method identified
the nonlinearity as being almost cubic and of an amount that is very close to its

nominal, theoretical value.

A series of additional computations was performed, considering each time a different
set of receptance plots. The results were not as satisfactory as the ones obtained
using curves 2 and 3. For example, using curves 2 and 4 one finds n = 0.9228, curves
2 and 5 give n = 0.8636, etc. This had to be expected, since as the level of excitation
increases, the nonlinear effects become more apparent, and the approximate analysis
based on the method of equivalent linearization loses accuracy. Hence, the outlined
procedure should only be applied for low levels of excitation, where the nonlinearities

are weak and the assumptions of the perturbation analysis are satisfied.

6.5. SYSTEM WITH COMBINED DAMPING AND STIFFNESS NON-

LINEARITIES: ANALYSIS OF EXPERIMENTAL DATA

In this final section. the general case of a mode with combined stiffness and damping

nonlinearities will be examined. This situation is often encountered in engineering
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practice, when more than one mechanism for nonlinearity exists in a practical struc-

ture.

Consider the steady state oscillation of a weakly nonlinear mode, with equivalent
linearized stiffness wgq(/i), and equivalent linearized loss factor Neq(A,w). These
quantities approximate the actual stiffness and damping nonlinearities at the steady

state. The inverse of the receptance can then be expressed as follows:

P 9 .
T T Weq T w? + zwfqneq (6.50)

where the notation of the previous two sections was used.

Working in a way similar to the previous two sections, and assuming that the
nonlinear terms are small compared to the linear ones, it can be proven that the
frequency, wy,,, corresponding to the zero-crossing of the A-Plot (i.e., the frequency
of maximum frequency separation in the receptance Nyquist plot) is given by the

following analytical formula:

2 (w2} 26wl —{w? ) , — {wi,} , <
e e e el L 0(e) (651)
Wi W =W /""r 7/(’(1}“’,"”

This expression resembles the formula (6.40) that was derived for the case of non-
linear stiffness. Note, however, that in this case, the constant loss factor n 1n the
denominator of (6.40) is replaced by the equivalent loss factor Neq- From (6.51) it
is concluded that w3, differs from the square of the natural frequency, w?, by O(e)
terms. When ouly nonlinear damping exists, the equivalent stiffness vanishes, and
2

one finds that w

y
mas

= w; + O(e?) (that is in full agreement with the results of

section 6.3).
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Figure 6.9. Experimental receptance plots ( a ) Bode diagrams ( b ) A-Plots.
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As in section 6.4, the analytical result (6.51) can be used for modal identification of
the nonlinearities and the modal parameters. The procedure of the previous section
can be followed, i.e., one can initially identify the linear modal parameters from the
plot corresponding to the lowest level of harmonic excitation, and subsequently use
equation (6.51) and two additional receptance plots, to estimate the stiffness and

damping nonlinearities.

This procedure was applied to the modal identification of an experimentally mea-
sured mode with combined damping and stiffness nonlinearities. The experimental
data is taken from a high-frequency modal test of a truss structure, and the Bode
plots of the receptance, corresponding to nine levels of external excitation, are pre-
sented at figure 6.9a. The j-th level, corresponds to a forcing magnitude that is
J-times that of level 1. For low forcing (level 1), the response is almost linear and
symmetric with respect to the frequency of maximum amplitude. The curves cor-
responding to levels 2 and 3 indicate a large increase in the modal damping and
a low icrease in the equivalent natural frequency. For higher level of forces, the
modal damping appears to decrease, and the equivalent natural frequency, to slowly
mcrease. Moreover, at high levels of force, asymmetries in the frequency responses

(resulting from nonlinear distortions) are observed.

The A-plots of the receptances appear in figure 6.9b. Note that the plot corre-
sponding to the first forcing is almost linear. As the level of excitation is increased,
the A-Plots become curved and the frequency corresponding to the zero-crossing

mereases. Since the data are measured from an experiment, a certain amount of
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measurement noise exists; however, the curves of the A-Plots are clearly detected,

and they resemble the theoretical curves computed in the previous section.

The plots corresponding to forcing levels 1, 2, 3 and 4 will be examined in order
to construct a model for the nonlinear force and to extract estimates for the linear
modal parameters. The identification procedure will not be applied to receptances
corresponding to higher forcing levels, since the obtained results will be inaccurate.
This limitation of the method was demonstrated in the previous section with the-
oretical data, and is due to the fact that the analytical, perturbation results are
not valid for high external forces. Hence, the approximate identification technique
cannot be applied to strongly nonlinear FRF, and an alternative technique should

be developed to study such cases.

The following general expression for the nonlinear force per unit modal mass will
be considered. The first term of this formula models the nonlinear restoring force,

whereas the second characterizes the nonlinear dissipation:

fle @)

= ka" + clz|™ sgn(z) (6.52)
m

Based on this model, the equivalent nonlinear quantities were computed as follows:

2 4y = AT U0 +2)/2)
Weq /2 T((n+3)/2)
2cw D((m +2)/2) (Aw)"
2T ((m+3)/2) w2

r

(6.53)

’]eq(flww) -

where ['(e) denotes the Gamma function.

From the receptance plot corresponding to forcing level 1, the loss factor of the mode

1s estimated as =~ 2.009x 107*, and the lincar natural frequency as w? ~ 3.337 x
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10° (rad/sec)?. Moreover, the magnitude of the receptance corresponding to the
natural frequency is found to be A; /P ~ 8.594x107*. Substituting these estimates
in the second of equations ( 6.53 ), one obtains the following alternative expression

for the equivalent loss factor:

4 m-—1

Neg(A,w) ~2.000 x 1072 ( ) (f—‘)m (6.54)

8.594 x 10—

The expressions for w,, and 7., are substituted in expression (6.51), and the recep-
tance plots corresponding to forcing levels 2, 3 and 4 are examined. Evaluating the
frequencies w,,, directly from the experimentally measured A-Plots of figure 6.9b,
and computing the corresponding magnitudes of the receptance from the Bode plots
of figure 6.9a, an equation for w,,, for each receptance plot is obtained. The re-
sulting set of three equations with three unknowns, n,m and k, can be numerically

solved, and the estimates for the exponents of the nonlinearities can be extracted.

The exponent of the stiffness nonlinearity was computed as n = 0.080753, and
that of the damping nonlinearity, as m = —1.5168. Hence, it is concluded that

the restoring and dissipative components of the nonlinear force have the following

approximate dependencies on the amplitude and the velocity respectively:

”1’0'080753 |-1.5]68

f/'(;'.qtoring ~ ) fdissipative ~ |7 :’gn(T) (655)

The mode has a weakly hardening stiffness behavior and a damping nonlinearity

that is inversely proportional to a power of the velocity.

In figure 6.10. the equivalent loss factors at w = w,,, are plotted for different forcing

levels. Also shown 1 the same figure are the equivalent loss factors away from the



- 302 -
resonance region. These values were computed by considering the linear patterns

of the experimental A-Plots for frequencies greater than w,y,,.

Neq (X 107%)

Forcing level

Figure 6.10. Equivalent loss factors : —%— when w — Wms, —»@. away from the
resonance regions.

It must be pointed out that these results are based on the nonlinear mathematical
model (6.52). Thus. if a different parametric model is used, the extracted non-
linear characteristics will differ. The outlined analysis provides only approximate
estimates for the nonlinear behavior of the mode. and its results hold only for low
levels of external excitations. A more complete nonlinear identification should also
take into account information concerning the free oscillation of the structure (decay

rates).

6.6. CONCLUDING REMARKS

The distortions in the receptance plots of weakly nonlinear modes were analyzed.
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Analytical expressions for the frequencies of zero-crossings of the A-Plots were de-
rived and subsequently used for identifying the weak nonlinearities. It was shown
that when only nonlinear damping exists, the frequency of maximum frequency sep-
aration of the points in the receptance Nyquist plot is approximately equal to the
linear natural frequency of the mode. However, when nonlinear stiffness nonlinear-
ities exist, the frequency of maximum frequency separation shifts from the natural

frequency, as the level of external excitation increases.

From the analytical results of this section, it can be concluded that the “maximum
frequency separation criterion” (of linear modal identification techniques) cannot
be used for extracting the natural frequency estimate from the Nyquist plot of the
receptance. Instead, a technique that takes into account small nonlinear distortions
1s proposed. Since the method relies on perturbation analysis, it can only be applied

to modes with weak nonlinearities, and for small levels of external excitation.
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7. SUGGESTIONS FOR FURTHER WORK

The following research topics can be considered as extensions of this work:

- Use of Poincare maps to study the bifurcations of the similar modes of the system
“off-resonance.” In section 2.2.4. the linearized analysis indicated the existence
of unstable regions in the balancing diagrams, corresponding to orbitally unstable
similar modes. By investigating the global stability of the phase plane, the loss of
stability of the similar modes could be analyzed; moreover, the existence of possible

stable nonsimilar modes could be determined.

- Application of homoclinic Melnikov analysis for proving the existence of trans-
verse homoclinic intersections for the two-DOF oscillator examined in section 2.4.3.
This would rigorously prove the existence of an infinity of periodic orbits of the
Poincare map and, thus, nonintegrability. In this work this was not possible since
the homoclinic orbit appears in the slow-flow of the system (i.e., in the averaged
equations), and the resulting Melnikov-functions are exponentially small. Hence,
alternative forcing functions should be considered in order to introduce appropriate
perturbations to the slow flow. Recent results by Holmes and Marsden., establishing
upper and lower bounds for exponentially small Melnikov-functions, could be useful

to this end.

- Examination of damped steady state motions. In this work only undamped mo-
tions were examined. and the displacements of the system were assumed to be func-

tionally related at the steady state. When damping is introduced, the functional
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steady state relations must also explicitly depend on the velocities. A theory ana-
lyzing the steady state motions of this class of oscillators has to be developed, and
the general class of periodic excitations capable of producing steady state motions

must be found.

- Application of the iterative algorithm for closely spaced modes, presented in sec-
tion 5.5.1., to the modal analysis of experimental data containing nearly coincident
modes. Investigation of the effects of measurement noise in the iterative procedure.
Creation of refined multiple-input-multiple-output identification methods, suitable
for structures with closely spaced modes. Comparison of the performance of the
methods proposed in this work, with various existing SISO and MIMO identification

algorithms.

- Study of alternative methods for quantifying structural nonlinearities. Devel-
opment of techniques for detecting sources of nonlinearities in practical systems.

Modelling and analysis of strongly nonlinear structures.
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APPENDICES

APPENDIX A: INTEGRATIONS OF SDOF UNDAMPED EQUA-

TIONS OF MOTION

Consider the free oscillation of an undamped SDOF system with equation of motion:

4+ f(z)=0 (A-1)

and initial conditions, 2(0) = X, 2(0) = 0. Assume that the system is “linearizable”

about z = 0, i.e., that the restoring force can be expressed in the form:

()
fla)= Z ! (O. (A—2)

1=1,3.5,.

where f9(0) denotes the i-th derivative of f, evaluated at = = 0, and for simplicity

1s assumed to be a non-negative quantity.

Then. the free oscillation of the system can be obtained by quadratures, as:

) cos™ (x/X) 2f D)X Tuy(g)
t=ta.X) = ———ro 1 ) '
(. X) sz(.*:)*/‘l/u { +l~:;4. TETE A
(A—-3)
where
1 — costtld
, "1, i=35
i) = o 1. =35
| 2f(0) X!
(X 200) X

(2 4+ 1)!
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Expression (A-3) can be regarded as an “incomplete” integral (in the same sense as
the incomplete elliptic integrals and Beta functions, for example). The integrand
is periodic with respect to the variable ¢, and t(xz, X) is monotonic in the interval
0 < ¢ < 7/2. Hence, the frequency of free oscillation of the motion (A-3) can
be evaluated by considering the respective “complete” integral, i.e., by setting the

upper limit of integration equal to 7/2 :

- TQ(X)/?
w =l = — <‘)f(l_)w)\’i_l —; (4 —4)
21+ Zi:;&.s,‘.‘ OO GF } do
If the function f(2) is “non-linearizable” about z = 0, i.e., if:
FN0)=0,j=1,....p=2 , and fP0)£0 , p=cven
then the following relations replace equations (A-3,4):
t=1t(z,X)=
1 cosT (/X)) 1 — cosPtle 2f(‘i)(0)4\ri—1u’i(¢) —1/2 |
= o /-1/»/ ([t Y =) do
(X2, 1 —cos?o T O(X )+ 1)!
(4-=29)
and
) TO(X /2 ,
“ :Ld(‘X) - /2 Il —cosPt+lo 2FENHOYN T~y (@) —1/2 (;1—6)
qu {1 “eos?o T+ Zi:p«}—;{,“. O(X)(i+1)! ]} de
where
1 —cos'™lo .
wi{ o) e 1, t=p+2,..

1 — cosPtl

. 2£()(0) X+
0= X Thrnr
=p.,p+2,...
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APPENDIX B: COEFFICIENTS OF VARIATIONAL EQUATIONS

(2.23)

The coefficients of the stability equations (2. 23) of the system with combined cubic
and quintic nonlinearities are computed as follows:

Ay = (14+ ) ( = L)e+ K3(14+¢)*(1=¢) }

Az =3(1 + 02)—2{ (1— CZ)ZK3 +2¢° }

Ar=1+) (1 —e)'Ks+1+¢')

Ay = (142 “’{ (1—c)’Ks+14+¢%)

As =51+ ) (T4 )1 =) L5 + A1+ ) )

(B—-1)

A7 =101+ )7 (F = 1P K5 )

Ag = 1014 )7 { (1 + ) (1 = ¢)* K5 + ¢*(1 +¢%) }

Ao =1+ el =)+ (1 +0)°(1 = )5 }

Ao =1+ 1+ ) Ky + 1+t )

A =0+) 7 (T+e) 'Ky +1+¢%)

The quantities ¢, 'y, and I5 are defined in section 2.9.3.

APPENDIX C: FOURIER EXPANSIONS OF ELLIPTIC FUNCTIONS

The Fourier expansions of the elliptic cosine and some of its powers are given by

(Byrd, 1954):

o0

2 1
cn(qt, k) = Z ag,lH(:o.b( =+ 1

vt ZIx(k)

(C-1)



- 320 —

9 N = y (2n + 1)7wqt B
en“(qt, k) =1~ ;)an+lblnm21x’(k) (C—-2)
. = (2n + 1)wqt
en’(qt k) = ;(lzn+1003w (C—3)
where
o QEnt1/2
Aongy = ]»I{(k) 1 + Q2n+1
») 9, 2 2 9 (2n+1)/2
52n+1:[ 1+4A —“Ln“{il) T ] rW 9 : (0“4)
2k3 28 4ARA(k) TK(k)1— @2t

e 2 2 Q(2n+1)/2
QI&'(K:)) EEK (k)1 + Q2!

In the above expressions, I\(e) is the complete elliptic integral of the first kind, &

1 , ,
dyni1 = 5@-[ 2k — 1+ (2n + 1)¥(

is the elliptic modulus, and Q is the elliptic nome, defined by:
Q =exp(—nK'(k)/K(k)) , K'(k)=K(1-k) (C—5)

The complete elliptic integral (k) can be expanded in terms of its modulus, as

follows:

=14 — +O(kY) (C —6)

Additional formulas regarding expansions of elliptic functions can be found in

(Byrd. 1054).

APPENDIX D: ANALYTIC EXPRESSIONS FOR THE LINEAR SEG-

MENTS OF FIGURE 5.6

Consider the »' term of the receptance series (corresponding to the r-th modal

response):

r Ak

SR —
wi — w? 4wl

(D —1)
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Three points A, B and C on the r'* Modal circle with frequencies squared w? w?—

5 . ) . .
dw?,w? +dw? respectively, are connected by linear segments of magnitude (see figure

5.6):
rA ke 2 . I - 2y l 2 7T
(AB)2 = «'——;ﬁ”—'—fsinz tan™! _2<77 wr) C‘W{Z > -
(w2n,) I 1+ (newr)” (Wi = w?)(wi —w? + dw?) | (D2
2 r -1, § -
(AC)Z = l’—é—k—i-omz tan ™! (rwp) —dw”
(w?nr)z i 1+ (nrw%)_z(w% —w?)w? —w? — dw?) |

The above complicated expressions can be simplified by use of the trigonometric

identity:

12
WP

1+

sin*(tan 'y =

Referring now to figure 5.6, the triad of points (BAC) is initially displaced to the
new position

(BAC) — (B'A"C")

where 4" is the point of the distorted Nyquist plot corresponding to frequency w?.
The relative distortions of points B and C"' with respect to A" can now be analyti-
cally computed. These distortions are represented by the segments B' B and C'C"
which are equal in magnitude and parallel, since the modal interference is approxi-
mated by first order terms. (equation (5.8)). From the geometrical construction it

can be stated that:
(4"B"Y = (AB)*,  (4"C") = (AC)? (D —3)
The angles ¢, 6 and ¢, (in degrees), are related by:

01 =1804+80 -0 = 0=0,+¢ — 180 (D — 4)



