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ABSTRACT

The base pair stack within double helical DNA provides an effective

medium for charge transport.  The π-stacked DNA base pairs mediate charge

transport chemistry over long molecular distances in a reaction that is

exquisitely sensitive to DNA sequence dependent conformation and

dynamics.  This sensitivity to minor perturbations in DNA structure and base

stacking makes DNA-mediated charge transport chemistry an ideal platform

for DNA sensing.  Electrochemical methods through DNA-modified

electrode surfaces that exploit this sensitivity for efficient biosensing are

described.  Gold electrodes are modified with DNA double helices and used

to monitor the electrochemistry of bound redox active intercalators.  The

efficiency of electrochemical reduction of the intercalated redox probe, in a

DNA-mediated reaction, provides an indicator of base stacking within the

surface-bound duplexes.  Perfectly stacked DNA is capable of mediating the

electrochemical reduction, while duplexes containing π-stacking

perturbations, such as single base mismatches, do not support current flow to

the intercalator.

This sensitive assay of DNA stacking is improved through

electrocatalysis.  Electrochemically reduced methylene blue, a redox active

intercalator, bound to a DNA film, is capable of reducing solution-borne

Fe(CN)6
3-.  Upon reoxidation, the methylene blue is available for

electrochemical reduction and ensuing electrocatalysis.  Because the

electrochemical reduction of methylene blue takes place by DNA-mediated
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charge transport, the π-stack is repeatedly sampled during electrocatalysis,

making this assay extremely sensitive to even very minor perturbations in

DNA structure and stacking.  All single base mismatches, including

thermodynamically stable GT and GA mismatches, as well as many common

base damage products can be detected within DNA and DNA/RNA hybrid

duplexes using this assay.  Moreover, mismatches can be detected as a small

percentage of a perfectly matched film, making it possible to detect mutations

associated with genetic disorders in only a small fraction of cells.  This assay

is also compatible with DNA based chip technology.

Electrochemical DNA-mediated charge transport on surfaces also

provides a tool for directly characterizing small perturbations in DNA

stacking and structure.  The preferred base stacking orientation of a

conformationally constrained nucleotide within A- and B-form DNA

duplexes is assayed using electrocatalysis methodology; the conformation of

the sugar is seen to sensitively determine the local stacking of the duplex.

Furthermore, electrochemistry at DNA films is found to provide a novel and

sensitive method for probing protein dependent changes in DNA structure

and enzymatic reactions.  DNA charge transport chemistry allows the rapid

determination of structural perturbations in a DNA site associated with

binding of a given protein.  Charge transport chemistry also facilitates the

real time monitoring of enzymatic reactions on DNA.  As DNA-modified

electrodes are amenable to array formats, this provides a practical tool for the

selection and assay of proteins based upon their sequence specific interactions

with DNA as well as a sensitive route to test for inhibitors of such protein-

DNA interactions.  Hence DNA charge transport not only provides a novel
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strategy for the structural analysis of how individual proteins bind DNA but

also a remarkably sensitive tool in real time for DNA based proteomics.

Fundamental aspects of this technology are also explored.  The

alkanethiol tether used to assemble the DNA duplexes on gold electrode

surfaces is varied to establish the importance of the length, orientation and

flexibility of the linker in forming densely packed DNA films.  Results

presented here demonstrate that redox probes that bind to DNA by

intercalation (themselves becoming a part of the DNA base pair stack) are

critical for efficient detection of base stacking perturbations using DNA-

mediated charge transport chemistry.  An analysis of the kinetics and

mechanism of the electrocatalytic assay is also presented.  Electrocatalysis

requires an intercalator that binds reversibly to the DNA monolayer and in

the MB+/ferricyanide electrocatalysis system, the rate of catalysis depends on

the total concentration of MB+, the rate of MB+ intercalation and the rate of

reduced MB+ diffusion away from the monolayer.

The efficient transport of charge through self-assembled monolayers of

thiol-terminated duplexes on gold therefore offers an extremely sensitive

probe for the integrity of DNA sequences.  Completely new approaches to

single base mismatch detection as well as assaying protein-DNA interactions

and reactions on surfaces are now available.  This technology is generally

applicable as a tool for directly measuring base pair stacking in nucleic acid

duplexes.
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