
Chapter 4

A Fast, High-Order Method in
Three Dimensions

In this chapter, we present a new, fast, high-order method in three dimensions. This method

is motivated in part by the two-dimensional polar coordinates approach discussed in the

previous two chapters. One could propose a direct generalization of the two-dimensional

approach to a three-dimensional spherical coordinates method. However, to obtain the same

O(N logN) complexity, one would need to replace the FFTs with fast spherical harmonics

transforms, robust versions of which are not readily available. Furthermore, as evidenced

by the method for radial integration in the two-dimensional method, evaluation of spe-

cial functions of high-order presents several mathematical as well as practical difficulties.

Therefore, instead of extending the two-dimensional polar coordinates approach, we present

a three-dimensional approach based on trapezoidal rule integration and Fourier series ap-

proximation in Cartesian coordinates. The fast, high-order method we obtain is actually

much simpler than the two-dimensional approach while yielding approximately the same

accuracy and efficiency.

In particular, while the polar coordinates approach in two dimensions required the iden-

tification and resolution of singularities in the Fourier coefficients (mu)`(r), this Cartesian

approach in three dimensions requires no special consideration of scatterer geometry. This

enables the construction of quite complicated scatterers containing discontinuities, corners,

and cusps by simply summing the truncated Fourier series representations of each of the

individual components of the scatterer (see Figures 5.13 and 5.14 as well as Table 5.13).

There is no need to locate and resolve singularities.

As in the two-dimensional approach, the core of the numerical method is an efficient,

49

high-order scheme for computing the integral operator (Ku)(xj) (see (1.6)) at the given

discretization points xj . We thereby obtain the linear system

u(xj)− (Ku)(xj) = ui(xj), (4.1)

whose solution u(xj) approximates the total field. An iterative solver then provides the

solution at the discretization points u(xj). We discuss the advantages and disadvantages of

various iterative solvers in Section 4.5.

Let m be contained within a box Ω[a,b] with corners a, b ∈ R3, i.e., Ω[a,b] = {x : aq ≤

xq ≤ bq, q = 1, 2, 3}. Then,

(Ku)(x) = −κ2

∫
Ω[a,b]

g(x− y)m(y)u(y)dy,

where u is the solution of (1.6) in R3.

Before specifying the details of our approach, we sketch its key aspects. As mentioned

in the introduction, we decompose the Green’s function into a smooth part with infinite

support, gsmth(x), and a singular part with compact support, gcmp(x). More precisely, we

define gsmth(x) and gcmp(x) by

g(x) = g(x)(1− p(x)) + g(x)p(x) = gsmth(x) + gcmp(x),

where p(x) ∈ C∞ is a partition of unity function such that p(x) = 1 near x = 0 and p(x) = 0

outside some neighborhood of x = 0. (Of course, there are many such partition of unity

functions, and we do not specify a particular choice at this time.) It is then necessary to

compute the two convolutions

(Ksmthu)(x) = −κ2

∫
Ω[a,b]

gsmth(x− y)m(y)u(y)dy (4.2)

(Kcmpu)(x) = −κ2

∫
Ω[a,b]

gcmp(x− y)m(y)u(y)dy. (4.3)

The following two sections describe the two different high-order methods we use to

evaluate Ksmthu and Kcmpu, respectively. For both of these convolutions, the substitution

of the scatterer by an appropriate Fourier-smoothed scatterer is absolutely key in obtaining

high-order accuracy. As will be shown, the methods used to evaluate these convolutions

50

require the computation of an integral of the form

∫
Ω[a,b]

m(y)w(y)dy,

where w is defined in R3. In each case, w is the product of the total field u and a known

C∞ function. Hence, the regularity of w is given by the regularity of u, which is related to

the regularity of m. In particular, if m ∈ L∞, u ∈ C1; and if m ∈ Ck,α, u ∈ Ck+2,α (see

Theorem 2.5).

Note that the integrands in each case are quite similar to the example in Figure 1.2, with

one important exception: Although w is smooth (at least C1), it is generally not periodic.

Hence, direct substitution of the scatterer by its truncated Fourier series will not yield

high-order convergence. However, we observe that since m vanishes outside of Ω[a,b], we can

extend the domain of integration without affecting the value of the integral. Similarly, any

modification to w outside of the support of m, supp(m), does not affect the integral.

With these observations in mind, we increase the computational domain to the box

Ω[a−δ,b+δ] for some δ ∈ R3 such that the components δq > 0. This gives us u and hence,

w on Ω[a−δ,b+δ]. We then multiply w(y) by a smooth cutoff function pm(y) such that

pm ∈ C∞, pm(y) = 1 for y ∈ supp(m) and pm(y) = 0 for y /∈ Ω[a−δ,b+δ]. (Of course, as with

the partition of unity function, p, there are many such functions, pm, and we do not specify

a particular choice at this time.) This gives us

∫
Ω[a,b]

m(y)w(y)dy =
∫

Ω[a−δ,b+δ]

m(y)pm(y)w(y)dy.

Since pm(y) vanishes outside of Ω[a−δ,b+δ], one can extend pm(y)w(y) as a smooth and

periodic function. Following the example in the introduction, we can now substitute m

by its truncated Fourier series to obtain high-order accuracy when integrating with the

trapezoidal rule (see Figure 1.2 and Table 1.2), i.e., replace m by

mF (x) =
F1∑

`1=−F1

F2∑
`2=−F2

F3∑
`3=−F3

m`e
2πic`·x,

where ` = (`1, `2, `3) and the qth component of c`, (c`)q = `q/[(bq − aq) + 2δq] for q = 1, 2, 3

51

and F = (F1, F2, F3). This gives

∫
Ω[a,b]

m(y)w(y)dy ≈
∫

Ω[a−δ,b+δ]

mF (y)pm(y)w(y)dy.

Thus, we obtain high-order accuracy in such integrals essentially by replacing m by m̃ =

mF pm and by replacing Ω[a,b] by Ω[ã,b̃], where ã = a− δ and b̃ = b+ δ.

In Sections 4.1 and 4.2, we describe in more detail the evaluation of Ksmthu and Kcmpu,

respectively. In Section 4.3, we discuss a few additional details associated with this substi-

tution of m by mF . Section 4.4 briefly describes the method we use to compute the Fourier

coefficients of gcmp . Finally, in Section 4.5, we describe our parallel implementation of the

method and discuss the relative advantages of the various linear solvers.

4.1 High-Order Convolution with Smooth Part

We compute Ksmthu by means of the trapezoidal rule after substituting m by m̃ and Ω[a,b]

by Ω[ã,b̃] as described above. Given a number of discretization points N ∈ N3. Define

the discretization spacing h ∈ R3 such that hq = (b̃q − ãq)/Nq for q = 1, 2, 3. Define the

associated evenly spaced discretization points xj , yk ∈ R3 such that (xj)q = ãq + jqhq and

(yk)q = ãq + kqhq, where j and k are three-dimensional indices such that their components

satisfy 0 ≤ jq, kq ≤ Nq for q = 1, 2, 3.

Since m̃(x) vanishes on the boundary of Ω[ã,b̃] (because m̃ is smooth and compactly

supported in Ω[ã,b̃]), the trapezoidal rule gives

(Ksmthu)(xj) ≈ Prod(h)
N1−1∑
k1=0

N2−1∑
k2=0

N3−1∑
k3=0

gsmth(xj − yk)m̃(yk)u(yk),

where the notation, Prod(h), which we use throughout this chapter, stands for Prod(h) =

h1h2h3. To further simplify the notation, we denote the triple sum above as
∑N−1

k=0 , which

allows us to write

(Ksmthu)(xj) ≈ Prod(h)
N−1∑
k=0

gsmth(xj − yk)m̃(yk)u(yk)

= Prod(h)
N−1∑
k=0

(gsmth)j−km̃kuk.

52

Here (gsmth)k = gsmth ((k1h1, k2h2, k3h3)), m̃k = m̃(yk) and uk = u(yk).

Hence, using the trapezoidal rule to evaluate this integral is algorithmically equiva-

lent to computing a discrete convolution. We compute this convolution using FFTs in

O(Prod(N) logProd(N)) operations [45, pp. 531–536]. Thus, we obtain an efficient and

high-order accurate method for computing Ksmthu.

4.2 High-Order Convolution with Singular Part

To obtain high-order accuracy in the computation of (4.3), we approximate Kcmpu by

a truncated Fourier series. As described in the introduction, a truncated Fourier series

provides high-order accuracy if the approximated function is smooth and periodic. Since

gcmp and m are both compactly supported, (Kcmpu)(x) vanishes for points x sufficiently far

from the inhomogeneity. More precisely, assume that the support of gcmp is contained in a

box Ω[−d,d]. Then, for x /∈ Ω[a−d,b+d], (Kcmpu)(x) = 0. Furthermore, since the convolution is

a smoothing operation, (Kcmpu)(x) is a smooth function, even in the case of a discontinuous

scatterer (see Theorem 2.5). Therefore, (Kcmpu) can be extended as a smooth and periodic

function on R3.

Hence, we may represent Kcmpu accurately by a truncated Fourier series if we choose a

period for the expansion that contains Ω[a−d,b+d], i.e.,

(Kcmpu)(x) ≈
M∑

`=−M
(Kcmpu)`e2πic`·(x−a), (4.4)

where (c`)q = `q
Bq−Aq and Aq ≤ aq − dq ≤ bq + dq ≤ Bq for q = 1, 2, 3. Note that according

to our convention, we have denoted the triple sum as
∑M

`=−M . We have also shifted the

Fourier basis functions by a. This simplifies the presentation somewhat.

We must now compute the Fourier coefficients (Kcmpu)`. We have

(Kcmpu)` = − κ2

Prod(B −A)

∫
Ω[A,B]

(Kcmpu)(x)e−2πic`·(x−a)dx

= − κ2

Prod(B −A)

∫
Ω[A,B]

m(y)u(y)e−2πic`·(y−a)dy

∫
Ω[−d,d]

gcmp(z)e−2πic`·zdz

= −κ2(gcmp)` (mu)`,

53

where

(gcmp)` =
∫

Ω[−d,d]

gcmp(z)e−2πic`·zdz

and

(mu)` =
1

Prod(B −A)

∫
Ω[A,B]

m(y)u(y)e−2πic`·(y−a)dy.

Note that the coefficients (gcmp)` are computed with respect to a slightly different set of

basis functions (they are not shifted by a) and that we integrate over Ω[−d,d] instead of

Ω[A,B]. Because gcmp(x) is known analytically, we need only compute its Fourier coefficients

once at the beginning of each run. Furthermore, because of the singularity in gcmp , we must

take special care to compute these coefficients accurately. Our method for computing these

coefficients is presented in Section 4.4.

To compute the Fourier coefficients (mu)`, we again use the trapezoidal rule. As in the

previous section, we obtain high-order accuracy by substituting m by m̃

(mu)` =
1

Prod(B −A)

∫
Ω[A,B]

m(y)u(y)e−2πic`·(y−a)dy

≈ 1
Prod(B −A)

∫
Ω[ã,b̃]

m̃(y)u(y)e−2πic`·(y−a)dy

≈ Prod(h)
Prod(B −A)

N−1∑
j=0

m̃juje
−2πic`·(j1h1,j2h2,j3h3).

Note that, as indicated in the second equation above, we need only integrate over the domain

Ω[ã,b̃] since this domain contains the support of m̃.

We can evaluate this expression with an FFT by choosing A = (A1, A2, A3) and B =

(B1, B2, B3) such that (Bq − Aq)/hq is an integer for each q = 1, 2, 3. In other words, the

larger domain Ω[A,B] must be exactly an integer number of cells larger than the smaller

domain Ω[ã,b̃] in each dimension. Then, defining Ñ ∈ N3 such that Ñq = (Bq − Aq)/hq for

q = 1, 2, 3, and (c`)q = `q/(Bq −Aq), we obtain

(mu)` ≈
1

Prod(Ñ)

Ñ−1∑
j=0

mjuje
−2πi`·(j1/Ñ1,j2/Ñ2,j3/Ñ3),

where mjuj = 0 if jq > Nq for any q = 1, 2, 3. Hence, this discrete Fourier transform can

be evaluated by means of an FFT in O(Prod(Ñ) logProd(Ñ)) operations for |`q| ≤ Ñq/2.

54

Finally, given this high-order approximation of (mu)` and the pre-computed (gcmp)`, we can

sum the Fourier series (4.4) also by means of an FFT to obtain a high-order approximation

to Kcmpu.

4.3 Fourier-Smoothed Scatterers

As we have shown, replacing m by the smooth and periodic function m̃ and enlarging

the integration domain to Ω[ã,b̃] is key in obtaining our high-order method. Table 5.11 in

Section 5.2 compares the convergence rates for a discontinuous inhomogeneity with and

without this substitution. Although we do not present here a complete theoretical analysis

of the method, we expect convergence rates similar to those proved for the two-dimensional

method (see Theorem 2.7). For example, a discontinuous, piecewise C1 scatterer is expected

to yield second- and third-order convergence on the interior and exterior of the scatterer,

respectively; a C0, piecewise C2 scatterer is expected to yield third- and fifth-order con-

vergence on the interior and exterior of the scatterer, respectively. Although gains in the

asymptotic rate of convergence may always be expected when substituting m by m̃, real

practical gains are most significant for scatterers with a low degree of regularity. (See Sec-

tion 3.1.1 for a related discussion on the two-dimensional method.) For this reason, one

need not typically perform this substitution for very smooth scatterers such as the C∞

scatterer considered in Figure 5.11 in Section 5.2. In such cases, the trapezoidal rule alone

provides high-order accuracy.

Of course when treating discontinuous scatterers, the user is relatively free to choose the

smooth cutoff function pm and the number of modes F in the truncated Fourier approxi-

mation of m. There are couple of competing issues that should figure into this decision. In

particular, the smaller δ is, the smaller h becomes for a given N . However, this does not

necessarily lead to higher accuracy because a small δ implies a relatively steep rise of pm

from 0 to 1. The more abrupt this rise, the smaller we must make h to achieve a given

accuracy, thereby increasing N . The choice of F , on the other hand, depends on the choice

of N . The value of N must be large enough to resolve the Fourier oscillations in the inte-

grand. In particular, if F is chosen to be too large, the trapezoidal rule will yield very little

accuracy in integrating the highly oscillatory modes in mF . Hence, to obtain high-order

convergence, we choose F to be a fixed fraction of N . In our experience, F = N/2 is a good

55

choice.

4.4 Computation of the Fourier Coefficients of the Green’s

Function

It remains to compute the coefficients (gcmp)`, which are essentially the Fourier coefficients

of gcmp . As defined previously, gcmp(x) = g(x)p(x) where p(x) has support in Ω[−d,d] for

some d ∈ R3 with dq > 0, q = 1, 2, 3. Note that our choice of d depends on the same issues

that affect our choice of δ for the cutoff function pm as discussed in the previous section.

Of course, there are many possible choices of such partition of unity functions. Partition

of unity functions in three dimensions can be constructed from a partition of unity function

φ in one dimension as described in in [12],

φ(t) =


1, for |t| ≤ t0

exp
(

2e−1/x

x−1

)
, for t0 < |t| < t1, where x = (|t| − t0)/(t1 − t0)

0, for |t| ≥ t1.

(4.5)

For example, p(x) = φ(|x|) and p(x) = φ(x1)φ(x2)φ(x3) are both partition of unity functions

in three-dimensions that are centered at the origin. Of course, one may shift the center of

the functions to any point in R3 without difficulty.

When computing the coefficients (gcmp)`, we choose the spherically symmetric function

p(x) = φ(|x|) to simplify the computation and choose t1 = R such that R ≤ d. Changing

to spherical coordinates in the integration gives

(gcmp)` =
∫

Ω[−d,d]

gcmp(z)e−2πic`·zdz

=
∫ R

0

∫
S1

eiκρ

4πρ
p(ρ)e−2πiρc`·ẑρ2dρ dσ(ẑ)

=
∫ R

0
gcmp(ρ)j0(2π|c`|ρ)ρdρ

=
1

2π|c`|

∫ R

0
p(ρ)eiκρsin(2π|c`|ρ)dρ,

where
∫
S1 dσ(ẑ) denotes integration over the unit sphere and the second to last equality

follows from [17, p. 32].

56

We wish to emphasize that the simplification hereby achieved is quite significant. The

Jacobian associated with the change to spherical coordinates cancels the ρ−1 singularity in

Green’s function. Furthermore, since the integration on the unit sphere can be performed

analytically, we are left only with a one-dimensional integral to be evaluated for various

values of |c`|.

We rewrite the required integral as follows

(gcmp)` =
1
α

∫ R

0
p(ρ)eiκρsin(αρ)dρ

=
1

2iα

[∫ R

0
p(ρ)ei(κ+α)ρdρ−

∫ R

0
p(ρ)ei(κ−α)ρdρ

]
=

1
2iα
{H[p](κ+ α)−H[p](κ− α)} , (4.6)

where α = 2π|c`| and

H[p](ω) =
∫ R

0
p(ρ)eiωρdρ. (4.7)

Note that since p(ρ) vanishes for ρ > R, H[p] is related to the Laplace transform, L[p], as

follows

H[p](ω) = L[p](−iω).

Observe that H[p](−ω) = H[p](ω) since p(ρ) is real-valued. It is important to note that we

can only use (4.6) to compute (gcmp)` when |`| 6= 0. For |`| = 0, on the other hand, it is

not difficult to see that

(gcmp)0 =
∫ R

0
ρp(ρ)eiκρdρ = H[ρ p(ρ)](κ).

Therefore, to compute (gcmp)`, we need an accurate and efficient method for computing

H[g](ω) for g(ρ) = p(ρ) and g(ρ) = ρp(ρ). This problem is not trivial since the value of

ω ≤ κ+ α can be quite large, thus producing a highly oscillatory integrand. Furthermore,

straightforward integration by means of the trapezoidal rule will give only first-order accu-

racy since p(ρ) and ρp(ρ) cannot be extended as smooth and periodic functions. We are

able to compute these integrals accurately and efficiently using a modification of the method

suggested in [45, pp. 577–584] as described in Appendix C.

57

4.5 Implementation

Because of the large memory and CPU-time requirements of realistic problems in three

dimensions, an efficient parallel implementation of the numerical method is quite useful.

An advantage of the method is its relative simplicity: roughly, it requires only an efficient

(parallel) FFT implementation and an effective (parallel) iterative solver for the linear

system. We make use of the parallel FFT implementation fftw [25, 26] and the parallel

iterative solvers in PETSc [4–6]. In addition, PETSc provides excellent vector scatter and

gather routines as well as useful I/O routines. These packages make development of an

efficient parallel implementation relatively simple.

The bulk of the method lies in computing the required convolutions (see Sections 4.1

and 4.2). As described previously, we approximate the convolution with the smooth part

of the Green’s function by means the following discrete convolution

(Ksmthu)(xj) ≈ Prod(h)
N−1∑
k=0

(gsmth)j−km̃kuk,

where the components jq = 0, . . . , Nq, hq = (b̃q − ãq)/Nq for q = 1, 2, 3. This discrete

convolution requires the values of (gsmth)j−k for 0 ≤ jq ≤ Nq and 0 ≤ kq ≤ Nq − 1. Hence,

−Nq + 1 ≤ jq−kq ≤ Nq. Therefore, computing this convolution by means of FFTs requires

three-dimensional arrays with dimensions 2N , where the array containing mkuk is padded

with an appropriate number of zeroes [45, pp. 531–537]. More precisely, we first compute

(ĝsmth)` =
2N−1∑
j=0

(gsmth)j e−2πi`·(j1/2N1,j2/2N2,j3/2N3)

and

m̂u` =
2N−1∑
j=0

m̃juj e
−2πi`·(j1/2N1,j2/2N2,j3/2N3),

where (gsmth)j is defined by periodic extension for j outside the range −Nq + 1 ≤ jq ≤ Nq

and where mjuj = 0 outside the range 0 ≤ jq ≤ Nq − 1. We then use these values to

compute the discrete convolution

N−1∑
k=0

(gsmth)j−kmkuk =
2N−1∑
`=0

(ĝsmth)`m̂u`e2πi`·(j1/2N1,j2/2N2,j3/2N3),

58

for jq = 0, . . . , Nq.

(Note that this straightforward approach requires a factor of 23 = 8 more memory to

store these convolution arrays than to store the unknowns uj , the smoothed inhomogeneity

m̃j and the incident field uij . If memory usage becomes the limiting factor, it is possible to

break the mjuj array into pieces and compute the convolution with each piece separately.

This saves memory, but substantially increases CPU-time. Hence, we use the straightfor-

ward approach with 2N -sized arrays.)

On the other hand, the approximation of the convolution with the singular part of the

Green’s function requires computation of the following sum

(Kcmpu)(xj) ≈
M∑

`=−M
(gcmp)` (mu)` e2πi`·(j1/Ñ1,j2/Ñ2,j3/Ñ3),

where Mq < Ñq/2, jq = 0, . . . , Nq − 1 and

(mu)` ≈
1

Prod(Ñ)

Ñ−1∑
j=0

mjuj e
−2πi`·(j1/Ñ1,j2/Ñ2,j3/Ñ3).

Hence, these sums may also be computed using FFTs. However, in this case, we use FFTs

of three-dimensional arrays of size Ñ .

In theory, the FFTs used to compute each of these convolutions need not be related.

In practice, however, we save both time and memory by choosing Ñ = 2N . If Ñ 6= 2N ,

we need to compute the FFT of (gcmp)` (mu)` and the FFT of (ĝsmth)` m̂u` separately.

Furthermore, we need to store (gcmp)`, `q = −Mq, . . . ,Mq and (ĝsmth)`, `q = 0, . . . , 2Nq − 1

in two separate arrays with a total of Prod(Ñ) + 8Prod(N) > 9Prod(N) elements. On the

other hand, if Ñ = 2N , our approximation for (mu)` exactly equals m̂u`. Therefore, we

need only compute a single FFT of ĝ`m̂u`, where ĝ` = (gcmp)` + (ĝsmth)`. This single array

ĝ` has size 2N and hence a total of 8Prod(N) elements.

A further savings that becomes quite significant in a parallel implementation is the

communication costs. To compute the convolutions, we must compute FFTs of sizes Ñ and

2N and then we copy a portion of the results into an array of size N . In our parallel code,

each of these arrays will, in general, be distributed differently. Hence, copying the results

to and from the array of size N involves communication between processors. Therefore, if

Ñ 6= 2N , one must first communicate the values of mu into the arrays of size Ñ and 2N

59

for computation of the FFTs, and then communicate the results back from each of these

arrays into the original array of size N . On the other hand, if Ñ = 2N , roughly half the

communication is required. Hence, because of these memory and communication savings,

we choose Ñ = 2N in our computations.

Once we have implemented the method for computing the matrix-vector product, PETSc

implements a wide variety of linear solvers. However, only a few of these linear solvers are

appropriate for our linear system, which is non-symmetric and indefinite, namely GMRES,

CGS, BiCGSTAB and two different transpose-free QMR methods. Of these, only GMRES

and BiCGSTAB perform consistently well. In fact, for each of the other methods, we found

an example in which it either rapidly diverged or stagnated. At the same time, the perfor-

mance of these iterative solvers seems to be somewhat problem dependent: it is certainly

possible that there exists a scattering configuration for which BiCGSTAB may perform

less well than one of these other approaches. GMRES, on the other hand, performs con-

sistently well, at the price of increased memory requirements and increased computational

complexity.

As mentioned in Section 3.2.1, GMRES always requires fewer matrix-vector products

to converge to a given residual error than BiCGSTAB. However, at each iteration GMRES

stores a new Krylov subspace basis vector whereas BiCGSTAB does not. Hence, in problems

which require many iterations, GMRES may rapidly exhaust the system memory. Of course,

in such cases, one may restart GMRES after a given number of iterations, thereby limiting

the memory used. However, we found that restarted GMRES loses much of its advantage

over BiCGSTAB. Therefore, in problems requiring many iterations, BiCGSTAB has become

our method of choice.

As in the two-dimensional method, the number of iterations required to achieve a given

residual tolerance does not depend on mesh size. However, as the size of the scatterer is

increased (as measured in interior wavelengths), the number of required iterations increases.

Furthermore, in our numerical experiments, it appears that the number of required iter-

ations increases more for BiCGSTAB than for GMRES. Thus, BiCGSTAB loses its edge

over GMRES as the problem size increases.

The numerical examples of Section 5.2 illustrate the versatility, efficiency, and high-order

accuracy of the three-dimensional method described in this chapter. Since we have not

optimized for parallel performance, we do not present parallel speed-up results. However,

60

we do include results from parallel computations, from which one can obtain some idea of

the parallel performance.

	4 A Fast, High-Order Method in Three Dimensions
	4.1 High-Order Convolution with Smooth Part
	4.2 High-Order Convolution with Singular Part
	4.3 Fourier-Smoothed Scatterers
	4.4 Computation of the Fourier Coefficients of the Green's Function
	4.5 Implementation

