
Chapter 1

Introduction

Scattering theory remains an active and challenging field in science, engineering, and math-

ematics. In a broad sense, the term scattering refers to any situation in which a wave

impinges on an obstacle and is thereby distorted, reflected, transmitted, or in some other

way “scattered.” Thus, a scattered wave clearly contains information about the scattering

obstacle itself. Hence, an understanding of the interactions between waves and obstacles

should allow one to extract information about an obstacle from the waves scattered by it.

This fact is one of the primary motivations behind the study of scattering phenomena.

Although most scattering problems take on similar mathematical forms, they find appli-

cation in a wide range of fields including communications, materials science, plasma physics,

biology and medicine, radar and remote sensing, etc. However, producing useful numerical

solutions to such problems remains a challenge, requiring novel mathematical approaches

and powerful computational tools. In the next two sections, we describe a number of inter-

esting engineering and scientific applications where computational wave scattering plays an

important role and we introduce the scattering equations to be used throughout this text.

1.1 Applications

As mentioned above, scattering applications are found in a wide variety of fields. Possibly

the most familiar scattering applications are in radar and other techniques of remote sensing.

These have a wide range of commercial, environmental, and military applications. For

example, radar facilities track aircraft while remote sensing satellites, using radar and other

technologies, collect atmospheric data, map the surface of the earth, and measure wind

speeds at the oceans’ surface [22]. More sophisticated mathematical and computational
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tools seek to extract even more information from the scattered waves than one can currently

obtain. This could enable, for example, detection and identification of underground or

underwater structures.

Of course, biological and medical applications are also of great practical importance.

Ultrasound and x-ray imaging as well as the more recent technique of optical coherence

tomography (OCT) are based on scattering phenomena. Like ultrasound imaging, OCT

uses interference of incoherent waves (in this case infrared light) to determine biological

microstructure [33, 43]. The combination of these techniques with new mathematical and

computational methods may lead to much more powerful imaging technologies. Such efforts

have paid dividends in the past. For example, Cormack and Hounsfield [34] developed

computerized tomography (CT) by combining the physics of x-rays with the mathematics

of tomography and efficient numerical methods. For this work, they shared the Nobel Prize

in Medicine in 1979.

Materials science, particularly in the fields of microscopy and diffractometry, contains

many important modern applications of scattering. Of course, transmission electron mi-

croscopy (TEM) and x-ray diffractometry have long been used to analyze material mi-

crostructure. More recently, techniques such as neutron diffraction and reflection high

energy electron diffraction (RHEED) have been developed to further probe the structure

of materials. In neutron diffraction, intense neutron beams interact either with nuclei or

unpaired electrons in a material giving information on its structure [27, p. 156]. RHEED

uses low-angle incident electron beams for analysis of the surface of a material [44, 50]. This

provides, for example, real-time surface structure data during semiconductor film growth

via molecular beam epitaxy (MBE).

Finally, although perhaps less familiar, the study of laser-plasma interactions is also

closely related to scattering theory. When high-intensity laser light strikes a target, the

material composing the target ablates and ionizes, producing a high-density plasma. This

plasma then interacts with subsequent laser pulses producing a variety of waves and insta-

bilities. Computational simulations can provide insight into the physics of these interac-

tions [7, 21, 35].

These examples provide a glimpse of the wide range of fields in which scattering phenom-

ena play an important role. Despite the great benefit that these techniques provide, much

more potential benefit remains to be gained through the innovative use of mathematical
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and computational tools.

1.2 Scattering Equations

Reflecting the diversity of fields in which scattering applications arise, several types of

wave equations are used to describe scattering phenomena including the acoustic wave

equation, Maxwell’s equations and the Schrödinger equation. Under the assumption of

time-harmonic scattering, many of these formulations reduce to the Helmholtz equation.

Hence, although the Helmholtz equation does not capture all scattering phenomena, it does

encompass many of the most important mathematical and computational issues arising

in scattering theory. The precise formulation of the wave equation and the associated

boundary conditions depend strongly on the type of scattering obstacle one considers. Many

numerical approaches have been developed to treat various problem classes; these include the

finite element and finite difference methods, Fourier-based methods and the fast multipole

method.

In the following paragraphs, we describe a few of the most common problem classes.

Throughout, we denote the total field by u, which is given by the sum of a given incident

field ui and a scattered field us, i.e.,

u = ui + us.

The incident field satisfies

∆ui + κ2ui = 0, (1.1)

in all of R2 or R3 where κ = 2π
λ is the wave number and λ is the wavelength of the

incident wave. To guarantee that the scattered wave is outgoing, us satisfies the following

Sommerfeld radiation conditions. In R3, us satisfies

lim
r→∞

r

(
∂us

∂r
− iκus

)
= 0, (1.2)

where r = |x| for x ∈ R3. In R2, us satisfies

lim
r→∞

√
r

(
∂us

∂r
− iκus

)
= 0, (1.3)
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where r = |x| for x ∈ R2.

The first class of problems we describe involves surface scattering by two-dimensional

perfect electrical conductors in electromagnetics and two- or three-dimensional sound-soft

obstacles in acoustics. Then, for a closed and bounded scatterer D, u satisfies the equations

∆u+ κ2u = 0, x /∈ D,

u|∂D = 0. (1.4)

Corresponding to the physical properties of the scattering object, other boundary conditions

on ∂D may need to be used, including a vanishing normal derivative or an impedance

boundary condition [17, pp. 2–7].

Another main class of scattering problems, often called volumetric scattering, involves

scattering by penetrable, inhomogeneous media including, for example, dielectric material,

biological tissue and ion-electron plasmas. In such cases we consider a bounded inhomo-

geneity with a variable refractive index n such that n(x) = 1 for x outside of some bounded

set. (Note that if n 6= 1 but is constant outside the scatterer, we can scale κ such that n = 1

outside the scatterer. Note also that n need not represent the refractive index: for exam-

ple, in acoustic scattering, n depends on the material density and in electron diffraction, n

depends on a scattering potential.) Given n(x), the total field u satisfies [17, p. 2]

∆u+ κ2n2(x)u = 0. (1.5)

Thus, the presence of the inhomogeneous scatterer results in a Helmholtz equation with a

variable coefficient.

1.3 Integral Equation Formulation

The subject of this thesis is the development and analysis of efficient, high-order compu-

tational methods for the solution of the volumetric scattering equation (1.5) in two and

three dimensions. The algorithms available for the numerical solution of this equation fall

into two broad classes. The first approach is the finite element or finite difference method.

These methods have the advantage that, unlike other methods, they lead to sparse linear
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systems. Their primary disadvantage, on the other hand, lies in the fact that in order to

satisfy the Sommerfeld radiation condition (see (1.3) and (1.2)), one must use a large com-

putational domain containing the scatterer and impose absorbing boundary conditions on

the computational boundary [20, 36, 37, 46, 52]. Clearly, this procedure gives rise to large

numbers of unknowns and correspondingly large linear systems.

A second class of algorithms is based on the use of integral equations (see (1.6)). These

approaches have the advantage that the equation must only be discretized on the scatterer

itself. Furthermore, the condition of radiation at infinity is automatically satisfied. On the

other hand, integral equation methods have the disadvantage that they lead to dense linear

systems. Therefore, a straightforward computation of the integral operator requires O(N2)

operations per iteration of an iterative linear solver. However, by reducing this complexity

to O(N logN) per iteration, integral equation methods become highly competitive with

methods based on finite elements or finite differences. Thus, in this thesis, we develop

computational methods based on a Lippmann-Schwinger integral equation of the form [17,

p. 214]

u(x) = ui(x)− κ2

∫
g(x− y)m(y)u(y)dy, (1.6)

where m = 1− n2 and g is the Green’s function for the Helmholtz equation. In two spatial

dimensions, g(x) = i
4H

1
0 (κ|x|) whereas in three dimensions, g(x) = eiκ|x|

4π|x| .

The fast multipole method (FMM) [15, 31, 47, 48] is perhaps the most widely known

method for reducing the complexity of surface integral equations. Although the FMM

has not been applied to the volumetric scattering problem (1.6), which we address in this

thesis, its popularity requires that we mention it. We choose not to pursue an FMM-

based approach, however, for the following reasons. As described several places in the

literature, the FMM exhibits numerical instabilities at subwavelength spatial scales [18, 19,

30], thus limiting the attainable accuracy of the method. The authors of [30] suggested

a low-frequency version of the FMM that is intended to be combined with the standard

FMM to address this problem. However, although this article appeared four years ago, to

our knowledge, no implementation of this approach has been developed. Finally, although

the FMM exhibits O(N logN) complexity, the large constant factor in this asymptotic

bound requires a rather large value of N before any advantage over the straightforward

O(N2) approach is observed.
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Another well-known method for reducing the complexity of integral equation methods to

O(N logN) operations per iteration is the k-space or conjugate-gradient FFT method (CG-

FFT) [9, 51, 53]. In this method, the convolution with the Green’s function is computed via

fast Fourier transforms (FFTs) and multiplication in Fourier space. Additionally, because

of the small constant factor in the asymptotic complexity bound, efficiency gains over the

straightforwardO(N2) approach are observed even for small values ofN . However, although

this method provides a reduced complexity, it is only first-order accurate. This low-order

accuracy arises because the FFT provides a poor approximation to the Fourier transform

when, as in this case, the function is not smooth and periodic.

Although our methods also use FFTs to achieve a reduced complexity, they yield, in

addition, high-order accuracy. One reasonable measure of the effectiveness of a numerical

scheme is the time required to obtain a solution for a given problem to within a given

accuracy. In problems that require a high degree of accuracy, a high-order method with

roughly the same computational complexity as available low-order methods will result in

significant time and memory savings because many fewer points are required to obtain

the given accuracy. This is especially true in three dimensions for which the number of

unknowns (and hence the time and memory) scales as n3, where n is the number of points

in each dimension. Furthermore, even when relatively low accuracy is required, high-order

methods may exhibit advantages over low-order methods for two reasons. First, as we will

show in our examples, a high-order method may obtain even a low level of accuracy with

fewer points than a low-order method. Second, to estimate the accuracy of a computed

solution, one typically compares the solution with a more accurate solution computed on a

more refined computational grid; a high-order method yields such an increase in accuracy

with only a slight increase in the number of unknowns, whereas a low-order method requires

a much larger increase in problem size.

1.4 Previous Work

Despite these advantages, to our knowledge, only limited attempts have been made to

develop high-order methods for this problem. Liu and Gedney [42] suggested a locally

corrected Nyström scheme for scattering in two dimensions. (This approach is closely related

to the high-order surface scattering method described in [14, 32].) This volumetric scattering
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method provides high-order convergence rates that are not limited by the regularity of the

scatterer. However, to achieve these rates, one must provide curvilinear cells for each level

of discretization that accurately represent boundaries in the scatterer where discontinuities

occur. Such a discretization seems rather difficult to obtain and would be even more difficult

to obtain for general scatterers in three dimensions (although the method is only presented

in two dimensions). In addition, this method, as presented, requires O(N2) operations per

iteration of the linear solver.

A fast, high-order method for smooth three-dimensional scatterers was proposed by

Vainikko [49]. In this method, the integral equation is modified to produce a periodic

solution by cutting off the Green’s function (either smoothly or discontinuously) outside a

cube that is at least twice as large as the scatterer. The solution to the modified integral

equation is smooth and periodic on this larger cube and, furthermore, it agrees with the true

solution on the support of the scatterer. Thus, for smooth scatterers, the solution is smooth

and periodic and can, therefore, be approximated to high-order with a truncated Fourier

series. As will be apparent, this method is somewhat related to our three-dimensional

approach. The convergence rates of this approach, however, lag significantly behind those of

our approach—producing only first-order convergence in the case of discontinuous scatterers.

(This difference in convergence rates results primarily from our substitution of the scatterer

by a truncated Fourier series, see Sections 1.5 and 4.3.) Vainikko introduces another,

completely different, approach for piecewise smooth (discontinuous) scatterers that produces

O(h2(1 + log h)) convergence in both the near and far fields, where h is the discretization

spacing in each direction. This approach requires that for each level of discretization, one

must approximate the volume fraction of each cell that lies on each side of a discontinuity

in the refractive index. This seems rather difficult to obtain, especially for complicated

scatterers in three dimensions. In comparison, our two-dimensional approach requires only

limited information about the geometry of the scatterer (namely, the Fourier coefficients

(mu)`(r) along with the singularity points of these coefficients, see Chapter 3). Furthermore,

our three-dimensional approach requires only the truncated Fourier series of the scatterer

(see Chapter 4 for details).
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1.5 High-Order Convergence in FFT-Based Methods

As mentioned previously, this thesis presents high-order accurate, FFT-based methods for

scattering in two and three dimensions. The efficiency and high-order accuracy of these

methods result from the following key facts. First, as is well known, for periodic integrands,

the trapezoidal rule can be used to evaluate convolution integrals and Fourier coefficients

and, in these cases, is algorithmically equivalent to the FFT. Second, the trapezoidal rule

yields high-order convergence when integrating over the period of a smooth and periodic

function and, similarly, a truncated Fourier series exhibits high-order convergence when

approximating a smooth and periodic function. Finally, the Fourier smoothing of a discon-

tinuous integrand, i.e., the replacement of a discontinuous integrand by its truncated Fourier

series, allows high-order trapezoidal rule integration. We explain each of these concepts in

more detail in the following paragraphs.

First, we consider the use of the trapezoidal rule in computing convolution integrals and

Fourier coefficients. More precisely, in one dimension, using the trapezoidal rule to evaluate

a convolution integral at N equally spaced points yields

∫ b

a
f(x− y)g(y)dy ≈ h

N−1∑
k=0

f([a+ jh]− [a+ kh])g(a+ kh)

= h
N−1∑
k=0

f((j − k)h)g(a+ kh), (1.7)

where h = (b− a)/N and k = 0, . . . , N − 1. Equation (1.7) is a discrete convolution, which

can be evaluated in O(N logN) operations by means of FFTs [45, pp. 531–537]. Similarly,

using the trapezoidal rule to evaluate Fourier coefficients yields

f` =
1

b− a

∫ b

a
f(x)e−2πi`(x−a)/(b−a)dx

≈ 1
N

N−1∑
k=0

f(a+ kh)e−2πi`k/N . (1.8)

Clearly, (1.8) is a discrete Fourier transform, which we can evaluate in O(N logN) oper-

ations by means of the FFT. Similarly, it is not difficult to see that FFTs can efficiently

evaluate a truncated Fourier series on a set of equally spaced grid points.

We now consider the high-order accuracy obtained by means of trapezoidal rule integra-
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Figure 1.1: Smooth and Periodic Function – f(x) = ecos2 x

N Abs. Error Ratio
1 4.77(-2)
2 1.19(-2) 4.03
4 2.95(-3) 4.02
8 7.36(-4) 4.01

8192 7.01(-10)

N Abs. Error Ratio
1 5.50(-1)
2 6.03(-2) 9.12
4 3.10(-4) 1.95(2)
8 7.17(-10) 4.32(5)
16 2.10(-23) 3.42(13)

(a) Convergence for
∫ π/4

0 f(x)dx (b) Convergence for
∫ 2π

0 f(x)dx

Table 1.1: Trapezoidal Rule Convergence for f(x) = ecos2 x

tion or Fourier approximation of smooth and periodic functions. The high-order accuracy

in these cases follows from the rapid decay of the Fourier coefficients of smooth and periodic

functions (see Lemma 2.4). For example, consider the integration of the analytic function

f(x) = ecos2 x (see Figure 1.1), over one quarter of its period [0, π/4] and over its full pe-

riod [0, π] (see Table 1.1(a) and (b), respectively). One easily observes the second-order

convergence when integrating over one quarter of its period and the super-algebraic conver-

gence when integrating over the full period. This high-order accuracy results because the

trapezoidal rule integrates the first N Fourier modes of the function exactly and thus, the

convergence rate depends on the decay rate of the Fourier coefficients, which is exponential

in this case.

The final key aspect of our approach is the Fourier smoothing of discontinuous scatter-

ers. Some of the integrands that we encounter in our approach contain the product of a

non-smooth (often discontinuous) scatterer and a significantly smoother periodic function.

Direct trapezoidal rule integration of this product yields only first-order accuracy. On the
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N Abs. Error
4 0.264
8 6.42(-2)
16 4.71(-2)
32 1.20(-2)
64 1.07(-2)
128 5.13(-3)
256 2.62(-3)

N F Abs. Error
4 2 6.93(-2)
8 4 4.11(-4)
16 8 4.87(-4)
32 16 3.86(-5)
64 32 4.96(-6)
128 64 7.25(-7)
256 128 6.68(-8)

(a) Convergence for
∫ 1
−1 f(x)g(x)dx (b) Convergence for

∫ 1
−1 f

F (x)g(x)dx

Table 1.2: High-Order Trapezoidal Rule Integration via Fourier Smoothing

other hand, although perhaps counterintuitive, substitution of the scatterer in the integrand

by a truncated Fourier series leads to high-order accuracy in the integration. Because this

approach has generated some controversy, we present a simple example of this fact in one

dimension. In the case of a discontinuous scatterer, the solution u ∈ C1 because of the

regularizing properties of the integral operator [24, p. 78]. Hence, consider the integral of

the product of a discontinuous function f(x) and a C1, periodic function g(x) over the

period of g. We replace f by its truncated Fourier series with the same period as g

fF (x) =
F∑

`=−F
f`e

2πi`/(b−a)x,

where the interval [a, b] is the period of g (see Figure 1.2). (Note that the Fourier coefficients

f` must be known either analytically or be computed very accurately.) Table 1.2 compares

the accuracy obtained by means of the trapezoidal rule with and without the substitution

of f by fF . As expected, without the Fourier smoothing, one obtains only first-order

convergence. With the Fourier smoothing, however, we observe approximately third-order

convergence.

This is a rather surprising result at first glance since the truncated Fourier approximation

of the discontinuous function f(x) converges quite slowly. Of course, this first intuition is

correct if one were to attempt to approximate the function (fg)(x) itself in this manner.

When approximating the integral of this product, however, this example shows that Fourier

smoothing does indeed yields high-order accuracy. (Note that the convergence rate in this

example is somewhat unsteady, perhaps due to the high-order Fourier modes of g that

appear in the error. Despite this unsteady behavior, the convergence rate exceeds third-

order in the sense of geometric mean. Somewhat similar convergence behavior is observed
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(a) Discontinuous Function f

(b) Fourier-Smoothed Function fF

(c) C1 Function g

Figure 1.2: Example of Fourier Smoothing
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in the computational results of the three-dimensional method as given in Section 5.2.)

The ideas described above form the basis for our high-order accurate, FFT-based meth-

ods. Clearly, high-order accuracy in most of these examples required smooth and periodic

functions. As initially posed, however, the scattering problem does not involve smooth and

periodic functions; on the contrary, the Green’s function is singular, the fields are not peri-

odic and the scatterer is often discontinuous. Hence, our numerical methods center around

a reformulation of the problem that allows the use of these high-order approaches.

1.6 Overview of Chapters

The main result of this thesis is a new, efficient, high-order method for volumetric scattering

in three dimensions. This method achieves high-order convergence even for scatterers con-

taining gemetric singularities such as discontinuities, corners and cusps. Before introducing

this method, we present in Chapter 2 a thorough theoretical analysis of an efficient, high-

order method in two dimensions, first introduced in [13]. This method partially motivated

our approach in three dimensions. High-order accuracy in this two-dimensional method is

obtained by representing the total field and the Green’s function as truncated Fourier series

in polar coordinates, i.e., as truncated Fourier series in the angular variable at each radius.

As will be shown, this representation implies a (generally low-order) Fourier smoothing of

the scatterer. The claim that this low-order approximation of the scatterer nonetheless leads

to a high-order accuracy numerical method generated considerable controversy. Hence, we

prove that the method indeed yields high-order convergence (at least third-order in the far

field) and relate the convergence rate to the regularity of the scatterer.

In Chapter 3, we present substantial practical improvements to the original numerical

implementation of this two-dimensional approach. For example, we make use of a much more

efficient and stable radial integration method based on Chebyshev polynomials. Further-

more, we present a new efficient preconditioner, which substantially reduces the number of

required linear solver iterations for many scattering configurations. Finally, in Appendix B,

we present an efficient and stable method for computing scaled high-order Bessel functions,

which allow us to avoid underflow and overflow errors in large computations.

In Chapter 4, we present our new, efficient, high-order method in three dimensions.

Instead of directly generalizing the two-dimensional polar coordinates approach to three-
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dimensional spherical coordinates (with the associated requirement of a fast spherical har-

monics transform), we choose to base this three-dimensional method on Fourier approxima-

tion and integration in Cartesian coordinates. High-order accuracy in this case is obtained

through a smooth decomposition of the Green’s function by means of a partition of unity

into a smooth part with infinite support and a singular part with compact support as

well as through Fourier smoothing of the scatterer as described above. Interestingly, this

Cartesian approach in three dimensions is much simpler than the two-dimensional polar co-

ordinates approach, while yielding approximately the same order of accuracy. Additionally,

we describe our fully parallel implementation of this approach.

Chapter 5 contains several computational examples to illustrate the computational com-

plexity, the high-order accuracy, and the overall performance of both the two- and three-

dimensional methods. Finally, in Chapter 6, we present brief conclusions and describe

possible future research directions.
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