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ABSTRACT

The problem of the electromagnetic acceleration of cosmic
rays to high en;s:rgies by turbulent magnetic fields within the con-
fines of our galaxy is considered. The-model of the magnetic field
used is essentially that proposed by Fermi, in which the field is
assumed to be fairly regular and to run along the spiral arm of the

~galaxy. The magnetic field plays a dual role, storing or trapping
the cosmic rays, and accelerating them when the field is not static.
The fluctuating part of the magnetic field is described statistically
in terms of a spectral decomposition of the field into hydromagnetic
waves of different wavelengths moving in the direction of the pri-
mary field.

Two main problems are of concern: (a) the energy distri-
bution of the high energy particles, and (b) the angular distribution
of these particles. A partial differential equation of the diffusion
type is derived which describes statistically the behavior of an en-
semble of particles undergoing accelerating and decelerating inter-
actions (betatron interactions) with the varying magnetic field. In
addition to accelerating the particles, the betatron interactions
change the component of momentum parallel to the field in a way
which depends on the energy change. In addition to these processes,
the differential equation accounts for interactions with inhomo-
geneities in the field whose scale is small compared to the helix
radius, as well as removal of particles by nuclear collisions and

by diffusion of particles out of the region of the magnetic field.



Solutions to the steady-state diffusion equation show that a power-law
energy spe;:trum results for the high energy particles. The exponent
in the power-law spectrum is related to the parameters describing
the magnetic field, the mean-square velocity of the turbulent medium,
and the mean time for loss of particles by nuclear collisions and
diffusion out of the spiral arm. An approximate form of the space-
dependent stéa’d.y- state diffusion equation is solved to estimate the
mean time for escape of the particles by diffusion, and to relate this
para.metef to the length of the spiral arm and to the parameters de-
scribing the magnetic field. The results also show that the angular
distribution of the particles is inéxtricablyltied up with the energy
spectrum, with the degree of anisotropy being determined by the
relative effectiveness of the scattering by small scale inhomo-
geneities which tend to make the distribution isotropic, and the
betatron processes which tend to make the distribution highly aniso-
tropic with most of the particles lying in very steep spirals.

It appears from the results that a set of parameters de-
scribing the magnetic field can be found which are astronomically
plausible, and which give results for the power-law exponent and

the anisotropy within the range of values observed experimentally.
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1. INTRODUCTION

It is now widely recognized that high energy cosmic rays may
well result from electromagnetic acceleration of particles by turbu-
lent magnetic fields within the confines of our galaxy. The galactic
magnetic field plays a dual role: (a) it provides a mechanism for
storing or trapping the particles within the galactic boundaries, and
(b) accelerates the particles when the field is not static. Many
specific mechanisms have been proposed that might accomplish the
acceleration, based on widely different models of the magnetic field.

In an early paper by Fermi (1949), the magnetic field was
assumed to be very tangled and imbedded in a turbulent gas whose
motion dominated the field. In this model there is no preferred
direction of the magnetic field. Fermi considered interactions be-
tween particles and moving gas clouds in which magnetic fields are
imbedded, and showed that the average energy change in a large
number of interactions is not zero if one accounts for the fact that
collisions between particles and clouds moving in opposite directions
are more probable than collisions between particles and clouds
moving in the same direction. On the basis of this average effect,
Fermi showed that a power law spectrurﬁ for the energies is to be
expected, and that the exponent would be that observed experimen-
tally provided certain parameters had appropriate values.

In a second paper, Fermi (1954) assumed the magnetic field
to be fairly regular and to run along a spiral arm of the galaxy. In
this model, the field is assumed to be strong enough to dominate

the turbulent motion of the gas. Fermi considered processes in
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which a particle is trapped between two constrictions in a tube of
force, and showed that large amounts of energy will be gained or
lost depending on whether the particle is trapped between constrictions
that are moving together or apart. The argument is continued to show
that a positive increase in energy results when a particle runs through
a series of traps even though it is equally likely for a particle to en-
counte'r a positive or negative trap. The essence of the argument is
that particles trapped between constrictions moving apart are not to
be regarded as losing energy because their helices become flatter
and the particles more susceptible to future trapping. Thus once
trapped, a particle encounters other traps (positive and negative)
and escapes only when the energy has been increased. Again, on the
basié of this positive average increase in energy, Fermi predicted a
power law spectrum for the energy.

Other investigators have found that neither of Fermi's versions
seem satisfactory when considered quantitatively using the best avail-
able astronomical data. With regard to the first of Fermi's models,
Unsold (1951) found that the values of the parameters necessary to
produce the observed energy spectrum of high energy cosmic rays
were astronomically implausible. Davis (1956) has pointed out that
in the second of Fermi's models, the processes considered lead to
a very anisotropic angular distribution of the cosmic ray particles.
The observed near-isotropy of cosmic radiation thus seems to re-
quire that the anisotropic distribution be smoothed out by other pro-
cesses. If this is the case, Davis observes, then it will not be true

that a sequence of traps produces a large energy gain.
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Extension of Fermi's arguments and attempts to remove
some of the\inherent difficulties have been made by several investi-
gators, (Morrison et al. 1954, Fan 1951, Cocconi 1951) but without
notable success. Davis (1954, 1956) has pointed out that other pro-
cesses, not considered by Fermi, are important in acceleration of
cosmic ray particles. In particular he argues that induced electric
fields, which.are present when the magnetic field strength changes
with time, will increase or decrease the energy of a particle. These
processes Davis calls "betatron collisions." In considering these
processes it is necessary to consider the statistical fluctuations in
the number of positive and negative energy changes that individual
particles experience. These fluctuations should be considered even
though there is a known average effect such as those considered in
Fermi's two papers. These fluctuations are most easily described
by a differential equation of the diffusion type which describes the
rate at which particles enter or leave a given differential energy
‘range. An analysis of this type has been made by Davis based on
a model of the field consisting of a uniform field on which are
superposed standing hydromagnetic waves. Davis obtains an

equation of the form-

1 2
2 bez

3n _ _n a(pn) _ _2
3T = + (Den) +

dE€ de (D“n) + Ie, t)

where nde denotes the number of particles in the range ¢ ¢ + de ,
and where ¢ is the logarithm of the ratio of the total energy of a

particle to its rest energy. In this equation, the first term on the
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right represents the rate at which particles disappear due to nuclear
collisions or by diffusion out of the region where cosmic rays are
stored. The second term represents the net rate at which particles
enter the range de due to ionization losses in the interstellar medium.
The third and fourth terms represent the net rate at which particles
enter the range de due to random a.cceleratioﬁs and decelerations
by betatron collisions. The last term represents the rate at which
particles are added by some injection process. The quantities De
and Dee depend ‘on the rate at which the betatron interactions occur
and other details of the interaction. Their evaluatidn is complicated
by the fact that the rate at which the energy (or e ) changes during
a betatron inter;tion depends strongly on the pitch angle of the helix
in which the particle is traveling at the time of the interaction.

Davis shows that if De and Dee can be adequately approxi-
mated by constants, then the steady state solution of the above

equation is

, - ¢
n = ne
o
where 1/2
De—p De-p 2
*=-—7p  * D "D T
€€ €€ €€

This implies a power law spectrum in the energy w , with the

number of particles in the range dw given by

n{w)dw = now:)< W_(‘x+ 1) dw
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The value of o< required to fit the observed spectrum is between
1.5 and 1.7 (Neher and Stern 1955). |

Davis makes an order of magnitude estimate of the value of
De and Dee on the basis of a magnetic field composed of a uniform
field on which are superposed two dimensional standing hydromagnetic
waves of a fixed frequency and wave length, and shows that the ob-
served energy spevctrum is obtained if rms gas velocities of 10 km/sec
are present in oscillations whose extensions normal and parallel to
the fieldba.re of the order of 1 and 7 light years, respectively.

On the basis of his model of the magnetic field, Davis obtains,

for extremely relativistic particles, D€ = 0 and

Zcﬁzb 161r/oc2a2 3
D = —F— |In|—55—— | - 3
a _ Bo(a +b7)

where czﬁgz is the mean square transverse velocity of the turbulent
gas, B is the unperturbed field strength, a and b are the cell
sizes for the osc:;Lllations perpendicular and parallel to the undis-
turbed field, respectively, and o is the mass density of the medium.
In computing Dee » certain angular factors appear which
must be averaged over the actual angular distribution of the particles.
On the basis of experimental evidence, Davis assumes the angular
distribution of the spiraling particles is maintained near isotropy
by scattering processes due to inhomogeneities small compared to
the helix radius. These scatterings must be numerous enough to
produce near isotropy without being so numerous that the particle
is less likely to diffuse to the end of the spiral arm than make a

nuclear collision.



-6-

Although Davis' treatment of the betatron mechanism indicates
that this mechanism is an efficient means of accelerating cosmic ray
particles, certain questions are left unresolved. The most important
of these has to do with the angular distribution of the cosmic ray
particles produced by the mechanism. If such a mechanism is
plausible it must explain the observed distribution which is known to
be isotropic to within a few percent (Davis 1954a). This imposes
additional conditions on the parameters describing the magnetic field.
It is known that the betatron mechanism by itself tend to make a very
anisotropic distribution with most of the particles lying in steep spirals.
The scattering processes which tend to make the distribution isotropic
must therefore be relatively efficient.

The promising results obtained by Davis make it worthwhile
to attempt a much more e?cte‘nsive analysis, taking into account the
angular distribution of cosmic ray particles produced by betatron
collisions and the "smoothing" of the distribution due to the interaction
with inhomogeneities small compared to the helix radius, as well as
the boundary effects at the ends of the spiral arm. This thesis is
addressed to the above problem. .

Any such analysis must st.art with a particular model of the
magnetic field. The model assumed here is essentially that proposed
by Fermi in his second paper, a model in which the lines of force run
the length of the spiral arm of the galaxy, with the field strength
being roughly independent of the distance along the spiral arm.

5

Since the field strength is known to be of the order of 10~

gauss, the radius of the helix of a typical high energy particle
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(say 1017 ev.) is small compared to the radius of the spiral arm
(of the order of 1000 light years), and hence the boundary effects at
the surface of the arm may be disregarded.

The model adopted consists of a uniform field on which are
superposed hydromagnetic oscillations of a wide variety of wave-
lengths and amplitudes. These oscillations consist of running waves
moving in both directions along the uniform field. A statistical des-
cription of the hydromagnetic waves is adopted which requires a
minimum of special assumptions regarding the field. This model
is more general than that assumed by Davis in which a particular
form is assumed for the space and time dependence. The present
treatment requires only that the space dependence be a stationary
random function of the space coordinate measured along the direction
of the unperturbed field (at a particular instant of time). The effect
of such a field in accelerating cosmic ray particles is most con-
veniently dealt with by considering the behavior of an ensemble of
particles moving in such a field. For a given particle, let 6 de-
note the helix angle, the angle between the momentum vector and
the direction of the uniform field and let p = cos 8 . Let
€ =1n(—m—f—2-—z- ) , be the logarithm of the ratio of the total energy
of a pa:::i)(‘::le to its rest energy, and let z be the distance along the
spiral arm. The behavior of the ensemble of particles is then des-
cribed by the distribution function W(u, e, z; t) which, when mul-
tiplied by dudedz , represents the probability that a particle will
be found in the range p — p +dp, € > ¢ +de, z-» z + dz at the

time t.
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It will be shown that W(u, €, z; t) satisfies a linear partial
differential equation which is first order in t and z and second
order in p and € . This function contains all the information of
physical interest regarding the spatial distribution of particles along
the spiral arm, the energy distribution, and the angular distribution.
In formulating the differential equation for W we take into account
the following physical processes:

(a) Interaction with large scale inhomogeneities

| (betatron processes), i.e. , interactions of
the particles with hydromagnetic waves.

(b) Scattering by small scale inhomogeneities.

(c) Absorption of particles by nuclear collisions,

and loss of particles by diffusion of particles
out of the spiral arm.

(d) Injection of new particles.

These processes are represented by separate terms or groups of
terms in the diffusion equation. Of the four processes listed, the
first is the most difficult to treat, and requires extended analysis
of the dynamics of charged particles moving in inhomogeneous
magnetic fields.

Section 2 of this thesis is devoted to a study of relativistic
particles moving in slowly varying magnetic fields. The major re-
sults of this section are equations of motion for . and ¢ . As a
by-product of the analysis some theorems are established which
are generalizations of Alfven's (1950) familiar nonrelativistic mag-
netic moment theorems to the relativistic case. These theorems

are of interest in themselves.
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In Section 3 a mathematical model of the hydromagnetic wave

field is presented. The equations of motion for p and e derived
in Section 2 and the model of the magnetic field are then used to

evaluate certain " diffusion coefficients " which appear in the dif-

ferential equation defining W(p, ¢, z; t) . The last part of this section

is concerned with the treatment of the scattering by small scale in-
homogeneities and the absorption and injection processes.

In Section 4 the results of Section 3 ére combined to com-
plete thei derivation of the diffusion equation, and the appropriate
boundary conditions are formulated.

Section 5 is devoted to solution of the steady state diffusion
equation in certain special cases of interest. The anisotropy pro-
duced by diffusion of particles out of the spiral arm is considered,
and the mean time for escape by diffusion out of the spiral arm is
estimated and related to parameters describing the magnetic field.

In Section 6 the space independent diffusion equation is con-
sidered and asymptotic solutions for large ¢ are obtained by
numerical integration.

Section 7 gives a summary of the results obtained from

Sections 5 and 6, and the conclusions that can be drawn from them.
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2. DYNAMICS OF COSMIC RAY PARTICLES IN
SLOWLY VARYING MAGNETIC FIELDS

2.1 Representation of the Field by a Vector Potential

In the following sections we shall consider the motion
of a particle of charge q in a magnetic field B having the general
character described above. We use Gaussian units.

The field will be assumed to consist of a uniform
static field B = Bo?z and a fluctuating part 2B composed of hydro-
magnetic waves moving in the Y2z directions. We choose the direction
of the uniform part of the field as the z-axis . Itis a well known re-
sult that in such a uniform field a charged particle moves along the

magnetic field in a helix whose axis is along the direction of the

field and with a radius given by

Py 2
T - - .1—1
qBb ( )

where c is the velocity of light and Py is the projection of the
momentum on a plane perpendicular to the field. We further split
AP into variations of two kinds: (1) those whose scale is small
compared to the radius of the spiral motion, and (2) those whose
scale is of the order of the radius of the spiral motion or larger.
Variations of the two types we will call small and large scale inhomo-
geneities, respectively.

The major effect of the small scale inhomogeneities
is to change the direction of motion of a spiraling particle. The

small scale inhomogeneities also affect the energy but to a lesser
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extent than the large ones*. We neglect the energy changes produced
by small scale inhomogeneities.

The large scale inhomogeneities change the energy of a par-
ticle through the action of the induced electric field, and at the same
time change its direction of motion. The interactions of cosmic ray
particles with the large scale variations in the field will be considered
in Sections 2 and 3.2. The effects of small scale inhomogeneities
will be considered in Section 3. 3.

Let us concentrate our attention on the region in the vicinity
of one of the large scale inhomogeneities. We assume thatbthe mag-
netic field is axially symmetric in the region of interest, and that
there is no net charge density present.

The magnetic field and the induced electric field must satisfy

' . . *ok
Maxwell's equations. Those of importance here are

v -8B

1}
o

(2.1-2)

= 1
VXE:_EW (2.1-3)

* There will be small random electric fields associated with the
small scale inhomogeneities if they are not static. This leads to a
random walk in the energy of a particle.

*% The remaining two of Maxwell's field equations are
V-FE = 4up = 0 vxB =27

where the displacement current has been neglected in the last equation.
For the assumed form for the vector potential, there is a current
density present given by

2A A
b )
_53? (r or ) - rz]?,s

- c 2

- ® - .C
V=-gz V A = 411'[

Hls—ﬂ
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By virtue of the above assumptions, we may describe both fields
E and —f? by a vector potential which has only one component
A= Aﬁgﬁ in a system of cylindrical coordinates (r, $, z) .
Furtherrﬁore, we will take Aﬁ to be independent of ¢ . A” thus

has zero divergence:

2A

= = 0 (2. 1-4)

z')-s

VA = 5

H

%
The fields B~ and E are calculated from the vector potential by

2A
= _ _ —-> - _ 13 - b >

B = vxr_vaé(r,z,t) €y = T (T AYT, -7 (2.1-5)
= 1 2A7 _ 1 aAé(r,z,t) 2 1.6
E=-23 "¢ at % (2.1-6)

It is easily verified from (2.1-5)that V. B = 0.

In What follows we shall use, wherever possible, the general

>
€

form A = A‘b(r, z, t) f without explicitly stating the dependence on

r, z, and t . In Section 3 we will find it convenient to use the form

Aé(r’ Z, t) = BO + A'é(r, Z, t) (2. 1—7)

z
2
where -?2- BOE;S is the vector potential for the uniform static field

B = Bﬁ—é)z » and A'é is the vector potential for the fluctuating part

of the field.

* For a given magnetic field —B%, the vector potential is defined by
(2.1-4) and (2. 1-5).
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2.2 The Relativistic Hamiltonian and the Equations of

Motion for a ChargedParticlein a Cylindrically

Symmetric Magnetic Field

Our first task in studying the dynamics of cosmic ray particles in
inhomogeneous magnetic fields will be to find the Hamiltonian function
and to formulate the equations of motion in cylindrical coordinates. We
start with the Lagrangian for a charged particle in an electro-magnetic
field (Landau and Lifschitz 1951) described by the vector potential a

whose covarient components are Ai s

i

A% (2.2-1)

olLa

where v = g. %" %) is the velocity of the particle written in terms of

1]
the coordinate derivatives and the metric tensor gy and summation
over repeated indices is implied. (The summation convention will be

used throughout this section.)

In cylindrical coordinates

x!, %%, x°) = (v, 4, z)
2
gyq =1 82 =T g33 =0
gy =0 i £ j (2.2-2)

The derivatives of the Lagrangian

. J
m g..xX
aL. o

33(. = Pl = ——————1J + %Al (2'2-3)

i 2

Nji- y_

2

c
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are the generalized momenta (covarient components of the momentum
vector), and we find the Hamiltonian function H(xl, P;s t) by elimi-

nating ki between (2.2-3) and
H::pixl-L(xR ") (2.2-4)

In fields of the type we shall be considering, the only non-zero

component of the vector potential is AZ =r Aé , hence,

moi' mozki
p1=pr :J 2 = X (2.2—5)
1-Y_ \/1_3’_
c2 c2
2.
m r 9 m g,,%
B _ o q _ 022 q _
pZ_pqﬁ-—.——Z +CrAaS———————-—2 +CA2 (2.2-6)
v v
\ﬁ- A - 5
c c
mo'z mox
p3 = pZ = 2 = ———-2—— (2. 2—7)
v v
\/1' Z d" 2
c c

Substituting (2.2-5), (2.2-6) and (2.2-7) into the expression for H given

by (2.2-4) we get

H- —2 4+ 2a,x%+mc” 4f1-5 - 2 a8 (2. 2-8)

or

H= — | (2.2-9)
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We note that the value of the Hamiltonian function is just the total
energy of the particle. To find the equations of motion we must
express H in terms of the momenta P, rather than the velocity.

Squaring the expressions (2.2-5), (2.2-6) and (2.2-7) and adding,

we find VZ
(1-—2-)
2 .2 242 .2 2 1 2 2 ¢
vi=tT+r ¢+ % :[pr +—2(p¢-—%AZ) tp, | — (2.2-10)
r m
o

Squaring (2.2-4) and eliminating V2 between (2.2-10) and (2. 2-9),

we get

HY 2, L 9a 2,52, m 2t 2.2-11

.2 =Py ;Z%Ez Py ™M € (2.2-11)
Writing A, = rAqS we have finally

/2
‘ 2
|z 2, 2 2, 2|P4 g4 2 4
H_cpr tcp, tc [T -—C—Aqs) +moc (2.2-12)

We find the equations of motion from the Hamiltonian function in the

usual manner using the general formulas

oH .1 aH ,
= X — = -P. 2.2-13
Py ox Fi ( )
Carrying out the required differentiations we get
P Py dA
2 [_é_gAJ[_Lﬂ_r é
SH r c r c or
S = -pr = (2.2-14)
¥ rH
JH

25 =-by = 0 (2.2-15)



2
H . _ <t P g, gl
5z - Py T H T c “d| ¢ gz
CZ
?H o= P,
°P.. - H
oH _ 5 = € Py
2p, - - H

It follows immediately from equations (2. 2-14) through

(2.2-19) and (2. 1-5) that

b= - 3xb 3,

mrz('é + 3 rsB
C z

H

Py

mrz{é + %—rAqS = constant

(2.

(2

(2.

2.

(2.

(2.

2-16)

.2-17)

2-18)

.2-19)

2-20)

2-21)

2-22)
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2.3 Approximate Constants of the Motion for a Charged

Particle Moving in a Slowly Varying Inhomogeneous

Magnetic Field

2.31 Definition of the Magnetic Moment of a

Particle Moving in an Inhomogeneous Field

For later use in discussing the interaction of cosmic ray
particles with inhomogeneities in the magnetic field, it will be
convenient to have at hand some theorems regarding constants of the
motion. For our purposes here we will define a constant of the motion
to be any function of the coordinates and the momenta whose total
time derivative vanishes. In a static field one such constant of the
motion is the Hamiltonian function itself. We shall discuss others
presently, first in the non-relativistic limit, and then relativistic
case. As a preliminary step we shall develop some useful results
concerning magnetic moments.

Consider a particle moving in a magnetic field which varies
with both space and time. With little loss of generality we restrict
ourselves to cylindrically symmetric magnetic fields>"< which may be
represented by a one-component vector potential A= AqS (r, z; t) ?¢ .
We further stipulate that the change in the field during one turn of the

spiral motion is small. More precisely we assume that

- - . om = = o e M e e e e mm e e e e e S M R m e em Em e Em e e e e M E = e e T ew e . -

* This restriction is made for computational convenience. It is not
necessary that the particle spiral about the axis of symmetry.
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and ,
2B 3
T -a—t—l « |B | O (2.3-2)
where p is the radius of curvature in a plane perpendicular to the
z-axis and T is the period of the motion (or the approximate period

if the motion is not exactly periodic). Stated in terms of the components

of B, (2.3-1)and (2.3-2) are

BBZ oB.

P 57 & B, P 57 < B, (2.3-3)
2B, | B

T 5 < B, T 5+ < By (2.3-4)

We define a quantity M by

2 P 2
e i 20 (2 -30)] .
z .

where H is the Hamiltonian and BZ is the z-component of the
magnetic field given by (2. 1-5). In a static, uniform field
B = Bo—gz , the quantity M reduces to the magnetic moment of the

spiraling particle defined by

M= 2o -4 % (2.3-6)

where I= - % is the equivalent current, and A is the area of the
circle which is the projection of the motion on a plane perpendicular
to the z-axis. Equation (2.3-5) may thus be considered to be a
generalized definition of the magnetic moment for particles in

inhomogeneous fields.
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It will be noted that, by definition, the form of M in terms of
coordinates and momenta is invarient to translations of the cylindrical
coordinate system parallel to itself. * It will now be shown that its
numerical value is independent of such transformations by demon-
strating the equivalence of (2.3-5) and (2.3-6), an expression that
depends only on the motion and not on the coordinate used in describing
it or the vector potential used to describe the magnetic field.

Consider for a moment a particle moviﬁg in a uniform, static
magnetic field. The projection of the motion on a plane perpendicular
to the direction of the field (z-axis) is exactly circular with the radius
given by (2. 1-1). If we choose the axis of the coordinate system along
the axis of the helix then in this system r = const. and p.= 0. We
do not wish to restrict ourselves to such a coordinate system, however,
and hence we must include the radial momentum term in (2.3-5) which

in general will not be zero even though the transverse motion is

circular. Reference to the following diagram will make this point clear.

}

* To make M invarient to guage transformations in A, we must
replace the definition (2.3-5) by

2 P 2
__c 9 a2 4 _4a
M = ZHBZ (pr c Ar) + T c AqS)

and re-define the Hamiltonian by
2 /2

2
2 2 2. 2 q.,2 2, P 2 4
H=|c%(p, -34,) + P 2-3a%) +ec (T¢-—%A¢)+moc

For the particular coordinate system and vector potential we shall use,

A =A =0.
z

r
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Axis of the Cylindrical
Coordinate System

Projection of the
Helical Motion

Figure 1. Components of the Momentum Vector and
the Coordinates Describing the Motion of a
Particle in a Plane Perpendicular to the
Magnetic Field.

In coordinate systems with an arbitrary location of the axis as

p
¢"'(—1A¢ ,etC.,

shown in the figure, the quantities r, ¢, Pp» &= - 2

are approximately periodic functions of the time if the field is slowly
varying.

We now return to the question of the equivalence of (2. 3-5) and
(2.3-6) for a particle in a uniform, static magnetic field. We note
that in such a field H and p, are constant and hence from (2.3-5)

and (2.2-12), M is also constant. We evaluate M at an instant
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when P, = 0. Then

c2 Py q 2
M=zms, | T ° chgl o Pp=0 (2.3-7)
Using (2.2-19)
2 2 2 .2
HB, | ¢ 2c BZ

where the quantity r @ is evaluated at the point where P, = 0.
Let p denote the radius of the helix and « the angular velocity

(cf. Figure 1), then

ur2 3% 1 H 22 . om 2.2 (2. 3-9)
Zcsz 2Bz c2 2Bz

M=

where m is the relativistic mass. Using the well-known result

aB,
w = - (2.3-10)
mec

for the angular velocity of a particle in a uniform, static field,
(2.3-10) may be written

2 "9 2

. . -
M= - % (2.3-11)

|
0Q
H|>
ol

This demonstrates the equivalence of (2.3-5) and (2. 3-6).
As a further remark it may be stated that in any slowly varying
field the average radial momentum will always be small compared to

% This result is easily obtained from (2.2-14) and (2.2-19) by using
(2. 1-11) and noting that p_ = 0 in a coordinate system whose axis
is along the axis of the helix.
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the total momentum in a coordinate system whose axis is along the
axis of the helix. It then follows quite generally from (2.2-14) and

(2.2-19) that in such a coordinate system

2

. 2 2
M=——2—%- r“ ¢ p, <Kp | (2.3-12)

This result will be important later on.

2.32 The Magnetic Moment in the Non-Relativistic Limit

In the non-relativistic limit, the expression for the magnetic

moment given by (2.3-5) becomes

2
M Pt e (2.3-13)
ZmoBz Bz

where Py is the component of the momentum transverse to the uniform
part of the field and W, is the energy associated with the transverse
motion.

By introducing inhomogeneities in the field as perturbations to
the motion in a homogeneous, static field, Alfven (1950) has shown
that if the slowly varying conditions (2.3-1) and (2.3-2) are satisfied
then the non-relativistic magnetic moment defined by (2.3-13) remains
constant for perturbations of the following three types:

(1) The field is uniform but varies with time.

(2) The gradient of the field has a component (constant)

in the direction of the unperturbed field.
(3) The gradient of the field has a component (constant)

perpendicular to the unperturbed field.
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Since the radial component of the momentum remains shall (in
a coordinate system whose axis is along the axis of the spiral motion)
as the particle passes through the inhomogeneity, the transverse motion
remains very nearly circular. In the first two cases the radius of the
circle changes slowly as the particle moves through the inhomogeneity.
In the third case the center of the circle drifts perpendicular to the
field following the curvature of the field lines. In the non-relativistic
limit the flux through the circle is proportional to M; hence in cases
(1) and (2), the particle moves on the surface of a flux tube. We shall
refer to this result as the flux theorem.

Alfven's perturbation approach cannot be readily generalized
to the relativistic case. * In the following section we shall investigate
this case using the Hamiltonian formalism. This approach allows us
to find relativistically correct equations of motion for any quantity
expressable to terms of the coordinates and momenta, and also
allows us to treat the space and time variations of the field simul-
taneously. Our approach thus treats the case of a static magnetic

field as a special case. It will turn out that Alfven's results

e = o " o m A o W o AR mm e - T e e M M= v e am M M M e R e e m he e e M GE e am e MR ek e e M AR e Em aR e e T e W S e e =

s

* In Alfven's proofs the kinetic energy of a particle is split into

two parts. One part is associated with the component of the velocity

in the direction of the unperturbed magnetic field and the other part is
associated with the component of the velocity transverse to the magnetic
field. This splitting cannot be accomplished in the relativistic case.

It has come to the author's attention that Helwig (1955) has
treated the relativistic and non-relativistic cases in some detail, using
an entirely different approach from that given here. Helwig shows that
the "magnetic moment" is a constant of the motion for relativistic or
non-relativistic particles moving in slowly varying fields. However it
appears that Helwig's relativistic expression for the magnetic moment
does not reduce to M=IA/c for a particle moving in a uniform field,
but rather reduces to M=(m/mg) (IA/c) where m is the relativistic
mass and mg is the rest mass. Helwig's "magnetic moment" is thus
proportional to the quantity LB defined in (2. 3-30).



-24-

regarding magnetic moments do not hold for relativistic particles
moving in time varying fields, although the flux theorem still holds.
It will turn out that the appropriate constant of the motion in this case

is the magnetic moment multiplied by the total energy.

2.33 The Time-Rate of Change of the Magnetic Moment

In this section we wish to study how the magnetic moment of a
particle, moving through an inhomogeneous magnetic field, varies
with timer. We start with the relativistic Hamiltonian (2.2-12) and
the magnetic moment (2.3-5), expressed in terms of the coordinates
and momenta. This permits us to calculate the total time rate of

change of M (Goldstein 1950) from

aM _ 57 [ 2H _ oM dH| , 2M 2.3-14)
dt i x! aPi api ox! ot
or in the usual Poisson bracket notation
dM [ :I oM ‘
-F = M, H + —aT- (2-3"15)

Since M is independent of ¢ , its total time derivative is

given by

dM _ 2M 2H M 3H JMH M 2H M

It =T b, dp, or ' oz 2p, b, 2z ‘ot (23710

A somewhat lengthy but straightforward calculation gives

dt ~ } 2z Zc

aMm M . °B, 9B, (qrzas) 2 94y
R T Ve
B, ' 3r B,

oB 2. oA
1 Z qr o\ 2 é _ M JH -
__Bz[Mbt +( Zc)?at } " (2.2-17)
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where t, z, and ¢ are defined by (2.2-17), (2.2-18) and (2.2-19)
respectively.
To simplify this expression we use (2.3-12) and average over

one cycle of the motion, obtaining

3B,
d M /\ Tz Z z
——dx;d>'_ B, & 37 - B, | M3z M1t 3z

B A
1 | ob, 2 é. M 2H
__Z_ MaT"M?F - T 5 (2.3-18)

This expression can be further re-written
.. 0B
dM M< Z M d _2 _ M 22H _
& B, D 5 ’B_Z'E'E’[Bz ?Aé:l H 3t (2.3-19)

where the total time derivative in the second term on the right is

defined by

d

-5 2 2 -
—Ht_— = Z 3z + Y (2.3 20)

Several comments may now be made regarding (2.3-19). Reference
to the following table shows that the first two terms on the right
vanish if either (a) the field is uniform, but changing with time, or
(b) if the z-component of B is a function only of z and t over the
region of interest. In either case thé vector potential is related tor

the z~component of the field by

B (2.3-21)

Tr
Ay = 7 By
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Table I

Relationshii) Between the Vector Potential and
the Components of B for Three Types of Fields

Type of Field Vector Potential B B

Z r
Uniform field Ay = >B_(t) ‘B_(t) 0
changing with time
’ T B (Z: t)
Field has a gradient Aq5 = —Z-Bz(z, t) Bz(z,t) ' rr 2B
- - . . . r Z

only in z-~direction =5 35—
G 1 cylindricall A, (r, z, t) B = L2(rA,) B—-aii’i

eneral cylindrically 4 (T 2 2" T 5% " .= =

symmetric field

Turning to the more general case where A¢ depends on r as well
as z and t, we note that the first term on the right on (2.3-19)

may be written approximately

2B 2B
M . z _ M{Ap p Tz _
B_ <1'> 37 = T_(p ) ('B'_ ar) (2.3-22)

z

where Ap is the distance the axis of the spiral moves during one

period T of the motion and p is the radius of the spiral. In slowly

Ap 2B

varying fields both 3 and —BP— Df are small compared to 1, and
Z

hence this term is negligible.
Passing to the second term on the right of (2.3-19), we note
that if

Bz(r, z;t) = T A¢ (r, z, t) (2.3-23)

then this term is also negligible. As mentioned previously, the

relationship is exact for fields of the first two types listed in Table I.
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The necessary and sufficient condition is that

2B,
dT

=0 (2.3-24)

It can easily be shown that the difference between BZ and

RN

Aé over a region ro<rLr, + p satisfies the inequality

2
IB - —A 2B
z r ¢ 1 z
5 £ 3 —B—O— 37 | max (2.3-25)
o
2B, 2B
where 37 | max is the maximum value of ) over the region.

Applying the slowly varying condition (2.3-3) we see that

« _31_ (2.3-26)

We are thus justified in neglecting the second term in (2.3-19).
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2.34 An Approximate Constant of the Motion for

a Relativistic Particle in a Slowly Varying

Field; The Flux Theorem.

After dropping the first two terms of (2.3-19) in accordance

with the discussion of the last paragraph, we are left with

M dH
IS T®B & (2.3-27)
This equation may be rewritten
d
i (MH) = O (2.3-28)
Hence
MH = const. (2.3-29)

The quantity MH is therefore a constant of the motion for slow changes
in the field.
This theorem = can be restated in an alternative form which has

more physical meaning: Let LB denote the angular momentum about

the axis of the helix. It is easily shown that

L. - <2MH (2.3-30)

and hence LB = const.

* In the non-relativistic limit the magnitude of the Hamiltonian
reduces to m c? . Hence M = const., in agreement with Alfven's
results.

Fk An alternative proof of this theorem is given in Appendix C.



-29-
An alternative form of this result is

(H2 - mo2 c4) sinz 0
-LB = = const. (2.3-31)
qc B

Z

where 0 is the angle between the momentum vector and the z-axis
(the spiral pitch angle). This expression follows immediately from
(2.3-5) and (2.2-12).

If we compute the flux i through the helix using (2. 1-1) we

find
cpz 2 mzpz
$=ap’B =7 || B = — b (2.3-32)
z qB z 2
z q Bz

This expression may be written in terms of the magnetic moment by

using the definition (2.3-5). The result is

o~

(2.3-33)

- &7 = Ic
¢ = 7 MH = T2 Ly

Ne)

Thus, even in the relafivistic case, the flux enclosed by the helix
remains constant as the particle moves through the field. Stated
another way, the particle moves at all times on the surface of a

flux tube, provided the particle does not diffuse at right angles to

the field due to a lateral gradient in the field.
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The Time Rate of Change of the Logarithmic

2.4
Energy Parameter and the Spiral Pitch Angle.

In studying the interaction of particles with hydromagnetic waves,

two quantities will be of particular interest, the logarithmic energy

parameter defined by

€ = lnl:HZ:l
m c
o

and the spiral pitch angle, defined as the angle between the momentum

(2.4-1)

vector P and the z-axis.
we start with the time rate

To find the time rate of change of e

of change of the Hamiltonian given by

dH 2H _ 2H
F - [EH] 57 - 3% (2.4-2)
<2 (P_a, (-2
- H r c ¢ c ot
Using (2.2-19) this may be written
A
It - ( 76 T ”‘) T T (2.4-3)

The first factor on the right will be recognized as the magnetic

moment [cf. (2.3-12)] . Therefore, when ¥ =0,
A 2 pl 2 A
an _ 2% & Pt 3 8 C (2.4-4)
dt ~ r ot = 2H B, at T .

where (2.3-5) has been used. Dividing both sides of (2.4-4) by H we
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may write

1 dH 1 d H t 2
H dt dt 2 T 2o ot

i} (2.4-5)
(H/m_c?) m c 2H%B
(o] (o] Z

cp ZA(JS
T

We restrict ourselves to the extreme relativistic case (p2c2>) m§c4)

writing
u% = p2c? (2.4-6)
Hence
2
2 2 2
de 1 Pt Ry -pf e P (2.4-7)
dt 2B, P?_ ot T ZBZ at T ’

where p = cos 0 is the cosine of the spiral pitch angle. If the field

is sufficiently slowly varying we may replace B, by its average

value B and 2A¢ by B, inaccordance with the discussion of
r -~

Section 2. 2.

The equation of motion for e then becomes

2B
de _ 1 2, %%y
Bo =3 -+ 3% (2.4-8)

We are now in a position to find the equation of motion for the
spiral pitch angle. From the results of Section 2.3, the quantity
2 - m 2 Hsufo

2 MH
I"B T qc - qc BZ (2.4-9)

is a constant of the motion for slow changes in the field. In the

extreme relativistic limit we neglect mQZc4 in (2.4-9) and write

2 2
- H (1-p)
Ly = B

2.4-10
qc B, ( 0)
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Taking the total time derivative of (2.4-10) we ge‘t

1 _Cl_iﬁ____i_i]_?’_?_+idﬂ- 1 dPZ-o (2.4-11)
L dt -~ B dt H dt 2 dt -~ :
B z 1-p
. 2
Introducing € = ln (H/moc ) we get
2 dB
1 dp _ de 1 4 _
——1 > & 2 I @ (2.4-12)
- K Z
. ; de . . 1
Eliminating I using (2.4-8) and replacing the factor B by
1 sk z
—B— we have
o
toa? 12 P 4B, (2. 4-13)
|2 @ T B UTHI YT BT Td :
- B o o
or
2 2 2B dB
du” _ 2 zZ _. 2 z _
B, 4= (t-8) 3¢ (1-v7) o (2.4-14)
*#* The total time derivative has two parts:
d _ 2 . . . :
TI= Vv VAR 5t The total time derivative of BZ is thus
dB B oB

-a-ti = Z 5z t —a—-,?- neglecting terms involving .

%% This result may also be obtained using the Hamiltonian formalism
but with considerably more labor. This requires calculating
2

dp
T from
2 2
dup™ _ 2 o
T T [P-H] st
using
2 2
2 P, Py
IJ. I m——
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3. SCATTERING AND ACCELERATION OF COSMIC
RAYS BY TURBULENT MAGNETIC FIELDS

3.1 General

" A qualitative description of the magnetic field has been given
in Section 2.1. As noted there, we consider the magnetic field to be
made up of-a uniform field B= B(;e’z on which is superposed a random
part consisting of hydromagnetic waves having a variety of amplitudes
and wavelengths. These waves are propagated along the direction of
the undisturbed field with velocities that depend on their wavelength,
the density of the medium, and the magnetic field strength.

The parameters to be used to describe the state of motion of

a particle in this field are the logarithmic energy parameter e, the
cosine of the spiral pitch angle p, and the position coordinate z,
measured along the direction of the unperturbed magnetic field.
Comnsider a large number of cosmic ray particles moving through such
a magnetic field, and let W(u, €, z; t) dudedz denote the probability
of finding a particle at p, ¢, z in the range du, de, dz, attime t.
We shall ;show that W(u, €, z; t) satisfies a second order partial
differential equation of the parabolic type which we will refer to as
the "diffusion equation." In formulating this differential equation, we
regard the following physical processes as fundamentally irﬁportant:

(a) Betatron Processes. These are interactions with

inhomogeneities in the magnetic field (hydromagnetic
waves), whose scale is large compared to the helix of

the particle. Interactions of this kind change the energy



(b)

(c)

(d)
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of a particle and its direction of motion through the
action of the induced electric field which is present
when the magnetic field strength changes with time.
These changes take place in a way that depends on
the energy of a particle and its direction of motion,
and are described by the pair of differential equations
(2.4-8) and (2.4-14).

Scattering by small scale inhomogeneities in the field.

This type of interaction tends to make the angular dis-
tribution isotropic, smoothing out the anisotropy pro-
duced by the betatron collisions. It is assumed that
this type of scattering does not change the energy
appreciably. Calculations are carried out on the as-
sumption that the root-mean-square scattering angle
is small and does not depend on the direction of
motion.

Absorption of particles by nuclear collisions, and

loss of particles by diffusion out of the spiral arm.

Injection of new particles.

Each of these processes will be treated separately in the

following sections. As we shall see presently, these processes are

represented by separate terms or groups of terms in the diffusion

equation.

In Section 3.21, and Appendix A, the diffusion equation

representing the interaction with large scale inhomogeneities

(betatron processes), is derived. Certain coefficients appear in this

equation which are related to the mean and mean-square changes in
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the variables p,¢, and z in a time increment At due to the action
of the magﬁetic field. These quantities are appropriately called
"diffusion coefficients, " and are in general functions of p, e, and =z.
Evaluation of these coefficients requires a rather lengthy analysis
of the behavior of an ensemble of particles in the fluctuating mag-
netic field. This analysis is carried out'in Section 3. 24 using the
mathematicai model of the magnetic field described in Section 3. 22.
We shall find it convenient to express the diffusion coefficients in
terms of the mean-square turbulent velocity of the medium through
which the hydromagnetic waves are propagated. Section 3.23 is
devoted to the calculation of this velocity from the model of Section
3.22.

In Section 3.3, scattering by small scale inhomogeneities is
considered. Absorption and source terms are considered in Section

3.4.
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3.2 Interaction of Cosmic Rays with Large Scale

Inhomogeneities in the Magnetic Field

3.21 Description of the Interactions by a

Diffusion Equation

It is shown in Appendix A that the behavior of
an ensemble of particles whose individual states of motion are de-
scribed by the variables u, ¢, and z, is governed by a partial dif-

*
ferential equation of the form

AW _ 2 ? 2
RaR AR ERIER A

+ bebp.[ pe€ :l bp.bzl: Pz :]

where W(p, €, z; t) was defined above as the fraction of the total

number of particles in the range dp de dz . Let X, i=1,2,3
denote the variables p, €, z . The diffusion coefficients Dz’ Du’

etc., are defined by

oy

D. = lim _— (3.2-2)
1 At »> © At
. <AxiAx>
Di . = lim R (3.2-3)
J At - ©

*The form of this equation is similar to the Fokker-Planck equation in
velocity space used in the theory of Brownian motion (Chandrasekhar,
1943). The derivation follows similar lines.
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where <Agi> is the average change in x5 in a time At and
<Axiij> is the average of the product of the changes in x; and
X, in a time At . These diffusion coefficients are, in general,
functions of the three independent variables u, ¢, and z .

The right side of (3.2-1) represents the net rate at which
particles enter the differential range dpdedz due to interactions
with the magnetic field. The first derivative terms on the right
describe the average motion or "drift" of an ensemble of particles
in the space of the coordinates p, ¢, z, and the second derivative
terms describe the fluctuations (diffusion) about this average motion.

To apply this equation to the problem of the interaction of
particles with large scale inhomogeneities in the magnetic field it
is now necessary to evaluate the functions ]?L, D€ , etc. The
mathematical description of the magnetic field on which this eval-

uation is based is considered next.
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3.22 A Statistical Model of the Fluctuating
Magnetic Field

The purpose of this section is to describe a
mathematical model of the fluctuating ma gnetic field. This model
will be applied in Section 3.24 to the problem of evaluating the dif-
fusion coefficients Dp.’ De , Dp.p, etc., appearing in (3.2-1).

It will turn out that the random nature of the
fluctuating part of the field is of paramount importance. Since the
field is undoubtedly rather chaotic, it is impossible to predict exactly
its behavior as a function of time and the space coordinates r and

z . A statistical description of the magnetic field is therefore indi-

cated.

We shall focus our attention primarily on the
quantity Ba]:z which appears in the equations of motio; for p and
¢ , and make use of the Fourier integral to express :t Z as a

superposition of waves of different wave lengths. The spectrum of
wave lengths (in the z-direction) assumes a special significance in
the model, for if we adopt the assumption that the field is represented
adequately by a train of hydromagnetic waves of unchanging shape or
a superposition of a finite number of monochromatic waves, then we
are quickly lead to the conclusion that the field does not proauce any
scattering or change the energy of a particle.

To form a basis for the present discussion, we
consider first some of the properties of the simplest types of cylin-
drically symmetric, undamped, hydromagnetic waves. Wave motion

of this type is discussed in Appendix B, starting from Maxwell's



-39-

equations and the hydrodynamic equation of motion for the medium.
This treatment is based on the usual linearized theory with the fol-
lowing assumptions:

(1) Displacement current is neglected.

(2) Infinite conductivity of the medium in which the

oscillations take place is assumed.

(3) Nonelectromagnetic forces on the medium are

neglected.

Some of the results of Appepdix B are tabulated here for
future reference. The following quantities of interest are associated
with a wave propagated in the +z direction. Cylindrical coordi-
nates (r, 9, z) are used and all quantities are given in Gaussian
units.

Vector Potential:

Z - -BOEAJl(er)ei(klz_wt) + %]?‘6 (3.2-4)

Magnetic Field:

_ . i(k, z-wt)
B - -B_Aik, J (k,r)e 1 _E'r

(3.2-5)
i(k, z-wt)
+BOI:1 + Ak, J (k,r)e 1 :|‘é'z
Current Density:
T o Aw’ o eifkEet) ¢ (3. 2-6)
T 7B, 12 é .
Velocity of Medium:
¥ oo ieAd (ke et (3.2-7)
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Displacement of Medium:

T o= AT (k,m)et et ¥ (3.2-8)
Electric Field:
>~ -iwAB ik, z-wt
£ - JeABo 5 aorettysel g (3.2-9)
Angular Frequency:
2
B
o = —2 k24K (3.2-10)
4w P
o
Phase Velocity of Waves:
2 2 Boz kZZ
NG 14 -2 (3.2-11)
k, 4 Fo k12

In these equations, Bo is the strength of the uniform part of the field,
/o o is the average mass density of the medium, c is the velocity of
light, and A, kl’ k2 are constants whose physical meaning is obvious.

It is evident from these results that waves of arbitrary wave
lengths in the r and z-directions are possible. These waves are
propagated with velocities which depend on the ratio of the wave
lengths in the two directions*.

It is reasonable to assume that the fluctuating magnetic field in
the spiral arm may be described as a superposition of waves of the

simple form described above. To simplify the model, we fix the scale

*This is not the case in rectangular coordinates if the velocity of the

medium has only a single component, say ¥ = vy8., . Waves of this

type are propagated along the primary field with a’velocity given by
2

2 B

Ve = Trgf_:— (Alfven 1950) .

o]
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of the waves in the r—direction* (i.e., we take k2 to be a fixed
constant) and fix our attention on the behavior of Bz(r, z,t) as a
function of z . We further assume that Bz(r, z,t) is a stationary
random function of z (i.e., the statistical properties of Bz are
independent of z ). It is well known that such a function does not
satisfy the conditions for representation by a Fourier integral (in
particular, it cannot be assumed to vanish at z = ¥ o ). We there-
fore introduce a commonly used mathematical artifice which con-
sists of modifying the function so that it is zero outside of the in-
terval -z ¢ z ¢ z ., where z is some large but finite value
of z, and developing the modified function as a Fourier integral.
At a later stage in the analysis, we let Z = 0.

We consider waves moving in both * 2 directions and write,

Bz(r,z,t) - B (3.2-12)

o

Qo
ik, Z-wt) k. -i(k,z-ot
= B_k,J_(k,T) / I}i(kl)el‘ 1 Z-wt) + Ak e i(kyz-wt) dk,
- QD

where Ai(ki) and A;(ki) are the amplitudes for the two waves
moving to the right and left along the =z-axis. Differentiating with

respect to the time we find

dB_(r,z,t)

(3.2-13)
ot

Qo

i(klz—wt) -i(klz-wt)

dk

= B_k,J_(k,7) -iwA (ke )

. ES
+inAj(k,)e

-00

- . s e e S e e e M e A e N AR G e M e mm MR MR e TR AR M MR e M G MR e G M e M e e A e e A G e e B e A e e e e -

* We will later average quantities of interest in such a way as to
eliminate the radial dependence.
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Consider now a particle moving through the field described by
(3.2-12). The component of the particle's velocity in the =z-
direction is z = pc . If the particle is at =z = zy at t= 0 then

its position at a time t later is given by
z = pct + z (3.2-14)

as long as p does not change appreciably. Inserting this approxi-

*
mate expression into (3.2-13) we have

0 Bz
_— (3.2-15)
ot © ‘
- . ik, pc-w)t | . % -i(k, pec-w)t
= BokZJo(er) -1wA1(k1)e 1 +1wA1(k1)e 1 dk1
-0
Tik oz
where the factors e 1”1 have been absorbed into Ai(kl) and

Af(ki) . Now as long as

luc| » l-kii—l (3.2-16)

"a

*
for all significant values  of k1 , we may neglect w in comparison
with kip,c in (3.2-15). This means that we may neglect the explicit
time dependence in (3.2-13), writing

- e e me e e A S e e e M me m TR A G ew e S mm 6 mm e e e e Gt e i M G e M M e B e S s o e A M G e G AR A e N e e e

* Small changes in p , which are correlated with T lead to

second order terms in the diffusion coefficients whid cannot be ne-
glected. Equation (3.2-14) will be replaced by a more exact expression
in a later section.

*% Typical values for the wave velocity ©_ are of the order of
10 km/sec. Except for particles moving 1in extremely flat spirals
(k. ¢ 3 x 1077), this assumption is an exceedingly good one.
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bBZ \ ikiz " -iklz
5T BOkZJo(er) —1ooA1(k1)e + 1wA1(k1)e
- Q0

dk, (3.2-17)

1

A simpler expression may be obtained by rewriting the second
1

term of (3.2-17) as follows: Replace k1 by --k1 noting that w is an

even function of k1 ,

i wAf(k,)e dk, = - i wAj(-ky) e dk ! (3.2-18)

Now replace the dummy variable k'1 by kl’ and reverse the limits

of integration. This gives

+00 +00
& -ikiz * ikiz
imAi(kl)e dk, = iwAi(—kl)e dk, (3.2-19)
oo -0
Equation (3.2-17) now becomes
+00
2B, ' % ik, =z
51 = BokZJo(er) -1 Ai(kl) + iw Al(—ki) e dk, (3.2-20)
- o
If we now define
&
Alky) = —Ai(ki) + Ai('kl) (3.2-21)
we obtain the simple expression
+00
BBZ ' ik z
S5t Boszo(er) w(kl) A(ki)e dk (3.2-22)
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2B .
3T z by B(z) , suppressing the r de-

We will henceforth denote
pendence w\'hich is not important.

Since é(z) is a stationary random function of z , it has an
autocorrelation function R(z). This function* has great utility since
it will turn out that all of the quantities of interest which we may have
occasion to calculate from our model of the field are easily obtained
from R(z) The next few paragraphs will be concerned with estab-
lishing the connection between this function and the Fourier integral
represenfation of the field given in (3.2-22). As we shall see pre-
sently, the Fourier transform of R(z) bis closely related to the am-
plitude function A(ki) appearing in this equation.

The autocorrelation function R(z) is defined by the ensemble

average,
a{(_z_) = B1B2 = B(z) B(z + E)
100 +00 (3.2-23)
= BiB W(B 2, z)dB dB
- 00 -co
where W(B 2% z)dB dB2 is the probability of finding a value of

B1 in the interval B - B +dB and a value of B2 in the inter-

val B2 - B2 + EBZ’ when the two intervals are separated by a

distance Z . Since B(z) is a stationary random variable, the auto-
#k
correlation function is not a function of z . An equivalent definition

may be written in terms of an average over z:

* For a detailed description of the use of autocorrelation functions
and the associated spectral densities in the description of random pro-
cesses, the reader is referred to Laning and Battin (1956).

#¢ The equivalence of the two definitions holds only for stationary ran-
dom variables. If the random variable under consideration is non-
stationary then the definition in terms of an ensemble average must
be used.
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+Zo
R(z) = lim -2-;— / B(z) B(z + z) dz (3.2-24)
Z > © o
o -2 :
o
The function @®(z) thus gives a measure of the interrelation of B(z)
measured at two different points separated by a distance z . We
expect that as z is increased indefinitely the correlation disappears.

Hence, as z -» 0, W(Bi’ B,; z) becomes independent of z and

W(B,, By Z) —» W, (B )W, (B,) (3. 2-25)

where W,(B)dB is the probability of finding B in the range B to
B +dB. Thus, from the definition (3.2-23)

+00 +00

Y2

®R(w) = B,B, W, (B,)W,(B,)dB,dB, = (B)® (3.2-26)

- Q0 - 00

i.e., R(o) is the square of the mean value of B . We assume that

it is equally likely that B be positive or negative, and hence

B =0; R() =0 (3.2-27)
“

It follows immediately from (3. 2-24) that the value of R(z)

at the origin is the variance of B :

ANNAy

®R(c) = (B)® = o2 (3.2-28)
B .

To compute the autocorrelation function corresponding to the
representation of B given by (3.2-22), we recall that the repre-

sentation
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+00
ikiz

B(z) = B_k,J (k,) wll,)Alk,)e dk, (3.2-29)

is valid only if B = 0 outside the interval -z % z < +Z ) - By the

Fourier inversion formula

B_k,J_(k,r)o(k )Alk,) = = B(z)e dz (3. 2-30)

Let A*(ki) denote the complex conjugate of A(kl) , then since

B(z) is real, (3.2-30) indicates that
*
A (ki) = A(-k) (3.2-31)

From 3.2-24) and (3.2-29)

W\MAN\'\/\ +ZO
®R(z) = B(z)B(z + z) = lim —2;— B(z)B(z + z) dz
zZ_ -» Q0
o
-2
(8]
2 2 1 1"
B_k 0(k riim dz /dk1 dk X (3.2-32)
Zo->- o o
-z - - 00
0O
1 Y __
ik, +k,)z + ik, =

w(ki)w(k'i')A(ki)A(k'l') e

Letting kli' = -k1
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®R(z) 7 +00 ©
2.2 2 . 1
= BokZ Jo (kzr)%lrg_’ 00'2'27(; dz
-z -0 - 00
o
" i(kl-ki')z -ikl.' z
' © 1
w(ki) wki) A (kl) A(ki) e e dk1 dkl'
« (3.2-33)
fo's} +00
2,22 . *
= By Iglr) him / / ol o VA AT ()
-0 -
sin (k, -k, =z -ik 'z
L Lo 1 ax dk
- ]
(k1 ki) z
Now introduce the new variable § = (k1 - ki') Z and rewrite (3.2-33)

as

+00

— 2, 2_2 > -k z
R(z) = BO kz Jo (er) w(ki) A(ki)e dk1 / lim
L

Z - QO
~ D O

(3.2-34)
N
els_'z— sin §
z s

o

ok, - _Z%)A*(k1 - -5:)-)

dsg

Performing the limiting operation and then the integration over §
we obtain

+00

ik, =z
_ 2. 2.2 2 y
®(Z) = Bk, I (k,T) w (k) cb(ki)e dk, (3.2-35)

where
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cjg'(k‘l) = lim = 'A(k (3.2-36)

2
2

spectral density of Bz(z) - B0 , and wz(kl) @(ki) is the spectral

Except for the factor Bozk Joz (kzr) , the function @(kl) is the
density of ]:°)(z) . By virtue of the definition (3.2-36), @(ki) and
wz(kl) @(ki) are even functions of k1 .

From (3.2-28) and (3. 2-35), we note that the mean-square
value of B is given by the following integral

+00

0'.2 = Bozk
B

2.,2 Joz(kzr) wz(ki) Bik,) dk (3.2-37)

~ 00
Equations (3.2-35) and (3.2-37) form the basis for the statistical
description of the fluctuating magnetic field.

For later use it will be convenient to introduce a normalized

power spectral density é(ki) defined by

T 2 2 T 2 2
$x,) = lim z 'A(ki)\ = A%lim = Ia(k1)| = A%p(k,)
Z -» O 0 Z _-» 0O O
o o
(3.2-38)
where the constant A2 is chosen so that
+00
WPk )b (k) = (3.2-39)
— oo

holds, and A(ki) = Aa(kl) .

The corresponding normalized autocorrelation function will be
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denoted by R(z) and is defined by

o)
_ 2 -iklE
R(z) = w (kl)ﬁ(kl)e dk1 (3. 2-40)
~ 00
with R(0) = 1 . We further define
400
iklz
F(z) = w(kl)a(ki)e dk1 (3.2-41)
-0

It follows immediately from (3.2-35) and (3.2-38) that the auto-

correlation function for F(z) is R(z), i.e.,

AAANAAAAAAS ’
R(Z) = F(z)F(z + z) (3.2-42)
and that
+00
-ik, z
— 2.2.2 2 2 e
R(z) = B, k2 Jo (kzr)A w (kl)é(ki)e dk1
-~
- (3.2-43)
2 'ikiz 2
= R(0) W (ki)é(kl)e dk1 = 0 R(z)
- Q0D . B
where
2 2, 2.2 2
®R(o) = ¢ = Bk, J " (k,r)A (3.2-44)
B

So far nothing has been said about the form of the autocor-

relation function R(=z) or its Fourier transform wz(kl) ¢S(k1) .
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»

These quantities depend on a much more detailed knowledge of the

galactic magnetic field than is currently available. Fortunately,

the results which we shall derive in later secﬁons do not depend on

knowing the shape of the spectrum, but only its value at k1 =0
Although we shall have no specific use for them, we shall

give two examples of autocorrelation functions which might reason-

ably be expected for a magnetic field of the type we have considered.

One such a function is

R(z) = e ¥ | =] cos k_ Z (3.2-45)

where vy and ko are positive constants. The corresponding spectral

density is
ERE E
-y |z _ ik, z
wz(ki)ﬁ(ki) = %r' e cos ko Z e 1 dz
- (3.2-46)
= '21‘ —— > Z
™
Y +(k0-+k1) v +(ko-k1)

This is the spectral density of a random function F(z) having a
spectrum of wave numbers distributed over a band about k'0 . The

constant vy is interpreted as the width of the peak at half maximum.

e - W G M B e MR em M e e e e e e M A mm G M e e e M ML AR G G e G SM e G e e e G e e e e W e e e A

* It will be shown later that the diffusion coefficients associated with
the betatron mechanism contain the factor w2(o) (o) . At first sight
it might seem strange that the detailed shape of the spectrum is not
needed. Similar results appear in the analysis of noise in electrical
control systems and in the theory of Brownian motion. In the latter
example the mean-square velocity of a particle undergoing Brownian
motion is proportional to ¢ (o) where dJ (k) is the spectral density
of the random forcing function (Uhlenbeck and Ornstein 1930). It is
customary to evaluate § (o) with the help of the theorem of equipar-
tition of energy. '
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Another spectrum which has a predominance of small wave
numbers (long wavelengths) is obtained by taking k0 = 0 in (3.2-45):

R(Z) = e ¥ IEI

The corresponding spectral density is

Y

-2 .2
Y +k1

Al =

Pk ) B (k) =



-52-

3.23 The Mean Square Gas Velocity
of the Turbulent Medium

In Section 3.24 we shall find it convenient to
have an expression for the mean square gas velocity of the oscillating
medium. This involves a simple application of some of the reéults
derived in the preceding section.

It will be noted from (3.2-5) and (3.2-7) that
the expressions for the radial velocity V. and the rate of change of
the z~ corﬁponent of the magnetic field %____]fz for a simple wave
are of the same formexcept for the radial dependence and a constant

multiplying factor. This similarity allows us to write down imme-

diately an expression for V. analogous to the representation of

B
%t_z given by (3.2-22) . Assuming that V. vanishes outside the
interval -z ¢ Z < +z ., We may write

+00
iklz
v, = Jl(kzr) w(kl)A(kl)e dk

) (3.2-47)
- Q0

e

We calculate the mean square velocity vrz from

+00
2 i 2
v, = lim > V. (z)dz ) .(3.2-48)
z > o
-

Noting the similarity between (3.2-47) and (3.2-22) we find

+00
ANy
2

v? = 100k, w%(k,) (e )k (3. 2-49)
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Introducing the normalized spectral density defined by (3. 2-38) gives

QO

2 2 2
v. = J1 (kzr)A

, wllk)blk)dk, = 1 k,r)a% 32730

=Q0

To remove the radial dependence, we must carry out a further aver-
aging process. The average over r is carried out over the region

o¢rg¢ry where Ty is chosen so that
Ji(kzri) = Ji(«o) =0 (3.2-51)

In what follows we will denote quantities averaged over both z and r
by angular brackets.
The mean square gas velocity, denoted by <vg2> , is given

by the expression

r

1
2
.]'1 (kzr)rdr (3.2-52)

- 2

r
1 ry
/ rdr o
o

Making the substitution X = kzr reduces the integral to the form

r
b 2
/ J1 (kzr)rdr 2
<2> 2 Jo 2A
v = A =

2 %® :
2 2A 2
A = J, (x ) de 3.2-53
(o}
where x, = kzr1 . The integral is easily evaluated (Smythe 1950)

vielding
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2 | .2
<V 2> = %éz —%— [Jiz(do) +J02(°(o):l h c(oJi(""(o)Jo("(o) (3.2-54)

or

2 2.2
<vg> = A%T C(e) (3. 2-55)

We finally wisgh to note the connection between <Vg2> and the

mean square value of B . Carrying out a similar average over the .

radial dependence of 0‘.2 given by (3.2-37) we find
B

7
/ 1J02(k2r) rdr
<B2> 2. 2.2 %
1
rdr '
o (3.2-56)

I
W
s
>

. o
_ 2BozkzzA2 on( 4 - B2 2p2| 52 120 )
B 2 Yo o Jocde = o 2 o(c(o)+ 1(“0
“0
O
or
$2 2.2.2.2
<B> = B Kk, AT f(a) (3.2-57)

Eliminating the factor AZJOZ( o(o) between (3.2-55) and (3.2-57), we

<1'32> - Bozkzz <vg2> (3.2-58)

%
find

* Note that it is immaterial which root of Jl( o(o) = 0 is chosen
in carrying out the averages over r .
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3.24 Evaluation of the Diffusion Coefficients
p,b ,b,D ,D ,D,D
B L € €€ L€ Z z

Z

To evaluate j:he diffusion coefficients Dl~‘~ s

DP-H’ De , etc., we begin with the differential equations

B

de _ 1 2 2 z
Boat— = z(i—p.) at (3.2-59)

22 2B 2, dB

B_‘_i_&._.i(l'p') Z__i.(i'“') Z (32—60)
o dt 2 M 2t 2 m dt '
0B,

where 3T is to be regarded as a random function of z . In using

these equations we must follow a particle through the field. Let =z
denote the coordinate of the particle. The z-componenf of the particles

velocity is then given by

%EZ‘ = uc (3.2-61)
9B
Evaluated at the position of the particle, T becomes an implicit

function of u(t) .
de
The function I in (3.2-60) has a somewhat

different character. We note that the integral

ts

dB
W-Z_ dt = B_{t,) - B_(t,) ' (3.2-62)

represents the net change in the z-component of the field as seen by
the particle as it moves through the field. If we assume that the par-

ticle starts at ty from a point where the field has the value Bo and
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moves thrqugh the field to any other point where the field is also Bo s
then the net value of the integral (3.2-62) is zero. We expect there-
fore that this term will contribute nothing to the diffusion process,
and we henceforth disregard it.

In accordance with the discussion of Section 3.22, we may dis-

dB
regard the explicit time dependence of ——% as long as the z-component

dt
of the particle velocity is large compared with the velocity of propa-
gation of the magnetohydrodynamic waves. This condition is satisfied
for all particles except those moving in extremely flat spirals.
From (3.2-22) we have the following representation of ].3(z) s
+00
ik, =

1

Blz) = B_k,J_(k,r) wlk)Ak)e | dk, (3.2-63)

Associated with this function are the speétral density defined in terms
of A(ki) by Equation (3.2-36) and the corresponding autocorrelation
function R(z) defined by Equation (3.2-35). We shall find it con-
venient in simplifyingb the computations to introduce the normalized

amplitude function a(kl) defined by
A(ki) = Aa(ki) (3.2-64)

and require the constant A to be such that (3.2-39) is satisfied. In-
troducing this notation into (3.2-63) we have |

+Q0
ikiz

B(z) B_Ak,J_(k,T) wlk,)a(k,)e dk

1]

1
| o (3.2-65)

i

B_Ak,J_(k,r)F(z)
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This is the same F(z) as defined by (3.2-41). The normalization
requirements are now such that
+Q0

R(o) = F7(z) = w(kl)ﬁ(ki)dki = 1 (3.2-66)

In this notation the differential equations (3.2-59) and (3. 2-60) become,

& = -1k, (k,r) AF(z) (3.2-67)
e _ (-1h" ) aF 3.2-6
Q= Lol o5, 6,0 ARG (3.2-68)

To further simplify the notation we define

1 2
Sy 1) = (1 - p)k,T (k,r) (3.2-69)
(t - p)°
Syl 1) = - kT, (k,7) (3.2-70)
and write
g{_ = S_AF(z) | (3.2-71)
& = 5,AF(2) (3.2-72)

To relate z to p we use

L o= me (3.2-73)

An exact integration of equation (3.2-71), (3,2-72), and (3.2-73)

is clearly impossible. An approximate solution is obtained by ex-
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panding € and p as a power series in the amplitude A (A is small
for slowly \‘rarnying fields), dropping terms of order A3 and higher.
The approximate solution is adequate for our purposes, since we want
a solution which is good only for short times.

We choose the time origin sothat z=0 at t=0, let ¢
and Po denote the values of p and € at t =0 . Let At denote an
interval of time large compared to the significant correlation time of

F(z(t)), and let

Ae(t) = e(t)-e, (3.2-74)
Ap(t) = pt) - pg (3.2-75).
We expand e(t) and p(t) in the following manner
(V) = ¢, + Ay () + A%y, + ...... |  (3.2-76)
MO = ng + Ax (0 + A0 + ...l (3.2-77)

An expansion for z(t) is obtained by substituting the expansion (3.2-77)

into (3.2-73) and integrating. This yields,

i

t
z(t) B, Ct + Ac /xi(-r) dr + AZCfXZ(T) dv + ....

(8] o
(3.2-78)

b, ct + Acz(t) + Afca,(t) + ....

i

Substituting these expansions into the differential equations (3.2-71)

and (3.2-72), and expanding, we obtain



dy 1
dt

and

A
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)
+ A - t e = AS [po+Ax1(t)+...:l F l:p,oct+Acz1(t) +.
= AS_ (k) F(p ct)
o A2[ 8 ) Flitget) + e (o) Flugetiz (0 |
X |
+ ol (3.2-79)
&,
+ A% 22 4 L = As [po+Ax1(t)+....:|

x F [;.Loct+Acz1(t) + .:I
= AS, (p ) Fpct)

+ A [5’1(**& Fliget) + 5, (i,)

F'(p ct) zl(t):l + o’ (3. 2-80)

Equating terms of the same order on both sides of these equations, we

obtain the following differential equations for Xi(t)’ xz(t), »Yi(t)’

Yz(f) :

dy 1
dt

dy2

3.5 o

o 8

H

I

So(po) F(poct) (3.2-81)
S'o(p.o) F(p,oct) Xi(t) + cSo(p.o) F'i(poct) Zi(t) (3.2-82)
Sl(p'o) F(p,oct) (3. 2-83)

S'(k,) F(“ocf)xi(t) +eS4(py) F'(pct) z, (t) (3.2-84)
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From these equations we wish to determine the following ensemble

average values,

A NA

(Ae)

A

(Ae )2

ANSA ‘

(Ap)

AN

(A;JL)2 =

(Apse)

ZW

Ay (ar) + A%y (AY) + o)

ANAAANA~V2

a? [yi(At):l + o3

AX(20 + AP AD + o)

AASNAANANNANY

2

A l:xl(At)] + o’

ANAAAANAAAAAS
2

= A [X1(t)yi(t):l + o(a”)

(3.2-85)

(3. 2-86)

(3.2-87)

(3.2-88)

(3. 2-89)

The averages are to be carried out over an ensemble of particles all

having the same value of ¢

from o to At,

xl(At)

Averaging,

ASNANAAA

xl(At)

At
= Si(P‘o) F(poct) dt
(s
At
AN
= Sl(lJ'O) F(F'OCt) dt
[0}

and p at t=0.

0

Integrating (3. 2-83)

(3.2-90)

(3.2-91)

since F(poct) is a random function having zero mean value.

e e v e e SR S e M M e e e Wm e A M A e e G M e e e e A W Gm A e AR SN M G MM N e R M M B e R G W e mm e

* It is essential here that an ensemble average be used since x (t)
is in genera.l a nonstationary random function even though
F(p. ct) is stationary.
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Similarly,
‘ At
AAAAANAS L e g Ve V4
yi(At) = So(p‘o) F(p.oct),dt = 0 (3.2-92)
(o)

Thus, all the diffusion coefficients are at least second-order in A .
A NN,

We shall first deal with the second-order averages (A.e)2 s
AAAAAA SAAANA.

(ApAe) , and (Ap.)2 since they are the easiest to obtain. Squaring

(3.2-90) and averaging

VAN AN

5 At At

l:xi(At)_:l = SiZ (p.o) F(p.oct) F(p,oc-r) dt drt (3.2-93)

A NN AN AN s
The average F(p.oct) F(p.OCT) is just the autocorrelation function R(z)

with the argument z replaced by p _c(t - 7) .

Thus

AAAAAAAAA
2

At At
[xi(m):' = Siz(po) / R I:p,oc(t - T):] dt dr (3.2-94)
[o} O

Introducing the change of variables

n=t-T t=—§—+r( (3.2-95)
g__t'l-‘f _
o =3

and the corresponding "area transformation"

dtdr = | 7| dg dn (3.2-96)
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where J is the Jacobian,

at 2t
of oM

J = = -1 (3.2-97)
a7 o7
PY3 on

we obtain, using the fact that R p,oc(t - T)] is an even function

of its argument,

vvvvvvvvvz\ n= At §= At - %
2
l:xl(At):| = 251 (po) R(poc n)dg§ dn
- _ R
n=0 §=3
At
2
= 251 (po)At / (1 - -g-f) R(p.oc n)dn (3.2-98)
o
Now, for At somewhat larger than the value of n for which
R(poc n ) becomes negligible,
WV\I\
2
2 S 2
x,(At) = 28] (po)At R(poc nl)dq + O(AtY)
o
2 [¢'s)
251 (p.o)At L 2
= R(z)dz + O(AtY) (3.2-99)
o

This result may be written in a simpler form by noting from (3. 2-40)

that
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ik, z

wllk,) b (k) = 71; R(Z)e * dZ (3.2-100)
-0
Letting k, = 0,
m2(0) # (0) = R(Z)dZ (3.2-101)
(o]
Hence,
M\MA’\
2 2mo®(0) 6 (0) 5, () At )
x,(At) + o(at?) (3.2-102)

X
Recalling the definition of Si(p’o) and using (3.2-88),

2, 2 2 2 2.4
s w A 202 0) 8 (0) T Pk, )t - A% At
(aw? = 2 " o 2 ° + O(AtY) (3.2-103)

oo [l

We next average over r in the manner described in Section 3.23,

and introduce the mean square gas velocity defined by (3. 2-55),

obtaining,
(32 _ @80k, (v3) - udt
D = lim Af*t = > g (3.2-104)
HE At 0 . 2c Bg Ip.ol
or
2,2
(1-p)
D, = K—g— (3.2-105)
l“!'0 IP'OI

where the constant K is given by
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X mwz(o) b (o) <Vg2> kZZ 1rw2(o) b (0) <1::’;zz> : 106)
= = 3. 2- 0
2c 2c Bo2
or
2
K = -- $(0) <(BZ _ B°)> (3.2-107)
2c B 2 :
o

In a similar manner we obtain from (3.2-86) and (3.2-89),

2.2
2 (1-p)
D,, = lm —<(—A5‘t—l>— - K — _° (3.2-108)
At o |“o|
2.3
(1 - p7)
D = lim -{%*) - K — % (3.2-109)
e At o Fo o]

To find Dp and De » we return to equations (3. 2-81) through
(3.2-84). Integrating (3.2-84) from o to At, we get

t t
x,(At) = S, (p) Fp cthx, (t)dt + S (1) F (b ct)z, (t)dt

(o] o]
(3.2-110)

Integrating the last term on the right by parts, we obtain

£, F(p, cAt)z, (A1) ¢ |
F (p.oct)zi(t)dt = < - i F(poct)xi(t)dt

(3.2-111)

Thus, (3.2-110) becomes

t

Sl(P‘o) Sl(l-"o)

xZ(At) =|:S'1(“o) _ i :| F(poct)xi(t)dt +
o

F(p cAt)z, (At)
o
(3.2-112)
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From (3.2-83) we obtain the following expressions for Xi(t) , and

Zi(t) :
t
x () = S,(1) /F(p.oct)dt (3.2-113)
(o)
Zi(t). = xi('r)d'r = Sl(p.o) fd-r [F(p.oc-r')dT' (3.2-114)
(6}

Substituting these expressions into (3.2-112) and averaging, we find

At

it S (}l ) AAAALAINAAA A
x,(81) = S, ()| 8y (k) - — dt [ F(p,ct)F(p cr)dr

o

S, (u ) / /
+ F(p_cAt) F(u_ct) dr (3.2-115)

The last term contributes nothing* to DH because the quantities
F(p,ocAt) and zi(At) are not correlated for At large compared‘to
the significant correlation time of F(poct) . Thus, making use of the
. fact that F(p.oct) has zero mean value

o ot 0 e e n e n em W G S M W A e mm e M e e e m A M M e R mm Em i mm ms e T M Mm Em e M M mm Aw e G e m e ma T e A e e

* Another way of establishing this result is as follows:
It is readily shown that

2 AN »
S(k,) ; S, (k) .
ey F(p.ocAt)zi(At) = T At {1 - _A—E)R p,oc(At - T) dT

(o]

The integrand approaches zero exponentially for At large compared
to the time over which R(p.OCT) is appreciable, thus

. S,(k,)  Flp,cAt)z, (At)
lim AT = 0
Ato O Mo
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F(p.‘ocAt) zi(At) = F(p.ocAt)zi(At) =0 (3.2-116)
Therefore
S (n )
Z(At)=S(u)S(u) R p c(t-7) dr
(3.2-117)
Making the change of variables T'=t-71, dv'= -dt in the integral
over T reduces this expression to the form
1 Si(Ho)
xZ(At) = Si(po) Si(p‘o) - _l“‘;_ dt R(poc'r) dr (3.2-118)

This double integral may be reduced to a single integral by an inte-

gration by parts. The result is

At
1 Si(Ho)
xz(At) = sl(p‘o) Si(l"'o) = —"}I:"— (At' T)R("LO,CT)dT
(o}
At (3.2-119)
' S(p)
= Sylg)| Syl - | Bt [ (- FRlpger)dr
(¢}

which is of the same form as (3.2-98) .

For At somewhat larger than the value of t for which

R(poc t) becomes negligible
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¢o
A ‘ ' Si(k,) 2
xz(At) = Sl(po) Sl(p.o) - " At R(p.oc-r)d'r + O(At™)
. (3.2-120)
5,(k.)
_ ! 1'% At —\a= 2
= Si(MO)I:S 1(}10) - i ] e R(z)dz + O(At)
(o]
Using the definition of Si(p‘o) and (3.2-101) we find
2.3 2
TN 2 2 2 (1'}"'0 ) (1+p'0 ) 2
xz(At) = -1rk2 w (o) b (o) Jo (kzr) — At + O(AtT) (3.2-121)

3
ZC}LO Ip.ol
Using (3.2-87), (3.2-91)

(1 - e 2 (14 l)

2oy i,

AN

(Ap) = -ﬂAZkZ?‘wZ(O) ¢(0)J02(k2r) At + O(At?) (3.2-122)

Again averaging over r in the manner described in Section 3.23, and

introducing the mean square gas velocity defined by (3.2-55), we obtain

2 (0)k.2 2 2.3 2
ot O L

At © 2cp.03 lp.ol

(1-p 2 (1)

K 3
b |l

 (3.2-123)

In a similar manner we find
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‘ w
! SO(P"O) 2
v (At) = Sip ) S (k) - m At Rp ct)dr + O(4tY)
o
(e}
(3.2-124)
2 2 2.2 2
~mo?(o)ic,” 6 (0) (v 2}(1-%) (1+p.%) R
= > g At + O(AtY)
P
Using (3.2-85), (3.2-92),
2 2 2 2.2 2 2.2 2
b - -m”(0)k," 6 (0) (Vg>(1-uo) (1+417) _ K (1-p ) (L4 )
€ 4 c 2 2 2 ,
bo | o] by |Bol
(3.2-125)
We next calculate the diffusion coefficients DZ and Dzz .
From (3.2-78)
Az = 'z(At) = H,CAL + Ac zl(At) + A%c zz(At) + O(A7)
At |
‘\MN\’" .
= p CAt + Ac Sl(po) dt F(uoc-r ) dr (3.2-126)
(o) (o)

At
+Azc/ Sy (ndt + o(a’)
0 .

The second term on the right is zero since F(p.oc'r) has zero mean

value and the third term is cAp from (3.2-87). Thus

. Az)
D = lim -(—- = c(p_+D) (3.2-127)
z At o© At © P

Squaring (3.2-78) and averaging, we find
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AN NSNS NSNS
NN

(82)% = p 2P(an)? + A% [zl(At):I + p cAtAc z (Af) + O(A%) (3.2-128)

Computations similar to those given above show that zl(At) =0 and
2
I:zi(At):l = O(At3) , hence

D = lim i%i_ﬁ = 0 (3.2-129)

2z At o
Ina similar manner we find

D =D =0 (3.2-130)
Z€ ZL :

This completes the computation of the diffusion coefficients,
which we now summarize below, dropping the subscripton p,
2,3 2
(t-p7 ) (1 +p7)

D = -K—y (3.2-131)
W |k

I T T

D, = -5 5 (3.2-132)
b |k
2.4
K“-H) 3.2-133
D = .2-
" —_ , ( )
Wk
2.2
(1 - p7)
D = K—-0_ (3.2-134)
€€ '
| o]
2.3
(1 - p7)
D =K— (3.2-135)
Me
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D, = ¢(u+D) ' (3.2-136)

D_=D_ =D =0 (3.2-137)

Some simple checks on the diffusion coefficients may be found

as follows: From (3.2-59) and (3.2-60) we find, dropping the term in-

dB
volving —d—tz‘ in accordance with the discussion at the beginning of

this section,

de T8 ‘
= — (3.2-138)
d 1 - ,
Integrating,
1 2
€ = - In(1 - p”) + const. (3.2-139)

This relationship indicates that the particles move along curves in the
p - € plane given by (3.2-139). Expanding (3.2-139) about ¢ = €, >

b= Ry s We find

2
Ho 1 (1 + Mo ) 2
Be = —2 Ap + 53— (AW° 4+ ... (3.2-140)
b= g (1 -n)) '
This equation indicates that
p = * o p 4+ Uir) 1) p (3.2-141)
gLt R 2 B2 e '

Squaring (3.2-140), we find



-71-

~ 2
= B
D = D 3.2-142
€€ (1 - HZ)Z e ( )

D]J-G = -—-—-—Z' DP:P- (3.2— 143)

The expressions that have derived for the diffusion coefficients satisfy

these equations.
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3.3 Scattering by Small Scale Inhomogeneities in the Field

Next consider the effects of scattering by small scale inhomo-
geneities in the field. If the inhomogeneities are small compared to
the radius of the spiral motion then it is reasonable to assume that the
mean scattering angle A0 (measured with respect to the initial
direction of motion) is zero, and that the mean-square scattering

Ay
angle (AQ)2 is a constant independent of the original direction of
motion of the particle before scattering. We will furthermore assume
that the root-mean-square scattering angle is small. Let 0' and ©
denote the angles between the momentum vector and the z-axis before

and after the scattering, respectively, as shown in the following

diagram.

p (Direction after Scattering)

Q"

Y

Figure 2. Momentum Vector before and after
Scattering by a Small Scale Inhomogeneity.
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"
Let a(0 )dQl be the probability that a particle is scattered from a
solid angle at @' = cos™ 1 p' into a solid angle dQ at 0 = cos™ ! .
The number of particles scattered into the range du de dz

at p in a time At is given by
dzdedpn, At [ W (u',¢) a(0") dO’ (3.3-1)

The angular distribution factor is normalized so that

S
27 /a(G) sin 9 d0 = 1 (3.3-2)

o]

and n, is the number of collisions per second made with small scale
inhomogeneities. We will make the assumption that a (8) is inde-~
pendent of ¢ and also of =z.

The number of particles scattered out of the range de dudz

in time At is given by

W(u) dude dzn, At (3.3-3)

Thus, the change in the distribution function in a time At due to

collisions of this sort is

%"- At = -nyAt Wig,e) +n2At/W(e,p') a (0") 4O (3.3-4)

Now suppose the scattering is predominantly small angle.

From the figure

cos ' = cos O cos 8" + sin O sin 8" cos ¢ (3.3-5)
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where dO' = sin 0" d0" dé . This equation may be written to

second order in O"

p' = (1 - _02__) + o l—p.z cos ¢ (3.3-6)

Inserting this in the expression for

—%——tvz- we have (suppressing the

dependence of W on ¢ and z ),
%—?At: nZAt - W(p) +// [(1— ————)-!- 0""1-pzcos é:l
a (0") sin O" dO" d¢ (3.3-7)

Expanding the function

l: w(t - _—)+o" _n? cos qs:'  (3.3-8)

about 0" = 0 and keeping terms up to the second order in 0" we
have _
gn? 2 W1 W
W p({l- —)+0"[1-p " cos b | = Wp) + spw +5 —— +O(0" )
2 3" "7 Jgny2
. (3.3-9)

where the derivatives are evaluated at 0" = 0.

We find

oW oW ’ 2 2 oW
ag"] = -—5—}1-7 I:-’J.O" 1 - M COSQS = 1 - COS _‘T

O":O g“=0

(3.3-10)



and

2¢ azw oW
2. -

= (1 -p.z) cos

Evaluating the integral over 0" and ¢ we have

W(p ) a(6") sinB" do" dé

// Wie) + 1n cos ¢ an,, [(Hi )cosébzgj %TY{I

on% 4(e") sin@" dO" } dé

= W) [[a(0")sinB" dO" dd+ ,1-,12 :_y//g" 5in 0" a(0") d6"

cos ¢ dg + "‘(1 )“/ " a(0") do" cos” ¢ dg - % W

0" a(O") sin 6" do" d4

2

_ 0 PW
= W(w) + > 2(1-P~ ) — - p I (3.3-12)

2 . .
where % is the mean-square scattering angle given by

™

= 27 /9"2 sin0" a(0") do" = [ (0")% a(o") dQ"  (3.3-13)

O

2
%
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Thus we find that the rate of change of the distribution function due to

collisions of this type is given by

2 N
o {. 2
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3.4 Absorption and Source Terms in the Diffusion Equation

Equation (3.2-1) gives the rate of change of the distribution
function due to scattering and acceleration of particles by large scale
inhomogeneities in the magnetic field. Equation (3.3-14) gives the
rate of change of the distribution function due to scattering by small
scale inhomogeneities. To account for absorption and injection of
new particles we must add additional terms. Assume that the rate
of absorption is independent of the energy, the direction of motion,

and the position z of the particles. In a time At the fraction

At

W dy de dz (3.4-1)

of the particles disappear due to absorption, where T is the mean
absorption time. Thus the rate of change of the distribution function

due to absorption is

[_g_t"! = - W (3.4-2)
abs. T

Let Q(p, €, z, t) dude dz denote the fractional number of
particles injected into the distribution in the range dzdpde per

unit time, at a time t . The rate of change of the distribution function

due to injection of new particles is thus

ot

sources

[—a—W— - Qs €, 2, t) (3. 4-3)

These terms are incorporated into the diffusion equation in the

next section.
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4. The Diffusion Equation for the Distribution

Function W(u, €, z; t).

4.1 The Time-Dependent Diffusion Equation.

The partial differential equation for the distribution function

W(u, €, z ; t) may now be obtained by adding to-gether the contributions

to -éa—va— from (a) the betatron collision processes, (b) the scattering

by small scale inhomogeneities, (c) absorption by nuclear collisions,

and (d) injection of new particles. From (3.2-1), (3.3-14), (3.4-2)

and (3.4-3)
2W_ 2 ___a_ -
2
1 9
vz dul [DWWJ '2' DeeV bebuI:Due :I
n, o 2 aZ ’
2% 2 w AW W
(1 - W 2 2V N
2 l:( po) bp.z S pe
+ Qe, e, z;3t)
where
K (1-u2) (1+u2)
D = - B P (4.1-2)
H M
2.2 2
:D€ - - K(i'H ) (1+P' ) (4.1-3)
e
2
p - XU-p) (4.1-4)

€€ IIJ.I
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2. 4
- K(iz-u ) (4.1-5)
P w2 |l
2.3
D . K(l-p7) (4.1-6)
" | 1]

K=" o) é(o) k < Z> wZ(0) (o) &2 (4.1-7)

BZ
o

and where D , D , D have been set equal to zero in accordance
zZ zp’ T ze
with (3.2-129) and (3.2-130).

In following sections we shall investigate the anisotropy and
energy dependence of cosmic rays using the steady-state form of

(4. 1-1). Boundary conditions for the stead-state equation will be

discussed in the next section.

4.2 The Steady-State Equation; Boundary Conditions.

We shall assume that the source strength Q is independent of
the time and consider only the steady-state equation obtained by
setting %%V— = 0. We shall furthermore assume (Q is independent
of z (uniform space distribution of sources). The diffusion equation

then becomes
d 2 d 1 a
"2z [C(”+Du)vﬂ ) W[DMW] R [DE :' Z 32 l:
-2
1 22 2 n,%% 2. 2%W PW
t 2 BTL_Z[DWW] de SH[D Wi+ —3 l:(i'M )Buz 28 S

B} % = -S(w, €) (4.2-1)
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where S(p, €¢) describes the angular and the energy distribution of the
particles inject_ed by the sources. If the sources inject particles
isotropically, then S(p, ¢) is independent of p. We now consider the
problem of formulating boundary conditions for this equation for the case
where W is independent of z. Boundary conditions involving z will
be considered in Section 5. 2.

We begiﬁ by deriving expressions for the two components of the
flux vector in the p-e¢ plane. Consider a region e, * de,
B> Bt dp. in the p-¢ planeas shown in the following figure. The
steady-state equation (4.2-1) expresses the physical fact that the total
number of particles entering this region through the boundaries is equal
to the number of new particles injected intq the distribution per unit
time due to sources, minus the number of particles per unit time. Let
Jp. denote the number of particles per second crossing a unit length of
the boundary p = o in the positive p-direction, and let Je denote the
number of particles per second crossing a unit length of the boundary
€ =€ in the Positive e-direction. The net number of particles per
unit time entering the rectangle whose sides are du and de is given

by
- |:Jp. (w+dp, €) - J(u, e{lde - Ee(p., € +de)-J(p, e:)]dp. (4.2-2)

The number of particles entering per second must be balanced by the

number absorbed per second
i [JH(M di, €)= T e ﬂde - ETE (i, e +de ) - T, eﬂ dp (4.2-3)

- _;rW- dipde + S(u,e) dyde
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> €
Figure 3. Illustrating the Flux of Particles
through a Differential Area in the
p-¢ Plane.
or
oJ 2J
S L A ;
oy 5c T W S(p, €) (4.2-4)

Equations (4.2-1) may be written in this form (ignoring the space

dependence for the present) by defining

)
("
i
1
w]
=
+

1 2 1 2 2, 2, 2W
12 [p wl+i 2 [p w+x(1-p5) 2 (4.2-5
n o Zau[w] ae[ue] (-0 5 )

™)

_J =-D w+%_a_ D V\ﬂ+ 1-—3—[D W (4.2-6)
€ € €e e
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%
Considering only the betatron terms , it should be possible from
these expressions to determine the direction of the flux vector at any

point in the p-¢ plane. Dividing JP- by J€ we find

D D' D
Pp bW+[Ep-_D w4 _be 9W
- 2 dp 2 P 2 ¢
D D

4 3 . 3
(1-p?)” ow _ 1 (-p?) (143p®) 1 (1B oW
2 I "2 3 Wt3 T d¢€
N [ po el

3 2.2 2 2.2
1 (1-p7) oW 1 (i-p’) (443p ) 1 (I-p) oW

2w ap 2 X il 2 |y Y3
L2
= =k (4.2-7)

where (4. 1-2) through (4. 1-6) have been used. If OF’ is the angle

between the flux vector —5" and the ¢-axis, then

% The remaining terms lead to a flux in the p-direction.
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This expression again verifies the conjecture made in Section 3.2 that

the betatron processes produce a flux along the lines

2
e:eo—%ln(l-p.) (4.2-9)

in the p-¢ plane.
The boundary conditions on (4.2-1) are conveniently expressed in

terms of the flux components JH and JE . These conditions are

(a) JM and JE must vanish as ¢ » 0.

(b) .]"JL must vanish at p =+ 1.

It

(c) JH» must vanish at p = 0.

In addition W(p, ¢) must satisfy the following conditions
(d) W(u,e) 20, 0<e coo, -1¢pgt.

(e) The integral

(00]

+1
/ [ W(, e) dpde

€e=0 n=-1
must be finite.

The physical reasons for conditions (a), (b), (d) and (e) are
evident. Condition (c) follows from the fact that Jp. is an odd function
of p and the condition that JH have no discontinuity at p = 0. As we
shall see later, condition (b) will be satisfied for any solution of (4.2-1)
which is finite at p = +1, and, in addition, J. () will vanish at
g = 0.

The above conditions do not constitute a complete set of boundary

conditions since we have not specified any conditions at ¢ = 0. We may
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&
safely ignore this boundary condition , however, since the behavior
of W(u,e) for large values of ¢ (the region of primary interest) is

not influenced appreciably by the behavior near e = 0.

- - e . e e = e e K e e mm e e Mm ew S e e e D Mk e R AN e e e e M AR M N s e Em Ak e e M R S e e Ae W M Em e e e e e e

* The boundary condition at ¢ = 0 is difficult to formulate for several
reasons. In the first place the diffusion equation is not expected to be
particularly accurate at low energies, especially if the diffusion coef-
ficients given in (4. 1-2) through (4. 1-6) are used. (It will be recalled
that these coefficients were developed from equations which are accurate
only in the extreme relativistic limit.) Furthermore, we have neglected
processes that may be important at low energies, such as ionization
losses, and the detailed nature of the energy distribution of the newly
injected particles.
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5. ANISOTROPY PRODUCED BY BOUNDARY EFFECTS.

5.1 \General

In the following section we shall consider the problem of the
anisotropy near the boundaries of the magnetic field. Since most
particles move in helices whose radius of curvature is small compared
to the radial dimension of the spiral arm, we may ignore the problem
of diffusion of particles out of the magnetic field in the radial direction
and consider only diffusion in the direction of the magnetic field.

In treating this problem we assume, in accordance with experi-
mental observations, that the angular distribution of the particles in
the region far from the ends of the spiral arm is kept very nearly
isotropic by the scattering from small scale inhomogeneities. We
may thus ignore the scattering by the betatron mechanism without
making significant errors.

Ignoring the vpos sibility of non-uniform space distributions of
sources, we shall show that the term involving z in (4.1-1) is
unimportant except near the ends of the spiral arm where particles

cease to be accelerated and scattered. It will turn out that this term

We, €)
Tp

which accounts for loss of particles by diffusion out of the ends of the

may be replaced, under certain condition, by a term

spiral arm. The diffusion time constant T'D depends on the scattering
n,g,

270

4

lation of ™o is made in Section 5.3 for the case of a uniform space

coefficient

and on the length of the spiral arm. A calcu-

distribution of sources along the length of the spiral arm.
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5.2 Anisotropy Produced by Diffusion

of Particles Out of the Spiral Arm

Under the assumptions given in the previous section, (4.1-1)
reduces to the following equation for an arbitrary space distribution
of sources, which inject new particles isotropically

2
OF % >

2, 2F ¥
-cp 55+ =

2 |- o2f | .
4 bH(M)aM T

= -5(z) (5.2-1)

To solve (5.2-1) we use a familiar method from the "one-
velocity" theory of neutron diffusion, expanding F (u,2) in a series

of Legendre Polynomials:
QO
Fluz) = ) _ Ayz) P (5.2-2)
n=o0o

In the present analysis, we shall eventually retain only the first three
terms in the series. The first two coefficients Ao(z) and Ai(z)
have obvious physical interpretations in terms of the density of

particles p(z) and the flux J(z):
+1

Ayz) = 3 pla) = %/1 F(u,2) du (5.2-3)
+1

A (z) = .2% J(z) = %/ W F(w, z) du (5.2-4)
L1

Substituting the series (5.2-2) into the diffusion equation and using the

well-known formula

2P (1)
a-ag l:(l-l-l-z) ——a-Ep_—-—:l = -n(n+1) P (1) (5.2-5)
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we find

(o] bAn(z) n,oy {
- Z c—5,— BP (u)+ 7 n(nti) A (2)F (0)+— A (2) F (1)
o
= -S(z) ' (5.2-6)
Multiplying by Pm(p.) and integrating over p from-1 to +1

[e0) 1 = 2
A _(2z) n, o,
> o fi BB ()P (1) + A (2) | G nla+)+ 2

n=o0

+1

P (k) P_ (1) dp
-1

+1 | 1
= -S(Z)/ P (k) dp = -S(z) P (k)P (1) dp (5.2-7)
-1

-1

Making use of the orthogonality properties of Pn(p)
: 2
f Fal) P dw = 7257 Om,n (5.2-8)
-1 ‘

(5.2-7) becomes

(e 0]

t
A _(z)
(C2:520 A fuPn(u)Pm(u)du+ kzm(m’f”*%. A (®)
-1

2 n=0 L)

= S(z) & (5.2-9)



-88-

where the Kronecker & notation has been used, and where

The remaining integration may be performed by making use of

the recursion formula (Morse and Feshback 1953)

BB ()= FmrT [(mm Pyt ) +mB (u)] (5.2-10)

Multiplying this expression by Pn(p.), integrating, and making use of

(5.2-8) we find

+1
2 m+1 m
/ WP (W) P (r)dp= 377 |:—————2m+3 & mitt z"""m-15n,m-1:|
-1
(5.2-11)

Inserting this expression in (5.2-9), and summing over n gives the

following infinite set of equations for determining the functions An(z).

2A (z) dA (z)
m+1 m+i m m-1 2 1
Zmi3 3 m +c mel T 3o + l:k m(m+1)+ ;:I.Am(z)

= S(z) &__ (5.2-12)

,0
This equation holds for all values of m if we adopt the convention
that An(z) = 0 when n is negative. The first three members of

the set are

bAl(Z) 1
3 —5T+ ’-F AO(Z) = S(Z) (5.2-13)
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dA,(=z) oA (z)
2c 2 o 2 1
T T3z te ——+ (Zk + = )Ai(z) =0 (5.2-14)
dA ., (z) QA ,(z)
3¢ 3 2c 1 2 1 _

To simplify the notation further we define

2
2,1 2% 1
a, = 2k" + = = 5 + = (5.2~16)
2 1 3 2 1
a, = 6k” + T = 3 ™% + o= (5.2~17)

A reasonably accurate solution is obtained by dropping all terms
higher than A2 . The equations for determining Ao’ Al’ and A2

may then be rewritten

24,(2) A (2)

.g_ st —= = S(z) (5.2-18)
dA,(z) dA (z)

2 2

'gc"—a'z“‘ + c gz ta A(z) = 0 (5.2-19)
dA (z) -

2 |

__30_ —s * a,Ay(z) = 0 (5.2-20)

We may conveniently solve these equations by making use of the

Fourier transform. Let

(0]

A_(p) = f A_(z) e P? 4z (n=0,1,2) (5.2-21)
-00
(89)

S(p) = S(z) e"P% gz (5.2-22)
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where p denotes iw . Multiplying the three equations by e P?
: ‘0 L4 *
and integrating from -0 to +c0 , we obtain
C 1 :
SPAR)+ ZA(P) = Sp) (5.2-23)
2c
=P Az(p) + cpAo(p) + aiAi(P) =0 (5.2-24)
2C b A (p) +a,AL(p) = O 5.2-25
"3_' P lp) az 2 p) = ( « o= )
Solving these equations for Ao’ Ai’ and A2 , we find
[ 2 2
STl 5P],S(P)
A (p) = = (5.2-26)
2 2
N -1
2
3\
Ap) = > RS (5.2-27)
N%p©-1
2 _p®5(p)
A,p) = -578x] L2 (5.2-28)
Npe-1
where
2 2
N\ = A, (1 +8) (5.2-29)
4 4
6 = 57a, © 5 (5.2-30)
: 6 2%
5| = —5—+1
* It is assumed that A,(z), n=0,1,2 and S(z) >0 as |z|» o,

This condition is reasonable physically and is a necessary condition
for the existence of the Fourier transforms of these quantities.
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e ST - T (5.2-31)

20 1
ol 70—+ 5%

It will be noted that the constants f and )‘o have the dimensions of
length, and 6 is dimensionless. We shall adopt the language of
neutron diffusion theory and refer to /\ and A, as "diffusion lengths".
The physical significance of these quantities will become apparent
presently.

Now let 2a denote the length of the spiral arm, and consider
a uniform distribution of sources over -a < z £ & . If there are

no sources outside of this interval then we may write

S(z) = S0 -ag z<ga (5.2-32)
S(z) = O |z |>a
o) b Fa oz ZSO
S(p) = S(z) e p dz:So/ eP?az = - sinh (pa) (5.2-33)
‘ -a
-00

Applying the Fourier inversion formula to (5.2-26) we find for this

case

j oo
28 l:i -)\Ozﬁpz:l sinh (pa) eP?

-7 0
N
2 21 . ,
ZSO’T‘ 1+)‘o 6w |[sinwa cos wz
= dw {(5.2-34)

N J, 0 (X + —5)
N
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This integral is easily evaluated using the calculus of residues or

evaluated from Tables (Erdelyi, et.al. 1954). The result is

a

———

Ao(z): 'rSo l:i-(ﬂi—g) ;/\ cosh (;Z-—\):l -~a<z<a (5.2-35)

TS -
R

>in

sinh (.ji\) lz|ya (5.2-36)

where (5.2-29) has been used to eliminate )\0 . We find in a

similar manner,

3NS. -%
- o A z - -
Ai(z) = S(3%) e '‘sinh ( A a¢ z< a (56.2-37)
3AS, -% N |
= inh ( — 'z > .2-3
<(170) e sin (/\ z >a (5.2-38)
3A\S + 2
N N i 2 - -
= T(138) e sinh (/\) z £ -a (5.2-39)
and
-5T 65 -
Az(z) = T s e cosh (=) —a ¢ z¢a (5.2-40)
-5T8S -2
- __1._._6.‘3 e N sinh(/i\) 1z]>a (5.2-41)
+

o e v ma e e e mm e e as M MG e e Gw W MR e W A W e e MmN e e e S S e W e e e R m m e e e S e e ea A e A me e e ae e e e e

* It will be noted from the above expressions that A (z) and A,(z)
(and hence the density p(x) and the flux J(x) ) are continuous
functions, but that Az(z) is discontinuous at z = +a . This is, of
course, a consequence of discontinuity in the source density at these
two points.
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The constant )‘o appearing in the above equations in the
diffusion leﬁgth we would have obtained if we had neglected the term
involving Az(z) in (5.2-13) and (5.2-14). Retaining this term does
not alter the form of the solutions obtained, but corrects the diffusion

length by the factor (1 + 6)1/2

It is evident from these expressions that if the diffusion length
/\ is small cémpared to the half-length a of the spiral arma then
p(z) is essentially constant and the flux J(z) is essentially zero
except within a few diffusion lengths of points z =+a . If we
take the opposite extreme and let /\ -+ oo , then the distribution
function F(p,z) contains significant first and second harmonic

terms. It can be shown that in this case the density p(z) approaches

the limiting form

o(z) = A (2% - b%) (5.2-42)

where A and b are constants and the flux J(z) becomes a linear

function of z .
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5.3 The Mean Time for Escape by Diffusion

The above expressions for Ao(z) and Ai(z) will now
be used to compute the mean time for a cosmic ray particle to escape
by diffusion out of the spiral arm. Considerable care must be exer-

cised in using these expressions, as we will see presently.

dN.
Let —dr—t—D denote number of particles escaping per

unit time due to diffusion, and let N0 denote the total number of
particles present. In the steady state, both of these quantities are

constant and their ratio

1 _ 1 dND
TN, ® (5.3-1)
O

d
is the reciprocal of the mean time for escape. The rate ﬂD at

which the particles escape is conveniently evaluated by computing

the total flux crossing the boundaries, and N, is evaluated from the
density function p(z) .

Before proceding with the calculation we make some
preliminary remarks regarding the behavior of p(z) and J(z) near

the boundary. From (5.2-3)

o(z) = 2780[1 - (og)e "2/ cosn (-,—*";):I agnca  (5.3-2)

278 - =z [N a
p(z) = Ti5 © sinh A |z] > a (5.3-3)

From (5.2-4) the flux J(z) in the region -a¢ z ¢a, is given by
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2 NS
J(z) = ——— e sinh — (5.3-4)
1 +6 '

The behavior of p(z) near the boundary is illustrated in the

following diagram, which is drawn for the case where /\ <¢a.

Figure 4. Behavior of the Density p(z) Near the
Boundary of the Spiral Arm.

We define an "effective boundary" of the spiral arm by éxtrapolating

the function (5.3-2) into the region |z| > a and noting that it be-

comes zero at z = I b where

LA b
m € cosh /—\ = 1 (5. 3-5)

The shape of the extrapolated curve is shown by the dotted line

in the above diagram.

In evaluating the number of particles per unit time diffusing

out of the spiral arm we must evaluate the flux at z = b rather



+
Z = -

later return.

Eliminating the factor —I—-il—'s_ e -2/

using (5.3-5), we obtain

a, to avoid counting those particles which cross

~96-

+

Z = - a but

in (5.3-2) and (5. 3-4)

cosh /—Z\
p(z) = 275 1 - —p (5.3-6)
‘ cosh —
A
sinh 2
Hz) = 2AS A (5.3-7)
cosh —
From (5.3-7) the total number of particles crossing =z = b, is
dNp, b
- = lJ(+b)| + lJ(-b)' = 4/\Sotanh-/-—\ (5.3-8)

and from (5. 3-6),

b
N, = p(z)dz =
-b
Hence,
-1
. 1 dND
D No dat

It is of some interest to examine the behavior of T

+b

coshTZ\
ZTSO 1 - — dz (5.3-9)
cosh —

an N

(5.3-10)

as T 00
D
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(no absorption by nuclear collisions). Expanding % ctnh b in a
| b

power series about — = 0,
2 2
_ b 1 b 2 b

and letting 7+ o , we note, from (5.2-29) and (5.2-30), that

2
% -+ 0 but ;—1/3\2 approaches a finite value which is given by*

SbZn 0’2
e

_ 2
Ty = —5> (5.3-12)

% This expression agrees within a factor of 2 with a similar
expression derived by Davis (1956) by a quite different procedure.
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6. PROPERTIES AND SOLUTIONS OF THE
STEADY-STATE DIFFUSION EQUATION

6.1 Behavior of the Solution as a Function of p and ¢

In the following sections we shall undertake the problem
of finding solutions of the steady-state diffusion equation (4.2-1).
There is very little hope of obtaining solutions in closed form, éven
if the space dependence of W(p, €, z) is neglected and a simple an-
gular distribution function for the injected particles is assumed.
Series solutions, while possible, are not too useful due to their slow
convergence*. We must, therefore, consider other methods.

Since the major interest in the solutions of (4.2-1) lies
in the region € > 1, one is naturally led to inquire if asymptotic
solutions can be found. The conventional method of finding asymptotic
solutions is simply to drop those terms unimportant at large ¢ ,
thereby obtaining a simpler equation which is more amenable to
golution. This procedure is impossible in the present case since
the coefficients do not depend on the variable ¢ . To obtain a solu-

tion valid for large ¢ , we make use of the fact that the solution for

—m . wm o e w ma mm e e A AW N M M e M W e e e e 4 Em R M e A e A m e G e e e e M MM Wm e e Gl W e AW e em e e me e

% In principle, one could expand the solution in a series of Legendre
Polynomials, in which the coefficients depend on € :

The major difficulty with such an approach is the practical one of

not being able to carry out the required manipulations necessary to
compute the functions A, (e) . If one could be content with computing
the first few coefficients in the series, then this approach might
prove feasible. It is almost surely the case, however, that a large
number of terms are required to adequately represent the solution,
particularly in the region near p = 0, where the solution departs
radically from isotropy.
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large ¢ does not depend significantly on the source distribution
S{w, €) . Stated another way, the diffusion processes smooth out the
irregularities due to the injection processes, so that the solution
for large € is rather insensitive to particular form chosen for
S(p, €) - In this region of the p-e€ plane there are no sources,
hence W(u, €) satisfies the homogeneous form of (4.2-1).

It will be shown later that the solution in this region is of

the form
Wik, ¢) = Ae %€ f(u (6.1-1)

A numerical procedure has been devised for computing f(u) and the
constant « , as a function of the constant parameters appearing in
the diffusion equation. The numerical procedure will be described
later.

Before proceding, it will be useful to form a qualitative
picture of the solution as a function of p and e . As an aid to
visualizing the solution, we may regard the function W(u, €) as
defining a two-dimensional surface projecting above the - e plane,
over the region 0 < e ¢ o0, -1 < p ¢1. Since the sources are
located near € = 0, we expect that the surface will be sharply
peaked near ¢ =0, with the behavior of the surface near‘ e =0
depending strongly on the source strength, S(p, €).

As € increases, we expect W to decrease to zero in an
approximately exponential fashion for a fixed value of p . It will

be noted that the coefficients appearing in (4.2-1) do not depend

on € . For large e the shape of the contours along lines of

1]
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constant € are therefore expected to be independent of ¢ . W(u, €)
should then reduce to the form of a product of a function of u only
and a function of e only.

The behavior of W(u, €) as a function of p is somewhat
more complicated. To form an intuitive picture of the solution, we
must consider the scattering of the cosmic ray particles by the beta-
tron process and the small scale inhomoge»neities in the magnetic
field.

It was shown in Section 3. 2 that the form of the diffusion co-
efficients D , De, DP‘P-’ etc., was consistent with the statement

that the betatron mechanism causes particles to move along the

curves

m

It

m

]
™ -

In(l - p%) (6.1-2) |

in the p-e plane.
*
It can be shown that the particles tend to drift along these

curves to higher energies (and steeper spirals). It is not surpri-

-t G s A mn n e e Gt A e M e e em M M e M e e e e A A Mm we M Am e e Am r h e e i mm em e e e w e e e S we wn b A e e

* We may visualize the interaction of the cosmic ray particles with
the large scale inhomogeneities as a random walk along the curves

€e =¢_- 5 1n(l - p.z) with a step size that depends on p . The fact
that theré is a steady drift means that it is more likely for a parti-
cle to step in the direction of larger e than for a particle to step

in the opposite direction. The effect of the small scale inhomo-
geneities is to scatter particles from one curve to another. The im-
portance of the steady drift lies in the fact that it provides an effi-
cient mechanism for acceleration. Even if the steady drift were ab-
sent or in the opposite direction, some particles could still reach
high energies by the random walk process, but the efficiency of

this mechanism for producing a considerable number of high energy
particles would be considerably reduced.
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sing, in view of this statement, that the betatron mechansim by itself
(no absorption or scattering by small scale inhomogeneities) produces
a very anisotropic distribution with most of the particles lying in

very steep spirals. However, with a sufficient amount of scattering

by small scale inhomogeneities, the distribution may still be ne;arly
isotropic (except near p =0) . In the region of space where boundary
effects are negligible, the degree of anisotropy is determined by the
relative effectiveness of the two processes. This is conveniently

measured by the ratio

n,o 2/4 cn,o 2
\ = 2 e - 2 e
K 2% $ (0) w2 (o) <vg2> k.’

(6.1-3)

The nature of the diffusion coefficients DH, DE , etc., near
p = 0 have a marked effect on the shape of the surface W(u, ¢) .
For any value of ¢ , it can be shown that W(u, ¢)-> 0 as
. = 0. This means there is a deep cleft in the surface along
the line p =0 . As the parameter \ increases, we expect that the
cleft will become very narrow and that the distribution will be almost
isotropic (independent of p ) except in the vicinity of p=0 . As

A== 00, we expect the distribution to become isotropic.
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6.2 Approximations for Large Values of «

The arguments of the preceding section lead us to

suspect that the solution to (4.2-1) for e > 1, is of the form

W, €) = Ae *€ f(u) (6.2-1)

where A and o« are constants. It will be shown presently that a
solution to (6. 2-1) of this form is possible provided that the para-
meter o« 1is chosen properly. We assume that € is large enough

that there are no sources in the region of interest. We may thus set

S(IJ': e) = 0 (6. 2—2)

1240 W

>2 n,0g2 2, 2w aW w o
+323§[Due“’] M 2 A ewn- S Tl 0

and require that (6.2-1) be a solution of

(6.2-3)

Substituting e~ %€ f(p) for W(u,e), carrying out the indi-

X €

cated differentiations, and dividing through by e~ , this equation

becomes

na’2 2 ncr2
peo, 20 ¢ 3 |2f L Ip' _p - «p - 258 |E
- . (1 -p7) ——~de g " e (——)u O

n (6' 2"4)
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where the prime denotes differentiation with respect to p . Using

Equations (4. 1-2) through (4.1-6), we find

23 2
MR M n IP'I
D' 2,2 .4 2
BE D' . 2K(1 - p.l (3p +2p + 1) (6. 2-6)
: ko |k
2
2 2
D' _p = -K(1 - p,z) (3 + 7p7) (6.2-7)
e N

Substituting these expressions in (6.2-5), collecting terms, and di-

viding through by

results in the equation
u ! .
f + A(f + B(pf = 0 (6.2-8)

where 2
. n.o

2%
D -D - «D -2
pp A A

1]

A(p)
D n.o,
T3NS 270 .2

3
2(1 - ud) |:z + (4 + o )pz:] + A

3
w1 - ud) |:<1 -6h w2’ |

(6.2-9)
5
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B(p) = z

2
(1 - p%) [(o«z+7fx + 12)pL4 + (3 +8)u2 +4:|- 213»5

3
A | 2n |

(6.2-10)

where the expressions for A(p) and B(p) involving p and N hold
for 0 ¢ p ¢ 1, and where (See Equations (4.1-7) and Section 3.3

for definitions of the parameters),

nﬁ‘z
N = _2°® (6.2-11)
4K
1
B o= = (6.2-12)

If we include the loss of particles by diffusion out of the spiral arm,
then T is defined by (5.3-10). If ™ denotes the mean time for
escape by diffusion out of the spiral arm, and N denotes the mean

time for absorption by nuclear collisions, then approximately,
1 1 1 1
B = —=— = = l:— + — ] (6.2-13)
Kt K ™ ™

It is easily shown that the Equation (6.2-4) is unchanged if it
is replaced everywhere it appears by -p . The function f(p) is

therefore an even function of p .
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The boundary conditions on W(u,€) as € -» @ are auto-
matically satisfied by the assumed exponential form for the energy
dependence. The function f£(p) must also satisfy certain conditions.

These will be discussed in Section 6.4.
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I+

6.3  Power Series Solutions Valid Near p=0and p = -1

It is of considerable interest to examine the behavior
of the solution to (6.2-8) in the vicinity of p =0, and p= 1.
Power series methods will be used. We first examine the behavior
near p =0, writing (6.2-8) as
2 a%s df
B 2 + l-"P(P')’a'l; + Q(uf = 0 (6.3-1)
o

where P(p) and Q(p) are rational functions of p which are regular
at p=0. Writing Np and NQ for the numerators of P(p) and
Q(p) » and noting from (6. 2-9) and (6.2-10) that P(p) and q(p) have

the same denominator D(p) ,

2 v
2 d df
p Dm)a—é + BNpUIE + Nof = 0 (6.3-2)
e
where
4
3 2
D = (t-p + 2n7(1 - )
(6.3-3)
= 1—4p,2 + Z)\p.3 + 6p.4 - 2)\}1.5 - 41.1.6 + }LS
2.3 2 5
Np(w) = -2(1-p7) | 2+ (4 +)p” | - 4hp

H

4 48 |:1z ; ZKO:I st [-12 + 6Ko:l -
6 8
+p|4- 6Ko + p| 2K (6.3-4)
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1}

2
2 4 2 5
NQ(P‘) (1 - p7) ‘:Kil"' + Kzl“‘ +4:‘ - 2Bp

4+ ;.LZ[-S +K2J + p,4[4 - ZKZ + K{l - 2[3,1,5

[

+p.6}: -ZK1 + Kz:, + Kip.s (6.3-5)
and where
K = 4+
(o}
K, = % T 412 (6.3-6)
K2 = 3« +8

If we proceed in the usual manner to solve (6.3-2) by substi-

tuting the power series

o
- n+e
f = a_ p a £ 0 (6.3-7)
n =
we obtain the indicial equation
xrz + [P(o) - 1:‘ c + Qo) = 0 : (6. 3-8)
or
2
o -50+4 = (¢0-1i){c-4) = 0 (6.3-9)

We thus obtain two formal power series solutions to (6.3-1) of the

form
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w T
4 n

£, = p 1+ a p (6.3-10)
n=1 ]
o ]
' n

f1 = w1 + -;_ a_ K (6.3-11)
n=1 N

Since the roots of the indicial equation differ by an integer, the pos-
sibility exists that the second solution (¢ = 1), contains a term in-
volving 1n p . If this is the case, the series (6.3-11) does not con-
verge in the neighborhood of p =10 .

The simplest way to settle the question of the convergence of
(6.3-11) is to attempt to determine, in a straightforward manner, the
coefficients in the two power series. If fi(p.) contains a term in-
volving ln p, then it will be impossible to find the coefficients a'n .

Rather than use (6.3-7) we prefer to assume the form

E " on
f = a K (6.3-12)

with no restrictions on a . Substituting this expression in (6.3-2)

and collecting powers of p we find
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00
: 2
OZ a.np‘-n n{n-1)- 4n + 4 + p [-4n(n—1)+(12-2K0)n-8+K2]

+

W I:Z)\n(n-i):i - {:6n(n-1)+(—12+6K0)n+4-2K2+K1:I

|J.5 [-zx n(n-1) - 4xn- Zﬁ:]

-+

+ p ~-4n(n-1) + (4- 6Ko)n - 2K1 + K2:|

+ R ni{n-1) + ZKOn+K1:] =0 (6.3-13)

which may be rewritten

o0

> a_p’ (n-4)(n-1)

n=o
(0 0]

+ Z a__, p,nl:_4 (n-2) (n-3) + (12 - 2K_) (n-2) - 8 +‘K2:I
n=2 ;

Q0
+ Z3 a__, p.n[ 2\ (n-3) (n-4) ]
n=

(s.9)
+ Z a4 H“': 6(n-4) (n-5) + (-12+ 6Ko) (n-4)+ 4 - 2K2+ Ki]

n=
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QO

+ E a s p.n [-Zk (n-5) (n-6) - 4\ (n-5) - Zﬁ:l
n=5
00
+ E a__¢ p.n [:-4(n—6) (n-7)+(4-6Ko)(n-6)- ZK1+ KZ:]
n=6
m .
+ E - a_ g p |:(n-8) (n-9) + 2K_(n-8) + K, :I
n= (6.3-14)
Successively letting n = 0, 1, we find
n=20 a = 0 (6.3-15)
n=1 a, = arbitrary (6.3-16)
n=2 a, = 0 (6.3-17)
n=3 —2a3+ Koa1 =0 (6.3-18)
n=4 a, = arbitrary (6.3-19)
n=>5 4a5- 3Koa3+ Kia1 =0 (6.3-20)
n=26 10a6+ a4[-—32- 5u:|+ 12)\2.3
+a1|:-4x-25:l =0 (6.3-21)
n=7 18a7+a5 [—60 -7a:|+ 24)\a4+l:72+19a +o.z:| a,

+a [—36- 170.—20,2:] =0 (6.3-22)
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n=8 .7:83,8+a.6 E—96-9a]+ 40)\a5+ a4[120+25a+ 0,2]
+tag -24\ - 2[3] =0 (6.3-23)
nz> 9 an(n—4) (n-1)+ a .2 |: -4 (n-2)(n-3)+(12 -ZKO)(n-Z)

-8+ Kz:l + a__; 2\ (n-3) (n-4)

6(n-4) (n-5) + (n-4) (-1246K )+ 4-2K,+ K, ]

-2\ (n-5) (n-6) - 4\ (n-5) - 2P :l

+ta . l: -4 (n-6)(n-7)+ (4-6K0)(n-6) - 2K+ KZ:I

ta_ o [(n—S)(n-‘)) + 2K_(n-8) + K1:| (6.3-24)

The terms in the solution can be grouped into two sets, the
coefficients in one set being proportional to a, and those in the second
set being proportional to a, - Since a, and a, are both arbitrary, the

solution obtained is the general solution to (6.3-2) and can be written

f=af, + a,f, | (6.3-25)

where

£

1

wtoa,ule. . (6.3-26)

f,= pt e al w4, (6.3-27)
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The coefficients ay, ceen s ag s s are easily obtained by
step-by-step use of the recursion formulas (6.3-15) through (6.3-24).
We next examine the behavior of the solution of (6.3-2) near

p=+1. We assume a power series solution of the form

(o o]

f= b_ -1 b, # O (6.3-28)

n=0

The indicial equation is immediately found to be

o = 0 (6.3—29)

Thus, only one solution of (6.2-9) has a power series expansion
about p=1. Let fs(p.) denote this solution. Since o=0 is a
double root of the indicial equation, the second linearly independent
solution f4(p.) mustinvolve logarithmic factors of the form In (n-1)
(Whittaker and Watson 1946).

The power series representation of f3(p.) near u =1 may be

found by writing (6.2-9) in the form

2
2, d°f df
(1-p7) — + R{p) 5= +S()f= 0 (6.3-30)
dHZ dp ‘
where
3

B [(1~u2)3 + 2\ u3:|

2
(1-02)" [(@®+7a+12)u®+ (3u.+8)p.2+4:| _2pp°

S = u»z [(1-u2)3 + 2 93]

(6.3-32)
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Note that R(n) and S(p) are regular at p = 1. Repeatedly

differentiating (6.3-30) and setting p = 1 we find

f3(1) = arbitrary (6.3-33)

R(1) £5(1) + S(1) £5(1) = 0 (6.3-34)

[—2+R(1)] £1(1)+ [R‘(1)+S(1)] £,(1)+ S'(1)£5(1)=0  (6.3-35)

Using (6.3-31) and (6.3-32) we find

£.(1) = -.2%. £(1) (6.3-36)
£7.(1) = - 5% [z+ -E—:l £(1) (6.3-37)v

The solution near p = 1 is thus given by

7. (1)
2.

it

£,(0) = £5(1) + £5(1)(u-1) + w-1)%+....

£,(1) [1 + % (1-p) - -1-% 2+ _){3_)(1-”)2+.... ]
(6.3-38)

The results of the preceding analysis may be summarized
as follows:

(a) The general solution of (6.2-9) is of the form

f=a f () +a, () (6.3-39)
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where
fn) = wtal,plral p+ (6. 3-40)
(v) = 1 > M 3 .
and
4 5 6
fz(p)z I +a."5p. +a"6p + ..., (6.3-41)

and where the coefficients @y, 83, --.; Bg, Ay, .... May
be obtained from the recursion formulas (6.3-15) through
(6.3-24).

(b) The general solution of (6.2-9) may also be expressed
as

f(u) = Afy(p)+ B, (6.3-42)

where f3(p) is of the form

o}
f0) = ) b (u-1) (6.3-43)
n=0
with the first three coefficients given in (6.3-38). The
solution f4(p.) contains terms involving 1n (u-1), and
hence is not an admissible solution.
(c) There is, therefore, only one well behaved solution to

(6.2-9) which may be written in the form
F(u) = a;f,(w)+ ayfr() = Afe) (6.3-43)

Obviously there must be some relationship of a, and a, for
(6.3-43) to hold. This relationship will be discussed in Section 6.5

after a more detailed examination of boundary conditions.
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6.4 Formulation of the Boundary Conditions

Involving the Flux in the p-e¢ Plane.

Next consider the two components of the flux given by (4.2-5) and

(4.2-6). Substituting e *¢ f(u) for W we find

-ae D;J.e Dee D e df
.]'€ () = e -D_+ S— e flp) + —LZ r:m (6.4-1)
- Ke % (1) (1-p2) E 14 Grayp® | £
= ne 3 |METR gy ajp

and
D' D! D

~-ae B € . 2 2, df

J = B .p - L + ——-—-——Hp"!'k 1- -—

pL(HL) e > T (1) > (1-p7) I
(6.4-2)

cae | (1- 2)' 23 . 37ar (1-u?) 73
- Ke %€ (1-p%) +2np” |5 -1 1+(3+a)p.:|f
2;.:.3 g 2].1.4

Both of these expressions must vanish at p = 0. We shall first show
that JE () vanishes at p = 0 for any solution of (6.2-9). As noted

above, any solution of (6.2-9) may be written in the form

' 2 3 5
f = a, I:p.+a'z|.t +a'3p, +a'5|1. +:| (6.4-3)

+ ay l:p.4+a“5p5+....:|
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where a, and a, are arbitrary constants. Near p =20
fp) = a, l:p. tal it al 93] +apt+or®) (6. 4-4)

2 4 3 4

+ o) (6. 4-5)

From (6.2-30) through (6.2-33)

a'z = O
K
a' =—2 - 2+ s
3 2 2
1 2 1 2
1 — - -
af = g [31{0 ZKI:} = 3 (e + 10a + 24)
a.n5 = 0 - (6.4-6)
Hence
f(p) = a, I:p.+ (2+§‘-)p3+-é—(a2+ 10a + 24)95:|+ a4p.4+0(|.1.6)

(6. 4-7)

fii)=a, [1 +3(2+ %)p.3+ 2 (s 10a+24)p.4:| +4a,” +0(°)
(6. 4-8)

Using these results in (6.4-1) we find
I = Ke 2 ap + 0@’ (6. 4-9)

€ 2

which shows that JE () vanishes at p = 0 for any solution of the

form (6.2-9).
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We next consider the behaviour of Jp‘(p.) near p = 0. Substi-

tuting the above expression for f(p) and £'(u) into (6.4-2) we find
K -ae 2
Jp(p) =—>—e [(3a4+ Zkai) + Ofp ):[ (6.4-10)

The flux Jp(p.) thus vanishes at p = 0 if and only if

3 2
34—" —3—)\31 (6.4"11)

If (6.4-11) is satisfied, then the first non-zero term in .Ip(p‘) is

O(pz) . A short computation gives

a
T (e = -;} [ﬁ - GR]MZ + Of’) (6.4-12)

which shows that there is no discontinuity in Jp.(M or its first

derivative at p = 0.
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6.5 Analytical Solutions for the

Special Case a =f=0.

In order to shed further light on the nature and properties of
the solutions to (6.2-9), we consider the special case obtained by
setting a = B = 0. Itis possible in this case to obtain analytical
solutions of the differential equation. The value of treating this
special case will become evident presently.

The differential equation obtained by setting a = = 0 is

I:cf. (6.2-10) and (6.2-11)]

D 2,, 2 2 D
BE 4 k®(1-p“) [ "+ | D' -D -2k“ | f'+| B D £=0
2 [ R 2 M

(6.5-1)

To solve (6.5-1) we first note that the terms involving k2 may

be written in the following form

2 dzf 2

2 2 af _ a° [z 2
Ké(1-pf) S5 -2kt T= S [k (1—|J.2)f:, + H‘i_lik p.f:l (6.5-2)
dp Foau H

Hence we may rewrite (6.5-1) in the following form

2 D ‘
d b, 12, 2 al . 2 ~
o ( EE 4 1%(1p ))F o I:( D+ 2k p)F:] = 0 (6.5-3)

Integrating once

D
&L- |:<_2E!*_ +k2(1-p.2)>F] + (—DH+2k2p) F = C, (6. 5-4)
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Duu‘ 20,2 D;w-
By k4(1- £+ | 2 _p f = C 6.5-5
B4 15(1-07) e - D, t (6.5-5)

where the prime denotes differentiation with respectto p. We

or

may evaluate C1 immediately by noting that the left side vanishes

at p=+1, provided F is finite there. Thus C, 6 =0, and we are

left with

dF -D' - 2D
T = 3 InF = ””2 *2 = g(p) (6.5-6)
M D,.* 2KZ(1-p%)

From (4.1-2) and (4. 1-5) we find for p > 0.

2
(1-p2) (14342
B [(1-u2)3+ Zhug']

g (1) (6.5-7)

where \ is defined by (6.1-3).

Integrating (6.5-6) from p to 1 we obtain

1

1
F(n) = F(1) exp | = /g(X)dx
‘ 4

(1—){2)‘2 (1 +3xz) dx

poox [(1—x2)3+2)\x3]

F(1) exp

(6.5-8)
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The constant F(1) may be chosen to satisfy the normalization
. o+l
condition / F(u) dp = 1
-1

Graphs of F(p) (un-normalized) are shown in Figure 5, for
various values of A\ . As \-» o , the distributionbecomes isotropic
with

Flp) = F(1) = _;_ (6.5-9)

For A very large but finite the distribution is approximately isotropic
except near pn=0.

It will also be noted that for any finite value of X , the solution
must be zero at p = 0 . This statement follows immediately by letting
p—= 0 in (6.5-8).

: : ¢ 15

In the neighborhood of the origin where << ( N it is
easily verified that F(u) is approximately a linear function of p.

Some interesting conclusions may now be drawn from the
preceding results. We have shown that a single "well behaved"
solution to (6.5-1) exists. The second solution to the differential
equation contains a logarithmic term In(1-p), and hence cannot be
an admissible solution. It will be noted that by setting a = p =0,
we have not changed the nature of the singularities in the coefficients
of (6.2-9). The power series solutions obtained in Section 6.3 may
thus be specialized to the present case simply by setting o = =10
in the recursion formulas. In particular, the power series (6.2-50)
is an expansion of the "well behaved" solution (6.5-8) about = +1.

We next note that when a = 0, the expression for the
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flux Jp.(p.) given by (6.4-2) reduces to

-ae o 2 2,\df 'p.p. ’ 6
= i - —_ | .5-10
Jp(p.) e 5 +k7(1-p7) m +( > DP') f (6.5-10)

The quantity in brackets is zero by (6.5-5), and hence the solution
given by (6.5-8) gives zero flux Jp(p) everywhere in the interval
0 < p ¢ 1. The condition (6.4-11) relating the two power series
solutions aboﬁt = 0 is therefore satisfied. (This statement may
also be verified directly by expanding the solution (6.5-8) about p=0
and examining the coefficient of the |J.4 term. )

Thus in the special case a = B = 0, the "well behaved" solution

satisfies the condition

a,= - —§- \a (6.5-11)

4 1

necessary to make J}L(O) = 0 . In the general case when o and B
are non-zero, the condition (6.5-11) does not insure a solution which
is finite at p = 1 . An additional condition must therefore be imposed
on the solutions to (6.2~8). This condition takes the form of a

constraint on the parameters a, \, P
gla, \, ) =0 (6.5-12)

It has not been possible to determine analytically the form of the
function g(a, \, B). Nevgrtheless solutions to (6.2-8) can be found
which satisfy the required boundary conditions and hence (6.5-12).
The problem of finding such solutions is considered in the following

section.
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6.6 Numerical Solutions for Large e

From the results of the previous section it is evident
that one of the two independent solutions to (6.2-9) is well behaved,
i.e., it is finite and non-negative everywhere in the interval
o0¢ p ¢ 1. Ingeneral, such a solution will not satisfy the boundary
condition Jp(O) =0 unless the parameters « , B, A have been
chosen properly. The procedure employed for finding solutions which
satisfy this boundary condition is to fix the parameters o/ and X\ ,
and compute a set of solutions for different values of f by numerical
integration*. One then selects from this set of solutions the one
which satisfies the condition JH(O) =0,

The numerical procedure used is a step-by-step pro-
cess based on the well known Runge-Kutta method for integrating |
systems of first order differential equations, with Gill's special
treatment which greatly reduces cumulative roundoff errors (Gill
1951). Since the computations required are extremely tedious, they
have been carried out with the aid of a digital computer.

To carry out the numerical integration, one must
start at a point p = Bo with the value of the function f and its
first derivative. Because of the nature of the singularities in the

coefficients of the differential equation at p =0 and p = 1 , the

e i s Em P e e AR M e e e T MR MR ML M A R e S M e e M A T M e e M mm 4w S M s e AR En S G G M Am e Em e e e e W e

% The problem of finding the appropriate solutions must be dealt
with numerically since solutions to (6.2-9) cannot be found in closed
form except in the special case where &« =g =0 . The power
series solutions which we have developed as an aid to determining
properties of the solutions are not useful for computing complete
solutions because of their slow convergence.
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solution cannot be started at these points. It has been found con-
venient, therefore, to start the solution by using the power series
(6.3-38) to compute f and f' at p = 0.995, assigning the value

1 to f at p=1. The solution is then continued by numerical in-
tegration using a computing interval of 2-9 . As p becomes small
(n = 0.005) the integration becomes inaccurate due to the singularities
in the coefficients. The solution is therefore stopped at this point.
Since it is known that the solution varies linearly with p for small
B, the soiution obtained is easily extrapolated to p =0 .

In principal one could start the solution at p = 0, using the
power series (6.3-40) and (6.3-41), and proceeding by step-by-step
numerical integration to p =1 . However, this is difficult in pr;c-
tice. One is faced with the problem of determining the proper linear
combination of the two power series solutions which will result in a
solution which is finite at p = 1, and at the same time satisfy the
boundary condition J(p) = 0 . The proper linear combination is
not known a priori (except in the case « = =0), and hence must
be determined by trial and error. The procedure outlined above
avoids this difficulty.

In carrying out the numerical integration it is most con-
venient to fix the values of « and A, and determine the value of
B that results in a solution satisfying the required boundary con-
dition. Values of &« have been chosen that agree with experi-
mental observations. The results of Neher and Stern (1955) in-
dicate that o lies in the range 1.5 to 1.7. For each of the

values X = 1.5 and 1.7 solutions have been computed for
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A =10, 100, 1000 . Curves showing the behavior of f(p) for the
higher value of & are given in Figure 6. The values of B = —I-é—_r
corresponding to these solutions are shown in the accompanying

table and in Figure 7. The solutions for o = 1.5 have not been

plotted since they differ very little from the solutions for & =1.7.
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FIGURE 7.

2

10810)‘

The Parameter B as a Function

of A\ for a =1.5
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7. SUMMARY AND CONCLUSIONS

In previous sections, a diffusion equation has been derived
which describes statistically the behavior of an ensemble of particles
moving in the galactic magnetic field. This equation has been de-
rived on the basis of a model in which particles interact with large
scale, time varying, inhomogeneities in the magnetic field (beta-
tron interactions), and with small scale inhomogeneities which
change the direction of motion of the particles. Two main problems
have concerned us: (a) the energy distribution of the high energy
particles, and (b) the angular distribution of these particles.

In Section 6 solutions to the steady-state, s‘pace-independent*
diffusion equation have been given which are valid in the high energy
region. The results have shown that the angular distribution of 'the
cosmic ray particles produced by the betatron mechanism is inex-
tricably tied up with the energy dependence, and hence we cannot
consider either s‘eparately. The results also show that the degree
of anisotropy is determined by the relative effectiveness of the
scattering by small scale inhomogeneities which tend to make the
distribution isotropic, .and the betatron processes which tend to
make the distribution highly anisotropic with most of the particles
lying in very steep spirals. The relative effectiveness of these

two processes is measured by the ratio (See Section 6.1),

o - I e e L

* It has been shown in Section 5 that the anisotropy produced by
diffusion of particles out of the spiral arm is small except near the
boundaries of the magnetic field. It is thus a valid approximation
in the region far from the boundaries of the field to neglect the
space dependent terms.

A nonuniform space distribution of sources also leads to aniso-
tropy. This problem has been considered by Fan (1951) and Morrison,
Qlbert, and Rossi (1954).
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n,oc 2‘/4: cn,o 2
20 _ 20
A = ® = > 7 (7.1-1)
2.1 6 (0)w>(0) <v )k
g 2
2
n,0,
where — is a parameter associated with the scattering by

small scale inhomoger{eities, and K is a parameter associated with
the betatron mechanism. The degree of anisotropy is strongly de-
pendent on the value of A\, with the distribution becoming more and
more isotropic as the value of \ increases.

We have shown that for large ¢ , the probability of finding

a particle in the range € - € +de, p» p+dp, is given by

W(w e)dpde = Ae  ~ () (7.1-2)

where A and o are constants, and f(u) describes the angular
distribution of the particles. The probability of finding a particle in

the energy range w-» w + dw is thus

niwldw = Ate (& T Wy (7.1-3)

The parameter o« depends on the values of K and \ which
are determined by the properties of the magnetic field, and also on
the parameter 71 which describes the rate at which particles are
removed from the distribution by nuclear collisions and diffuéion
out of the spiral arm. If ™ denotes the mean time for absorption

of a particle by a nuclear collision and ™ denotes the mean time

for diffusion out of the spiral arm, then approximately
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e L L (7.1-4)

It is known from experimental observations that the value of
o¢ lies in the range 1.5 to 1.7 (Neher and Stern 1955)., For these
extreme values of & , the parameter § = I—é—_; has been computed
for several values of \ corresponding to different degrees of aniso-

tropy. The results are summarized in the following table.

TABLE II

Values of o« , A\, and B = %'r' Determined From

the Steady-State Diffusion Equation

- | 1
°< A B=grs = A P=rr
1.5 10! 10 1.7 101 7
1.5 102 21.4 1.7 10° 24.6
1.5 103 87.5 1.7 103 99.5

1.7 104 420

The angular distribution functions f(p) corresponding to the last
four of these cases are plotted in Figure 6.

All of these cases are consistent with experimental knowledge
of the parameter & , but not with the observed anisotropy of cosmic
rays. A lower limit on A is imposed by experimental results which
indicate that the flux of cosmic rays is isotropic to within a few per-

cent (Davis 1954a).
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A rough measure of the anisotropy may be obtained by ex-

panding the function £f(u) in a series of Legendre Polynomials

(0 0]

f(p) = g A P () . (7.1-5)

n=o

Since f(p) is an even function of p , An =0 forodd n. Table

III gives the values of AZIAO and A4/A0 for the solutions plotted

in Figure 6.

TABLE III

Valges of AZ/A0 and A4/Ao for the

Functions f(p) Plotted in Figure 6

oL Iy AZ/AO A4/Ao
1.7 1ol 0.642 _0.686
1.7 102 0.237 -0.361
1.7 103 0.109 _0.271

’

The results given in Table III indicate that A must be
greater than 103 to agree with experimental evidence.
Additional conditions on the parameters are imposed by the

hypothesis that the cosmic rays diffuse to the end of the spiral arm
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more rapidly than they suffer nuclear collisions. (Such an assump-
tion is required to explain the physically observed fact that the
energy distribution of the high energy particles is independent of
their mass.) An upper limit for T is thus set by‘fche requirement
that T be of the order of the mean time for a nﬁclear collision of
the heavist components of cosmic rays, and is about 4 x 106 years.

(Morrison, et al. 1954),

By virtue of the above hypothesis we may neglect TN- ! in
comparigon with TD-i in (7.1-4). The parameter TH may then
be estimated from [ Cf. (5.3-12)7],
"2
_ 5 b 2
TD = 718 [:;Z] nzﬂ'e (7. 1—6)

where 2b is the length of the spiral arm, and c is the velocity of
light. Reasonable values for b lie in the range 3 x 105 to 106
light years.

Given any three of the five parameters Th? A= nzcrez/4K,
<, P = 1/KTD » b; it is possible to compute the other two using
(7.1-6) and Table II . The results for several cases of interest are
given in Table IV.

Figure 8 shows the variation of b with )\, computed for

< =1.7, = 106 and 4 x 106 years. The values of B are

™D
taken from Figure 7.
If we take A > 103 then it appears from these results that

it is possible to find values of the parameters which agree with the

observed energy spectrum of the high energy cosmic rays and at
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the same time allow the cosmic rays to diffuse to the end of the
spiral arm in times of the order of the mean time for a nuclear
collision by the heaviest atom. The rms deflection angles re-
quired to keep the distribution isotropic to within a few percent
correspond to a few milliradians at the rate of one deflection per
year.

It is not possible to relate the parameter K to other para-
meters describing;the magnetic field unless we make some assump-
tion regafding the spectrum of the oscillations in the field. We
shall do this as a matter of illustration only, using the spectrum _
given by (3.2-46), without implying that this equation correctly
describes the magnetic field. A short célculaﬁon based on (3. 2-46)

" shows that

it

2
K 2% ﬁgz ( L ) 2 (7.1-7)

where b and a are the mean wavelengths of the hydromagnetic
waves transverse and parallel to the primary magnetic field, re-
spectively; czﬁgz = <Vg2> is the mean-square gas velocity of
the medium; and 26b is the width of the wavelength spectrum at
half maximum. The units of distance are light years. |

If we take K =1/4 x 10_8 yrs. 1, corresponding to
x = 10> and T, =4x 10% yrs., in Table IV and, By =3 107>
(Davis 1956), then a consistent set of values satisfying (7. 1-7)
a=b=11light year, and & = 0.4 . These values appear to be

reasonable. However, values of a and b much smaller than
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about one light year are not reasonable due to the large amount of
viscous damping associated with such waves (Davis 1956).

The complete answer to the question of the plausibility of
the values of K and nztrez derived from our model of the accel-
eration mechanism must await further evidence on the nature of

the galactic magnetic field.
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APPENDIX A

Derivation of the Diffusion Equation from

the Exact Integral Equation for W

The purpose of this Appendix is to derive the partial dif-
ferential equation describing the behavior of an ensemble of par-
ticles undergoing scattering and acceleration by inhomogeneities
in the field whose scale is large compared to the radius of curva-
ture of the spiral of a typical particle. Additional terms in the
diffusion equation are needed to represent the scattering by small
scale static inhomogeneities, absorption, and injection of new par-
ticles. These modifications are made in Sections 3.3 and 3. 4.

Let ¢ aenote time, z distance along the direction of the
unperturbed magnetic field, p the cosine of the spiral pitch angle,
¢ the logarithmic energy parameter defined by ¢ = ln'rﬁaI:Ic—l s
where H is the total energy of a particle and mac2 is the rest
energy. Let W({(u,¢, z; t) du de dz be the probability of finding a
particle with "u in the range p - p +dp, € in the range
€ > ¢ +de , z inthe range z -» z + dz , at the time t.

Consider the problem of relating the probability distribu-
tion function at a time t + At to the distribution function at time
t . These distribution functions are related through the joint tran-

sition probability
Py, €, z; Ap, Ae, Az) d(Ap) d{Ae) d(Az) (1)

which represents the probability of p changing by an amount Ap,
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and € changing by an amount Ae , and z changing by an amount
Az , in the time At . Itis reasonable to assume that P is a function
of At, but not of t. The usual rules of the probability calculus

then permit us to write the following exact integral equation for W .

W(p, €, z; t+At) = [/ W(p-Ap, €-Ae, z-Az; t) X (2)

P(p-Ap, e-Ae, z-Az; Ap, Ae, Az)d(Ap)d(Ae)d(Az)

where the integration is éarried out over the complete range of Ap,
Ae, Az . Now if we expand this equation in terms of the changes

Ap, Ae, Az, and pass to the limit in an ‘appropriate manner, we ob-
tain a partial differential equation describing the change of W with
time. Terms up to the second order in Ap, etc., will be retained.
This gives an adequate representation for times large compared to
the time over which the changes Apn, Ae, etc., are correlated.

It will be convenient to write

X = B Ax1 = Ap
X, = € Ax, = Ae (3)
X3 = z Ax3 = Az

We first expand the functions W and P in the integrand of (2),

W(Xi—Axi’ xz—sz, X3=AX3; t) = W(xi,xz,x?’; t)
3
2
- + 3 "W _ Ax,Ax; + O(Axf) (4)

i’ 2 0x.0x.
1,J= 07
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P(Xi_Axi’ xz-sz, X5- AX3, Axi, sz, Ax3) = P(XI’XZ’ X33 Axi,sz, AX3)
3
2P 1 3%p 3
- Ax, + 2 Ax.Ax, +O(Ax])  (5)
i i~ 7] i
X, dx.0x.
i A i 7
i,]=

Next expand the left hand side of (2), and retain terms to first order in

At ,

Al

W(P',G:Z;t‘l'At) = W(P':G’ z; t) + bt

At + O(At) (6)

Substituting these expansions in (2), we have

bW
2t

3
= W(xi,xz,x3;t) - E E bX bX Axiij x
7 1= 1,3-
3
. oP
P(xi,xz,x3. bx,, Ax,, Ax3) - _;_ bxi E bx bx AxiAXj
i= 1, J=

olaxy | dax) d(ax,) d(ax,) (7)

W(Xl’ Xys X33 t) + At + O(At )

ol

=+

which can be written,
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oW
ot

///W(xi, X1 %33 t) Px 2 Xy, %55 A, Ax,, Ax,)d(Ax,)d(Ax,)d(Ax,)
. //E Ax P(xy, %, X53 AX,, Ax,, Ax,)d(Ax )d(Ax,)d(Ax,)

W(Xi’ Xys X35 t) + At + O(At ) =

"

+ /// —Sj TR bx AXiAXjP(Xl,Xz,X3;Ax1,AXZ,AX3) x
d(Axl) d(sz) d(Ax (8)
3
- W(x,sX,yX,;t) aPA d{ax,d(Ax,)d(Ax,)
A S A o ?x; 1 2 3
_ 3 2
+ i Wx,,x,,x,;3t) —b-P— Ax. Ax d(Ax.)d(Ax,)d(Ax,)
2 1772273 7X. dX. ™7 i 2 3
L 3= 1
3 — 3
oP ow
+ 2%, Axi E 3551- Axi d(Axi)d(sz)d(Ax3)
1= - i=1

We now consider simplifications of the various terms. The first term

on the right can be written (assuming P is normalized)
W(Xi’ X5s X33 t) P(Xl, X5 X33 Axi, sz, Ax3)d(Ax1)d(Ax2)d(Ax3)

= Wxy x5 %35 t) (9)

The second term on the right can be rewritten as



-141-

E // Ax, P(Xi, 3;Ax1, sz,Ax3)d(Ax1)d(AxZ)d(Ax3)
i ;
where

<Axi> :///Axip(xl,xz,x3;Ax1,sz,Ax3)d(Ax1)d(Ax2)d(Ax3) (11)

Note that in general <Axi> is a function of Xys Xy X oo Similarly,

the third term may be written

%E mﬂ Ax;Ax; Plxy, %), %35 Axy, Ax,y, Ax3)d(A%)A(A%,)A(5x5)
1]

i W
z § 3}‘;{.‘ (AXiAXj> (12)
1,j= J
where

<Ax Ax, > /// Ax, Ax P(Xi’ X,y X33 A%y, Ax,, Ax3)d(Ax1)d(Ax2)d(Ax3)
(13)

Differentiating the expressions for (Axi> and <AXiij> we obtain

d _ 2P
> <Axi> = // Axis}?i- d(Ax,)d(Ax,)d(Ax,) (14)

and,

i
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>2 | o 2°p ‘
Az (AxiAxJ.) = // B, A, _‘_—axiaxj d(ax,)d(Ax,)d(Ax,)  (15)

These expressions may be used to simplify the last three terms of
(8). The fourth term becomes

bP

_W(xi, X, x3; t) Ax; d(Ax ) d(AxZ) d(Ax )
) %§

3 (16)

_ . E d
= -W(xl,xz, X33 t) E—l- <Axi>
i=

The fifth term becomes

3 .
L wo ; t) _2%p_ Ax.Ax. | d(Ax,)d(Ax,)d(A
Z WX s Xps X3i ox; 0%, *BXy x)dlax,)d(Ax,)
1, J=
3 (17)
t 22
=+ W(XI’XZ’ X33 t) —?,;{—{-b—;{— AXiAXj>

Similarly, the last term can be written

3

§ P W ,
b5 bx Ax;Ax; d(Ax d(sx,)d(Ax,) (18)
i,]=

E l: / E -——— Ax AxJ d(Axi)d(sz)d(Ax ).

.

3

3
; 2 - E oW

———-axi Axiijjl = ——-ij —axi Axiij>
= 1,3=

o

X

g

i}

l

[~ 4
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Using Equations (9) through (18) in (8), we have

3 3
W 2 § QW 1 E
57 At + O(atY) = - 5'>':';<Axi) t > ax ax (Ax Ax>
i= i, j=
(Ax.Ax
1
(19)

(20)
and that
(21)
3
2
W 1 .
x; 3% <Ax Ax) -2 %, 0% W (ax ax;)
1, )=

Thus (19) becomes
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3 3
AW Ay opatd) - 2 | weaxy | + 4 2% | wiaxa
ot + O ) = - %, i> 2 axiaxj < %5 Xj>
1= i’j:
+ O (AxiijAxQ) (22)

Dividing by At and taking the limit as At <» o, we obtain finally

3 3
2w 2 | pwl|+d 28 D..W (23
ot ~ DX, i 2z 0X.0X, ij )
i 1975
= EE
where
D 1 (ax) (24)
. = lim
1 At-» © At
and
<Axiij>
D, = lim R L (25)
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APPENDIX B

Some Properties of Cylindrically Symmetric

Hydromagnetic Waves

In this Appendix we will discuss some of the properties of the
simplest types of cylindrically symmetric hydromagnetic waves. We
start from Maxwell's equations neglecting the displacement current.

In Gaussian units

— -
vxB = 27 (1)
= 1 B
VXE—-'E"a—t- (2)
V-B= 0 (3)
T- o[ EvlTx ] | (4)

In (4) o represents the conductivity and v the velocity of the
medium. To these equations we must add the hydrodynamic equation
of motion for the medium. In this simplified treatment we will
neglect the non-electromagnetic forces. The hydrodynamic equation
of motion is then

(+

x B) (5)

0]

where p is the mass density of the medium. We make the further
assumption that the conductivity of the medium is infinite. This
requires from (4) that

E=--13x® (6)
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- .
since the current density i must remain finite. We introduce a

' -» - >
vector potential A from which the fields E and B are calculated

b

’ s
——
E=-2 3t )
— e

We seek solutions of the above equations which describe cylindrically
symmetric waves moving in the direction of the primary magnetic
field Bo é’z .  Such waves may be described by a vector potential
having only a ¢-component. Furthermore all of the parameters
describing the field will be independent of the coordinate ¢ . We
attempt to find a solution by assuming a vector potential of the form
A = AT, - [% B - B_A g(r) el(kiz_wt):l Cy (9)

which represents a wave moving to the right along the z-axis. Taking

the curl of (9) gives
-

e -»» — b ant 1 3
B-Ber+Be_. —a—z——er+;-a—r(rA¢)ez

i(kiz-wt) - i(kiz-wt) -~
= -BoAik1 g(r) e e + B 1+ Af(r)e : C
(10)

where

f(r) = —1'1—5—3-1:- (rg(r)) (11)
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The simplest radial dependence is obtained by taking g(r) = Ji(kzr).

It then folléws that

f(r) = k, J_(k,r) (12)

The vector potential and magnetic field are then given by

( i(kiz—wt) r
AqS = —BOA Ji(kzr) e + —Z-Bo (13)
. 1 R
B = —BOA1k1 Jl(kzr) e .
i(k1Z—wt) -
+B0 1+ Ak2 Jo(kzr) e e, (14)

The current density corresponding to (13) is given by (1). Making

——
use of the factthat v . A =0 we may write

ZX- +4 7w P o

(15)

"
<
»
<
»
>y
0
i
<
1
-
s

vxB

In cylindrical coordinates this equation becomes

A
27> - 2 _ ) e 3 P
V A.— eé[ Aé "r_z—'] = c 1¢ e¢ . (16)
or
QA A zA
1o [, 28] A, 2% | -an
T Jr dr £2 > 72 T ¢ ) (17)

A short computation shows that the current density is

4“_ i(klz-wt)

2T, = BA (k24 k) I (k,7) e (18)
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Substituting this expression in (5) and making the linearizing

: =
approximation that B = B

» .
o Sz yvields

dv _ XBo _ 14 Bo >
dt PoC PoC r
2 .
ABO A > 2 1(k1z-<.ot) -

8 (19)

Integrating this equation gives the velocity of the medium as a function

of the space coordinates and the time

v T = .__B°2A k2 +x2) 7, (k el(kiz-wt) Iy 20
Vo= Vp S T g (kg i) Tlior) e, (20)

~iw

Substituting this expression in (6) and again making the linearizing

P > .
approximation that B = Bo e, gives
3 ik, z-wt)
B 2K Bo & (k2+Kk7) T,(k,r) S :
X 41‘r-p0 1 2 1V72

—

: ey (21)

~iw
i

Integrating, we find A to be

3

- -B~A i(k,z-wt)

A= | —2 (k2+k2) J,(k,r) e 1 + L | (22)
4 2 1752 152 > ¢
Trpow

with the constant of integration representing the uniform part of the

field. Comparing (22) with (13) we find that a solution of the form

(13) is possible if wz is related to k

1a,ndkzby
2
B

2 o 2 2

© = e Bt R)

(23)
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APPENDIX C

ZMH

A Second Proof that L is a Constant of the Motion

B

for Relativistic Particles Moving in Slowly Varying

Magnetic Fields

The theorem that L = ZMH is a constant of the motion will

B

be proved here only for the case where the magnetic field is uniform,

but varies with time. Similar proofs can be given for the case where
the magnetic field has a gradient along or parallel to the undisturbed
field.

" The magnetic moment M is defined by Equation (2. 3-5).

Using (2.2-17) and (2.2-19), M can be written in the following form:

(1)

_ H ;Z + I_2;52
2c BZ

Let v, and v be the components of the particles velocity perpen-

dicular and parallel to the magnetic field, respectively. Then

mv 2

4
g (2)
Z

) =
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where

m = L = -
= = = =
C

is the relativistic mass.

For the case under consideration (uniform magnetic field varying

with time),

Ay = z B,
A
- b _
Br = 3z = 0
From (5) and (2.2-16),
p, = mvi' = m yv = constant

Differentiating (2}, (3), and (6)

From (8) and (9)

(3)

(4)

(5)

(6)

(7)

(8)

(9
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c2 dy 2 dy
—i = d d = - ok §
:Z > A v” + v V-L Vi Y +vl d\i (10)
which may be written
dv 2
1 c d
— ==z |=Z * 3 (11)
. Vi Y
Making use of the definition of y we may write,
v 2 + v
1 1 I
— = 1- — (12)
Y c
or
2
c 2 2 2
v T (13)
Y
Hence,
2 2
dv c - v
_VL = ———— 9y (14)
L v, Y
. 2MH . . .
Now, consider the quantity LB = BT Differentiating, and using
(3)s
dbg  _ aME) _ aM | dy (15)
LB MH M Y
Using (2) to compute % we find,
_E___dLB = 2% 2———d‘i - d:z (16)
B Y Vi z
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dv
The term involving -—‘;-'L- may be eliminated by (14), giving,
: 1
2 2
dLB :zﬁdl 1+c-v_L - de
'TI; Y -2z B
v
A
(17)
2t gy | e
vj_2 Y Bz
Next note that
dH d 2 d 2 2d
T T @ e = glmgety) = me g (18)
and also from (2.2-12), (2.3-5), and (2.2-19), that
dH _ M de (19
T - M=w )
Hence, using (2) and (3),
m yv 2 dB
oY L z _ 1 dy (20)
2B m CZY dt Y dt
zZz o
which may be written,
VJ_Z dBZ ‘_il :
— = (21)
2c Bz Y
Using this relationship to eliminate %X in (17), we find,
dL 2 v % aB dB
B _ Z2c 1 z Z - 9 22
. ~ 2 Z B - B = (22)
B 2c Z Z
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which gives us finally,

_ 2MH _ ,
LB = ac = cons’;ant. (23)
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